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Introduction

Advances in information technology have facilitated large volume, high-velocity of data, 

and the ability to store data continuously leading to several computational challenges. 

Due to the nature of big data in terms of volume, velocity, variety, variability, veracity, 

volatility, and value [1] that are being generated recently, big data computing is a new 

trend for future computing.

Big data computing can be generally categorized into two types based on the process-

ing requirements, which are big data batch computing and big data stream computing 
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[2]. Big data batch processing is not sufficient when it comes to analysing real-time 

application scenarios. Most of the data generated in a real-time data stream need real-

time data analysis. In addition, the output must be generated with low-latency and any 

incoming data must be reflected in the newly generated output within seconds. �is 

necessitates big data stream analysis [3].

�e demand for stream processing is increasing. �e reason being not only that huge 

volume of data need to be processed but that data must be speedily processed so that 

organisations or businesses can react to changing conditions in real-time.

�is paper presents a systematic review of big data stream analysis. �e purpose is to 

present an overview of research works, findings, as well as implications for research and 

practice. �is is necessary to (1) provide an update about the state of research, (2) iden-

tify areas that are well researched, (3) showcase areas that are lacking and need further 

research, and (4) build a common understanding of the challenges that exist for the ben-

efit of the scientific community.

�e rest of the paper is organized as follows: “Background and related work” section 

provides information on stream computing and big data stream analysis and the key 

issues involved in it and presents a review on big data streaming analytics. In “Research 

method” section, the adopted research methodology is discussed, while “Result” section 

presents the findings of the study. “Discussion” section presents a detailed evaluation 

performed on big data stream analysis, “Limitation of the review” section highlights the 

limitations of the study, while “Conclusion and further work” concludes the paper.

Background and related work

Stream computing

Stream computing refers to the processing of massive amount of data generated at high-

velocity from multiple sources with low latency in real-time. It is a new paradigm neces-

sitated because of new sources of data generating scenarios which include ubiquity of 

location services, mobile devices, and sensor pervasiveness [4]. It can be applied to the 

high-velocity flow of data from real-time sources such as the Internet of �ings, Sensors, 

market data, mobile, and clickstream.

�e fundamental assumption of this paradigm is that the potential value of data lies in 

its freshness. As a result, data are analysed as soon as they arrive in a stream to produce 

result as opposed to what obtains in batch computing where data are first stored before 

they are analysed. �ere is a crucial need for parallel architectures and scalable com-

puting platforms [5]. With stream computing, organisations can analyse and respond in 

real-time to rapidly changing data. Streaming processing frameworks include Storm, S4, 

Kafka, and Spark [6–8]. �e real contrasts between the batch processing and the stream 

processing paradigms are outlined in Table 1.

Incorporating streaming data into decision-making process necessitates a program-

ming paradigm called stream computing. With stream computing, fairly static questions 

can be evaluated on data in motion (i.e. real-time data) continuously [9].

Big data stream analysis

�e essence of big data streaming analytics is the need to analyse and respond to real-

time streaming data using continuous queries so that it is possible to continuously 
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perform analysis on the fly within the stream. Stream processing solutions must be 

able to handle a real-time, high volume of data from diverse sources putting into con-

sideration availability, scalability and fault tolerance. Big data stream analysis involves 

assimilation of data as an infinite tuple, analysis and production of actionable results 

usually in a form of stream [10].

In a stream processor, applications are represented as data flow graph made up of 

operations and interconnected streams as depicted in Fig. 1. In a streaming analytics 

system, application comes in a form of continuous queries, data are ingested continu-

ously, analysed and correlated, and stream of results are generated. Streaming analytic 

applications is usually a set of operators connected by streams. Streaming analytics 

systems must be able to identify new information, incrementally build models and 

access whether the new incoming data deviate from model predictions [9].

�e idea of streaming analytics is that each of the received data tuples is processed 

in the data processing node. Such processing includes removing duplicates, filling 

missing data, data normalization, parsing, feature extraction, which are typically done 

in a single pass due to the high data rates of external feeds. When a new tuple arrives, 

this node is triggered, and it expels tuples older than the time specified in the sliding 

window (sliding window is a typical example of windows used in stream computing 

which keeps only the latest tuples up to the time specified in the windows). A window 

Table 1 Comparison between batch processing and streaming processing [82]

Dimension Batch processing Streaming processing

Input Data chunks Stream of new data or updates

Data size Known and finite Infinite or unknown in advance

Hardware Multiple CPUs Typical single limited amount of memory

Storage Store Not store or store non-trivial portion in memory

Processing Processed in multiple rounds A single or few passes over data

Time Much longer A few seconds or even milliseconds

Applications Widely adopted in almost every domain Web mining, traffic monitoring, sensor networks

Fig. 1 Data flow graph of a stream processor. The figure shows how applications (made up of operations and 

interconnected streams) are represented as data flow graph in a stream processor [10]
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is referred to as a logical container for data tuples received. It defines how frequently 

data is refreshed in the container as well as when data processing is triggered [4].

Key issues in big data stream analysis

Big data stream analysis is relevant when there is a need to obtain useful knowledge 

from current happenings in an efficient and speedy manner in order to enable organisa-

tions to quickly react to problems, or detect new trends which can help improve their 

performance. However, there are some challenges such as scalability, integration, fault-

tolerance, timeliness, consistency, heterogeneity and incompleteness, load balancing, 

privacy issues, and accuracy [3, 11–18] which arises from the nature of big data streams 

that must be dealt with.

Scalability

One of the main challenges in big data streaming analysis is the issue of scalability. �e 

big data stream is experiencing exponential growth in a way much faster than computer 

resources. �e processors follow Moore’s law, but the size of data is exploding. �ere-

fore, research efforts should be geared towards developing scalable frameworks and 

algorithms that will accommodate data stream computing mode, effective resource allo-

cation strategy and parallelization issues to cope with the ever-growing size and com-

plexity of data.

Integration

Building a distributed system where each node has a view of the data flow, that is, every 

node performing analysis with a small number of sources, then aggregating these views 

to build a global view is non-trivial. An integration technique should be designed to ena-

ble efficient operations across different datasets.

Fault-tolerance

High fault-tolerance is required in life-critical systems. As data is real-time and infinite 

in big data stream computing environments, a good scalable high fault-tolerance strat-

egy is required that allows an application to continue working despite component failure 

without interruption.

Timeliness

Time is of the essence for time-sensitive processes such as mitigating security threats, 

thwarting fraud, or responding to a natural disaster. �ere is a need for scalable architec-

tures or platforms that will enable continuous processing of data streams which can be 

used to maximize the timeliness of data. �e main challenge is implementing a distrib-

uted architecture that will aggregate local views of data into global view with minimal 

latency between communicating nodes.

Consistency

Achieving high consistency (i.e. stability) in big data stream computing environments is 

non-trivial as it is difficult to determine which data are needed and which nodes should 

be consistent. Hence a good system structure is required.
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Heterogeneity and incompleteness

Big data streams are heterogeneous in structure, organisations, semantics, accessi-

bility and granularity. �e challenge here is how to handle an always ever-increas-

ing data, extract meaningful content out of it, aggregate and correlate streaming 

data from multiple sources in real-time. A competent data presentation should be 

designed to reflect the structure, diversity and hierarchy of the streaming data.

Load balancing

A big data stream computing system is expected to be self-adaptive to data streams 

changes and avoid load shedding. �is is challenging as dedicating resources to cover 

peak loads 24/7 is impossible and load shedding is not feasible when the variance 

between the average load and the peak load is high. As a result, a distributing envi-

ronment that automatically streams partial data streams to a global centre when local 

resources become insufficient is required.

High throughput

Decision with respect to identifying the sub-graph that needs replication, how many 

replicas are needed and the portion of the data stream to assign to each replica is an 

issue in big data stream computing environment. �ere is a need for good multiple 

instances replication if high throughput is to be achieved.

Privacy

Big data stream analytics created opportunities for analyzing a huge amount of data 

in real-time but also created a big threat to individual privacy. According to the Inter-

national Data Cooperation (IDC), not more than half of the entire information that 

needs protection is effectively protected. �e main challenge is proposing techniques 

for protecting a big data stream dataset before its analysis.

Accuracy

One of the main objectives of big data stream analysis is to develop effective tech-

niques that can accurately predict future observations. However, as a result of inher-

ent characteristics of big data such as volume, velocity, variety, variability, veracity, 

volatility, and value, big data analysis strongly constrain processing algorithms spatio-

temporally and hence stream-specific requirements must be taken into consideration 

to ensure high accuracy.

Related work

�is section discusses some of the previous research efforts that relate to big data 

streaming analytics.

�e work of [13] presented a review of various tools, technologies and methods 

for big data analytics by categorizing big data analytics literature according to their 

research focus. �is paper is different in that it presents a systematic literature review 

that focused on big data “streaming” analytics.



Page 6 of 30Kolajo et al. J Big Data            (2019) 6:47 

Authors in [19] presented a systematic review of big data analytics in e-commerce. �e 

study explored characteristics, definitions, business values, types and challenges of big 

data analytics in the e-commerce landscape. Likewise, [20] conducted a study that is cen-

tred on big data analytics in technology and organisational resource management specifi-

cally focusing on reviews that present big data challenges and big data analytics methods. 

Although they are systematic reviews, the focus is not, particularly on big data streaming.

Authors in [21] presented the status of empirical research and application areas in big 

data by employing a systematic mapping method. In the same vein, authors in [22] also 

conducted a survey on big data technologies and machine learning algorithms with a 

particular focus on anomaly detection. A systematic review of literature which aims to 

determine the scope, application, and challenges of big data analytics in healthcare was 

presented by [23]. �e work of [2] presented a review of four big data streaming tools 

and technologies. While the study conducted in this paper provided a comprehensive 

review of not only big data streaming tools and technologies but also methods and tech-

niques employed in analyzing big data streams. In addition, authors [2] did not provide a 

clear explanation of the methodical approach for selecting the reviewed papers.

Research method

�e study was grounded in a systematic literature review of tools and technologies 

with methods and techniques used in analysing big data streams by adopting [24, 25] as 

models.

Research question

�e study tries to answer the following research questions:

Research Question 1: What are the tools and technologies employed for big data 

stream analysis?

Research Question 2: What methods and techniques are used in analysing big data 

streams?

Research Question 3: What do these tools and technologies have in common and 

their differences in terms of concept, purpose and capabilities?

Research Question 4: What are the limitations and strengths of these tools and tech-

nologies?

Research Question 5: What are the evaluation techniques or benchmarks used for 

evaluating big data streaming tools and technology?

Search string

Creating a good search string requires structuring in terms of population, compari-

son, intervention and outcome [24]. Relevant publications were identified by forming 

a search string that combined keywords driven by the research questions earlier stated. 

�e searches were conducted by employing three standard database indexes, which are 

Scopus, Science Direct and EBSCOhost. �e search string is “big data stream analysis” 

OR “big data stream technologies” OR “big data stream framework” OR “big data stream 

algorithms” OR “big data stream analysis tools” OR “big data stream processing” OR “big 
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data stream analysis reviews” OR “big data stream literature review” OR “big data stream 

analytics”.

Data sources

As research becomes increasingly interdisciplinary, global and collaborative, it is expedi-

ent to select from rich and standard databases. �e databases consulted are as follows:

 i. Scopus1: Scopus is a bibliographic database containing abstracts and citations for 

academic journal articles launched in 2004. It covers nearly 36,377 titles from over 

11,678 publishers of which 34,346 are peer-reviewed journals, delivering a compre-

hensive overview of the world’s research output in the scientific, technical, medi-

cal, and social sciences (including arts and humanities). It is the largest abstract 

and citation database of peer-reviewed literature.

 ii. ScienceDirect2: ScienceDirect is Elsevier’s leading information solution for 

researchers, students, teachers, information professionals and healthcare profes-

sionals. It provides both subscription-based and open access-based to a large data-

base combining authoritative, full-text scientific, technical and health publications 

with smart intuitive functionality. It covers over 14 million publications from over 

3800 journals and more than 35,000 books. �e journals are grouped into four 

categories: Life Sciences, Physical Sciences and Engineering, Health Sciences, and 

Social Sciences and Humanities.

 iii. EBSCOhost3: EBSCOhost covers a wide range of bibliographic and full-text data-

bases for researchers, providing electronic journal service available to both cor-

porate and academic researchers. It has a total of 16,711 journals and magazine 

indexed and abstracted of which 14,914 are peer-reviewed; more than 900,000 

high-quality e-books and titles and over 60,000 audiobooks from more than 1500 

major academic publishers.

 iv. ResearchGate4: A free online professional network for scientists and researchers to 

ask and answer questions, share papers and find collaborators. It covers over 100 

million publications from over 11 million researchers. ResearchGate was used as 

a secondary source where the authors could not access some papers due to lack of 

subscription.

Data retrieval

�e search was conducted in Scopus, ScienceDirect and EBSCOhost since most of 

the high impact journals and conferences are indexed in these set of rich databases. 

Boolean ‘OR’ was used in combining the nine (9) search strings. A total of 2295 arti-

cles from the three databases were retrieved as shown in Table 2.

1 http://www.scopu s.com.
2 http://www.scien cedir ect.com.
3 https ://www.ebsco host.com.
4 https ://www.resea archg ate.net.

http://www.scopus.com
http://www.sciencedirect.com
https://www.ebscohost.com
https://www.reseaarchgate.net
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Further refinement was performed by (i) limiting the search to journals and confer-

ence papers; (ii) selecting computer science and IT related as the subject domain; (iii) 

selecting ACM, IEEE, SpringerLink, Elsevier as sources; and year of publication to 

between 2004 and 2018. �e year range was selected due to the fact that interest in 

big data stream analysis actually started in 2004. At this stage, a total of 1989 papers 

were excluded leaving a total of 315 papers (see Table  3). �e result of the search 

string was exported to PDF.

By going through the title of the papers, 111 seemingly relevant papers were extracted 

excluding a total number of 213 that were not relevant at this stage (see Table 4).

�e abstracts of 111 papers and introduction (for papers that the abstracts were not 

clear enough) were then read to have a quick overview of the paper and to ascertain 

whether they are suitable or at variance with the research questions. �e citations of 

the papers were exported to Microsoft Excel for easy analysis. �e papers were grouped 

into three categories; “relevant”, “may be relevant” and “irrelevant”. �e “relevant” papers 

were marked with black colour, “may be relevant” and “irrelevant” with green and red 

colours respectively. At the end of this stage, 45 papers were classified as “relevant”, 9 

papers as “may be relevant” and 11 as “irrelevant”. Looking critically at the abstract again, 

18 papers were excluded by using the exclusion criteria leaving a total of 47 papers (see 

Table 5) which were manually reviewed in line with the research questions.

Inclusion criteria

Papers published in journals, peer-reviewed conferences, workshops, technical and 

symposium from 2004 and 2018 were included. In addition, the most recent papers 

were selected in case of papers with similar investigations and results.

Table 2 First search string result

Scopus ScienceDirect EBSCOhost Total

Number of papers 2097 65 133 2295

Table 3 Second search string result

Scopus ScienceDirect EBSCOhost Total

Number of papers 196 27 92 315

Table 4 Third Search string re�nement result

Scopus ScienceDirect EBSCOhost Total

Number of papers 64 23 24 111

Table 5 Final Selection

Scopus ScienceDirect EBSCOhost Total

Number of papers 25 10 12 47
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Exclusion criteria

Papers that belong to the following categories were excluded from selection as part of 

the primary study: (i) papers written in source language other than English; (ii) papers 

with an abstract and or introduction that does not clearly define the contributions of the 

work; (iii) papers whose abstract do not relate to big data stream analysis.

Result

�e findings of the study are now presented with respect to the research questions that 

guided the execution of the systematic literature review.

Research Question 1: What are the tools and technologies employed for big data stream 

analysis?

Big data stream platforms provide functionalities and features that enable big data 

stream applications to develop, operate, deploy, and manage big data streams. Such 

platforms must be able to pull in streams of data, process the data and stream it back 

as a single flow. Several tools and technologies have been employed to analyse big data 

streams. In response to the growing demand for big data streaming analytics, a large 

number of alternative big data streaming solutions have been developed both by the 

open source community and enterprise technology vendors. According to [26], there are 

some factors to consider when selecting big data streaming tools and technologies in 

order to make effective data management decisions. �ese are briefly described below.

Shape of the data

Streaming data sources require serialization technologies for capturing, storing and rep-

resenting such high-velocity data. For instance, some tools and technologies allow pro-

jection of different structures across data stores, giving room for flexibility for storage 

and access of data in different ways. However, the performance of such platforms may 

not be suitable for high-velocity data.

Data access

�ere is a need to put into consideration how the data will be accessed by users and 

applications. For instance, many NoSQL databases require specific application interfaces 

for data access. Hence there is a need to consider the integration of some other neces-

sary tools for data access.

Availability and consistency requirement

If a distributed system is needed, then CAP theorem states that consistency and avail-

ability cannot be both guaranteed in the presence of network partition (i.e. when there is 

a break in the network). In such a scenario, consistency is often traded off for availability 

to ensure that requests can always be processed.

Workload pro�le required

Platform as a service deployment may be appropriate for a spike load profile platform. 

If platform distribution can be deployed on Infrastructure as a service cloud, then this 

option may be preferred as users will need to pay only when processing. On-premise 
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deployment may be considered for predictable or consistent loads. But if workloads are 

mixed (i.e. consistent flows or spikes), a combination of cloud and on-premise approach 

may be considered so as to give room for easy integration of web-based services or soft-

ware and access to critical functions on the go.

Latency requirement

If a minimal delay or low latency is required, key-value stores may be considered or bet-

ter still, an in-memory solution which allows the process of large datasets in real-time is 

required in order to optimize the data loading procedure.

�e tools and technologies for big data stream analysis can be broadly categorized into 

two, which are open source and proprietary solutions. �ese are listed in Tables 6 and 7.

�e selection of big data streaming tools and technologies should be based on the impor-

tance of each factor earlier mentioned in this section. Proprietary solutions may not be eas-

ily available because of pricing and licensing issues. While open source supports innovation 

and development at a large scale, careful selection must be made especially when choosing 

a recent technology still in production due to limited maturity and lack of support from 

academic researchers or developer communities. In addition, open source solutions may 

lead to outdating and modification challenges [27]. Moreover, the selection of whether pro-

prietary or open source or combination of both should depend on the problem to address, 

the understanding of the true costs, and benefits of both open and proprietary solutions.

Table 6 Open source tools and technologies for big data stream analysis

Tools and technology Article

BlockMon [83]

NoSQL [4, 84–86]

Spark streaming [67, 87–91]

Apache storm [68, 85, 86, 92–97]

Kafka [85, 91, 95, 96, 98]

Yahoo! S4 [6, 45, 87, 99]

Apache Samza [46, 67, 100]

Photon [67, 101]

Apache Aurora [67, 102]

MavEStream [103]

EsperTech [104, 105]

Redis [106]

C-SPARQL [107, 108]

SAMOA [56, 78, 109]

CQELS [108, 110, 111]

ETALIS [112]

XSEQ [73]

Apache Kylin [113]

Splunk stream [114]
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Research Question 2: What methods and techniques are used in analysing big data 

streams?

Given the real-time nature, velocity and volume of social media streams, the clus-

tering algorithms that are applied on streaming data must be highly scalable and 

efficient. Also, the dynamic nature of data makes it difficult to know the required or 

desirable number of clusters in advance. �is renders partitioning clustering tech-

niques (such as k-median, k-means and k-medoid) or expectation-maximization 

(EM) algorithms-based approaches unsuitable for analysing real-time social media 

data because they require prior knowledge of clusters in advance. In addition, due 

to concept drift inherent in social media streams, scalable graph partitioning algo-

rithms are not also suitable because of their tendency towards balanced partitioning. 

Social media streams must be analysed dynamically in order to provide decisions at 

any given time within a limited space and time window [28–30].

Density-based clustering algorithm (such as DenStream, OpticStream, Flock-

Stream, Exclusive and Complete Clustering) unlike partitioning algorithms does not 

require apriori number of clusters in advance and can detect outliers [31]. However, 

the issue with density-based clustering algorithms is that most of them except for few 

like HDDStream, PreDeCon-Stream and PKS-Stream (which are memory intensive) 

perform less efficiently in the face of high dimensional data and as a result are not 

suitable for analyzing social media streams [32].

�reshold-based techniques, hierarchical clustering, and incremental clustering 

or online clustering are more relevant to social media analysis. Several online thresh-

old-based stream clustering approaches or incremental clustering approaches such as 

Markov Random Field [33, 34], Online Spherical K-means [35], and Condensed Clusters 

[36] have been adopted. Incremental approaches are suitable for continuously generated 

data grouping by setting a maximum similarity threshold between the incoming stream 

Table 7 Proprietary tools and technologies for big data stream analysis

Tools and technology Article

CodeBlue [115]

Anodot [116]

Cloudet [117]

Sentiment brand monitoring [118]

Numenta [119]

Elastic streaming processing engine [120]

Microsoft azure stream analytics [121]

IBM InfoSphere streams [8, 122]

Google MillWheel [123]

Artemis [124]

WSO2 analytics [125]

Microsoft StreamInsight [126]

TIBCO StreamBase [127]

Striim [128]

Kyvos insights [129]

AtScale [130, 131]

Lambda architecture [57]
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and the existing clusters. Much work has been done in improving the efficiency of online 

clustering algorithms, however, little research efforts have been directed to threshold 

and fragmentation issues. Incremental algorithm threshold setting should employ adap-

tive approach instead of relying on static values [37, 38]. Some of the methods and tech-

niques that have been employed in analysing big data streams are outlined in Table 8.

Table 8 Methods and techniques for big data stream analysis

Methods and techniques Article

SPADE [132]

Locally supervised metric learning (LSML) [133]

KTS [106]

Multinomial latent dirichlet allocation [106]

Voltage clustering algorithm [106]

Locality sensitive hashing (LSH) [134]

User profile vector update algorithm [134]

Tag assignment stream clustering (TASC) [134]

StreamMap [117]

Density cognition [117]

QRS detection algorithm [87]

Forward chaining rule [110]

Stream [135]

CluStream [136, 137]

HPClustering [138]

DenStream [139]

D-Stream [140]

ACluStream [141]

DCStream [142]

P-Stream [143]

ADStream [144]

Continuous query processing (CQR) [145]

FPSPAN-growth [146]

Outlier method for cloud computing algorithm (OMCA) [147]

Multi-query optimization strategy (MQOS) [148]

Parallel K-means clustering [72]

Visibly push down automata (VPA) [73]

Incremental MI outlier detection algorithm (Inc I-MLOF) [149]

Adaptive windowing based online ensemble (AWOE) [74]

Dynamic prime-number based security verification [84]

K-anonymity, I-diversity, t-closeness [90]

Singular spectrum matrix completion (SS-MC) [76]

Temporal fuzzy concept analysis [96]

ECM-sketch [77]

Nearest neighbour [91]

Markov chains [91]

Block-QuickSort-AdjacentJobMatch [86]

Block-QuickSort-OverlapReplicate [86]

Fuzzy-CSar-AFP [150]

Weighted online sequential extreme learning machine with kernels (WOS-ELMK) [22]

Concept-adapting very fast decision tree (CVFDT) [151]
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Many researchers have looked at the aspect of the real-time analysis of big data 

streams but not much attention has been directed towards social media stream pre-

processing. For instance, the social media stream is characterized by incomplete, noisy, 

slang, abbreviated words. Also, contextual meaning of social media post is essential for 

improved event detection, sentiment analysis or any other social media analytics algo-

rithms in terms of quality and accuracy [36, 39]. �ere is the need to give more atten-

tion to the preprocessing stage of social media stream analysis in the face of incomplete, 

noisy, slang, and abbreviated words that are pertinent to social media streams. �ese 

challenges create opportunities application of new semantic technology approaches, 

which are more suited to social media streams [40, 41].

Research Question 3: What do big data streaming tools and technologies have in common 

and their di�erences in terms of concept, purpose, and capabilities?

�e features of various tools and technologies for big data stream were compared in 

order to answer this question. An overview analysis based on 10 dimensions, which are 

database support, execution model, workload, fault-tolerance, latency, throughput, reli-

ability, operating system, implementation languages and application domain or areas is 

presented in Table 9.

For organisations with existing applications that have support for SQL, MySQL, SQL 

Server, Oracle Database, for instance, may consider choosing big data streaming tools 

and technologies that have support for their existing databases. �ere are few big data 

streaming tools and technology that support virtually any data format. An example of 

such is Infochimps Cloud.

�e major big data streaming tools and technologies considered are all suitable for 

streaming execution model, however out of 19 big data tools and technology compared 

and contrasted in this section, only 10.5% is suitable for streaming, batch, and iterative 

processing while 47.4% can handle jobs requiring both batch and streaming processing. 

It is safer for a job to be executed on a single platform which can accommodate all the 

dependencies required in order to avoid interoperability constraints than combining 

two or more platforms or frameworks. �e best fit with respect to the choice of big data 

streaming tools and technologies will depend on the state of data to process, infrastruc-

ture preference, business use case, and kind of results interested in.

Virtually all the big data streaming tools and technologies are memory intensive. �is 

implies that the main performance bottleneck at higher load conditions will be due to 

lack of memory [42]. However, research has shown that the benefit of high intensive 

memory applications outweighs the performance loss due to long memory latency [43].

From all the big data streaming tools and technologies reviewed, only IBMInfoS-

phere and TIBCO StreamBase support all of the three “at-most-once” “at-least-once” 

and “exactly-once” message delivery mechanisms while others support one or two of the 

three delivery mechanisms. “At-most-once” is the cheapest with least implementation 

overhead and highest performance because it can be done in a fire-and-forget fashion 

without keeping the state in the transport mechanism or at the sending end. “At-least-

once” delivery requires multiple attempts in order to counter transport losses which 

means keeping the state at the sending end and having an acknowledgement mechanism 

at the receiving end. “Exactly-once” is the most expensive and has consequently worst 
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performance because, in addition to “at-least-once” delivery mechanism, it requires the 

state to be kept at the receiving end in order to filter duplicate deliveries. In other words, 

“at-most-once” delivery mechanism implies that the message may be lost while “at-

least-once” delivery ensures that messages are not lost and “exactly-once” implies that 

message can neither be lost nor duplicated. “Exactly-once” is suitable for many critical 

systems where duplicate messages are unacceptable.

Research Question 4: What are the limitations and strengths of big data streaming tools 

and technologies?

Observations from the literature reveal that specific big data streaming technology may 

not provide the full set of features that are required. It is rare to find specific big data 

technology that combines key features such as scalability, integration, fault-tolerance, 

timeliness, consistency, heterogeneity and incompleteness management, and load bal-

ancing. For instance, Spark streaming [16] and Sonora [44] are excellent and efficient 

for checkpointing but the operator space available to user codes are limited. S4 does not 

guarantee 100% fault-tolerant persistent state [45]. Storm does not guarantee the order-

ing of messages due to its “at-least-once” mechanism for record delivery [46, 47]. Strict 

transaction ordering is required by Trident to operate [48]. While streaming SQL pro-

vide simple and succinct solutions to many streaming problems, the complex application 

logic (such as matrix multiplication) and intuitive state abstractions are expressed with 

the operational flow of an imperative language rather than a declarative language such as 

SQL [49–51].

Moreover, BlockMon uses batches and cache locality optimization techniques for 

memory allocation efficiency and data speed up access. However, deadlock may occur 

if data streams are enqueued with a higher rate than that of the block consumption [52]. 

Apache Samza solves batch latency processing problems but requires an added layer for 

flow control [53]. Flink is suitable for heavy stream processing and batch-oriented tasks 

although it has scaling limitations [46]. Redis’ in-memory data store makes it extremely 

fast although this implies that available memory size determines the size of the Redis 

data store [54]. While C-SPARQL and CQELS are excellent for combining static and 

streaming data, they are not suitable when scalability is required [55]. SAMOA is suit-

able for machine learning paradigm as it focuses on speed/real-time analytics, scales 

horizontally and is loosely coupled with its underlying distributed computation platform 

[56]. With Lambda architecture, a real-time layer can complement the batch processing 

one thereby reducing maintenance overhead and risk for errors as a result of duplicate 

code bases. In addition, Lambda architecture handles reprocessing, which is one of the 

key challenges in stream processing. Two main problems with Lambda architecture are 

code maintenance in two complex distributed systems that need to produce the same 

result and high operational complexity [57, 58].

Summarily, there exists various tools and technologies for implementing big data 

streams and there seems to be no big data streaming tool and technology that offers all 

the key features required for now. While each tool and technology may have its strengths 

and weaknesses, the choice depends on the objective of the research and data availa-

bility. A decision in favour of the wrong technology may result in increased overhead 

cost and time. �e decision should take into consideration empirical analysis along with 
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system requirements. In addition, research efforts should also be directed to how to 

improve on existing big data streaming tools and technologies to provide key features 

such as scalability, integration, fault-tolerance, timeliness, consistency, heterogeneity 

and incompleteness management, and load balancing.

Research Question 5: What are the evaluation techniques or benchmarks that are used 

for evaluating big data streaming tools and technologies?

�e diversity of big data poses a challenge when it comes to developing big data bench-

marks that will be suitable for all workload cases. One cannot stick to one big data 

benchmark because it has been observed that using only one benchmark on differ-

ent data sets do not give the same result. �is implies that benchmark testing should 

be application specific. Subsequently, in evaluating big data system, the identification 

of workload for an application domain is a prerequisite [59]. Most of the existing big 

data benchmarks are designed to evaluate a specific type of systems or architectures. For 

instance, HiBench [60] is suitable for benchmarking Hadoop, Spark and streaming work-

loads, GridMix [61] and PigMix [62] are for MapReduce Hadoop systems. BigBench [63, 

64] is suitable for benchmarking Teradata Aster DBMS, MapReduce systems, Redshift 

database, Hive, Spark and Impala. Presently, BigDataBench [65, 66] seems to be the only 

big data benchmark that can evaluate a hybrid of different big data systems.

So far, many researchers have evaluated their work by making use of synthetic and 

real-life data. Standard benchmark dataset for big data streaming analytics has not been 

widely adopted. However, few of the researchers that used standardized benchmarking 

are briefly discussed below. �e work of [67] was tested with two benchmarks; Word 

Count and Grep. �e result showed that the proposed algorithm can effectively handle 

unstable input and the delay of the total event can be limited to an expected range.

�e tool developed by [68] was tested on both car dataset and Wikinews5 dataset in 

comparison with sequential processing. It was discovered that their tool (pipeline imple-

mentation) performed better and faster.

Krawczyk and Wozniak used several benchmark datasets which include Breast-Wis-

consin, Pima, Yeast3, Voting records, CYP2C19 isoform, RBF for estimating weights for 

the new incoming data stream with their proposed method against other standard meth-

ods. �ey also analysed time and memory requirements. Experimental investigation 

result proved that the proposed method can achieve better [69].

A benchmark evaluation using an English movie review dataset collected from Rotten 

Tomatoes website (a de facto benchmark for analysing sentiment applications) was con-

ducted by [70], the result showed that sentiment analysis engine (SAE) proposed by the 

authors outperformed the bag of words approach.

Authors’ suite of ideas in [71] outperformed state-of-the-art searching technique 

called EBSM. �e work of [72] used various datasets such as KDD-Cup 99, Forest Cover 

type, Household power consumption, etc. �ey compared their algorithm—parallel 

K-means clustering with k-means and k-means++, the result showed that their algo-

rithm performed better in terms of speed.

5 http://en.wikin ews.org.

http://en.wikinews.org
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Mozafari et al. in [73] benchmarked their system, XSeq against other general-purpose 

XML engines. �e system outperformed other complex event processing engines by two 

orders of magnitude improvement.

Authors in [74] evaluated their work in terms of time, accuracy and memory using 

Forest cover type, Poker hand, and electricity datasets. �ey compared their method, 

adaptive windowing based online ensemble (AWOE) with other standard methods such 

as accuracy updated ensemble (AUE), online accuracy updated ensemble (OAUE), accu-

racy weighted ensemble (AWE), dynamic weighted majority (DWM) and Lev Bagging 

(Lev). �eir proposed approach outperformed other methods in three perspectives 

which include suitability in terms of different type of drifts, better resolved appropriate 

size of block, and efficiency.

�e evaluation performed by [75] using FACup and Super Tuesday datasets showed 

that their method, which is a hybrid of topic extraction methods (i.e. a combination of 

feature pivot and document pivot) has high efficiency and accuracy with respect to recall 

and precision.

Evaluating the performance of low-rank reconstruction and prediction scheme, spe-

cifically, singular spectrum matrix completion (SS-MC) proposed by [76], SensorScope 

Grand St-Bernard dataset6 and Intel Berkeley Research Lab dataset7 were used. �e 

authors compared their proposed method with three state-of-the-art methods; KNN-

imputation, RegEM and ADMM version of MC and discovered that their method 

outperformed the other methods in terms of pure reconstruction as well as in the 

demanding case of simultaneous recovery and prediction.

�e authors in [77] evaluated their work using World Cup 1998 and CAIDA 

Anonymized Internet Traces 2011 datasets. When their method, ECM-Sketch (a sketch 

synopsis that allows effective summarization of streaming data over both time-based 

and count-based sliding windows) was compared with three state-of-the-art algorithms 

(Sketch variants); ECM-RW, ECM-DW, and ECM-EH, variants using randomized waves, 

deterministic waves and exponential histograms respectively, their method reduce 

memory and computational requirements by at least one order of magnitude with a very 

small loss in accuracy.

�e work of [78] centred on benchmarking real-time vehicle data streaming models 

for a smart city using a simulator that emulates the data produced by a given amount of 

simultaneous drivers. Experiment with the simulator shows that streaming processing 

engine such as Apache Kafka could serve as a replacement to custom-made streaming 

servers to achieve low latency and higher scalability together with cost reduction.

A benchmark among Kyvos Insight, Impala and Spark conducted by [79] shows that 

Kyvos Insight performed analytical queries with much lower latencies when there is a 

large number of concurrent users due to pre-aggregation and incremental code building 

[80].

Authors in [81] proposed that in addition to execution time and resource utilization, 

microarchitecture-level and energy consumption are key to fully understanding the 

behaviour of big data frameworks.

6 http://lcav.epfl.ch.page-86035 -en.html.
7 http://db.csail .mit.edu/labda ta/labda ta.html.

http://lcav.epfl.ch.page-86035-en.html
http://db.csail.mit.edu/labdata/labdata.html
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In addition, to strengthen the confidence of big data research evaluation or result, 

application of empirical methods (i.e. tested or evaluated concept or technology for 

evidence-based result) should be highly encouraged. �e current status of empirical 

research in big data stream analysis is still at an infant stage. �e maturity of a research 

field is directly proportional to the number of publications with empirical result [20, 21]. 

According to [21] that conducted a systematic literature mapping to verify the current 

status of empirical research in big data, it was found out that only 151 out of 1778 stud-

ies contained empirical result. As a result, more research efforts should be directed to 

empirical research in order to raise the level of confidence of big data research outputs 

than it is at present.

Moreover, only a few big data benchmarks are suitable for different workloads at pre-

sent. Research efforts should be geared towards advancing benchmarks that are suitable 

for evaluating different big data systems. �is would go a long way to reduce cost and 

interoperability issue.

Discussion

From the analysis, it was observed that there has been a wave of interest in big data 

stream analysis since 2013. �e number of papers produced in 2012 was doubled in 

2013. In the same vein, more than double of the papers in 2013 were produced in 2014. 

�ere was a relative surge in 2017 having a total of 98 paper while the year 2018 received 

156 papers (see Tables 9, 10 and Fig. 2). �e percentage of papers analyzed from journals 

was 50%; that of conferences was 41% while that of workshop/technical/symposium was 

9% as depicted in Fig. 3. Figure 4 presented the frequency of research efforts from differ-

ent geographical locations with researchers from China taking the lead.   

�e selection of big data streaming tools and technologies should be based on the 

importance of each of the factors such as the shape of the data, data access, availabil-

ity and consistent requirements, workload profile required, and latency requirement. 

Careful selection with respect to open source technology must be made especially when 

choosing a recent technology still in production. Moreover, the problem to address, the 

understanding of the true costs, and benefits of both open and proprietary solutions are 

also vital when making a selection.

A lot of research efforts have been directed to big data stream analysis but social media 

stream preprocessing is still an open issue. Due to inherent characteristics of social 

media stream which include incomplete, noisy, slang, abbreviated words, social media 

streams present a challenge to big data streams analytics algorithms. �ere is the need 

to give more attention to the preprocessing stage of social media stream analysis in the 

face of incomplete, noisy, slang, and abbreviated words that are pertinent to social media 

streams in order to improve big data streams analytics result.

Out of 19 big data streaming tools and technologies compared, 100% support stream-

ing, 47.4% can do both batch and streaming processing while only 10.5% support stream-

ing, batch and iterative processing. Depending on the state of the data to be processed, 

infrastructure preference, business use case, and kind of results that is of interest, choos-

ing a single big data streaming technology platform that supports all the system require-

ments minimizes the effect of interoperability constraints.
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From all the big data streaming tools and technologies reviewed, only IBMInfoS-

phere and TIBCO StreamBase support all of the three “at-most-once”, “at-least-once”, 

and “exactly-once” message delivery mechanisms while others support one or two of 

the three delivery mechanisms. Having all the three delivery mechanisms give room for 

flexibility.

It is rare to find a specific big data technology that combines key features such as scal-

ability, integration, fault-tolerance, timeliness, consistency, heterogeneity and incom-

pleteness management, and load balancing. �ere seems to be no big data streaming 

tool and technology that offers all the key features required for now. �is calls for more 

research efforts that are directed to building more robust big data streaming tools and 

technologies.

Few big data benchmarks are suitable for a hybrid of big data systems at present and 

standard benchmark datasets for big data streaming analytics have not been widely 

adopted. Hence, research efforts should be geared towards advancing benchmarks that 

are suitable for evaluating different big data systems.

Limitation of the review

While authors explored Scopus, ScienceDirect and EBSCO databases which index high 

impact journals and conference papers from IEEE, ACM, SpringerLink, and Elsevier to 

identify all possible relevant articles, it is possible that some other relevant articles from 

other databases such as Web of Science could have been missed.

�e analysis and synthesis are based on interpretation of selected articles by the 

research team. �e authors attempted to avoid this by cross-checking papers to deal 

with bias though that cannot completely rule out the possibility of errors. In addition, 

the authors implemented the inclusion and exclusion criteria in the selection of articles 

and only relevant articles written in the English Language were selected. Building on the 

underpinning of the findings of the research, while a lot of research has been done with 

respect to tools and technologies as well as methods and techniques employed in big 

data streaming analytics, method of evaluation or benchmarks of the technologies of 

various workloads for big data streaming analytics have not received much attention. As 

it could be gathered from the literature reviewed that most of the researchers evaluated 

their work using either synthetic or real-life datasets.

Conclusion and further work

As a result of challenges and opportunities presented by the Information Technology 

revolution, big data streaming analytics has emerged as the new frontier of competition 

and innovation. Organisations who seize the opportunity of big data streaming analytics 

are provided with insights for robust decision making in real-time thereby making them 

to have an edge over their competitors.

In this paper, the authors have tried to present a holistic view of big data streaming 

analytics by conducting a comprehensive literature review to understand and identify 

the tools and technologies, methods and techniques, benchmarks or methods of evalu-

ation employed, and key issues in big data stream analysis to showcase the signpost of 

future research directions.
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Although a lot of research efforts have been directed towards big data at rest (i.e. 

big data batch processing), there has been increased interest in analysing big data 

in motion (i.e. big data stream processing). With respect to issues identified in this 

paper, big data streaming analytics can be considered as an emerging phenomenon 

although some countries and industries have seized the opportunities by making it a 

Fig. 2 Magnitude of change in paper distribution. The figure shows the magnitude of change in paper 

distribution over the studied years (i.e. 2004 to 2018)

Fig. 3 Percentage of publication type. The figure shows percentage of 381 papers from journals (50%), 

conferences (41%), and workshop/technical/symposium (9%)

Fig. 4 Frequency of researchers across different. The figure presented the frequency of research 

geographical locations research efforts from different geographical locations
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pertinent research area. Some of the key issues such as scalability, integration, fault-

tolerance, timeliness, consistency, heterogeneity and incompleteness, load balancing, 

high throughput, and privacy that require further research attention were identified. 

While researchers have invested a lot of efforts to mitigate these issues, scalability, 

privacy and load balancing remain a concern. In addition, researchers also need to 

give more focus to the empirical analysis of big data streaming tools and technologies 

in order to be able to provide concrete reasons and support for choosing a tool/tech-

nology based on empirical evidence.

Presently, BigDataBench seems to be the only big data benchmark that can evaluate 

a hybrid of different big data systems. Standard benchmark for a hybrid of big data sys-

tems has not been widely adopted. It is rare to find a specific big data technology that 

combines key features such as scalability, integration, fault-tolerance, timeliness, consist-

ency, heterogeneity and incompleteness management, and load balancing.

�ere is the need to give more attention to the preprocessing stage of social media 

stream analysis in the face of incomplete, noisy, slang, and abbreviated words that are 

pertinent to social media streams. Many researchers have looked at the aspect of the 

real-time analysis of big data streams but not much attention has been directed towards 

social media stream preprocessing.

In addition, research efforts should be geared towards developing scalable frameworks 

and algorithms that will accommodate data stream computing mode, effective resource 

allocation strategy and parallelization issues to cope with the ever-growing size and 

complexity of data. As regards load balancing, a distributing environment that automati-

cally streams partial data streams to a global centre when local resources become insuf-

ficient is required. �e demand for big data stream analysis is that data must be analysed 

as soon as they arrive makes privacy issue a big concern. �e main challenge here is 

proposing techniques for protecting a big data stream dataset before its analysis in such 

a way that the real-time analysis is still maintained. As a result, research efforts should 

be directed to the identified areas in order to have robust solutions for big data stream-

ing analytics.
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