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Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is
generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected
to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the
Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and
shared at light speed on optic �ber and wireless networks, the volume of data and the speed of market growth increase. However,
the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data,
and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study
comprehensively surveys and classi�es the various attributes of BigData, including its nature, de�nitions, rapid growth rate, volume,
management, analysis, and security. 	is study also proposes a data life cycle that uses the technologies and terminologies of Big
Data. Future research directions in this �eld are determined based on opportunities and several open issues in BigData domination.
	ese research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.

1. Introduction

	e current international population exceeds 7.2 billion [1],
and over 2 billion of these people are connected to the
Internet. Furthermore, 5 billion individuals are using various
mobile devices, according to McKinsey (2013). As a result
of this technological revolution, these millions of people
are generating tremendous amounts of data through the
increased use of such devices. In particular, remote sensors
continuously produce much heterogeneous data that are
either structured or unstructured. 	is data is known as Big
Data [2]. Big Data is characterized by three aspects: (a) the
data are numerous, (b) the data cannot be categorized into
regular relational databases, and (c) data are generated, cap-
tured, and processed very quickly. Big Data is promising for

business application and is rapidly increasing as a segment of
the IT industry. It has generated signi�cant interest in various
�elds, including the manufacture of healthcare machines,
banking transactions, social media, and satellite imaging [3].
Traditionally, data is stored in a highly structured format to
maximize its informational contents. However, current data
volumes are driven by both unstructured and semistructured
data.	erefore, end-to-end processing can be impeded by the
translation between structured data in relational systems of
database management and unstructured data for analytics.

e staggering growth rate of the amount of collected data
generates numerous critical issues and challenges described
by [4], such as rapid data growth, transfer speed, diverse
data, and security issues. Nonetheless, the advancements in
data storage andmining technologies enable the preservation
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of these increased amounts of data. In this preservation
process, the nature of the data generated by organizations is
modi�ed [5]. However, Big Data is still in its infancy stage
and has not been reviewed in general. Hence, this study
comprehensively surveys and classi�es the various attributes
of Big Data, including its volume, management, analysis,
security, nature, de�nitions, and rapid growth rate.	e study
also proposes a data life cycle that uses the technologies and
terminologies of Big Data. Future research directions in this
�eld are determined by opportunities and several open issues
in Big Data domination.

	is study presents: (a) a comprehensive survey of Big
Data characteristics; (b) a discussion of the tools of analysis
and management related to Big Data; (c) the development
of a new data life cycle with Big Data aspects; and (d) an
enumeration of the issues and challenges 5 associated with
Big Data.

	e rest of the paper is organized as follows. Section 2
explains fundamental concepts and describes the rapid
growth of data volume; Section 3 discusses the management
of Big Data and the related tools; Section 4 proposes a new
data life cycle that utilizes the technologies and terminologies
of Big Data; Section 5 describes the opportunities, open
issues, and challenges in this domain; and Section 6 con-
cludes the paper. Lists of acronyms used in this paper are
presented in the Acronyms section.

2. Background

Information increases rapidly at a rate of 10x every �ve
years [6]. From 1986 to 2007, the international capacities
for technological data storage, computation, processing, and
communication were tracked through 60 analogues and
digital technologies [7, 8]; in 2007, the capacity for storage in

general-purpose computers was 2.9 × 1020 bytes (optimally

compressed) and that for communication was 2.0 × 1021

bytes. 	ese computers could also accommodate 6.4 × 1018
instructions per second [7]. However, the computing size of
general-purpose computers increases annually at a rate of
58% [7]. In computational sciences, Big Data is a critical issue
that requires serious attention [9, 10]. 	us far, the essential
landscapes of Big Data have not been uni�ed. Furthermore,
Big Data cannot be processed using existing technologies and
methods [7].	erefore, the generation of incalculable data by
the �elds of science, business, and society is a global problem.
With respect to data analytics, for instance, procedures and
standard tools have not been designed to search and analyze
large datasets [8]. As a result, organizations encounter early
challenges in creating, managing, and manipulating large
datasets. Systems of data replication have also displayed
some security weaknesses with respect to the generation of
multiple copies, data governance, and policy. 	ese policies
de�ne the data that are stored, analyzed, and accessed.
	ey also determine the relevance of these data. To process
unstructured data sources in Big Data projects, concerns
regarding the scalability, low latency, and performance of data
infrastructures and their data centers must be addressed [11].

In the IT industry as a whole, the rapid rise of Big Data
has generated new issues and challenges with respect to data

management and analysis. Five common issues are volume,
variety, velocity, value, and complexity according to [4, 12].
In this study, there are additional issues related to data,
such as the fast growth of volume, variety, value, manage-
ment, and security. Each issue represents a serious problem
of technical research that requires discussion. Hence, this
research proposes a data life cycle that uses the technologies
and terminologies of Big Data. Future research directions in
this �eld are determined based on opportunities and several
open issues in Big Data domination. Figure 1 [13] groups the
critical issues in Big Data into three categories based on the
commonality of the challenge.

2.1. Volume of Big Data. 	e volume of Big Data is typically
large. However, it does not require a certain amount of
petabytes. 	e increase in the volume of various data records
is typically managed by purchasing additional online storage;
however, the relative value of each data point decreases in
proportion to aspects such as age, type, quantity, and richness.
	us, such expenditure is unreasonable (Doug, 212). 	e
following two subsections detail the volume of Big Data in
relation to the rapid growth of data and the development rate
of hard disk drives (HDDs). It also examines Big Data in the
current environment of enterprises and technologies.

2.1.1. RapidGrowth ofData. 	edata type that increasesmost
rapidly is unstructured data. 	is data type is characterized
by “human information” such as high-de�nition videos,
movies, photos, scienti�c simulations, �nancial transactions,
phone records, genomic datasets, seismic images, geospatial
maps, e-mail, tweets, Facebook data, call-center conversa-
tions, mobile phone calls, website clicks, documents, sensor
data, telemetry, medical records and images, climatology
and weather records, log �les, and text [11]. According to
ComputerWorld, unstructured informationmay account for
more than 70% to 80% of all data in organizations [14].	ese
data, which mostly originate from social media, constitute
80% of the data worldwide and account for 90% of Big Data.
Currently, 84% of IT managers process unstructured data,
and this percentage is expected to drop by 44% in the near
future [11]. Most unstructured data are not modeled, are
random, and are di�cult to analyze. For many organizations,
appropriate strategies must be developed to manage such
data. Table 1 describes the rapid production of data in various
organizations further.

According to Industrial Development Corporation (IDC)
and EMCCorporation, the amount of data generated in 2020
will be 44 times greater [40 zettabytes (ZB)] than in 2009.
	is rate of increase is expected to persist at 50% to 60%
annually [21]. To store the increased amount of data, HDDs
must have large storage capacities. 	erefore, the following
section investigates the development rate of HDDs.

2.1.2. Development Rate of Hard Disk Drives (HDDs). 	e
demand for digital storage is highly elastic. It cannot be
completely met and is controlled only by budgets and man-
agement capability and capacity. Goda et al. (2002) and [22]
discuss the history of storage devices, starting with magnetic
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Data growth

Data infrastructure

Data governance/policy

Data integration

Data velocity

Data variety

Data compliance/regulation

Data visualization

20%

16% 12% 13%

13% 14% 14%

14% 14%

15% 14% 8%

10% 14% 12%

10% 10% 14%

8%

8%

12%

12% 12%

12%

Most challenges
2nd most challenges

3rd most challenges

Figure 1: Challenges in Big Data [13].

Table 1: Rapid growth of unstructured data.

Source Production

YouTube [15]

(i) Users upload 100 hours of new videos per minute
(ii) Each month, more than 1 billion unique users access YouTube
(iii) Over 6 billion hours of video are watched each month, which corresponds to almost an
hour for every person on Earth. 	is �gure is 50% higher than that generated in the
previous year

Facebook [16]

(i) Every minute, 34,722 Likes are registered
(ii) 100 terabytes (TB) of data are uploaded daily
(iii) Currently, the site has 1.4 billion users
(iv) 	e site has been translated into 70 languages

Twitter [17]
(i) 	e site has over 645 million users
(ii) 	e site generates 175 million tweets per day

Foursquare [18]
(i) 	is site is used by 45 million people worldwide
(ii) 	is site gets over 5 billion check-ins per day
(iii) Every minute, 571 new websites are launched

Google+ [19] 1 billion accounts have been created

Google [20]
	e site gets over 2 million search queries per minute
Every day, 25 petabytes (PB) are processed

Apple [20] Approximately 47,000 applications are downloaded per minute

Brands [20] More than 34,000 Likes are registered per minute

Tumblr [20] Blog owners publish 27,000 new posts per minute

Instagram [20] Users share 40 million photos per day

Flickr [20] Users upload 3,125 new photos per minute

LinkedIn [20] 2.1 million groups have been created

WordPress [20] Bloggers publish near 350 new blogs per minute

tapes and disks and optical, solid-state, and electromechani-
cal devices. Prior to the digital revolution, information was
predominantly stored in analogue videotapes according to
the available bits. As of 2007, however, most data are stored
in HDDs (52%), followed by optical storage (28%) and
digital tapes (roughly 11%). Paper-based storage has dwindled

0.33% in 1986 to 0.007% in 2007, although its capacity has
steadily increased (from 8.7 optimally compressed PB to 19.4
optimally compressed PB) [22]. Figure 2 depicts the rapid
development of HDDs worldwide.

	e HDD is the main component in electromechanical
devices. In 2013, the expected revenue from global HDDs
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Figure 2: Worldwide shipment of HDDs from 1976 to 2013.

shipments was $33 billion, which was down 12% from the
predicted $37.8 billion in 2012 [23]. Furthermore, data regard-
ing the quantity of units shipped between 1976 and 1998
was obtained from Datasheetcatalog.com, 1995 [24]; [25–
27]; Mandelli and Bossi, 2002 [28]; MoHPC, 2003; Helsingin
Sanomat, 2000 [29]; Belk, 2007 [30–33]; and J. Woerner,
2010; those shipped between 1999 and 2004 were provided
by Freescale Semiconductors 2005 [34, 35]; PortalPlayer,
2005 [36]; NVIDIA, 2009 [37, 38]; and Je�, 1997 [39]; those
shipped in 2005 and 2006 were obtained from Securities
and Exchange Commission, 1998 [40]; those shipped in 2007
were provided by [41–43]; and those shipped from 2009 to
2013 were obtained from [23]. Based on the information
gathered above, the quantity of HDDs shipped will exceed 1
billion annually by 2016 given a progression rate of 14% from
2014 to 2016 [23]. As presented in Figure 2, the quantities
of HDDs shipped per year were 175.7� + 3, 493.5� + 3,
27879.1� + 3, 195451� + 3, and 779579� + 3 in 1976, 1980,
1990, 2000, and 2012, respectively. According to Coughlin
Associates, HDDs expenditures are expected to increase by
169% from 2011 to 2016, thus a�ecting the current enterprise
environment signi�cantly. Given this �nding, the following
section discusses the role of BigData in the current enterprise
environment.

2.2. Big Data in the Current Environments of Enterprise and
Technology. In 2012, 2.5 quintillion bytes of data were gener-
ated daily, and 90% of current data worldwide originated in
the past two years ([20] and Big Data, 2013). During 2012, 2.2
million TB of new data are generated each day. In 2010, the

market for BigDatawas $3.2 billion, and this value is expected
to increase to $16.9 billion in 2015 [20]. As of July 9, 2012, the
amount of digital data in the world was 2.7 ZB [11]; Facebook
alone stores, accesses, and analyzes 30 + PB of user-generated
data [16]. In 2008, Google was processing 20,000 TB of data
daily [44]. To enhance advertising, Akamai processes and
analyzes 75 million events per day [45]. Walmart processes
over 1 million customer transactions, thus generating data in
excess of 2.5 PB as an estimate.

More than 5 billion people worldwide call, text, tweet,
and browse on mobile devices [46]. 	e amount of e-mail
accounts created worldwide is expected to increase from 3.3
billion in 2012 to over 4.3 billion by late 2016 at an average
annual rate of 6% over the next four years. In 2012, a total of
89 billion e-mails were sent and received daily, and this value
is expected to increase at an average annual rate of 13% over
the next four years to exceed 143 billion by the end of 2016
[47]. In 2012, 730 million users (34% of all e-mail users) were
e-mailing through mobile devices. Boston.com [47] reported
that in 2013, approximately 507 billion e-mails were sent daily.
Currently, an e-mail is sent every 3.5× 10−7 seconds.	us, the
volume of data increases per second as a result of rapid data
generation.

Growth rates can be observed based on the daily increase
in data. Until the early 1990s, annual growth rate was constant
at roughly 40%. A�er this period, however, the increase
was sharp and peaked at 88% in 1998 [7]. Technological
progress has since slowed down. In late 2011, 1.8 ZB of data
were created as of that year, according to IDC [21]. In 2012,
this value increased to 2.8 ZB. Globally, approximately 1.2 ZB

(1021) of electronic data are generated per year by various
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sources [7]. By 2020, enterprise data is expected to total
40 ZB, as per IDC [12]. Based on this estimation, business-
to-consumer (B2C) and internet-business-to-business (B2B)
transactions will amount to 450 billion per day.	us, e�cient
management tools and techniques are required.

3. Big Data Management

	e architecture of Big Data must be synchronized with
the support infrastructure of the organization. To date, all
of the data used by organizations are stagnant. Data is
increasingly sourced from various �elds that are disorganized
and messy, such as information from machines or sensors
and large sources of public and private data. Previously, most
companies were unable to either capture or store these data,
and available tools could not manage the data in a reasonable
amount of time. However, the new Big Data technology
improves performance, facilitates innovation in the products
and services of business models, and provides decision-
making support [8, 48]. Big Data technology aims to mini-
mize hardware and processing costs and to verify the value of
Big Data before committing signi�cant company resources.
Properly managed Big Data are accessible, reliable, secure,
andmanageable. Hence, Big Data applications can be applied
in various complex scienti�c disciplines (either single or
interdisciplinary), including atmospheric science, astronomy,
medicine, biology, genomics, and biogeochemistry. In the
following section, we brie�y discuss data management tools
and propose a new data life cycle that uses the technologies
and terminologies of Big Data.

3.1. Management Tools. With the evolution of computing
technology, immense volumes can be managed without
requiring supercomputers and high cost. Many tools and
techniques are available for data management, including
Google BigTable, Simple DB, Not Only SQL (NoSQL), Data
Stream Management System (DSMS), MemcacheDB, and
Voldemort [3]. However, companies must develop special
tools and technologies that can store, access, and analyze large
amounts of data in near-real time because Big Data di�ers
from the traditional data and cannot be stored in a single
machine. Furthermore, Big Data lacks the structure of tra-
ditional data. For Big Data, some of the most commonly used
tools and techniques are Hadoop,MapReduce, and Big Table.
	ese innovations have rede�ned data management because
they e�ectively process large amounts of data e�ciently, cost-
e�ectively, and in a timely manner. 	e following section
describes Hadoop and MapReduce in further detail, as well
as the various projects/frameworks that are related to and
suitable for the management and analysis of Big Data.

3.2. Hadoop. Hadoop [49] is written in Java and is a top-level
Apache project that started in 2006. It emphasizes discovery
from the perspective of scalability and analysis to realize
near-impossible feats. Doug Cutting developed Hadoop as
a collection of open-source projects on which the Google
MapReduce programming environment could be applied in
a distributed system. Presently, it is used on large amounts
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of data. With Hadoop, enterprises can harness data that was
previously di�cult tomanage and analyze. Hadoop is used by
approximately 63% of organizations to manage huge number
of unstructured logs and events (Sys.con Media, 2011).

In particular, Hadoop can process extremely large vol-
umes of data with varying structures (or no structure at all).
	e following section details various Hadoop projects and
their links according to [12, 50–55].

Hadoop is composed of HBase, HCatalog, Pig, Hive,
Oozie, Zookeeper, and Ka�a; however, the most common
components and well-known paradigms are Hadoop Dis-
tributed File System (HDFS) and MapReduce for Big Data.
Figure 3 illustrates the Hadoop ecosystem, as well as the
relation of various components to one another.

HDFS. 	is paradigm is applied when the amount of data is
too much for a single machine. HDFS is more complex than
other �le systems given the complexities and uncertainties
of networks. Cluster contains two types of nodes. 	e �rst
node is a name-node that acts as a master node. 	e second
node type is a data node that acts as slave node. 	is type
of node comes in multiples. Aside from these two types of
nodes, HDFS can also have secondary name-node. HDFS
stores �les in blocks, the default block size of which is 64MB.
All HDFS �les are replicated in multiples to facilitate the
parallel processing of large amounts of data.

HBase. HBase is a management system that is open-source,
versioned, and distributed based on the BigTable of Google.
	is system is column- rather than row-based, which accel-
erates the performance of operations over similar values
across large data sets. For example, read and write operations
involve all rows but only a small subset of all columns.
HBase is accessible through application programming inter-
faces (APIs) such as 	ri�, Java, and representational state
transfer (REST). 	ese APIs do not have their own query or
scripting languages. By default,HBase depends completely on
a ZooKeeper instance.

ZooKeeper. ZooKeeper maintains, con�gures, and names
large amounts of data. It also provides distributed synchro-
nization and group services.	is instance enables distributed
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processes to manage and contribute to one another through
a name space of data registers (�-nodes) that is shared and
hierarchical, such as a �le system. Alone, ZooKeeper is a
distributed service that contains master and slave nodes and
stores con�guration information.

HCatalog. HCatalog manages HDFS. It stores metadata and
generates tables for large amounts of data. HCatalog depends
on Hive metastore and integrates it with other services,
including MapReduce and Pig, using a common data model.
With this data model, HCatalog can also expand to HBase.
HCatalog simpli�es user communication using HDFS data
and is a source of data sharing between tools and execution
platforms.

Hive.Hive structures warehouses in HDFS and other input
sources, such as Amazon S3. Hive is a subplatform in the
Hadoop ecosystem and produces its own query language
(HiveQL). 	is language is compiled by MapReduce and
enables user-de�ned functions (UDFs). 	e Hive platform is
primarily based on three related data structures: tables, par-
titions, and buckets. Tables correspond to HDFS directories
and can be distributed in various partitions and, eventually,
buckets.

Pig. 	e Pig framework generates a high-level scripting
language (Pig Latin) and operates a run-time platform that
enables users to execute MapReduce on Hadoop. Pig is
more elastic than Hive with respect to potential data format
given its data model. Pig has its own data type, map, which
represents semistructured data, including JSON and XML.

Mahout. Mahout is a library for machine-learning and data
mining. It is divided into four main groups: collective
�ltering, categorization, clustering, and mining of parallel
frequent patterns. 	e Mahout library belongs to the subset
that can be executed in a distributed mode and can be
executed by MapReduce.

Oozie. In the Hadoop system, Oozie coordinates, executes,
and manages job �ow. It is incorporated into other Apache
Hadoop frameworks, such as Hive, Pig, Java MapReduce,
Streaming MapReduce, and Distcp Sqoop. Oozie combines
actions and arranges Hadoop tasks using a directed acyclic
graph (DAG). 	is model is commonly used for various
tasks.

Avro. Avro serializes data, conducts remote procedure calls,
and passes data from one program or language to another.
In this framework, data are self-describing and are always
stored based on their own schema because these qualities are
particularly suited to scripting languages such as Pig.

Chukwa. Currently, Chukwa is a framework for data col-
lection and analysis that is related to MapReduce and
HDFS. 	is framework is currently progressing from its
development stage. Chukwa collects and processes data from
distributed systems and stores them in Hadoop. As an
independent module, Chukwa is included in the distribution
of Apache Hadoop.

Table 2: Hadoop components and their functionalities.

Hadoop
component

Functions

(1) HDFS Storage and replication

(2) MapReduce Distributed processing and fault tolerance

(3) HBASE Fast read/write access

(4) HCatalog Metadata

(5) Pig Scripting

(6) Hive SQL

(7) Oozie Work�ow and scheduling

(8) ZooKeeper Coordination

(9) Ka�a Messaging and data integration

(10) Mahout Machine learning

Flume. Flume is specially used to aggregate and transfer
large amounts of data (i.e., log data) in and out of Hadoop.
It utilizes two channels, namely, sources and sinks. Sources
include Avro, �les, and system logs, whereas sinks refer to
HDFS and HBase. 	rough its personal engine for query
processing, Flume transforms each new batch of Big Data
before it is shuttled into the sink.

Table 2 summarizes the functionality of the various
Hadoop components discussed above.

Hadoop is widely used in industrial applications with
Big Data, including spam �ltering, network searching, click-
stream analysis, and social recommendation. To distribute its
products and services, such as spam �ltering and searching,
Yahoo has run Hadoop in 42,000 servers at four data centers
as of June 2012. Currently, the largest Hadoop cluster contains
4,000 nodes, which is expected to increase to 10,000 with
the release of Hadoop 2.0 [3]. Simultaneously, Facebook
announced that their Hadoop cluster processed 100 PB of
data, which increased at a rate of 0.5 PB per day as of
November 2012. According to Wiki, 2013, some well-known
organizations and agencies also use Hadoop to support
distributed computations (Wiki, 2013). In addition, various
companies execute Hadoop commercially and/or provide
support, including Cloudera, EMC, MapR, IBM, and Oracle.

With Hadoop, 94% of users can analyze large amounts of
data. Eighty-eight percent of users analyze data in detail, and
82% can retain more data (Sys.con Media, 2011). Although
Hadoop has various projects (Table 2), each company applies
a speci�c Hadoop product according to its needs. 	us,
Facebook stores 100 PB of both structured and unstructured
data usingHadoop. IBM, however, primarily aims to generate
aHadoop platform that is highly accessible, scalable, e�ective,
and user-friendly. It also seeks to �atten the time-to-value
curve associated with Big Data analytics by establishing
development and runtime environments for advanced ana-
lytical application and to provide Big Data analytic tools for
business users. Table 3 presents the speci�c usage of Hadoop
by companies and their purposes.

To scale the processing of Big Data, map and reduce
functions can be performed on small subsets of large datasets
[56, 57]. In a Hadoop cluster, data are deconstructed into
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Table 3: Hadoop usage.

Speci�ed use Used by

(1) Searching Yahoo, Amazon, Zvents

(2) Log processing
Facebook, Yahoo,
ContexWeb.Joost, Last.fm

(3) Analysis of videos and images New York Times, Eyelike

(4) Data warehouse Facebook, AOL

(5) Recommendation systems Facebook

MapReduce HDFS

Admin node

Job tracker

Task tracker

Name node

Task tracker

Task tracker

Data node

Data node

Data node

Figure 4: System architectures of MapReduce and HDFS.

smaller blocks. 	ese blocks are distributed throughout the
cluster. HDFS enables this function, and its design is heavily
inspired by the distributed �le system Google File System
(GFS). Figure 4 depicts the architectures of MapReduce and
HDFS.

MapReduce is the hub of Hadoop and is a programming
paradigm that enables mass scalability across numerous
servers in a Hadoop cluster. In this cluster, each server
contains a set of internal disk drives that are inexpensive.
To enhance performance, MapReduce assigns workloads to
the servers in which the processed data are stored. Data
processing is scheduled based on the cluster nodes. A node
may be assigned a task that requires data foreign to that node.
	e functionality of MapReduce has been discussed in detail
by [56, 57].

MapReduce actually corresponds to two distinct jobs
performed by Hadoop programs. 	e �rst is the map job,
which involves obtaining a dataset and transforming it into
another dataset. In these datasets, individual components are
deconstructed into tuples (key/value pairs). 	e reduction
task receives inputs frommap outputs and further divides the
data tuples into small sets of tuples. 	erefore, the reduction
task is always performed a�er themap job. Table 4 introduces
MapReduce tasks in job processing step by step.

Table 4: MapReduce tasks.

Steps Tasks

(1) Input

(i) Data are loaded into HDFS in blocks and
distributed to data nodes
(ii) Blocks are replicated in case of failures
(iii) 	e name node tracks the blocks and
data nodes

(2) Job
Submits the job and its details to the Job
Tracker

(3) Job initialization
(i) 	e Job Tracker interacts with the Task
Tracker on each data node
(ii) All tasks are scheduled

(4) Mapping
(i) 	e Mapper processes the data blocks
(ii) Key value pairs are listed

(5) Sorting 	e Mapper sorts the list of key value pairs

(6) Shu�ing
(i) 	e mapped output is transferred to the
Reducers
(ii) Values are rearranged in a sorted format

(7) Reduction
Reducers merge the list of key value pairs to
generate the �nal result

(8) Result

(i) Values are stored in HDFS
(ii) Results are replicated according to the
con�guration
(iii) Clients read the results from the HDFS

Redundant data are stored in multiple areas across the
cluster. 	e programming model resolves failures automati-
cally by running portions of the program on various servers
in the cluster. Data can be distributed across a very large
cluster of commodity components along with associated
programming given the redundancy of data.	is redundancy
also tolerates faults and enables the Hadoop cluster to
repair itself if the component of commodity hardware fails,
especially given large amount of data. With this process,
Hadoop can delegate workloads related to Big Data problems
across large clusters of reasonable machines. Figure 5 shows
the MapReduce architecture.

3.3. Limitations of Hadoop. With Hadoop, extremely large
volumes of data with either varying structures or none at all
can be processed, managed, and analyzed. However, Hadoop
also has some limitations.

	eGeneration ofMultiple Copies of Big Data.HDFSwas built
for e�ciency; thus, data is replicated in multiples. Generally,
data are generated in triplicate at minimum. However, six
copies must be generated to sustain performance through
data locality. As a result, the Big Data is enlarged further.

Challenging Framework.	eMapReduce framework is com-
plicated, particularly when complex transformational logic
must be leveraged. Attempts have been generated by open-
source modules to simplify this framework, but these mod-
ules also use registered languages.

Very Limited SQL Support. Hadoop combines open-source
projects and programming frameworks across a distributed
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Result

Figure 5: MapReduce architecture.

system. Consequently, o�ers it gains limited SQL support and
lacks basic SQL functions, such as subqueries and grouping
by analytics.

Lack of Essential Skills. Intriguing data mining libraries are
implemented inconsistently as part of the Hadoop project.
	us, algorithm knowledge and development skill with
respect to distributed MapReduce are necessary.

Ine
cient Execution.HDFS does not consider query optimiz-
ers. 	erefore, it cannot execute an e�cient cost-based plan.
Hence, the sizes of Hadoop clusters are o�en signi�cantly
larger than needed for a similar database.

4. Life Cycle and Management of Data Using
Technologies and Terminologies of Big Data

During each stage of the data life cycle, the management of
Big Data is the most demanding issue. 	is problem was
�rst raised in the initiatives of UK e-Science a decade ago.
In this case, data were geographically distributed, managed,
and owned bymultiple entities [4].	e new approach to data
management and handling required in e-Science is re�ected
in the scienti�c data life cycle management (SDLM) model.
In this model, existing practices are analyzed in di�erent
scienti�c communities. 	e generic life cycle of scienti�c
data is composed of sequential stages, including experiment
planning (research project), data collection and processing,
discussion, feedback, and archiving [58–60].

	e following section presents a general data life cycle
that uses the technology and terminology of Big Data. 	e
proposed data life cycle consists of the following stages:
collection, �ltering & classi�cation, data analysis, storing,
sharing & publishing, and data retrieval & discovery. 	e

following sections brie�y describe each stage as exhibited in
Figure 6.

4.1. RawData. Researchers, agencies, and organizations inte-
grate the collected raw data and increase their value through
input from individual program o�ces and scienti�c research
projects. 	e data are transformed from their initial state
and are stored in a value-added state, including web services.
Neither a benchmark nor a globally accepted standard has
been setwith respect to storing rawdata andminimizing data.
	e code generates the data along with selected parameters.

4.2. Collection/Filtering/Classi�cation. Data collection or
generation is generally the �rst stage of any data life cycle.
Large amounts of data are created in the forms of log �le
data and data from sensors, mobile equipment, satellites,
laboratories, supercomputers, searching entries, chat records,
posts on Internet forums, and microblog messages. In data
collection, special techniques are utilized to acquire raw
data from a speci�c environment. A signi�cant factor in
the management of scienti�c data is the capture of data
with respect to the transition of raw to published data
processes. Data generation is closely associated with the
daily lives of people. 	ese data are also similarly of low
density and high value. Normally, Internet data may not
have value; however, users can exploit accumulated Big
Data through useful information, including user habits and
hobbies. 	us, behavior and emotions can be forecasted. 	e
problem of scienti�c data is one that must be considered by
Scienti�c Data Infrastructure (SDI) providers [58, 59] . In the
following paragraphs, we explain �ve common methods of
data collection, along with their technologies and techniques.

(i) Log Files.	ismethod is commonly used to collect data by
automatically recording �les through a data source system.
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Figure 6: Proposed data life cycle using the technologies and terminologies of Big Data.

Log �les are utilized in nearly all digital equipment; that
is, web servers note the number of visits, clicks, click rates,
and other property records of web users in log �les [61].
In web sites and servers, user activity is captured in three
log �le formats (all are in ASCII): (i) public log �le format
(NCSA); (ii) expanded log format (W3C); and (iii) IIS log
format (Microso�). To increase query e�ciency in massive
log stores, log information is occasionally stored in databases
rather than text �les [62, 63]. Other log �les that collect data
are stock indicators in �nancial applications and �les that
determine operating status in networkmonitoring and tra�c
management.
(ii) Sensing. Sensors are o�en used to measure physical
quantities, which are then converted into understandable
digital signals for processing and storage. Sensory data may
be categorized as sound wave, vibration, voice, chemical,
automobile, current, pressure, weather, and temperature.
Sensed data or information is transferred to a collection
point through wired or wireless networks. 	e wired sensor
network obtains related information conveniently for easy
deployment and is suitable for management applications,
such as video surveillance system [64].

When position is inaccurate, when a speci�c phe-
nomenon is unknown, and when power and communica-
tion have not been set up in the environment, wireless
communication can enable data transmission within limited
capabilities. Currently, the wireless sensor network (WSN)
has gained signi�cant attention and has been applied in

many �elds, including environmental research [65, 66], the
monitoring of water quality [67], civil engineering [68, 69],
and the tracking of wildlife habit [70]. 	e data through any
application is assembled in various sensor nodes and sent
back to the base location for further handling. Sensed data
have been discussed by [71] in detail.

(iii) Methods of Network Data Capture. Network data is
captured by combining systems of web crawler, task, word
segmentation, and index. In search engines, web crawler is
a component that downloads and stores web pages [72]. It
obtains access to other linked pages through the Uniform
Resource Locator (URL) of a web page and it stores and
organizes all of the retrieved URLs. Web crawler typically
acquires data through various applications based on web
pages, including web caching and search engines. Traditional
tools for web page extraction generate numerous high-quality
and e�cient solutions, which have been examined exten-
sively. Choudhary et al. [73] have also proposed numerous
extraction strategies to address rich Internet applications.

(iv) Technology to Capture Zero-Copy (ZC) Packets. In ZC,
nodes do not produce copies that are not produced between
internal memories during packet receiving and sending.
During sending, direct data packets originate from the
user bu�er of applications, pass through network interfaces,
and then reach an external network. During receiving, the
network interfaces send data packets to the user bu�er
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directly. ZC reduces the number of times data is copied,
the number of system calls, and CPU load as datagrams are
transmitted from network devices to user program space.
To directly communicate network datagrams to an address
space preallocated by the system kernel, ZC initially utilizes
the technology of direct memory access. As a result, the
CPU is not utilized. 	e number of system calls is reduced
by accessing the internal memory through a detection pro-
gram.

(v) Mobile Equipment. 	e functions of mobile devices have
strengthened gradually as their usage rapidly increases. As the
features of such devices are complicated and as means of data
acquisition are enhanced, various data types are produced.
Mobile devices and various technologies may obtain infor-
mation on geographical location information through posi-
tioning systems; collect audio informationwithmicrophones;
capture videos, pictures, streetscapes, and other multimedia
information using cameras; and assemble user gestures and
body language information via touch screens and gravity
sensors. In terms of service quality and level, mobile Internet
has been improved by wireless technologies, which capture,
analyze, and store such information. For instance, the iPhone
is a “Mobile Spy” that collects wireless data and geographical
positioning information without the knowledge of the user.
It sends such information back to Apple Inc. for processing;
similarly, Google’s Android (an operating system for smart
phones) and phones runningMicroso�Windows also gather
such data.

Aside from the aforementioned methods, which utilize
technologies and techniques for Big Data, other methods,
technologies, techniques, and/or systems of data collection
have been developed. In scienti�c experiments, for instance,
many special tools and techniques can acquire experimental
data, including magnetic spectrometers and radio telescopes.

4.3. Data Analysis. Data analysis enables an organization to
handle abundant information that can a�ect the business.
However, data analysis is challenging for various applications
because of the complexity of the data that must be analyzed
and the scalability of the underlying algorithms that support
such processes [74]. Data analysis has twomain objectives: to
understand the relationships among features and to develop
e�ective methods of data mining that can accurately predict
future observations [75]. Various devices currently generate
increasing amounts of data. Accordingly, the speed of the
access and mining of both structured and unstructured data
has increased over time [76]. 	us, techniques that can
analyze such large amounts of data are necessary. Available
analytical techniques include data mining, visualization,
statistical analysis, and machine learning. For instance, data
mining can automatically discover useful patterns in a large
dataset.

Data mining is widely used in �elds such as science,
engineering, medicine, and business. With this technique,
previously hidden insights have been unearthed from large
amounts of data to bene�t the business community [2]. Since
the establishment of organizations in the modern era, data

mining has been applied in data recording.However, BigData
is composed of not only large amounts of data but also data
in di�erent formats. 	erefore, high processing speed is nec-
essary [77]. For �exible data analysis, Begoli and Horey [78]
proposed three principles: �rst, architecture should support
many analysis methods, such as statistical analysis, machine
learning, data mining, and visual analysis. Second, di�erent
storage mechanisms should be used because all of the data
cannot �t in a single type of storage area. Additionally, the
data should be processed di�erently at various stages. 	ird,
data should be accessed e�ciently. To analyze Big Data, data
mining algorithms that are computer intensive are utilized.
Such algorithms demand high-performance processors. Fur-
thermore, the storage and computing requirements of Big
Data analysis are e�ectively met by cloud computing [79].

To leverage Big Data frommicroblogging, Lee and Chien
[80] introduced an advanced data-driven application. 	ey
developed the text-stream clustering of news classi�cation
online for real-time monitoring according to density-based
clustering models, such as Twitter. 	is method broadly
arranges news in real time to locate global information.
Steed et al. [81] presented a system of visual analytics called
EDEN to analyze current datasets (earth simulation). EDEN
is a solid multivariate framework for visual analysis that
encourages interactive visual queries. Its special capabili-
ties include the visual �ltering and exploratory analysis of
data. To investigate Big Data storage and the challenges in
constructing data analysis platforms, Lin and Ryaboy [82]
established schemes involving PB data scales. 	ese schemes
clarify that these challenges stem from the heterogeneity of
the components integrated into production work�ow.

Fan and Liu [75] examined prominent statistical meth-
ods to generate large covariance matrices that determine
correlation structure; to conduct large-scale simultaneous
tests that select genes and proteins with signi�cantly di�er-
ent expressions, genetic markers for complex diseases, and
inverse covariance matrices for network modeling; and to
choose high-dimensional variables that identify important
molecules. 	ese variables clarify molecule mechanisms in
pharmacogenomics.

Big Data analysis can be applied to special types of data.
Nonetheless, many traditional techniques for data analysis
may still be used to process Big Data. Some representative
methods of traditional data analysis, most of which are
related to statistics and computer science, are examined in the
following sections.

(i) Data Mining Algorithms. In data mining, hidden but
potentially valuable information is extracted from large,
incomplete, fuzzy, and noisy data. Ten of the most dominant
data mining techniques were identi�ed during the IEEE
International Conference on Data Mining [83], including
SVM, C4.5, Apriori, k-means, Cart, EM, and Naive Bayes.
	ese algorithms are useful for mining research problems
in Big Data and cover classi�cation, regression, clustering,
association analysis, statistical learning, and link mining.

(ii) Cluster Analysis. Cluster analysis groups objects statisti-
cally according to certain rules and features. It di�erentiates
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objects with particular features and distributes them into
sets accordingly. For example, objects in the same group
are highly heterogeneous, whereas those in another group
are highly homogeneous. Cluster analysis is an unsupervised
research method that does not use training data [3].

(iii) Correlation Analysis. Correlation analysis determines
the law of relations among practical phenomena, including
mutual restriction, correlation, and correlative dependence.
It then predicts and controls data accordingly. 	ese types
of relations can be classi�ed into two categories. (i) Function
re�ects the strict relation of dependency among phenomena.
	is relation is called a de�nitive dependence relationship.
(ii) Correlation corresponds to dependent relations that are
uncertain or inexact. 	e numerical value of a variable may
be similar to that of another variable. 	us, such numerical
values regularly �uctuate given the surroundingmean values.

(iv) Statistical Analysis. Statistical analysis is based on statis-
tical theory, which is a branch of applied mathematics. In
statistical theory, uncertainty and randomness are modeled
according to probability theory. 	rough statistical analysis,
Big Data analytics can be inferred and described. Inferential
statistical analysis can formulate conclusions regarding the
data subject and random variations, whereas descriptive
statistical analysis can describe and summarize datasets.
Generally, statistical analysis is used in the �elds of medical
care and economics [84].

(v) Regression Analysis. Regression analysis is a mathematical
technique that can reveal correlations between one variable
and others. It identi�es dependent relationships among
randomly hidden variables on the basis of experiments
or observation. With regression analysis, the complex and
undetermined correlations among variables are simpli�ed
and regularized.

In real-time instances of data �ow, data that are gener-
ated at high speed strongly constrain processing algorithms
spatially and temporally; therefore, certain requests must be
ful�lled to process such data [85]. With the gradual increase
in data amount, new infrastructure must be developed for
common functionality in handling and analyzing di�erent
types of Big Data generated by services. To facilitate quick
and e�cient decision-making, large amounts of various data
types must be analyzed. 	e following section describes the
common challenges in Big Data analysis.

4.3.1. Heterogeneity. Data mining algorithms locate un-
known patterns and homogeneous formats for analysis in
structured formats. However, the analysis of unstructured
and/or semistructured formats remains complicated. 	ere-
fore, data must be carefully structured prior to analysis. In
hospitals, for example, each patient may undergo several pro-
cedures, which may necessitate many records from di�erent
departments. Furthermore, each patient may have varying
test results. Some of this information may not be structured
for the relational database. Data variety is considered a
characteristic of Big Data that follows the increasing number

of di�erent data sources, and these unlimited sources have
produced much Big Data, both varied and heterogeneous
[86]. Table 5 shows the di�erence between structured and
unstructured data.

4.3.2. Scalability. Challenging issues in data analysis include
the management and analysis of large amounts of data and
the rapid increase in the size of datasets. Such challenges
are mitigated by enhancing processor speed. However, data
volume increases at a faster rate than computing resources
and CPU speeds. For instance, a single node shares many
hardware resources, such as processor memory and caches.
As a result, Big Data analysis necessitates tremendously time-
consuming navigation through a gigantic search space to
provide guidelines and obtain feedback from users. 	us,
Sebepou and Magoutis [87] proposed a scalable system of
data streaming with a persistent storage path. 	is path
in�uences the performance properties of a scalable streaming
system slightly.

4.3.3. Accuracy. Data analysis is typically buoyed by rela-
tively accurate data obtained from structured databases with
limited sources. 	erefore, such analysis results are accurate.
However, analysis is adversely a�ected by the increase in the
amount of and the variety in data sources with data volume
[2]. In data stream scenarios, high-speed data strongly con-
strain processing algorithms spatially and temporally. Hence,
stream-speci�c requirements must be ful�lled to process
these data [85].

4.3.4. Complexity. According to Zikopoulos and Eaton[88],
Big Data can be categorized into three types, namely, struc-
tured, unstructured, and semistructured. Structured data
possess similar formats and prede�ned lengths and are gen-
erated by either users or automatic data generators, including
computers or sensors, without user interaction. Structured
data can be processed using query languages such as SQL.
However, various sources generate much unstructured data,
including satellite images and social media. 	ese complex
data can be di�cult to process [88].

In the era of Big Data, unstructured data are represented
by either images or videos. Unstructured data are hard to
process because they do not follow a certain format. To
process such data, Hadoop can be applied because it can
process large unstructured data in a short time through
clustering [88, 89]. Meanwhile, semistructured data (e.g.,
XML) do not necessarily follow a prede�ned length or type.

Hadoop deconstructs, clusters, and then analyzes
unstructured and semistructured data using MapReduce. As
a result, large amounts of data can be processed e�ciently.
Businesses can therefore monitor risk, analyze decisions, or
provide live feedback, such as postadvertising, based on the
web pages viewed by customers [90].Hadoop thus overcomes
the limitation of the normal DBMS, which typically processes
only structured data [90]. Data complexity and volume are a
Big Data challenge and are induced by the generation of new
data (images, video, and text) from novel sources, such as
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Table 5: Structured versus unstructured data.

Structured data Unstructured data

Format Row and columns Binary large objects

Storage Database Management Systems (DBMS) Unmanaged documents and unstructured �les

Metadata Syntax Semantics

Integration tools Traditional Data Mining (ETL) Batch processing

smart phones, tablets, and social media networks [91]. 	us,
the extraction of valuable data is a critical issue.

Validating all of the items in Big Data is almost imprac-
tical. Hence, new approaches to data quali�cation and val-
idation must be introduced. Data sources are varied both
temporally and spatially according to format and collection
method. Individuals may contribute to digital data in di�er-
ent ways, including documents, images, drawings, models,
audio/video recordings, user interface designs, and so�ware
behavior. 	ese data may or may not contain adequate
metadata description (i.e., what, when, where, who, why, and
how it was captured, as well as its provenance). Such data is
ready for heavy inspection and critical analysis.

4.4. Storing/Sharing/Publishing. Data and its resources are
collected and analyzed for storing, sharing, and publishing
to bene�t audiences, the public, tribal governments, aca-
demicians, researchers, scienti�c partners, federal agencies,
and other stakeholders (e.g., industries, communities, and
the media). Large and extensive Big Data datasets must be
stored and managed with reliability, availability, and easy
accessibility; storage infrastructures must provide reliable
space and a strong access interface that can not only analyze
large amounts of data, but also store, manage, and determine
data with relational DBMS structures. Storage capacity must
be competitive given the sharp increase in data volume;
hence, research on data storage is necessary.

(i) Storage System for LargeData.Numerous emerging storage
systems meet the demands and requirements of large data
and can be categorized as direct attached storage (DAS) and
network storage (NS). NS can be further classi�ed into (i)
network attached storage (NAS) and (ii) storage area network
(SAN). In DAS, various HDDs are directly connected to
servers. EachHDD receives a certain amount of input/output
(I/O) resource, which is managed by individual applications.
Hence, DAS is suitable only for servers that are intercon-
nected on a small scale. Given this low scalability, storage
capacity is increased, but expandability and upgradeability
are greatly limited.

NAS is a storage device that supports a network. It is
connected directly to a network through a switch or hub
via TCP/IP protocols. In NAS, data are transferred as �les.
	e I/O burden on a NAS server is signi�cantly lighter
than that on a DAS server because the NAS server can
indirectly access a storage device through networks. NAS can
orient networks, especially scalable and bandwidth-intensive
networks. Such networks include high-speed networks of
optical-�ber connections. 	e SAN system of data storage
is independent with respect to storage on the local area

network (LAN). Tomaximize data management and sharing,
multipath data switching is conducted among internal nodes.
	e organization systems of data storage (DAS, NAS, and
SAN) can be divided into three parts: (i) Disc array, wherein
the foundation of a storage system provides the fundamental
guarantee; (ii) connection and network subsystems, which
connect one or more disc arrays and servers; (iii) storage
management so�ware, which oversees data sharing, storage
management, and disaster recovery tasks formultiple servers.

(ii) Distributed Storage System. 	e initial challenge of Big
Data is the development of a large-scale distributed system
for storage, e�cient processing, and analysis. 	e following
factors must be considered in the use of distributed system to
store large data.

(a) Consistency. To store data cooperatively, multiple
servers require a distributed storage system. Hence,
the chances of server failure increase. To ensure the
availability of data during server failure, data are
typically distributed into various pieces that are stored
on multiple servers. As a result of server failures and
parallel storage, the generated copies of the data are
inconsistent across various areas. According to the
principle of consistency, multiple copies of data must
be identical in the Big Data environment.

(b) Availability. 	e distributed storage system operates
in multiple sets of servers in various locations. As
the numbers of server increase, so does failure
probability. However, the entire system must meet
user requirements in terms of reading and writing
operations. In the distributed system of Big Data,
quality of service (QoS) is denoted by availability.

(c) Partition Tolerance. In a distributed system, multiple
servers are linked through a network.	e distributed
storage system should be capable of tolerating prob-
lems induced by network failures, and distributed
storage should be e�ective even if the network is
partitioned.	us, network link/node failures or tem-
porary congestion should be anticipated.

4.5. Security. 	is stage of the data life cycle describes the
security of data, governance bodies, organizations, and agen-
das. It also clari�es the roles in data stewardship. 	erefore,
appropriateness in terms of data type and use must be
considered in developing data, systems, tools, policies, and
procedures to protect legitimate privacy, con�dentiality, and
intellectual property.	e following section discusses BigData
security further.
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4.5.1. Privacy. Organizations in the European Union (EU)
are allowed to process individual data even without the
permission of the owner based on the legitimate interests
of the organizations as weighed against individual rights to
privacy. In such situations, individuals have the right to refuse
treatment according to compelling grounds of legitimacy
(Daniel, 2013). Similarly, the doctrine analyzed by the Federal
Trade Commission (FTC) is unjust because it considers
organizational bene�ts.

A major risk in Big Data is data leakage, which threatens
privacy. Recent controversies regarding leaked documents
reveal the scope of large data collected and analyzed over a
wide range by the National Security Agency (NSA), as well
as other national security agencies. 	is situation publicly
exposed the problematic balance between privacy and the
risk of opportunistic data exploitation [92, 93]. In consid-
eration of privacy, the evolution of ecosystem data may
be a�ected. Moreover, the balance of power held by the
government, businesses, and individuals has been disturbed,
thus resulting in racial pro�ling and other forms of inequity,
criminalization, and limited freedom [94]. 	erefore, prop-
erly balancing compensation risks and the maintenance of
privacy in data is presently the greatest challenge of public
policy [95]. In decision-making regarding major policies,
avoiding this process induces progressive legal crises.

Each cohort addresses concerns regarding privacy dif-
ferently. For example, civil liberties represent the pursuit of
absolute power by the government. 	ese liberties blame
privacy for pornography and plane accidents. According to
Hawks privacy, no advantage is compelling enough to o�set
the cost of great privacy. However, lovers of data no longer
consider the risk of privacy as they search comprehensively
for information. Existing studies on privacy [92, 93] explore
the risks posed by large-scale data and group them into
private, corporate, and governmental concerns; nonetheless,
they fail to identify the bene�ts. Rubinstein [95] proposed
many frameworks to clarify the risks of privacy to decision
makers and induce action.As a result, commercial enterprises
and the government are increasingly in�uenced by feedback
regarding privacy [96].

	eprivacy perspective onBigData has been signi�cantly
advantageous as per cost-bene�t analysis with adequate tools.
	ese bene�ts have been quanti�ed by privacy experts [97].
However, the social values of the described bene�ts may
be uncertain given the nature of the data. Nonetheless,
the mainstream bene�ts in privacy analysis remain in line
with the existing privacy doctrine authorized by the FTC to
prohibit unfair trade practices in the United States and to
protect the legitimate interests of the responsible party as per
the clause in the EU directive on data protection [98]. To
concentrate on shoddy trade practice, the FTC has cautiously
delineated its Section 5 powers.

4.5.2. Integrity. Data integrity is critical for collaborative
analysis, wherein organizations share information with ana-
lysts and decision makers. In this activity, data mining
approaches are applied to enhance the e�ciency of critical
decision-making and of the execution of cooperative tasks.

Data integrity is a particular challenge for large-scale collab-
orations, in which data changes frequently. 	is de�nition
matches with the approach proposed by Clark and Wilson
to prevent fraud and error [99]. Integrity is also interpreted

according to the quality and reliability of data. Previous
literature also examines integrity from the viewpoint of
inspection mechanisms in DBMS.

Despite the signi�cance of this problem, the currently
available solutions remain very restricted. Integrity generally
prevents illegal or unauthorized changes in usage, as per
the de�nition presented by Clark and Wilson regarding the
prevention of fraud and error [99]. Integrity is also related to
the quality and reliability of data, as well as inspection mech-
anisms in DBMS. At present, DBMS allows users to express
a wide range of conditions that must be met. 	ese condi-
tions are o�en called integrity constraints. 	ese constraints
must result in consistent and accurate data. 	e many-sided
concept of integrity is very di�cult to address adequately
because di�erent approaches consider various de�nitions.
For example, “Clark and Wilson” addressed the amendment
of erroneous data through well-formed transactions and the
separation of powers. Furthermore, the Biba integrity model
prevents data corruption and limits the �ow of information
between data objects [100].

With respect to large data in cloud platforms, a major
concern in data security is the assessment of data integrity
in untrusted servers [101]. Given the large size of outsourced
data and the capacity of user-bound resources, verifying the
accuracy of data in a cloud environment can be daunting and
expensive for users. In addition, data detection techniques are
o�en insu�cient with regard to data access because lost or
damaged data may not be recovered in time. To address the
problem of data integrity evaluation, many programs have
been established in di�erent models and security systems,
including tag-based, data replication-based, data-dependent,
and block-dependent programs. Priyadharshini and Parvathi
[101] discussed and compared tag-based and data replication-
based veri�cation, data-dependent tag and data-independent
tag, and entire data and data block dependent tag.

4.5.3. Availability. In cloud platforms with large data, avail-
ability is crucial because of data outsourcing. If the service is
not available to the user when required, the QoS is unable to
meet service level agreement (SLA).	e following threats can
induce data unavailability [102].

(i) 	reats to Data Availability. Denial of service (DoS) is the
result of �ooding attacks. A huge amount of requests is sent
to a particular service to prevent it from working properly.
Flooding attacks are categorized into two types, namely,
direct DoS and mitigation of DoS attacks [95]. In direct DoS,
data are completely lost as a result of the numerous requests.
However, tracing �rst robotics competition (FRC) attacks is
easy. In indirect DoS, no speci�c target is de�ned but all of
the services hosted on a single machine are a�ected. In cloud,
subscribers may still need to pay for service even if data are
not available, as de�ned in the SLA [103].
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(ii) Mitigation of DoS Attacks. Some strategies may be used to
defend against di�erent types of DoS attacks. Table 6 details
these approaches.

4.5.4. Con�dentiality. Con�dentiality refers to distorted data
from the�. Insurance can usually be claimed by encryption
technology [104]. If the databases contain Big Data, the
encryption can then be classi�ed into table, disk, and data
encryption.

Data encryption is conducted tominimize the granularity
of encryption, as well as for high security, �exibility, and
applicability/relevance. 	erefore, it is applicable for existing
data. However, this technology is limited by the high number
of keys and the complexity of key management. 	us far,
satisfactory results have been obtained in this �eld in terms
of two general categories: discussion of the security model
and of the encryption and calculation methods and the
mechanism of distributed keys.

4.6. Retrieve/Reuse/Discover. Data retrieval ensures data
quality, value addition, and data preservation by reusing
existing data to discover new and valuable information. 	is
area is speci�cally involved in various sub�elds, including
retrieval, management, authentication, archiving, preserva-
tion, and representation.	e classical approach to structured
data management is divided into two parts: one is a schema
to store the dataset and the other is a relational database
for data retrieval. A�er data are published, other researchers
must be allowed to authenticate and regenerate the data
according to their interests and needs to potentially support
current results. 	e reusability of published data must also
be guaranteed within scienti�c communities. In reusability,
determining the semantics of the published data is impera-
tive; traditionally this procedure is performed manually. 	e
European Commission supports Open Access to scienti�c
data from publicly funded projects and suggests introductory
mechanisms to link publications and data [105, 106].

5. Opportunities, Open Issues, and Challenges

According to McKinsey [8, 48], the e�ective use of Big Data
bene�ts 180 transform economies and ushers in a new wave
of productive growth. Capitalizing on valuable knowledge
beyond Big Data is the basic competitive strategy of cur-
rent enterprises. New competitors must be able to attract
employees who possess critical skills in handling Big Data.
By harnessing Big Data, businesses gain many advantages,
including increased operational e�ciency, informed strategic
direction, improved customer service, newproducts, andnew
customers and markets.

With Big Data, users not only face numerous attractive
opportunities but also encounter challenges [107]. Such
di�culties lie in data capture, storage, searching, sharing,
analysis, and visualization. 	ese challenges must be over-
come to maximize Big Data, however, because the amount of
information surpasses our harnessing capabilities. For several
decades, computer architecture has beenCPU-heavy but I/O-
poor [108]. 	is system imbalance limits the exploration

of Big Data. CPU performance doubles every 18 months
according to Moore’s Law [109], and the performance of disk
drives doubles at the same rate. However, the rotational speed
of the disks has improved only slightly over the last decade. As
a result of this imbalance, random I/O speeds have improved
moderately, whereas sequential I/O speeds have increased
gradually with density.

Information is simultaneously increasing at an exponen-
tial rate, but information processing methods are improving
relatively slowly. Currently, a limited number of tools are
available to completely address the issues in BigData analysis.
	e state-of-the-art techniques and technologies in many
important Big Data applications (i.e., Hadoop, Hbase, and
Cassandra) cannot solve the real problems of storage, search-
ing, sharing, visualization, and real-time analysis ideally.
Moreover, Hadoop and MapReduce lack query processing
strategies and possess low-level infrastructures with respect
to data processing and its management. For large-scale data
analysis, SAS, R, and Matlab are unsuitable. Graph lab
provides a framework that calculates graph-based algorithms
related tomachine learning; however, it does notmanage data
e�ectively. 	erefore, proper tools to adequately exploit Big
Data are still lacking.

Challenges in Big Data analysis include data inconsis-
tency and incompleteness, scalability, timeliness, and security
[74, 110]. Prior to data analysis, datamust be well constructed.
However, considering the variety of datasets in Big Data, the
e�cient representation, access, and analysis of unstructured
or semistructured data are still challenging. Understanding
the method by which data can be preprocessed is important
to improve data quality and the analysis results. Datasets
are o�en very large at several GB or more, and they origi-
nate from heterogeneous sources. Hence, current real-world
databases are highly susceptible to inconsistent, incomplete,
and noisy data. 	erefore, numerous data preprocessing
techniques, including data cleaning, integration, transfor-
mation, and reduction, should be applied to remove noise
and correct inconsistencies [111]. Each subprocess faces a
di�erent challenge with respect to data-driven applications.
	us, future research must address the remaining issues
related to con�dentiality. 	ese issues include encrypting
large amounts of data, reducing the computation power of
encryption algorithms, and applying di�erent encryption
algorithms to heterogeneous data.

Privacy is major concern in outsourced data. Recently,
some controversies have revealed how some security agencies
are using data generated by individuals for their own bene�ts
without permission. 	erefore, policies that cover all user
privacy concerns should be developed. Furthermore, rule
violators should be identi�ed and user data should not be
misused or leaked.

Cloud platforms contain large amounts of data. However,
the customers cannot physically assess the data because of
data outsourcing. 	us, data integrity is jeopardized. 	e
major challenges in integrity are that previously developed
hashing schemes are no longer applicable to such large
amounts of data. Integrity checking is also di�cult because
of the lack of support given remote data access and the
lack of information regarding internal storage. 	e following
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Table 6: DoS attack approaches.

Defense strategy Objectives Pros Cons

Defense against the new DoS
attack [102]

Detects the new
type of DoS

(i) Prevents the bandwidth
degradation
(ii) Ensures availability of service

Unavailability of the service
during application migration

FRC attack detection [102]
Detects the FRC

attack
No bandwidth wastage

(i) Cannot always identify the
attacker
(ii) Does not advise the victim on
appropriate action

questions must also be answered. How can integrity assess-
ment be conducted realistically? How can large amounts of
data be processed under integrity rules and algorithms? How
can online integrity be veri�edwithout exposing the structure
of internal storage?

Big Data has developed such that it cannot be harnessed
individually. Big Data is characterized by large systems,
pro�ts, and challenges. 	us, additional research is needed
to address these issues and improve the e�cient display,
analysis, and storage of Big Data. To enhance such research,
capital investments, human resources, and innovative ideas
are the basic requirements.

6. Conclusion

	is paper presents the fundamental concepts of Big Data.
	ese concepts include the increase in data, the progressive
demand for HDDs, and the role of Big Data in the current
environment of enterprise and technology. To enhance the
e�ciency of data management, we have devised a data-life
cycle that uses the technologies and terminologies of Big
Data. 	e stages in this life cycle include collection, �ltering,
analysis, storage, publication, retrieval, and discovery. All
these stages (collectively) convert raw data to published
data as a signi�cant aspect in the management of scienti�c
data. Organizations o�en face teething troubles with respect
to creating, managing, and manipulating the rapid in�ux
of information in large datasets. Given the increase in
data volume, data sources have increased in terms of size
and variety. Data are also generated in di�erent formats
(unstructured and/or semistructured), which adversely a�ect
data analysis, management, and storage. 	is variation in
data is accompanied by complexity and the development of
additional means of data acquisition.

	e extraction of valuable data from large in�ux of
information is a critical issue in Big Data. Qualifying and
validating all of the items in Big Data are impractical; hence,
new approachesmust be developed. From a security perspec-
tive, the major concerns of Big Data are privacy, integrity,
availability, and con�dentiality with respect to outsourced
data. Large amounts of data are stored in cloud platforms.
However, customers cannot physically check the outsourced
data.	us, data integrity is jeopardized. Given the lack of data
support caused by remote access and the lack of information
regarding internal storage, integrity assessment is di�cult.
Big Data involves large systems, pro�ts, and challenges.
	erefore, additional research is necessary to improve the

e�ciency of integrity evaluation online, as well as the display,
analysis, and storage of Big Data.
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