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ABSTRACT Electrocardiogram (ECG) is sensitive to autonomic dysfunction and cardiac complications 
derived from ischemic or hemorrhage stroke and is supposed to be a potential prognostic tool in stroke 
identification and post-stroke treatment. ECG data generated cannot be real-time accumulated, processed, 
and used for enterprise-level healthcare and wellness services with the existing cardiovascular monitoring 
system used in hospitals. This study aims to assess the feasibility of a cyber-physical cardiac monitoring 
system to classify stroke patients with altered cardiac activity and healthy adults. Here, we propose Big-ECG, 
a cyber-physical cardiac monitoring system for stroke management, consisting of a wearable ECG sensor, 
data storage and data analysis in a big data platform, and health advisory services using data analytics and 
medical ontology. We investigated our proposed ECG-based patient monitoring system with 45 stroke 
patients (average age 70.8 years old, 68% men) admitted to the rehabilitation center of the hospital and 40 
healthy elderly volunteers (average age 75.4 years old, 38% men). We recorded ECG at resting state using a 
single-channel ECG patch within three months of diagnosis of ischemic stroke (clinically confirmed). In 
statistical results, ECG fiducial features, RR-I, QRS, QT, ST, and heart rate variability (HRV) features, SDSD, 
LF/HF, LF/(LF+HF), and HF/(LF+HF) are observed as significantly distinctive biomarkers for the stroke 
group relative to the healthy control group. The Random Trees model presented the best classification 
performance (overall accuracy: 95.6%) utilizing ECG fiducial variables. This system may assist healthcare 
enterprises in prognosis and rehabilitation management during post-stroke treatment. 

INDEX TERMS Cyber-physical systems, Electrocardiography, Biomedical monitoring, Big data 
applications, Biomedical informatics.

I. INTRODUCTION 
Stroke, a primary neurovascular disease in adulthood, is the 
world's second leading cause of death in the elderly 
community [1]. Hemorrhagic events, such as a stroke, occurs 
due to the blood vessel's rupture in the brain and hamper the 
supply of oxygen to brain tissue at the lesion site causing brain 
cell death. This damage to the brain tissue affects the central 
nervous system. Furthermore, stroke is commonly associated 
with autonomic dysfunction [2] and cardiovascular responses 
[3], which may increase mortality and morbidity rates. Early 
prediction of stroke symptoms affects mortality, rehabilitation, 
cost of post-stroke treatment, and quality of life [4]. Often, the 
stroke symptoms are not noticeable in the early stages of an 
ischemic event. Therefore, the decision to refer a stroke 

survivor to a clinical diagnostic center for brain imaging and 
pathological evaluation may delay. Late diagnostics of 
ischemic stroke can lead to motor impairment, sensory 
impairment, cognitive impairment, and even death. The 
prospect of improvement after stroke differs with the severity 
of the initial motor and cognitive deficit. The economic burden 
of post-stroke treatment is among the fastest-growing 
expenses for healthcare [5]. 

Tracking the physiological signals is one of the essential 
methods for disease prognostics and clinical management. 
Stroke is a neurological disease, and electroencephalography 
(EEG) is a useful tool for early prognostics of stroke [6]. 
Besides, ischemic stroke affects the autonomic nervous 
system (ANS), cardiovascular activity. As 
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electrocardiography (ECG) is the representative physiological 
signal of cardiovascular health and the autonomic nervous 
system, cardiac monitoring is one of the keys for stroke 
prediction. Several ECG studies have been reported the 
quantitative ECG measurements in clinical applications to 
evaluate the relationship between cardiac, neurological, and 
functional outcomes of ischemic stroke [2]. Changes in the 
ECG-derived heart rate variability (HRV) are the biomarker 
of the sympathetic and parasympathetic activity of the ANS 
regulating most visceral and metabolic processes. Cardiac 
dynamics can be tracked using nonlinear HRV measures and 
studied to predict sleep apnea [7] and congestive heart failure 
[8]. Ischemic stroke impairs autonomic function, 
characterized by a dominance of sympathetic activity. Cardiac 
abnormality, such as myocardial ischemia, is associated with 
stroke patients. The most common ECG fiducial changes 
include depressed ST-segments, prolonged QT-interval, flat or 
inverted T-waves, and U-waves [9]. 

For a detailed diagnostics of stroke, including identification 
of the stroke lesion on the brain, and evaluation of lesion size 
and location,  computed tomography (CT) and magnetic 
resonance imaging (MRI) is the most useful tool to understand 
the anatomy of the brain and to determine the scope of 
diagnosis for both types of stroke (thrombosis or hemorrhage) 
[10]. Continuous monitoring of high-risk patients with a 
history of acute stroke or transient ischemic attack (mini stroke) 
using CT and MRI is impractical [6]. For the prognosis of 
Stroke, ECG changes can be useful in daily life and the clinical 
environment [11, 12]. Moreover, ECG or vital sign 
functionality is present in most fitness trackers and wellness 
devices. Real-time tracking of heart activity is an affordable 
and effective way to predict high-risk stroke patients' 
cardiovascular health status with underlying heart diseases. 

With the advancement of a cyber-physical system, big data, 
and Healthcare 4.0 in medicine, a real-time biosignal-based 
patient monitoring system draws much attention. Elderly 
adults are most vulnerable to several life-threatening diseases, 
such as ischemic stroke, heart disease. Besides, government 
and healthcare agencies are looking for an innovative and 
effective way to manage senior citizens' treatment. 
Rehabilitation is an important step to recover from 
cardiovascular and neurological disorders. Healthcare 
providers generally record ECG using an existing standard 12-
lead ECG system with multiple electrodes in medical centers 
and hospitals. These ECG studies also require trained medical 
staff and clinical settings. Besides, traditional ECG methods 
use multiple spatial positions to measure the heart's electrical 
activity correctly. These kinds of long clinical preparation and 
expert skill demand can delay the prognosis of acute diseases. 
Moreover, cardiovascular and neurological impairment 
resulting from stroke increases the risk of cardiac morbidity 
and mortality during the post-stroke period [3]. So, the real-
time cardiac monitoring system has achieved considerable 
interest for post-stroke rehabilitation management.  

ECG data generated in healthcare centers cannot be real-
time stored, transformed, and utilized for enterprise-level 
clinical and wellness services with the present cardiovascular 
monitoring system. Generally, doctors’ intervention is 
required to interpret ECG for clinical decision-making. As the 
application of wearable medical devices is growing and home 
patient monitoring system is getting popularity during 
COVID-19 era, an automated ECG analytics platform may 
come to be an assistive tool for medical experts and patient 
caregivers. Not enough extensive studies investigated cardiac 
activity using portable ECG and cloud-based live processing 
for stroke patients' prognostics and rehabilitation. In addition, 
ECG-derived HRV parameters were studied earlier for 
machine learning based stroke prediction [9]. ECG fiducial 
feature based machine-learning approach was not clinically 
explored yet in the case of ischemic stroke. In summary, it 
requires a real-time or near-real-time ECG system for 
monitoring cardiovascular activity in a stroke patient's daily 
life setting. We proposed Big-ECG,   capable of tracking the 
cardiac signal, analyzing data in the big data platform, and 
providing health analytics as a service. This system can 
generate alerts as feedback for the assistance of the emergency 
rescue services if stroke-predictive cardiac features exceed 
any lethal criteria. Big-ECG is a cyber-physical platform that 
combines clinical ECG and big data analytics. 

We hypothesized that a portable ECG device would 
immediately detect cardiovascular activity. Data analytics 
based on biosignal processing, statistical analysis, and robust 
machine learning techniques will be consistent methods for 
predicting cardiac health during stroke onset and post-stroke 
rehabilitation. 

We aim to develop the Big-ECG, a cyber-physical ECG 
system for stroke, cardiovascular disease prediction in daily 
life and clinical environments. The key contributions of this 
paper can be summarized as follows: 
· We established a Big-ECG platform integrating the 

wearable ECG patch, data streaming to a cloud server, 
real-time signal processing with Hadoop and Spark 
ecosystem, live dashboards for the customers, doctors, 
and service managers for cloud-based prognostics of 
the ischemia and heart diseases.  

· We discovered stroke-impaired ECG indices, 
including HRV measures, fiducial features using 
statistical analysis, and significantly important features 
through hypothesis tests. 

· We utilized the machine-learning algorithms to 
categorize the ischemic stroke group and the healthy 
control group for acute stroke prediction. 

We organized the remainder of this article into six sections. 
We narrated this article's technical background in Section II, 
exploring the state-of-art techniques of Healthcare 4.0 and big 
data. The proposed cyber-physical ECG-based health 
monitoring platform was described in Section III, followed by 
the datasets and the methodology used to validate the system's 
predictive capability. After that, the results are reported in 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3109806, IEEE

Access

                              I. Hussain, S. J. Park: Big-ECG: Cardiographic predictive cyber-physical system for Stroke management 

VOLUME XX, 2017 3 

Section V, trailed by the discussion. Lastly, we stated the 
conclusions are in Section VII. 

 
II. BACKGROUND 

A. CYBER-PHYSICAL SYSTEM AND HEALTHCARE 4.0 
The Cyber-Physical System (CPS) is an innovative system 
with integrated computing and physical capabilities that 
enables new ways to communicate with humans [13]. The 
interaction between physical and digital elements has come to 
play an essential role in various domains. CPS, adapted in the 
industrial sector, is now being implemented in healthcare. 
Within a healthcare context, the use of CPS has led to Smart 
Healthcare. From the perspective of this new revolution, a vast 
quantity of CPS shapes current healthcare systems involving 
devices, technologies, solutions, and ventures. The vital 
components of these CPS are composed of a blend of enabling 
technologies, comprising smart medical devices, diagnostics 
process automation, autonomous robots, Internet of Things 
(IoT) devices, medical Big Data, Fog, and Cloud Computing 
[14]. CPS is the crucial technology of Healthcare 4.0 [15].  
Healthcare 4.0 is a consecutive revolution of the complete 
healthcare system, including the intelligent manufacturing of 
medicine and medical devices, cyber-physical patient 
monitoring, health analytics, telemedicine, healthcare logistics, 

personalized and precision medicine, assisted living, and 
rehabilitation. 

B. BIG DATA TECHNOLOGIES IN HEALTHCARE 
Big data technologies are shaping the world; healthcare is no 
exception. The real-time transactional medical data and the 
accumulated historical electronic health records (EHR) data in 
a hospital are vital medical decisive tools for clinicians and 
other care providers for the patient's best care or services. 
Healthcare big data builds up with a massive volume of 
structured and unstructured medical records. Usually, the 
structured database resulted from several sources, such as 
patient demographics, living habits, diagnostic tests, and 
diseases. On the other hand, patients' medical history, doctor's 
interrogation records contribute to accumulating vast 
unstructured datasets. Hospitals are handling this Big medical 
Data acquisition, processing and analytics, storage, retrieving 
real-time data, and collecting historical medical data using 
suitable Big data technologies [16]. Big Data technologies 
include the low-cost open-source Hadoop ecosystem, 
Elasticsearch (ES), and the relational database (RDB) and 
Hadoop–HadoopDB [17]. The Hadoop ecosystem comprises 
of Hadoop distributed file system (HDFS), MapReduce 
algorithm, and other analytical tools for handling, analyzing 
Big Data to make it mature and enterprise-ready. 

Figure 1. Overview of the Big-ECG system. ECG data acquisition system consists of the standard clinical ECG device and the wearable ECG patch.
System connects the ECG patch with the phone API through BLE. System feed the ECG data to cloud server using Wi-Fi or LTE network. In Apache 
Hadoop based distributed file system, Elasticsearch indexes the data and acts as the NoSQL database, Spark performs live data processing, and 
MariaDB acts as the relational database (RDB) and provides query service for front-end service application. This ambulatory system is developed to 
identify the changes in cardiac features due to ischemic stroke or other illnesses and generate health advise and messages to assist the patients. 
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C. HEALTHCARE WEARABLES AND BIOSIGNALS 
With the rise of wearable healthcare and wellness devices, the 
source of healthcare data is expanding rapidly. High-speed 
network, wearable physiological devices are enabling smart 
homes to the part of the medical CPS. Several physiological 
signals are measured in the hospitals and stored as a numerical 
value or digital portable documents format (pdf). ECG gives 
information about cardiac activity by measuring the electrical 
behavior of the heart. Electromyography (EMG) shows the 
muscle's health by reading the bioelectrical activity generated 
by muscle fibers.  Electroencephalogram (EEG) reveals the 
neurological status by measuring the electrical activity of the 
brain. Photoplethysmogram (PPG), galvanic skin response 
(GSR), electrooculography (EOG) are examples of biosignals 
showing the health status of the patients. Several human 
behavioral signals, motion, gait, and postural parameters 
portray physical and behavioral health. This kind of 
unstructured data is very complicated to analyze using a big 
data platform. Clinical decision-making using those records 
need a physician or doctor's assistance. The rapid 
advancement of miniature bio-signal processing hardware, 
application programming interface (API), communication 
technologies, and machine-learning techniques enable 
wearables healthcare devices to deal with real-time health 
analytics [18, 19]. Wearable health trackers can record 
biosignals in daily life setup, such as home activities, walking, 
driving, sleeping, and the widening era of the healthcare 
domain. Nowadays, a patient's real-time physiological data are 
generally acquired using wearable sensors, such as a vital sign 
tracker, an activity tracker [18, 20-22], and a sleep tracker [6, 
23]. Wearable devices are utilized in wellness and health 
stimulation, such as vagus nerve stimulation, microwave brain 
stimulation [24].  
 
III. BIG-ECG: A CYBER-PHYSICAL CARDIAC 
MONITORING SYSTEM 
Big-ECG, a novel cardiac monitoring system, consists of a 
portable ECG sensor system, the data acquisition interface, 
the big data storage and processing, the knowledgebase, and 
the healthcare service dashboard, as shown in Figure 1. This 
section explored the proposed cyber-physical cardiac 
monitoring architecture for real-time monitoring in detail. 
First, the components of the system architecture are 
introduced (Section III-A). Finally, we will demonstrate the 
dataflow to assess the real-time cardiac tracking using the 
CPSs (Section III-B). 

A. SYSTEM ARCHITECTURE 
This architecture aims to process the physiological signal to 
monitor in real-time health status, providing expert medical 
advice as feedback. This section describes the cyber-physical 
cardiac monitoring system, the sensor (physical) system, the 
cloud management system, and the front-end service 
dashboard.  
1) SENSORS SYSTEM 

A sensor is a device, module, machine, or subsystem whose 
purpose is to detect physical environment changes. The 
Healthcare system utilizes a wide range of biosensors to 
record various physiological signals to understand the health 
status. Our sensor system deals with ECG sensors: the 
wearable ECG patch for real-life and clinical applications 
and the standard ECG equipment for clinical application. 
The wearable ECG device is a self-powered ECG patch with 
Bluetooth low energy (BLE) communication with a 
computer or a phone. The standalone ECG equipment used 
in hospitals and healthcare centers stores the data in the local 
computer. We integrated both kinds of devices with our CPS 
system. 
2) CLOUD DATA STORAGE AND PROCESSING 
The physiological data, such as ECG can be utilized as big 
data, which is characterized by 5Vs in connection with 
Volume, Velocity, Variety, Value, and Veracity. Hospital-
generated patient physiological data are of petabytes or 
zettabytes, which depict the volume. The velocity is stated in 
terms of data sampling rate from the patients, and most of the 
clinical data are recorded with a higher sampling rate to 
ensure signal quality. Variety explains the diversified data 
sets, such as physiological data (ECG, EEG, EMG, etc.), and 
radiological images (MRI, CT), and veracity explains the 
data sets' reliability and availability. The recorded healthcare 
data are transformed into meaningful perceptions, such as 
disease prediction, health monitoring, disability assistance 
system, which describe the value in 5Vs. 

The Cloud management system includes the data 
acquisition system, data processing, data storage, data 
serving. The management of volume, velocity, scalability, 
and fault-tolerance is the cloud platform's essential 
requirement. We utilized the Apache ActiveMQ for the role 
of data acquisition requirements. ActiveMQ is a message 
broker built on top of Java Messaging Service, capable of 
sending messages between applications [25]. A custom-
made java-based sensor API acts as the publisher of the data. 
ActiveMQ is responsible for the transport of the data sent by 
the API into the cloud. ActiveMQ reduces message loss 
utilizing its fault-tolerance functionality. Elasticsearch is a 
NoSQL database, which acts as a distributed storage, search, 
and analytics engine with an HTTP web interface and 
JavaScript Object Notation (JSON) documents [26]. It 
provides powerful APIs to index data in a format of a 
dynamic number of key-value pairs. Logstash is a freely 
available data transformation engine that consumes data 
from many sources, converts it into JSON format, and feeds 
it to the Elasticsearch database. The Hadoop ecosystem 
contains a Hadoop distributed file system (HDFS), 
MapReduce, Spark Streaming, and many other analytical 
components for solving Big Data problems, and they have 
become mature and enterprise-ready. The HDFS is designed 
for reliable storage, managing huge files, and streaming 
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those data sets to front–end applications. Apache Spark 
Streaming is a scalable, fault-tolerant data processing for live 
data streams. Spark performs in-memory big data processing 
with low-latency; it is considered the best solution for live 
sensor data processing. MariaDB is a community-developed 
MySQL relational data management system. In this RDB, 
mostly structured data is processed and utilized in 
conjunction with Hadoop. It stores processed data and makes 
it available to use from the front-end dashboard with no 
latency in response. 

 MEDICAL ONTOLOGY 
An ontology is a formal, explicit specification of a shared 
conceptualization [27]. As the ontology concept is gained 
attraction in the biomedical domain for knowledge 
interpretation and semantic interoperability, we developed 
the medical ontology with assistance from ontology experts 
and domain experts (researchers and doctors). The Protégé-
OWL v.4.2 ontology editor [28], which supports the  OWL 
(Ontology Web Language),  was utilized to implement the 
ontology concepts. Stored ECG data are tagged in semantic 
annotations with predefined metadata, the set of ontological 
concepts. Semantically annotated data was stored in a 
resource description framework (RDF) database as RDF 
triples. The RDF database acts as the ontology engine and 
facilitates the storage and recovery of RDF triples through 
semantic queries. The Front-end knowledgebase system 
generates automated recommendation from the back-end 

ontology model for stroke prognostics, correlation with 
physiology, level of stroke recovery, post-stroke therapy, etc. 
In addition, the patient monitoring system subscriber or 
therapist can ask additional queries the through user interface. 
The medical ontology shares the disease information and the 
correlation between the illnesses and physiological outcomes. 
Therefore, Ontology-based stroke prognostics and risk will 
appear in the client apps or dashboard.  

 HEALTH ADVISOR SERVICE DASHBOARD 
The health advisor service dashboard consists of the client 
application, the clinical dashboard, and the service executive 
dashboard. The health advisor is the healthcare service layer 
including client profile nodes, such as personal information, 
wearable sensor identification, historical health records; 
resource nodes, such as hospital and emergency service 
information, hospital service availability, doctor information, 
medicine, hospital logistics; decision nodes, such as medical 
ontology, knowledgebase, disease ontology. The real-time or 
near-real-time biosignal monitoring, live data streaming and 
processing in a cloud platform, the real-time health status 
feedback to the client, and the hospital dashboard make a 
way to automate the health advisor system. Our system 
enables the medical experts, such as doctors, to verify the 
automatically generated recommendation and add his expert 
clinical recommendation through the clinical dashboard. The 
health advisor service, shown in client apps or dashboards, 
consists of predicted diseases and severity and advice based 

Figure 2. The dataflow of the Big-ECG system. System feed the ECG data to cloud server through Wi-Fi or LTE network using ActiveMQ queue. In cloud 
server, Elasticsearch indexes and stores the data, Spark performs live data processing, such as context prediction, feature extraction, rule-based 
feature extension, and machine learning based prediction. Context prediction node identifies the scenario of data. System extracts cardiovascular 
features related to Stroke, followed by the feature extension based on disease prediction rules. Cardiac features with disease prediction feed to machine
leaning model for training the model to build a disease prediction engine. RDB stores the processed data and provide query service for front-end 
service application. Disease ontology will assist to understand the correlation of physiology, diseases, and possible cause of diseases. Doctors can 
recommend expert suggestion through clinical dashboard. 
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on knowledgebase along with a doctor's prescription.  The 
health advisor also provides a message service to emergency 
service control rooms and relatives about cardiac health, 
helping them assist their patients and move to the hospital 
for additional diagnosis and treatment. 

B. DATAFLOW 
The ECG data flows from the wearable sensor to front-end 
visualization and undergoes a series of data processing for the 
patients' real-time cardiac monitoring to detect ECG changes 
due to illness. Here we will describe the type of ECG data, 
travel route of data for the transformation of raw data to 
cardiac features, rule-based and machine learning-based data 
processing, data visualization in dashboards. 

As demonstrated in Figure 2, the wearable ECG patch 
communicates with an API using the BLE network in a near-
located android phone. The android application reads real-
time ECG data from sensors, publishes in ActiveMQ topics, 
and feeds data in JavaScript Object Notation (JSON) format 
to the Transmission Control Protocol (TCP) server through 
Wi-Fi or Long-Term Evolution (LTE) network.  ECG data is 
annotated with the corresponding device identity number (ID), 
patient ID, gateway ID, and timestamp to make data traceable. 
Besides, the standalone ECG equipment stores the data in 
comma-separated value (CSV) format. In this system, ECG 
CSV data is converted to JSON format and send to the 
ActiveMQ queue. JSON files were published by data 
acquisition API in ActiveMQ feed to the server. If the big data 
server exists on the same computer, Logstash can transform 

those CSV files into JSON format, suitable for Elasticsearch 
indexing and management.  

On the cloud side, Elasticsearch receives raw data and 
performs indexing according to ECG data configuration 
protocol. The Spark streaming service accomplishes the 
processing of the live ECG. Data processing methods include 
context prediction, feature extraction, feature ranking, 
machine learning, and knowledgebase.  The context predictor 
annotated the data with the client's situation (resting, active), 
activity information (walking, driving, or sleeping). The 
feature extraction module extracts all relevant cardiovascular 
features. The rule-based feature extender annotated cardiac 
features according to the predicted diseases, such as ischemic 
stroke. All the disease prediction rules come out of the disease 
prediction decision tree derived from early extensive clinical 
studies. The selected ECG features run through the machine 
learning model to train the model. The system keeps records 
of the clients' details, historical medical records, contact 
information, and health insurance data in their portfolios. All 
the processing data are stored in the MariaDB and made 
available for the front-end dashboard. The dashboard can 
communicate with cloud applications in two ways; one is a 
REST API to query the dashboard data, and another one is a 
WebSocket, which streams direct messages to the dashboard. 
The Big-ECG system displays the cardiovascular health status 
and various key ECG and HRV features, such as RR interval, 
ST, QT, LF/HF ratio in the dashboard through WebSocket,  

 

Figure 3. Demonstration of data acquisition protocol, experimental scenario, and signal processing. (a) ECG patch in V5 position for both clinical and 
real-life applications; (b) Experimental scenario; (c) Biopac system ECG electrode in V5 position for clinical application; (d) Big-ECG platform and 
service dashboard; (e) Standard ECG signal and fiducial points description. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3109806, IEEE

Access

                              I. Hussain, S. J. Park: Big-ECG: Cardiographic predictive cyber-physical system for Stroke management 

VOLUME XX, 2017 7 

Table 1. Model hyperparameters of machine learning models (CHAID, QUEST, CART, C5.0, Random Trees, Neural Networks). 

CHAID QUEST 
Decision Tree developing algorithm: CHAID 

Tree depth limit (Maximum): 5 
Maximum surrogates: 5 

Minimum records in parent branch (%): 2 
Minimum records in child branch (%): 1 

Number of Ensemble component models for boosting and/or 
bagging: 10 

Overfit prevention set (%): 30 
Significance level for splitting and merging: 0.05 

Method for adjusting significance values:  Boferroni method 
Categorical targets prediction: Pearson Chi-square method 

Minimum change in expected cell frequencies: 0.001 
Maximum iterations for convergence: 100 

Minimum change in impurity: 0.0001 

Decision Tree developing algorithm: QUEST 
Tree depth limit (Maximum): 5 

Maximum surrogates: 5 
Minimum records in parent branch (%): 2 
Minimum records in child branch (%): 1 

Number of Ensemble component models for boosting and/or 
bagging: 10 

Overfit prevention set (%): 30 
Significance level for splitting and merging: 0.05 

Method for adjusting significance values:  Boferroni method 
Categorical targets prediction: Pearson Chi-square method 

Minimum change in expected cell frequencies: 0.001 
Maximum iterations for convergence: 100 

Minimum change in impurity: 0.0001 
CART C5.0 

Decision Tree developing algorithm: CART 
Tree depth limit (Maximum): 5 

Maximum surrogates: 5 
Minimum records in parent branch (%): 2 
Minimum records in child branch (%): 1 

Number of Ensemble component models for boosting and/or 
bagging: 10 

Overfit prevention set (%): 30 
Significance level for splitting and merging: 0.05 

Method for adjusting significance values:  Boferroni method 
Categorical targets prediction: Pearson Chi-square method 

Minimum change in expected cell frequencies: 0.001 
Maximum iterations for convergence: 100 

Minimum change in impurity: 0.0001 

Decision Tree developing algorithm: C5.0 
Tree depth: 22  

Expected noise (%): 0 
Cross-validation: yes (10-folds) 

Favor: Accuracy 
Output type: Decision tree 

Use boosting: True 
Number of trials: 10 

Random Trees Neural Networks 
Decision Tree developing algorithm: Random Trees 

Tree depth limit (Maximum): 10 
Minimum child node size: 5 

Maximum percentage of missing value: 70 
Maximum number of field categories: 49 

Minimum field variation: 0.05 
Number of bins: 10 

Maximum number of nodes: 10000 

NN model: Multilayer perceptron (MLP) 
Stopping rules: Use maximum training time (per 

component model): 15 minutes 
Combining rule for continuous targets: Mean 

Number of component models for boosting and/or 
bagging: 10 

Overfit prevention set (%): 30 

 
and signal trends using an HTTP request. Medical Ontology 
and health advisors serve possible health advice to guide the 
patient and the healthcare service providers. 

IV. EXPERIMENTAL METHODOLOGY 
To understand the stroke-impaired cardiac activity, we 
measured the single-channel ECG of the stroke patients and 
the healthy adults in the resting state. We processed and 
extracted the ECG fiducial features, time-domain, and 
frequency-domain features of ECG-derived HRV. We 
investigated the cardiac features through statistical analysis 
and hypothesis tests to identify the significant important 
ECG features associated with ischemic stroke. We also 
utilized machine learning algorithms to automate the 
classification of stroke group and control group. As a pilot 
system, we set up a cyber-physical pilot system for stroke 
prognostics and rehabilitation management parallel to 
regular operations in two medical centers. The pilot system 
includes data acquisition using a wireless ECG patch, data 
transfer to the cloud, the wireless network, and data storage 
and indexing in the cloud platform. 

A. DEMOGRAPHICS OF THE PARTICIPANTS 
The participants of this experiment are ischemic stroke 
patients and healthy adults. The stroke group consisted of 45 
ischemic stroke patients (Age: 70.8 ± 4.6 years old, 68% 
men), and the control group composed of 40 healthy adults 
(Age: 75.4 ±  2.3 years old, 38% males). Although no 
changes were observed for age and gender in ECG 
autonomic response [29], both participants in the stroke and 
control volunteers belong to the same age group to reduce 
age-related ECG fiducial feature variations. The stroke 
group included patients undergoing post-stroke 
rehabilitation at Chungnam National University Hospital and 
Konyang University Medical campus in Daejeon, South 
Korea. CT or MRI confirmed clinical diagnostics of the 
patients’ ischemic stroke. The control group consisted of 
healthy older adults with no underlying known heart disease 
and records of ischemic events. The Institutional review 
Board of the Korea Research Institute of Standards and 
Science, Daejeon, South Korea, and Konyang University, 
Daejeon, South Korea, approved this study conducted under 
the guidelines of the Declaration of Helsinki. 
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B. ECG DATA ACQUISITION 
We recorded ECG data in two different sensor systems; one 
is the Biopac wireless ECG sensor (Biopac Systems Inc., 
Santa Barbara, CA, USA), and another is a wearable ECG 
patch (Life science Technology Inc., South Korea). We 
acquired a single-channel ECG dataset in Chungnam 
National University Hospital using the Biopac MP160 
system with AcqKnowledge version 5.0. A wireless Biopac 
BioNomadix respiration (RSP) and ECG amplifier (RSPEC-
4.3) recorded the cardiovascular activity using 3 x 30-cm 
Electro Lead (BN-EL30-LEAD3) by applying bipolar EL 
503 pre-gelled disposable electrodes to the left and right 
chests of the participants, as shown in Figure 3(c). We 
recorded a single-channel ECG dataset in Konyang 
University Physiotherapy Center using an ECG patch and 
feed it to the cloud database. We used the low-alcohol swab 
to clean the participants' skin to reduce the impedance. As 
described in Figure 3(a), we only consider ECG data 
gathered on the lead position V5. For the stroke population, 
we recorded the ECG data within three months after 
diagnosing Ischemic Stroke. We recommended participants 
avoid drinks, such as coffee or alcohol, before the recording. 
While measuring ECG data, we instructed the patient to keep 
awake, close the eyes, sit down and keep rest. Following 
sitting on the chair, the recording of the data was delayed for 
3 minutes, allowing the participant's vital signs to calm down 
to a steady-state. As demonstrated in Figure 3(b), we 
recorded the electrocardiogram for at least 5 minutes during 
awake and rest. We maintained the room temperature at 24° 
C and the relative humidity at 40%. 
 

C. DATA TRANSFORMATION AND STORAGE 
We fed the ECG patch data directly to the Big-ECG server 
through an android application using ActiveMQ. Besides, 
ECG data of the Biopac wireless is stored ECG data in CSV 
file format in the connected local computer. To feed this data 
to a remote server using the ActiveMQ protocol, a data 
conversion API transformed the CSV data to JSON data and 
sent it to the ActiveMQ queue. On the remote server, 
Elasticsearch receives raw data and makes indexing 
according to ECG data configuration protocol. As displayed 
in Figure 3(d), the data server is equipped with a Dell 
PowerEdge T640 tower server (Intel Xeon Silver 4210R 
2.4GHz 10C Processor, RAM:32GB).  

D. PRE-PROCESSING 
All electrocardiogram (ECG) streams were sampled down at 
200 Hz to match the optimized sampling rate of the QRS 
detection algorithms. All premature, missing, or ectopic beats 
are filtered out using Pan-Tompkins QRS detection algorithm 
[30]. 

E. FEATURE EXTRACTION 
ECG Feature extraction consists of the fiducial features and 
the heart rate variability features as described in Figure 3(e). 
ECG fiducial components extracted through the onset, offset, 
and peak of each wave of the standard P-QRS-T wave profile. 
We analyzed ECG-derived HRV signals in time-domain and 
frequency-domain. The frequency-domain HRV features are 
spectral power extracted in various frequency bands, and the 
time-domain HRV features included the various statistical 
components. 

Figure 4. Statistical distribution of ECG fiducial features. Median and interquartile range of (a) RR interval; (b) R-height; (c) P-height; (d) QRS interval; 
(e) QT interval; (f) ST interval among the stroke group and the healthy control group. ∗(p < 0.05) indicates significant difference. 

* 

* * * 

* 
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 ECG FIDUCIAL FEATURES 
We extracted the fiducial features from the ECG waveform. 
The cycle-by-cycle time and voltage measurements of Q and 
S wave events and QRS events are extracts for various points 
and intervals between waveforms in the ECG signals cycle. 
RR Interval demonstrates the time between successive R 
peaks in the ECG waveform calculated in seconds. Heart rate, 
expressed in beat per minute (BPM), is calculated using the 
RR time interval. QRS defines the duration between the start 
of the Q -wave and the end of the S-wave. QT describes the 
period between the beginning of the Q wave and the end of 
the T-wave measured in seconds. Corrected QT interval 
(QTc) is the QT duration adjusted with the RR interval. ST 
describes the time between the S wave and the end of the T 
wave calculated in seconds. PRQ interval means the period 
between the beginning of the P-wave and the Q-wave 
measured in seconds. P-height (P-H) narrates the height of 
the P-wave peak in a cycle measured in mV. Similarly, R-
height (R-H) expresses the R-wave amplitude in an ECG 
cycle recorded in mV. 

 TIME-DOMAIN HEART RATE VARIABILITY 
HRV is a measure of the physiological rhythm between 
successive beats. The change in heart rate is detected in the 
RR interval of the ECG waveform. The RR interval is a 
representative function of heart rate (HR) and HRV. The RR 
interval is extracted from the ECG signal using a QRS 
detector. A modified Pan-Tompkins method is used to 
normalize the ECG data to 1, rather than using raw ECG data, 
where the peak value of the highest R-wave is considered 1 
[30]. R wave threshold is demonstrated in normalized range 
(-1, 1): positive for positive R wave peaks and negative for 

inverted R peaks. A continuous time-domain representation 
of the RR Intervals is obtained through re-sampling R-R 
intervals to a constant sampling rate using the Cubic-spine 
interpolation. The features obtained in the time domain 
analysis were generally the standard deviation of the 
adjacent R-wave interval (SDNN), the RMS of the 
successive difference of the RR interval (RMSSD), and the 
standard deviation of the consecutive difference of the R-
wave interval (SDSD) and the ratio of the number of pairs of 
normal-to-normal R-wave (NN) intervals greater than 50 ms 
to the total NN interval (pNN50). Respiratory Sinus 
Arrhythmia (RSA) is an index for the respiratory cycle, 
defined as maximum rate minus the minimum rate, 
expressed in milliseconds.  

 FREQUENCY-DOMAIN HEART RATE VARIABILITY 
The power spectral density (PSD), power in various 
frequency bands are extracted from the RR intervals using 
the Welch approximation method, the average of signal time-
sliced portions. The Hamming window is used for Fast 
Fourier transformation (FFT) to construct PSD. VLF, the 
very-low-frequency band power, describes the average 
spectral power measured in the range of 0.00-0.04Hz, having 
a unit of second^2/Hz. LF, the low-frequency band power, is 
the average spectral power measured in the range of 0.04-
0.15Hz. HF, the high-frequency band power, indicates the 
average spectral power measured in the range of 0.15-
0.40Hz. VHF, the very-high-frequency band power, 
demonstrates the average spectral power measured in the 
range of 0.40-3.00Hz. LF/(LF+HF) narrates the low-
frequency ratio, and HF/(LF+HF) mentions the high-

* * 

* 

Figure 5. Statistical distribution of HRV frequency-domain features. Median and interquartile range of (a) LF/(LF+HF); (b) HF/(LF+HF); (c) LF/HF 
among the stroke group and the control group. ∗(p < 0.05) indicates significant difference. 
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frequency ratio. LF/HF describes the ratio of low-frequency 
power and high-frequency power. 

F. FEATURE SELECTION 
Feature selection plays a vital role in high-dimensional 
biomedical data analysis. Classification performance largely 
depends on the relevance of features, and irrelevant or 
redundant data affects the computational power and time. 
Feature selection consists of screening, ranking, and 
selecting features. Screening removes feature variables, 
which do not provide useful information for prediction. 
Feature selection ranks the features based on the prediction 
accuracy of the individual variable. The chi-square test 
measures the importance value of the predictor. We 
evaluated the feature importance as (1-p), where p is the chi-
square test outcome. We selected ECG features with feature 
importance greater than 0.95 for training the machine 
learning algorithm.  

G. CLASSIFICATION 
Supervised machine learning techniques are an efficient tool 
for classification and discovering patterns in a dataset. In 
previous studies, machine learning was successfully utilized 
to classify the physiological [21, 31] and behavioral [20, 32] 
data of the stroke dataset and the control dataset. Machine 
learning and deep learning techniques are also utilized to 
classify the fatigue indies [33] and sleep apnea [34] using the 
multimodal physiological signal. Decision tree-based 
machine learning algorithms, such as QUEST, CART, C5.0, 
CHAID, Random Trees, and biologically inspired neural 
networks algorithm, have been implemented to categorize 

cardiac stroke features. ECG HRV features were extracted 
for every epoch of 30s and, fiducial features were generated 
for each QRS cycle. We also filtered the premature, missing, 
or ectopic beats and corresponding epoch measurements. 
ECG dataset consists of 521 sets of HRV pre-processed 
features and 5658 sets of pre-processed fiducial features in 
total; 6 sets of HRV features and 66 sets of fiducial features 
on average for each subject. ECG HRV dataset has 365 sets 
of HRV features and each set consists of 5 time-domain HRV 
features, such as RMSSD, SDSD, pNN50, RSA, and 9 
frequency-domain HRV features, such as VLF, LF, HF, 
VHF, LF/HF, LF/(VLF+LF+HF), HF/(VLF+LF+HF), 
LF/(LF+HF), and HF/(LF+HF), extracted for each sample. 
Furthermore, ECG fiducial dataset has 3961 sets of fiducial 
features and each set consists of 8 fiducial or profile features, 
such as RRI, R-H, P-H, QRS, PRQ, QT, QTc, and ST 
extracted for each sample. We partitioned the ECG dataset 
into the training and testing data. The training dataset 
comprises 70% of feature data, and the test dataset occupied 
30% of the entire feature dataset. Training data size is 365 
sets of HRV features and 3961 sets of fiducial features. 
Besides, the testing data size was 156 sets of HRV features 
and 1697 sets of fiducial features. We tuned the hyper-
parameters of models using cross-validation to find the best-
performing model. We performed non-exhaustive k-fold 
(k=10) cross-validation using the training dataset to get rid 
of overfitting [35]. Each model was trained and cross-
validated to find out the set of hyper-parameters with the 
highest accuracy of the model. As the most accurate model 
was developed, we test the model using the test dataset. The 
optimized hyper-parameters of each model were presented in 
Table 1. 

 

Figure 6. Statistical distribution of HRV time-domain features. Median and interquartile range of (a) RMSSD; (b) SDSD; (c) RSA among the stroke
population and the control population. ∗(p < 0.05) indicates significant difference. 
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Table 2. Results of Statistical analysis of the ECG fiducial features of the stroke and control group. ∗(p < 0.05) indicates significant difference. 

ECG 
Fiducial 
Features 

Mean Value 
Mean 

difference 

95% Confidence Interval p-value 
(Levene's test 
for Equality of 

Variances) 

p-value 
(t-test for 

Equality of 
Means) 

Stroke 
Group 

Control 
Group Lower Upper 

RRI, s 0.86 0.89 -0.025 -0.031 -0.018 0.0001* 0.0001* 
R-H, mV 0.82 0.74 0.085 0.055 0.115 0.167 0.0001* 
P-H, mV 0.08 0.07 0.011 0.010 0.012 0.034* 0.0001* 
QRS, s 0.12 0.12 0.004 0.002 0.005 0.017* 0.0001* 
PRQ, s 0.17 0.18 -0.006 -0.007 -0.004 0.911 0.0001* 
QT, s 0.51 0.52 -0.018 -0.021 -0.015 0.0001* 0.0001* 
QTc, s 0.55 0.56 -0.011 -0.014 -0.008 0.0001* 0.0001* 
ST, s 0.42 0.45 -0.023 -0.027 -0.020 0.0001* 0.0001* 

 

Table 3. Results of Statistical analysis of the HRV frequency-domain features of the stroke and control group. ∗(p < 0.05) indicates significant difference. 

HRV frequency-
domain 
Feature 

Mean Value 
Mean 

difference 

95% Confidence Interval p-value 
(Levene's Test 
for Equality of 

Variances) 

p-value 
(t-test for 

Equality of 
Means) 

Stroke 
Group 

Control 
Group Lower Upper 

VLF, s^2 1.29 0.46 0.83 -1.42846 3.09032 0.140 0.470 
LF, s^2 4.77 1.69 3.08 -5.27647 11.43048 0.140 0.470 
HF, s^2 11.38 3.98 7.40 -12.51808 27.31310 0.137 0.466 

VHF, s^2 31.24 14.03 17.22 -35.22255 69.65487 0.182 0.519 
LF/HF 0.424 0.425 -0.001 -0.00141 -0.00001 0.012* 0.046* 

LF/(VLF+LF+HF) 0.2757 0.2760 -0.0003 -0.00059 -0.00001 0.012* 0.044* 
HF/(VLF+LF+HF) 0.6495 0.6491 0.0004 0.00001 0.00079 0.013* 0.045* 

LF/(LF+HF) 0.2980 0.2983 -0.0003 -0.00070 -0.00001 0.012* 0.045* 
HF/(LF+HF) 0.7020 0.7016 0.0004 0.00001 0.00070 0.012* 0.045* 

   
Table 4. Results of Statistical analysis of the HRV time-domain features of the stroke and control group. ∗(p < 0.05) indicates significant difference. 

HRV time-
domain 
Feature 

Mean Value 
Mean 

difference 

95% Confidence Interval p-value 
(Levene's Test 
for Equality of 

Variances) 

p-value 
(t-test for 

Equality of 
Means) 

Stroke 
Group 

Control 
Group Lower Upper 

RMSSD, ms 13.34 16.62 -3.28 -4.81 -1.75 0.107 0.0001* 
SDSD, ms 12.92 16.39 -3.47 -4.98 -1.95 0.032* 0.0001* 
pNN50, % 1.16 2.41 -1.24 -2.17 -0.32 0.0001* 0.008* 

RSA, s -1.24 -0.75 -0.49 -0.75 -0.23 0.086 0.0001* 

1) CHAID MODELS 
The chi-squared automatic interaction detector (CHAID) 
method is a decision tree formed by successively dividing a  
subset into two or more child nodes, starting with the whole 
data set [36]. The best partition across all nodes comes out 
by merging the predictors' pairs until no significant 
difference is observed within the target's pair. As a decision 
tree model, CHAID model output is visual and easy to 
interpret in the clinical decision support system.c5.0 model 
The C5.0 model is a supervised data mining algorithm used 
to build decision trees from data sets. It creates a decision 
tree using a divide-and-conquer method. The C5.0 decision 
tree algorithm uses a gain ratio as the basis for division. The 
model builds the decision tree, followed by the cleanup 
procedure and the tree size reduction to minimize the tree's 
estimation error rate [37]. This algorithm is widely utilized 
in biomedical data mining applications. 
2) QUEST MODEL 

QUEST (Quick, Unbiased, Efficient) is a binary-split 
statistical tree-growth method [38]. QUEST handles linear 
splits using Fisher's Linear discriminant analysis. If no 
missing values in the data, it grows a tree with univariate 
splits. It is robust to handle categorical predictors with many 
categories. 
3) NEURAL NETWORK MODEL 
The neural network is a biologically-inspired data mining 
algorithms that predict a target according to a growing multi-
layered intricate pattern. We used the multilayer perceptron 
(MLP) neural network in this study [39]. This model 
includes an input layer with multiple input nodes, a neural 
network with hidden layers, and an output layer. This model 
is capable of learning by own, fault-tolerance and storing the 
data in entire network, capable of working on real-time 
applications 
4) CLASSIFICATION AND REGRESSION TREES MODEL 
Classification & Regression Tree (CART) is a recursive 
segmentation method suitable for regression and 
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classification by selecting partitions at each node. Each child 
node created by the separation is more homogeneous than 
the parent node [40]. 

 RANDOM TREES MODEL 
The random trees model is a robust supervised Classifier for 
accurate predictive models in classification or regression 
problems. Random Trees is an ensemble learning algorithm 
consisting of tree nodes representing decision rules to 
understand any tree's prediction and generate multiple 
classifications and regression trees [17]. 

H. DATA ANALYSIS 
We explored the cardiac features that characterize ECG 
changes due to ischemic stroke using statistical and machine 
learning data analysis. We performed the statistical analysis to 
identify the relationship between ECG-derived variables. We 
explored the descriptive statistics analysis to explore the 
statistical distribution of the data and independent-samples t-
test to evaluate whatever the associated groups' means are 

statistically significant. We performed the Statistical analysis 
using SPSS 24 package (IBM, Armonk, NY, USA). Machine 
learning techniques are practical in assessing the most accurate 
predictions possible. We used the feature selection to rank 
ECG features based on the target prediction performance. For 
feature selection, Pearson's chi-square test evaluated the 
prediction importance of the component. The supervised 
machine learning algorithms utilized the high-ranking training 
feature datasets to build a classification model, which later 
tested the dataset. We used the IBM SPSS Modeler 18 
package (IBM, Armonk, NY, USA) to utilize machine 
learning techniques in our ECG data. 
 
 
 
 
 
 

Figure 7. Receiver Operating Characteristic (ROC) curves for six different machine-learning models (Random Trees, CART, C5.0, QUEST, CHAID, Neural 
Network). Area under ROC curve (AUC) is an indicator of prediction accuracy. (a) ROC curve of the training dataset. Random Tree classified the training 
dataset with the highest AUC (99.70%) and moderate accuracy (ACC: 97.62%); (b) ROC curve of the testing dataset. Random Tree classified the testing 
dataset with the highest AUC (98.90%) and highest accuracy (ACC: 95.56%). Diagonal black line is the reference line. 

Figure 8. Feature importance of the ECG fiducial features in the feature ranking process of machine learning models to distinguish the stroke and 
control groups. 
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TABLE 5 (a). Results of the Classification performance of different Models using the ECG Fiducial training dataset. 

Model Accuracy (ACC) Sensitivity Specificity Precision Negative 
Predictive Value AUC Gini 

Random Trees 97.62 96.91 98.24 97.97 97.32 99.70 99.30 
C5.0 98.20 98.97 97.31 97.72 98.77 99.50 99.00 

CHAID 97.59 97.41 97.80 98.11 97.01 99.40 98.70 
CART 92.40 95.06 89.30 91.20 93.94 96.60 93.10 

QUEST 90.07 90.73 89.30 90.82 89.20 93.40 86.80 
Neural 

Network 83.82 83.95 83.68 85.72 81.71 89.90 79.70 

 
TABLE 5 (b). Results of the Classification performance of different Models using the ECG Fiducial testing dataset. 

Model Accuracy (ACC) Sensitivity Specificity Precision Negative 
Predictive Value AUC Gini 

Random Trees 95.56 95.19 96.04 96.98 93.74 98.90 97.70 
C5.0 94.85 95.91 93.45 95.13 94.48 96.30 92.50 

CHAID 94.27 95.09 93.18 94.89 93.43 96.90 93.80 
CART 91.23 94.78 86.49 90.34 92.55 94.70 89.40 

QUEST 89.18 90.89 86.90 90.24 87.74 92.10 84.30 
Neural 

Network 83.17 83.91 82.17 86.30 79.23 89.40 78.80 

 

V. RESULTS 
We developed a real-time or near-real-time ECG-based 
health monitoring and disease prediction platform. The core 
modules are a wearable ECG patch for cardiac signal 
acquisition, a big data platform for real-time data storage and 
processing, and the health advisor dashboard for post-stroke 
management service. We investigated the association of the 
electrocardiographic features with post-stroke ECG in two 
methods. (1) Statistical analysis included descriptive 
statistics and the hypothesis test. Descriptive statistics 
provide statistical distribution measures, such as mean, 
variance, standard deviation. In descriptive statistics, a 
boxplot graphically portrays the spread of the dataset with 
their quartiles. The independent sample t-test is a hypothesis 
test to determine whether associated population means are 
statistically different. We performed Levene's test to 
measure the equality of the variance and the t-test to check 
the means' equality. (2) The machine learning technique is a 
data analysis method, which builds analytical models to learn 
from data, identify patterns and make decisions through 
experience. In the following subsections, we will explore the 
results of the descriptive statistics and the hypothesis tests of 
important ECG fiducial and the heart rate variability features. 

A. ASSOCIATION BETWEEN ECG FIDUCIAL 
FEATURES AND STROKE 
As displayed in Figure 4, RR interval, P-height, QRS, QT, 
QTc, and ST intervals are the most significant stroke-
predictive ECG features. We investigated whether post-
stroke ECG changes are associated with the ECG fiducial 
features and whether these can be detected using a single-
channel heart signal recording. As shown in Table 2, the RR 
interval was -0.025 s shorter in the stroke group relative to 
the control group (95% CI, -0.031 to - 0.018 s, p = 0.0001). 
Mean R-H was 0.085 mV higher in the stroke group relative 

to the control group (95% CI, 0.055-0.115 mV, p = 0.0001). 
Mean P-H was 0.011 mV higher in the stroke group relative 
to the control group (95% CI, 0.010-0.012 mV, p = 0.0001). 
The mean QRS of the stroke group was 0.004 s longer (95% 
CI, 0.002-0.005 s, p = 0.0001) than the mean QRS for the 
control group. The mean PRQ of the stroke group was -0.006 
s shorter (95% CI, -0.007 to -0.004   s, p = 0.0001) than the 
mean QRS for the control group. The mean QT of the stroke 
dataset was -0.018 s shorter (95% CI, -0.021 to -0.015 s, p = 
0.0001) relative to the control group's mean QT. The mean 
QTc of the stroke patients was -0.011 s shorter (95% CI, -
0.014 to -0.008 s, p = 0.0001) relative to the control patients' 
mean QT. The mean ST of the stroke group was -0.023 s 
shorter (95% CI, -0.027 to -0.020 s, p = 0.0001) than the 
control group's mean ST. Although all ECG fiducial 
variables' mean values were significantly different, the 
variance values of R-height, PRQ interval showed 
discrepancies. 

B. ASSOCIATION BETWEEN FREQUENCY-DOMAIN 
HEART RATE VARIABILITY AND STROKE 
As demonstrated in Figure 5, LF ratio, HF ratio, LF/HF 
showed significant associations with post-stroke 
cardiovascular activity. We conducted the statistical 
investigation to evaluate the association of frequency-
domain features of HRV with the stroke group relative to the 
control group. As listed in Table 3, we measured spectral 
power in the LF, HF, VLF, VHF bands and extracted the 
spectral ratios, such as LF/(LF+HF), LF/(VLF+LF+HF), 
HF/(LF+HF), HF/(VLF+LF+HF), and LF/HF as the 
standard HRV measures. Power in HF, LF, and VLF are not 
statistically significant (p > 0.05). The mean LF/(LF+HF) 
was -0.0003 smaller (95% CI, -0.0007 to -0.00001, p = 0.045) 
in the stroke group relative to the control group. The mean 
HF/(LF+HF) was 0.0004 greater (95% CI, 0.00001 to 
0.00070, p = 0.045) in the stroke group relative to the control 
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group. The mean LF/(VLF+LF+HF) was -0.0003 smaller 
(95% CI, -0.00059 to -0.00001, p = 0.044) in the stroke group 
relative to the control group. The mean HF/(VLF+LF+HF) 
was 0.0004 greater in the stroke group relative to the control 
group (95% CI, 0.00001 to 0.00079, p = 0.045). The mean 
LF/HF was -0.001 smaller (95% CI, -0.00141 to -0.00001, p 
= 0.046) in the stroke group relative to the control group.  

C. ASSOCIATION BETWEEN TIME-DOMAIN HEART 
RATE VARIABILITY AND STROKE 
As displayed in Figure 6, RSA, RMSSD, and SDSD are 
significant predictive features associated with cardiovascular 
activities after ischemic stroke. We investigated the 
statistical measure to evaluate the association of time-
domain features of HRV with the stroke group relative to the 
control group. As shown in Table 4, we measured RMSSD, 
SDSD, pNN50, and RSA as the standard HRV measures. 
Few ECG-derived time-domain variables of heart rate 

variability have expressed association with stroke patients. 
The mean RMSSD of the stroke group was -3.28 ms shorter 
(95% CI, -4.81 to -1.75 s, p = 0.0001) than the control group's 
mean RMSSD. The mean SDSD of the stroke group was -
3.47 ms shorter (95% CI, -4.98 to -1.95 s, p = 0.0001) than 
the control group's mean SDSD. The mean pNN50 of the 
stroke group was -1.24 % shorter (95% CI, - 2.17 to -0.32 %, 
p = 0.008) than the control group's mean pNN50. The mean 
RSA of the stroke group was -0.49 shorter (95% CI, -0.75 to 
0.23, p = 0.0001) than the control group's mean.  

D. MACHINE LEARNING BASED POST-STROKE 
CARDIAC HEALTH PREDICTION 
In the results of feature selection, seven features out of all 
ECG fiducial features and four features out of all ECG HRV 
features, ranked higher than 95% of the importance limit, are 
selected and feed to models. Receiver operating 
characteristic (ROC) analysis offers the most comprehensive

Figure 9. Receiver Operating Characteristic (ROC) curves for five different machine-learning models (Random Tree, CART, C5.0, CHAID). Area under 
ROC curve (AUC) is an indicator of prediction accuracy. (a) ROC curve of the training dataset. CART classified the training dataset with the highest AUC 
(87%) and highest accuracy (ACC: 82%); (b) ROC curve of the testing dataset. CART classified the testing dataset with the highest AUC (70%) and 
moderate accuracy (ACC: 69%). Diagonal black line is the reference line. 

Figure 10. Feature importance of the HRV features in the feature ranking process of machine learning models to classify the stroke and control groups.
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 Table 6 (a). Results of the Classification performance of Machine Learning Models using the HRV training dataset. 

Model Accuracy 
(ACC) Sensitivity Specificity Precision 

Negative 
Predictive 

Value 
AUC Gini 

CART 0.82 0.83 0.80 0.84 0.79 0.87 0.74 
CHAID 0.70 0.69 0.72 0.76 0.64 0.77 0.53 
Random 

Trees 0.67 0.76 0.55 0.68 0.64 0.72 0.43 

C5.0 0.66 0.68 0.62 0.70 0.61 0.69 0.38 
 
Table 6 (b). Results of the Classification performance of Machine Learning Models using the HRV testing dataset. 

Model Accuracy 
(ACC) Sensitivity Specificity Precision 

Negative 
Predictive 

Value 
AUC Gini 

CART 0.69 0.68 0.71 0.78 0.59 0.70 0.40 
CHAID 0.56 0.51 0.65 0.68 0.47 0.63 0.26 
Random 

Trees 0.57 0.66 0.44 0.64 0.46 0.60 0.29 

C5.0 0.58 0.57 0.60 0.68 0.48 0.61 0.22 
 
description of prediction widely used in biomedical studies 
[41]. It shows all of the combinations of sensitivity and 
specificity that a machine learning model can deliver. AUC 
(area under the curve) is a performance indicator of the 
predictive model and defines the area under the ROC curve. 
The perfect score of the AUC is 1.0. The AUC less than 0.5 
is not considered a useful classifier. Another alternative 
measure of AUC is the Gini coefficient, ranging between and 
1, defined as two times (AUC-1). The confusion matrix or 
the error matrix delivers a complete representation of the 
predictions of true and false. We evaluated the standard 
performance measures, including accuracy (ACC), 
sensitivity (true positive rate), specificity (true negative rate), 
precision (positive predictive rate), and negative predictive 
value from the confusion matrix. Accuracy was considered 
the most intuitive measure of performance to find the best 
model calculated as a percentage of the correct predictions 
across observations. Sensitivity is the true positive rate, 
defined as the correct positive predictive ratio of all actual 
observations. Specificity shows the true negative rate, 
characterized as the fraction of correct negative predictions 
to all actual observations. Model prediction outcome can the 
presented using the following standard equations: 
 Sensitivity =   +   
 Specificity =   +  
 Precision =   +  
 Negative predictive value (NPV) =   +   
 Accuracy(ACC) =   +  +  +  +   

 
Where TP is a true positive, TN is a true negative, FP is a 
false positive, and FN is a false negative. 
1) PREDICTION BASED ON ECG FIDUCIAL FEATURES 

In Figure 7(a) and Figure 7(b), ROC curves demonstrate 
the classification models' performance curves using the 
training and the test datasets. All ECG fiducial features 
except QTc have shown feature importance greater than 0.95 
for classification prediction in the feature selection. Table 
5(a) and Table 5(b) display all the classifiers' performance 
measurements for the training and test fiducial datasets. The 
Random Tree categorized the training dataset as the highest 
AUC (99.7%) and medium accuracy (ACC: 97.62%). The 
random trees model sorted the test datasets up to AUC 
(98.90%) and medium accuracy (ACC: 95.56%). As 
demonstrated in Figure 8, R-H, QRS, and PRQ have come 
out as the most crucial stroke classification features using the 
Random trees model. The C5.0 model categorized the 
training dataset with moderate AUC (99.5%) and accuracy 
(ACC: 98.20%). C5.0 classified test datasets by AUC 
(96.30%) and accuracy (ACC: 94.85%). RRI, R-H, and P-H 
have emerged as the most predictive stroke classification 
features using the C5.0 model. The CHAID model 
categorized the training dataset by AUC (99.40%) and 
accuracy (ACC: 97.59%). CHAID classified test datasets by 
AUC (96.90%) and accuracy (ACC: 94.27%). PH, ST, and 
QT have emerged as the most predictive stroke classification 
features using the CHAID model. The CART model 
categorized the training dataset by AUC (96.60%) and 
accuracy (ACC: 92.40%). CART categorized test datasets by 
AUC (94.70%) and accuracy (ACC: 91.23%). PH, ST, and 
QT have emerged as the most predictive stroke classification 
features using the CART model. The QUEST model 
categorized the training dataset by AUC (93.40%) and 
accuracy (ACC: 90.07%). QUEST classified the test dataset 
by AUC (92.10%) and accuracy (ACC: 89.18%). PH, ST, 
and QT have emerged as the most predictive features of 
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stroke classification using neural network models. The 
neural network model categorized the training dataset with 
AUC (89.90%) and highest accuracy (ACC: 83.82%). The 
neural network categorized the test dataset by AUC (89.40%) 
and accuracy (ACC: 83.17%). ST, RR-I, and QT have 
emerged as the most predictive stroke classification features 
using neural network models. Overall, the random trees 
model shows the highest AUC (99.40%) and the highest Gini 
coefficient (98.90%). 
2) PREDICTION BASED ON HEART RATE VARIABILITY 
The ROC curves of machine learning models demonstrate 
the Stroke prediction performance using the HRV time-
domain and frequency-domain features in Figure 9(a) and 
Figure 9(b). In the feature selection, RMSSD, RSA, SDSD, 
and pNN50 have come out as the most predictive features 
(feature importance > 0.95) for stroke classification shown 
in Figure 10. Table 6(a) and Table 6(b) listed classifiers' 
performance measurements using the training and the testing 
HRV feature dataset. The CART model classified the 
training dataset with the highest AUC (87%) and highest 
accuracy (ACC: 82%) and classified the testing dataset with 
the highest AUC (70%) and the best accuracy (ACC: 69%). 
CHAID categorized training datasets by AUC (77%) and 
accuracy (ACC: 70%) and test datasets by AUC (63%) and 
accuracy (ACC: 56%). 

VI. DISCUSSION 
Our study aimed to investigate an ECG-based CPS feasibility 
and evaluate the cardiac biomarkers indicating activity 
changes due to ischemic stroke. Stroke shares severe health 
risk factors, and underlying heart diseases, such as heart failure, 
atrial fibrillation, or vascular heart disease increases stroke risk. 
Stroke impairs autonomic control and leads patients to cardiac 
complications [42], and post-stroke cardiac complications are 
the most deadly [43]. 
 
Table 7. Comparison of results of ECG-derived cardiac features of stroke 
population between proposed work and previous works. 

Study Study 
population Purpose Primary Results 

Fyfe-
Johnson et 

al.[44] 

12,550 
healthy 
adults, 

including 816 
stroke 

patients 

To evaluate 
the 

association 
between HRV 

and stroke 

Individuals in the 
lowest quintiles of 
SDNN, mean NN, 

and RMSSD were at 
a higher risk of 

stroke. 

Korpelainen 
et al. [45] 

46 stroke 
patients and 
30 healthy 
controls 

To assess the 
effects of 

brain 
infarction on 

the HRV 

SDNN, VLF, LF, 
and SD2 

significantly 
reduced in stroke 
patients compared 
with the healthy 

controls 

Graff et 
al.[46] 

75 ischemic 
strokes 

To access 
HRV as a 
prognostic 

tool of stroke. 

Elevated HF, 
decreased LF, 

decreased LF/HF 
predictor of poor 

neurological 
outcome at 90 days 

Wei et al. 
[47] 

232 patients 
with acute 

To evaluate 
the 

SDNN, VLF, LF, 
and LF/HF derived 

ischemic 
stroke 

association 
between 

autonomic 
function and 

stroke 

from a 12-channel 
24-hour ambulatory 

ECG differed 
significantly 

between the stroke 
patient groups 
(wand healthy 

control 

This study 

45 stroke 
patients and 
40 healthy 

control 
volunteers 

To access the 
feasibility of 

ECG as a 
prognostic 

tool for stroke 
prediction. 

RR-I, QT, ST, QRS, 
SDSD, LF/HF, 

LF/(LF+HF), and 
HF/(LF+HF) are 

significantly 
different in stroke 

group relative to the 
control group. 

 
When an ischemic event, such as a hemorrhagic stroke 

occurs due to a rupture of blood cells, oxygen supply to the 
lesion area's is disturbed and causes the brain cells to die. This 
damage to brain tissue affects the central nervous system [6] 
and the autonomic nervous system. ECG derived-HRV is one 
of the gateways for easy access to autonomic activity. 
Neurological disorders, such as acute ischemic stroke, change 
the ECG characteristics in various ways. ECG abnormalities 
may occur as complications, such as cardiac arrhythmia, such 
as ventricular tachycardia, ventricular tachycardia. Cardiac 
arrhythmias are responsible for hemodynamic instability and 
responsible for unexpected sudden death after ischemic stroke.  
For example, atrial fibrillation, a kind of arrhythmias, can lead 
to subsequent brain and systemic thromboembolism [42]. 

According to this study, resting RR-I, QRS, QT, QTc, and 
ST are essential markers for classifying the stroke and healthy 
control groups. The primary and possibly deadliest ECG 
features associated with neurological illness are the ST-
segment and T-wave, which reflect abnormal repolarization 
[48]. ST-segment depression [49, 50] is associated with 
ischemic stroke with underlying coronary heart disease. We 
observed a similar ST-pattern in our investigation. 
Prolongation of QTc is an independent predictor of reduced 
HRV and increases the threat of cardiac death in the stroke 
population [51, 52]. As our investigated stroke patients are in 
the recovery phase, a few stroke patients showed QT 
prolongation in this study. 

The ANS controls the body’s stress response to various 
stressors professed by the brain, neutralizes the stressors' 
effects, and restores homeostasis [53]. The HRV is a symbolic 
signal for the evaluation of autonomic functions of the body. 
HRV features are clinically used as biomarkers for 
understanding the ANS changes after stroke [54]. As shown in 
Table 7, HRV characteristics, such as LF / HF, LF ratio, and 
HF ratio showed a strong association with the disturbed 
autonomic function derived from the stroke [46, 47, 55]. In 
this study, LF/HF, LF/(LF+HF), and HF/(LF+HF) have 
shown significant differences in the stroke group relative to 
control group. HRV time-domain features, such as RMSSD, 
RR-I, SDSD have come out as the most predictive autonomic 
features for higher stroke risk [44]. This study revealed 
RMSSD, RSA, SDSD, and pNN50 as the distinctive features 
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during post-stroke treatment. Autonomic dysfunction is 
evident in the impaired physiological regulation of heart rate 
and increased cortisol secretion [3]. As cardiosympathetic 
centers are assumed in the anterior, medial, and superior 
sections of the insula, stroke lesion in the inferior parietal and 
posterior insula may impair the parietal lobe's link with 
autonomic centers causes an autonomic imbalance and 
increased risk of cardiac events [56]. HF power represents 
parasympathetic activity, and LF power correlates with vagal 
activity. The LF/HF, an indicator of sympathovagal balance, 
is significantly lower among the stroke patients than among 
the healthy control adults. Previous findings supported this 
study, revealing that higher HF power, lower LF power, and 
reduced LF/HF ratio predict post-stroke sub-acute infections 
[54, 57] and poor neurological outcomes [46]. Machine 
learning approaches enabled early stroke prognostics and 
most-stroke recovery using the cardiac activity profile. In our 
study, the decision tree-based Random Trees Model most 
accurately classified the stroke impaired cardiac profiles. We 
found ECG fiducial profiles as key predictive features for 
stroke prediction. According to statistical analysis, we found 
that most of the fiducial features are statistically significant. In 
contrast, only a few HRV features showed significant 
differences in discriminating the stroke group and the healthy 
group. These findings reveal that ECG fiducial features are 
more reliable to distinguish the stroke group and the healthy 
group. According to the machine-learning approach, we found 
that classification of ML model using fiducial features resulted 
in higher accuracy relative to HRV features. Therefore, our 
results demonstrated that fiducial features are more accurate 
predictors to classify the stroke group and the healthy group. 
In the future, we will try to explore ECG data recorded within 
a few weeks after the stroke onset to investigate whether the 
near stroke period HRV shows better classification 
performance than studied HRV data within three months. We 
have a plan to examine the combined performance of both 
features in the future. In Table 8 A, a comparison of 
classification performance of several machine-learning 
models were demonstrated for stroke prediction using ECG 
derived cardiac features.  

 
Table 8. Comparison of classification performance results of machine-
learning models for stroke prediction in the proposed work and previous 
works. 

Study Study 
population Purpose Primary Results 

Khosla et 
al.[58]  

4,988 ECG 
recording with 

299 
occurrences of 

stroke from 
Cardiovascular 
Health Study 
(CHS) dataset 

To evaluate 
the 

association 
between 
ECG and 

stroke 

Margin-based 
Censored 

Regression 
(MCR) Model: 
 AUC= 0.777 
Concordance 
Index: 0.770 

Attia et al. 
[59] 

6,49,931 
normal sinus 
rhythm ECGs 

To detect 
ECG 

Convolutional 
neural network 
(CNN) Model: 

from 1,80,922 
patients 

Atrial 
Fibrillation 

(AF) 
present 
during 

normal sinus 
rhythm as a 

biomarker for 
stroke. 

AUC= 0.90 
Sensitivity= 

82.3%, ACC= 
83.3% 

Ledezma et 
al. [60] 

Simulated 
ECG 

Modeling for 
ischemic 

stroke 

To classify 
ischemic 

stroke using 
Artificial 
Neural 

Networks 
(ANN) 

ANN Model: 
Sensitivity and 

positive 
predictive value 

above 95% 

Chen eta al. 
[34] 

70 overnight 
single-lead 
ECG from 
apnea-ECG 

database 

To classify 
obstructive 
sleep apnea 
(OSA) using 
deep-learning 

model. 

Multiscale 
dilation attention 
CNN (MSDA-
1DCNN) and 
weighted-loss 

time-dependent 
(WLTD) model:, 
Accuracy 89.4%, 
sensitivity 89.8%, 

and specificity: 
89.1%  

This study 
45 stroke 

patients and 40 
healthy control 

To access the 
feasibility of 

ECG as a 
prognostic 

tool for 
stroke 

prediction. 

Random Trees 
Model: 

 (AUC: 98.9, 
overall accuracy: 

95.6%). 

 
To the best of our knowledge, the Big-ECG we developed 

was the first to propose an outpatient ECG-based cyber-
physical system for managing stroke prognosis and post-
stroke treatment. Several studies in the past have used standard 
12-lead ECG with standalone devices. Real-time healthcare 
service in a non-clinical environment, such as rest, sleep, 
demands an ambulatory ECG along with instant data 
processing and health analytics. Thus, wearable ECG sensors, 
big-data-driven cloud analytics, and real-time service 
dashboards improve stroke prognosis and post-stroke 
rehabilitation management. Our system can be a useful 
measure to predict wake-up strokes in night sleep settings. 
This proposed ECG-based cyber-physical system can be a 
prospective HRV based sleep quality and sleep disorder 
monitoring system. 

In this study, our focus belongs only to the single-channel 
ECG to understand the changes in the ECG for cardiac 
complications from ischemic stroke, not all standard ECG 
12-leads. Lead V5 is identical to other lead positions, but 
there are still specific cardiac outcomes at each lead position. 
For this reason, the model developed here is currently only 
generalized to Lead V5 ECG of stroke patients through 
current parameterization. We utilized 5 minutes ECG data 
recorded once, within 3 months after the stroke onset, long 
ECG changes were not studied in this study. As multiple 
features were extracted from each subject and leave-k-
subject-out cross-validation was not performed, there is a 
possibility of potential subject-bias in cross-validation of this 
studies. Multimodal physiological data (EEG, PPG, EMG) 
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may enhance the prediction accuracy of stroke-derived 
neural, vascular, and postural impairment in the cost of the 
computational power. Although the proposed cyber-physical 
system demonstrated ECG-based patient management, it is 
possible to integrate multiple physiological sensors, such as 
the EEG and PPG sensors, to monitor patients in various 
physiological domains. In the future, we will extend our 
system with a multimodal physiological sensing system for 
automated stroke prognosis and post-stroke rehabilitation 
studies. Moreover, leave-k-subject-out cross-validation will 
be performed to avoid subject-bias in future studies.  

VII.  CONCLUSION 
Big-ECG, a cyber-physical cardiac monitoring system, was 
constructed for the stroke prognosis and post-stroke patient 
monitoring. We explained the sensor system, data analysis of 
the big data platform, and machine learning-based stroke 
prediction in detail. We successfully perform data acquisition, 
cloud-based data transformation, disease prediction, and 
visualization of 45 stroke patients and 40 healthy volunteers 
using this cyber-physical system. RR-I, QT, ST, QRS, SDSD, 
LF/HF, LF/(LF+HF), and HF/(LF+HF) were statistically 
significant cardiovascular biomarkers for identifying cardiac 
changes derived from an ischemic stroke during the post-
stroke rehabilitation. The Big-ECG system is likely to be a 
prospective medical support system for the prognosis of 
ischemic stroke and post-stroke recovery. 
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