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Abstract 
Software-as-a-Service (SaaS) is a model of cloud 

computing in which software functions are delivered to the 

users as services. The past few years have witnessed its 

global flourishing. In the foreseeable future, SaaS 

applications will integrate with the Internet of Things, 

Mobile Computing, Big Data, Wireless Sensor Networks, 

and many other computing and communication technologies 

to deliver customizable intelligent services to a vast 

population.  

This will give rise to an era of what we call Big SaaS 

systems of unprecedented complexity and scale. They will 

have huge numbers of tenants/users interrelated in complex 

ways. The code will be complex too and require Big Data 

but provide great value to the customer.  

With these benefits come great societal risks, however, 

and there are other drawbacks and challenges. For 

example, it is difficult to ensure the quality of data and 

metadata obtained from crowdsourcing and to maintain the 

integrity of conceptual model. Big SaaS applications will 

also need to evolve continuously. This paper will discuss 

how to address these challenges at all stages of the software 

lifecycle. 

1 Introduction  

Software-as-a-Service (SaaS) is a cloud computing model 

in which computer applications are delivered to the users as 

services [1, 2]. It contrasts with the hitherto more 

conventional practice of selling applications as products to 

be owned by the customer, and has led to a revolution in 

what functions can be offered. Table 1 lists just some of the 

many successful SaaS applications that have arisen over the 

past few years.  

There is, however, less research on SaaS than on other 

related areas such as Big Data, Internet of Things (or Cyber-

Physical Systems), Wireless Sensor Networks etc. For this 

reason, it is desired to assess the start of the art for both 

research and applications. This paper does this and then 

identifies future directions, recognizes the main challenges, 

outlines our assumptions and approach, and finally recounts 

recent progress. 

The paper is organized as follows. Section 2 defines the 

notion of Big SaaS applications. Section 3 identifies the 

major challenges in their development. Section 4 discusses 

approaches to solving these problems and reports our 

preliminary work. Section 5 concludes the paper with a 

summary.  

Table 1 Examples of SaaS Applications 
SaaS Application Area 

Booking.com Hotel booking 

EasyChair Conference management 

Ebay Online shopping 

Facebook Web portal and Social networking media 

Gmail Message communication 

Just Eat Online order for Take Away restaurants  

Lastminute.com Travel agency 

LinkedIn Social networking media for professionals 

Moodle Online Learning Platform 

ResearchGate Social networking media for researchers 

Rightmove Estate Agency 

SalesForce.com  Customer Relationship Management 

WhatsApp Instant message communication 

2 The Growth of SaaS 

Those SaaS applications well known to the public today 

are mostly small, but our vision of the near future is that an 

era of Big SaaS is emerging. Here, we define Big SaaS 

applications as those SaaS applications with the following 

characteristics.  

(1) Big Tenancy. A Big SaaS application usually serves a 

large number of tenants and users that may well be 

interrelated in a complex way.  

Examples of this include: 

• Just Eat: 40,800 takeaway restaurants (in 13 countries) 

and has 6 million users with active accounts. 

•  Booking.com: 638,960 properties (in 211 countries) 

with over 800,000 room-nights reserved per day. 

•  Rightmove (UK’s largest online estate property 

advertisement portal): 19,304 agent and new homes 

advertisers, for more than 1 million properties.  

Examples of complex interrelationships include 

hierarchies (e.g. a tenant may have sub-tenants etc.) and 

users being associated with many tenants or no particular 

tenants.  

(2) Big Data. Large volumes of data will be processed 

when the number of tenants and users is large.  

For example, in January 2014, the Rightmove.com 

website had a record 100 million visits viewing 1.5 billion 



pages.  

(3) Big Code. For a Big SaaS application, the software will 

be typically large in size and high in complexity.  

Already, SaaS applications are connected to social media 

or even offer their own domain-specific social networking. 

SalesForce and Moodle are examples of this. Many already 

have mobile phone or tablet apps. Inevitably, in the near 

future, this will extend to Internet of Things, Wireless 

Sensor Networks, robots etc, making the size and 

complexity of the code even greater. 

(4) Big Value. SaaS applications already provide extra 

services that were hitherto not possible.  

For example, Booking.com provides two types of cross- 

tenant services that individual hotel websites cannot: (a) for 

the hotel customers, access to a network of over 8000 

affiliate partners, (b) for property owners, personalized 

account management to help to optimize revenue. Similarly, 

Rightmove.com claims that property sellers are 5x more 

likely to find a buyer here than any other website.  

Because of this Big Value, SaaS applications generate 

more revenue and profits with greater productivity than ever 

before, and it seems likely that this trend will continue. For 

example, Rightmove generated £167m revenue in 2014, up 

19% from £140m in 2013, with a similar increase in profits.  

So, it seems likely that SaaS applications will advance 

towards Big SaaS and Big Value in particular.  

3 The Challenges 

The development of Big SaaS applications poses three 

types of challenges common to all socio-technical systems.   

(1) Social challenges, for society as a whole, to accept the 

changes to various business, finance, legal, ethical and 

moral aspects;  

(2) Technical challenges, for industry and researchers, to 

develop new techniques and novel applications of 

existing techniques; and finally, 

(3) Engineering challenges, for engineers and 

methodologists, to develop new processes, methods and 

tools to produce applications systematically, efficiently 

and even automatically.  

Recent effort has focused on enabling techniques for 

SaaS applications. The engineering, on the other hand, is 

still ad hoc so we will focus only on this. These are what we 

recognize as the grand challenges to the advance of Big 

SaaS.  

3.1 Societal Risks 

For a SaaS application, the risk RiskSaaS of failure is:  

RiskSaaS = R × T × C, 

where T is the number of tenants reside in the system; R is 

the failure rate of the system; C is the average consequence 

of a failure per tenant.  

For a software application system that is owned by the 

customers, the total risk RiskWS of failure globally is:  

RiskWS = R’ × C’ × S, 

where S is the number of copies of the system running at the 

same time globally; R’ is the failure rate of the system, and 

C’ is the average consequence of a failure to the customer 

who runs a copy of the software.  

Assume that each tenant runs one copy of the system (i.e. 

T=S), and that the SaaS is of the same level of reliability as 

the customer owned software (i.e. R = R’). Then, we have 

that RiskSaaS = RiskWS, if C=C’.  

From this one can conclude that the two modes of 

software have equal risks of failure. However, the 

calculation makes sense only for so-called individual risks.  

There is, however, a concept of societal risks, borrowed 

from safety engineering, where the risks from SaaS are 

considered greater.  

In general, individual risk is the risk for one person of 

loss of property or life due to system failures. In safety 

engineering, whether the risk is tolerable can be judged 

relatively easily for individuals as people knowingly take 

and accept risks all the time. Travelling in a car brings the 

risk of an accident but a train crash that kills many people 

causes an immense public reaction even many more die per 

year on roads than on trains. 

These situations are addressed by estimating societal risk, 

expressed as the relationship between the probability of a 

catastrophic incident and the number of users affected. It 

can be represented as an F-N curve that plots the expected 

frequency (F) of failure and the number (N or more) of users 

affected by each failure. Figure 1 illustrates the difference 

between societal risks for SaaS and those for customer-

owned software of similar reliability.  

These risks are exacerbated if failure recovery is slow, as 

with the two recent outages of Salesforce’s CRM system. 

They each took more than 10 hours to recover, during which 

users of more than 100,000 tenants were deprived of the 

service. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Illustration of the Difference in Societal Risks 

 

Therefore, it is crucial for SaaS application developers to 

reduce the societal risk significantly to an acceptable level.  

3.2 Trustable Crowdsourcing 

When there are a large number of tenants, it is highly 

desirable that a SaaS application supports customization so 
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that the specific needs of the customers and their users can 

be accommodated. However, for Big SaaS, such 

customization cannot be done by the service provider 

manually. A solution that adopted by almost all existing 

successful SaaS applications is crowdsourcing. This means 

that the customers perform customization themselves.  

For example, Rightmove provides a facility for the estate 

agents to upload themselves information on the properties 

for sale or to let. Likewise, Booking.com enables property 

owners to set room prices and room availabilities. Similarly, 

EBay enables sellers to enter the information about the 

goods for sale and the method of payment. Such facilities 

are fairly simple, however, when compared to Salesforce’s 

facility to let customers build their own applications. An 

unsolved problem is how to ensure the quality of data and of 

system configurations obtained by crowdsourcing. This is 

the second grand challenge to Big SaaS.  

3.3 Continuous Evolution 

Continuous evolution has been applied to software 

development practice for web-based systems, as a part of 

agile methodologies. In this approach, a software system is 

revised, tested and updated so frequently that the notion of 

versions and releases no longer makes sense. Moreover, 

continuous evolution also requires that such updates and 

releases go live without any interruption to service. This is 

of paramount importance for Big SaaS but the 

unprecedented scale and complexity of Big SaaS presents a 

challenge.  

Imagine the situation where hundreds of thousands of 

tenants each have their own customized version of the 

system running simultaneously on a number of big clusters 

distributed around the globe. At the same time numerous 

new tenants are also performing customization and 

configuration to join the system. As both of these are 

happening, developers are committing multiple changes to 

the system in parallel to fix bugs, to introduce new 

functions, and to refactor system structure. These changes 

will inevitably interact with each other while each change 

may have devastating impact for a large number of users.  

After a few days of such frequent modifications, the 

relations between the components could soon become a 

spaghetti-like mess. No current software change impact 

analysis tool could be used here and yet updates will have to 

go live without interruption to the service. The pressure to 

complete the testing, verification and validation of each 

change within a short time with a high adequacy will be 

several magnitudes higher than ever before.  

To enable Big SaaS to be evolved continuously, we must 

overcome the barriers in software engineering, especially 

the methods and tools for change impact analysis, for 

testing, verification and validation, and for on-line 

refactoring of software structure.  

3.4 Conceptual Integrity  

Conceptual integrity is one of the key features of a good 

software design. It means that there is a simple conceptual 

model of the system in which its structure, functionality and 

dynamic behavior can be understood.  

It appears that the design of a good conceptual model for 

a Big SaaS application and maintaining its integrity both 

play a crucial role in development and maintenance. They 

also play a role in the customization and continuous 

evolution of the system. Currently, such a conceptual model 

is rarely formally defined, and often not even documented 

explicitly, but conveyed instead informally through 

demonstrations, case studies, online training materials, 

marketing articles, etc. The advantages of such an approach 

is that it is user-oriented, but it leaves much scope for 

ambiguity, incompleteness and misunderstanding.  

On the other hand, most online documentation is too 

developer-oriented, with technical details in place of 

information about the conceptual model. Ontology and 

semantic web services can provide user-understandable 

descriptions of services at the conceptual model level. 

However, a weakness of ontology based service descriptions 

is that they are fragmented. Moreover, such documentation 

and descriptions of services are not verifiable and testable. 

A link seems missing from the conceptual model to low-

level system specification.   

4 Research Directions 

In this section, we seek for potential solutions to the 

engineering problems raised in the previous section. We 

focus on four phases of the software development lifecycle: 

functional specification, architectural design, 

implementation and testing. For each of these, we will 

briefly review the existing work, outline our approach, 

report the preliminary progresses we have made so far, and 

point out directions for future research.  

4.1 Design: Fault Tolerance Architectures 

The societal risk must be addressed by appropriate 

architectural design of SaaS applications. Chong and 

Carraro asserted that “A well-designed SaaS application is 

scalable, multi-tenant-efficient, and configurable” [1]. 

These are the three key differentiators that separate it from a 

poorly-designed SaaS application. Based on architectural 

features, they proposed a 4-level maturity model of SaaS 

applications shown in Figure 2.  

Level 1 is ad-hoc, the least mature, and essentially the 

same as the traditional application service provider (ASP) 

model of software delivery. Each subsequent level adds one 

of the three key features (configurability, multi-tenant 

efficiency, scalable in that order). It is no surprise that 

almost all successful SaaS applications nowadays employ an 

architecture model of level 3 and 4, and it seems inevitable 

that level 4 will be needed for Big SaaS, because, as Chong 

and Carraro argued, “[such] a SaaS system is scalable to an 

arbitrarily large number of customers … without requiring 

additional re-architecting of the application, and changes 



or fixes can be rolled out to thousands of tenants as easily 

as a single tenant” [1]. 

However, this architecture has not addressed the societal 

risks caused by system level failures. Addressing this 

problem, in [3] we suggested integrating the architecture 

with a fault tolerance facility to reduce the consequences of 

system-scale failures with reduced probability of failure and 

quicker recovery from failure.  

 

 

Figure 2 Four-Level SaaS Maturity Model [1] 

 

Fault-tolerance is one of the most challenging issues of 

distributed and high performance computing [4]. The 

extensive research in the past few years for cloud computing 

in particular can be classified according to the fault to be 

tolerated.  

Resource-level fault tolerance aims to achieve high 

reliability in individual computing resources, such as 

processor, memory, I/O and network bandwidth, which are 

lent to users as services, etc. [5,6].  

Infrastructure-level fault tolerance techniques include 

those for virtual machines (VM) or virtual clusters [7], with 

required availability and reliability via tolerance of 

underlying hardware failures [8, 9].  

At platform level, fault tolerance facilities have been 

provided in various parallel programming models, such as 

MapReduce, in which a failed map or reduce task is 

restarted and/or relocated to a new compute node. The 

performances of two most commonly used checkpoint / 

restart techniques for distributed systems, i.e. the 

Distributed Multi-Threaded Checkpointing and Berkeley 

Lab Checkpoint/Restart library, have been evaluated in 

Amazon Elastic Compute Cloud EC2 environment [10].  

However, there is no work at application level for SaaS. 

Moreover, almost all research on fault tolerance in cloud 

computing assumes that a set of virtual machines are 

deployed on a number of physical servers and a virtual 

machine is created for one tenant/user. Thus, they are only 

applicable to those SaaS applications in the multi-instance 

architecture of Chong and Carraro’s level 2, but not suitable 

for those in the multi-tenancy architectures of level 3 and 4.  

In summary, while some of the above techniques are 

useful to reduce failure rate of lower level entities, they have 

not addressed satisfactorily the problem of the high societal 

risks of Big SaaS. The current practice still relies on 

traditional periodical backup operations. For example, 

Salesforce backs up all data to a tape storage on a nightly 

basis. This traditional checkpoint-and-rollback fault 

tolerance technique is unsatisfactory for Big SaaS 

applications. In fact, Salesforce’s tenants also use third party 

facilities for backing up their own data.  

Addressing this problem, in [3], we proposed a new 

approach called tenant-level checkpointing and implemented 

a prototype called Tench. In this approach, instead of saving 

the whole system’s state, each checkpointing only saves a 

part of system state related to a specific tenant.  

This is important because saving the state of the whole 

system with one checkpointing operation will cause I/O 

contention and long delays, as all users of all tenants lose 

access to the system.  

 

 

Figure 3 Integration of a fault tolerance facility with SaaS 

Application Architecture 

 

Figure 3 shows the architecture of such a fault tolerance 

facility and how it is integrated with the service-oriented 

SaaS application architecture [1].  

In comparison with existing bulk checkpointing 

techniques, our preliminary theoretical and empirical studies 

demonstrated that tenant-level checkpointing increase the 

performance by a factor of O(N), where N is the number of 

tenants [11]. It has the following advantages.   

First, while a SaaS application runs continuously, tenant- 

level checkpointing can target a specific tenant when the 

users of the tenant are less active. Thus, a checkpoint can be 

created without causing too much disruption to normal 

operations of the system, as requests for services from other 

tenants are not blocked.  

Second, tenants with different quality of service 
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requirements (e.g., different reliability levels) can be treated 

differently by having different checkpoint frequencies.  

Third, tenant-level checkpointing can be implemented to 

block only those users of the tenant being checkpointed 

without affecting any other users. The experiments reported 

in [3] have shown that the latency of creating a checkpoint 

for a tenant only depends on the size of the tenant's state. It 

is independent of the number of tenants.  

Moreover, partial checkpointing enables different types 

of data to be treated differently, with the more important 

data being checkpointed more frequently. An example of 

higher priority data would be metadata as it plays an 

important role in SaaS applications.  

Finally, but most importantly, recovery from a system-

scale failure can proceed tenant by tenant so that the most 

important tenants are roll-backed first. This significantly 

reduces the total outage time and hence the societal risk of 

system-scale failures. 

It is worth noting that VM checkpointing, replication and 

live migration facilities [12] not only provide fault tolerant 

solutions to reliability problems, but also balance service 

work load [13], reduce system energy consumption of data 

centers [14], and can even the cost of subscription per user 

[15]. Similar benefits can be obtained from a tenant-level 

checkpointing facility like Tench for SaaS applications that 

do not run on virtual machines.  

Therefore, tenant level checkpointing could be a viable 

fault-tolerance solution to Big SaaS’ societal risk problem.  

4.2 Specification:  Algebraic Method 

Formal methods have proved their value by their 

successful applications in safety-critical systems. They can 

significantly improve software reliability and ensure system 

safety. Their application in the development of Big SaaS 

can reduce their societal risk, too.  

Although this is considered to be a myth [16, 17], formal 

methods are widely regarded too expensive to be used. 

However, the great value of Big SaaS applications makes 

formal methods viable as its cost would then be justifiable. 

They can also be easy to learn for ordinary software 

engineers [18].  

Moreover, we believe that formal methods can also 

provide better solutions to the problems of maintaining 

conceptual integrity, trustworthy crowdsourcing, and 

continuous evolution. The following reports our preliminary 

work on how formal methods address these issues.  

4.2.1 Support for Crowdsourcing-Based Customization 

As discussed in Section 2, it is highly desirable to include 

a crowdsourcing-based customization facility in Big SaaS 

applications. In this approach, services are discovered and 

composed by the customers with little support from the 

service provider. One approach to realize such 

customization is to employ semantic descriptions of the 

services as illustrated in Figure 4.  

 

Figure 4. Customization of a SaaS Application in SOA 

 

The results of these customizations and compositions 

must be of high reliability, due to our requirement to 

minimize societal risks. To achieve this service semantics 

need accurate descriptions, which should also be the 

following: 

• Comprehensible: easy for users to understand even if 

they have no IT professional knowledge or skills.  

• Abstract: the design and implementation details hidden 

from the users for comprehensibility and also to protect 

intellectual property.  

• Machine-Searchable for the discovery, composition and 

configuration of services.  

• Testable so that service providers and users can both 

verify the service’s correctness with respect to semantic 

descriptions.  

However, no existing technique satisfies all of these 

requirements. They tend to fall into two categories. The 

majorities are based on ontology and use a vocabulary to 

annotate services. The others are based on the mathematical 

notations of formal methods.  

Semantic Web Services are an example of the former 

approach [19] and OWL-S was the first major ontology 

definition language for this purpose [20]. It provides a set of 

constructs for describing the properties and capabilities of 

Web Services in a machine-readable format. Formal 

methods were applied to provide a precise mathematical 

meaning in a formal ontology. An alternative approach is 

the Web Service Modelling Ontology (WSMO) [21], which 

is a conceptual model that uses the Web Services Modelling 

Language (WSML) [22]. As well as Big Web Services, 

work has also been carried out on how to specify the 

semantics of RESTful web services, such as, MicroWSMO/ 

hRESTS  [23], WADL [24] and SA-REST [25].  

The above works all take the same approach to specify 

the semantics of services. That is, a vocabulary is defined by 

ontology of its application domain to give the meanings of 

the input and output parameters, as well as the functions of 

the services. Such descriptions are easy for human 

developers to understand and efficient for computers to 

process. However, they cannot provide a verifiable and 
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testable definition of a service's function, because any 

ontology is limited to stereotypes formed from the 

relationship between the concepts and their instances.  

Formal methods, as an alternative to the ontological 

approach, have been developed over the past 40 years to 

define the semantics of software systems in mathematical 

notations. One such formal method, algebraic specification 

was first proposed in the 1970s as an implementation-

independent specification technique for defining the 

semantics of abstract data types. Over these years, it has 

been advanced to specify concurrent systems, state-based 

systems and software components, all based on solid 

foundations of the mathematical theories of behavioural 

algebras [26] and co-algebras [27]. We argue that it is 

particularly suitable for the development of Big SaaS.  

Algebraic specifications are at a very high level of 

abstraction. They are independent of any implementation 

details. One attractive feature they have is that they can be 

used directly in automated software testing; see Section 4.4. 

This feature is particularly important for SaaS engineering, 

because, when services are customized and composed 

together by the customer, testing must be performed 

automatically without the developer’s support.  

In [28], we investigated the application of the algebraic 

specification method to service-oriented software by 

extending and combining the behavioural algebra and co-

algebra techniques. The algebraic specification language 

CASOCC, which originally designed for traditional 

software entities, such as abstract data types, classes and 

components, was extended to CASSOC-WS for the formal 

specification of Big Web Services. A tool was developed to 

automatically generate the signatures of algebraic 

specifications from WSDL descriptions of Big Web 

Services. CASOCC-WS was also applied to RESTful web 

services [29]. A tool was developed to check syntax-level 

consistency of formal specifications. A case study was 

conducted applying CASOCC-WS to a real industrial 

system, GoGrid. Based on these works, a new algebraic 

formal specification language called SOFIA [43] was 

proposed to improve the usability of algebraic specification 

languages when applied to services. 

However, algebraic specifications and other formal 

methods do not directly support efficient searching of 

services. To bridge the gap between algebraic specification 

and ontological descriptions, we proposed in [30] to derive 

the former from the latter, thereby augmenting algebraic 

specification with the machine-readable and human-

understandable attributes of ontology. A software tool called 

TrS2O (Translator from Specification to Ontology) has been 

designed and implemented [30]. It translates formal 

specifications in SOFIA to ontological descriptions of 

services in OWL. Figure 6 shows the overall structure of the 

TrS2O Tool. 

 

 

Figure 6. The Overall Structure of The TrS2O Tool 

Service!

Specification!

in!SOFIA!

Parser!

and!

Syntax!

Checker!

Ontology!!!!!

Generator!
Service!

Ontology!!
Parser!

Tree!

Error!Report!

Services!

Description!

Generator!
Service!

Profile!

TrS2O&

 

 

Figure 5 Ontology generated from the SOFIA specification  



A case study of the RESTful web service interface of an 

actual industrial system called GoGrid shows that the 

approach is practically useful. 

4.2.2 Formal Specification of Conceptual Models 

One advantage of the algebraic method is that the 

infrastructure, platform, application domain knowledge, and 

the services of a SaaS application can all be formally 

specified in the same language and decomposed into a 

number of reusable specification packages.  

For example, in the case study of GoGrid’s RESTful 

API, we first specified the RESTful web service in a 

package, then used that to specify the basic constructs of 

computing infrastructure, and then used both packages to 

specify the services that GoGrid provides. Figure 5 gives the 

ontology generated from the SOFIA specification of 

RESTful web services.  

Therefore, the specification of domain concepts can be 

used to serve as a formal specification of the conceptual 

model of the system. This specification supports automated 

testing and its internal consistency can be verified. This 

enables it to support the maintenance of conceptual 

integrity, too.  

4.3 Implementation: New Paradigm of Programming 

Currently, most web-based applications, including those 

for SaaS, are implemented in many different programming 

and scripting languages and even several different 

paradigms. This complicates development and makes it 

difficult to develop supporting tools. A desirable alternative 

is to have a new single paradigm that is particularly suitable 

for SaaS applications.  

The agent-oriented paradigm has long been considered 

suitable for dynamic environments such as the Internet [31], 

and many research efforts have been reported in the 

literature [32]. However, the IT industry has been slow to 

adopt the approach. There are a number of possible reasons 

for this. First, the notion of agents seems to be too strongly 

linked to distributed artificial intelligence for software 

engineers to accept it. Secondly, there are no efficient 

implementations of agent-oriented programming languages. 

We now report our work in progress that addresses these 

problems.  

4.3.1 Agent-Oriented Programming Language 

To address the first problem, we proposed a simplified 

model of agent [33, 34]. Agents are service providers that 

consist of: 

• actions that the agent can perform, representing the 

services it provides or requests it can submit,  

• variables, which represents its internal state of the agent, 

• behaviour rules, forming the body of the service,  that 

determine how the requests are processed,  

• collaborating agents, from which the service requests are 

received. This set can be updated at runtime.  

For example, the following is the Hello World example 

of the language CAOPLE, which we are developing.  

 
caste Peer; 
  action say(word:  string); 
  init say("Hello world!") 
end Peer  

 

Caste is the classifier of agents so agents are instances of 

castes. In the above example, the caste Peer is defined. It can 

take the action of say(“Hello world!”) and it does this when 

the agent is created. An agent is therefore an active 

autonomous computational entity.  

Castes can be extended to sub-castes just as classes in 

object-orientation have subclasses. For example, the 

following is a sub-caste of Peer.  

 
caste GreetingPeer inherits Peer; 
  observes all in Peer; 
  body 
    when exists A in Peer:  say("Hello world!") do 
      say("Welcome to the world!") 
    end  
end GreetingPeer 

 

An agent of GreetingPeer observes the actions taken by 

all agents of Peer, as described in the observes clause, which 

defines its collaborative agents. When there is an agent in 

the caste Peer that takes the action say(“Hello world!”), it will 

react with the action say("Welcome to the world!"). In general, 

an agent communicates with other agents by taking 

observable actions to send messages and it receives 

messages by observing the observable actions of its 

collaborative agents. An action can be targeted to one or a 

set of specific agents. For example, if the say statement can 

be changed to one of the following:  

 
say("Welcome to the world!") to All in Peer; 
say("Welcome to the world!") to A;  

 

If the target receiver is omitted, the default is public.  

In contrast to the notation of class in object-oriented 

programming, an agent can be a member of multiple castes 

at once and its membership can be changed dynamically at 

runtime by executing one of the caste membership 

statements:  

• Join casteID: to become a member of casteID; 

• Quit casteID: to quit the membership of casteID; 

• Suspend casteID: to suspend the execution of the body of 

casteID; 

• Resume casteID: to resume the execution of the body of 

casteID;  

• MoveTo casteID: to quit from the current caste and 

become a member of the named caste.  

Using castes and the inheritance relationships between 

them, one can encapsulate different behaviours in different 

contexts together with a set of related state variables, 

actions, and collaborative agents. The flexible casteship 



enables agent to have adaptability and to be easy to 

compose and configure. For example, the following shows 

how agent can adapt its behaviour according to the context 

by change its caste membership.  

 
caste CheerfulPeer inherits Peer; 
  body 
     when exists A in Peer: say("Hello world!")  do  
         say(“Hi, good morning.”); 
     end; 
end CheerfulPeer 
caste SmartPeer inherits Peer; 
  observes DateTime: Clock; 
  body 
    when DateTime: Tick() do  
        if DateTime.Day = Monday then Join FriendlyPeer 
        else Join CheerfulPeer 
        end; 
    end; 
end SmartPeer 

 

The above just a few key features of the agent-oriented 

programming language CAOPLE. Readers are referred to 

[34] for more details. In general, we believe that a new 

programming paradigm such as agent-orientation will 

enable the implementation of SaaS applications at a high 

level of abstraction. Thus, it is worth pursuing.  

4.3.2 Implementation of CAOPLE Language 

Our approach to the implementation of the CAOPLE 

programming language is to translate CAOPLE source code 

into machine code for a virtual machine [35].  

Our virtual machine, called CAVM, differs from other 

language specific virtual machines like JVM in that it 

consists of two parts: a local execution engine LEE and a 

communication engine CE. The LEE executes the program’s 

computational code, while the CE realises communication 

between agents distributed over a computer network.  

 

 

Figure 7 Compiling, deploying and executing CAOPLE code 

 

As illustrated in Figure 7, the castes in a CAOPLE 

program are compiled so that one Object Code module is 

generated from each caste Source Code. It is deployed to a 

Computer node that runs a communication engine. An agent 

of a caste can be created on any Computer node that runs an 

execution engine. It will load the object code module of the 

caste and execute the code on the machine. For cross-

machine communications between agents, the messages are 

send to the communication engine where the caste resides 

and further distributed to execution engines where the target 

agents executes. They may be passed through one or more 

other communication engine. The reader is referred to [35] 

for more details of the design, implementation and 

experiment results of CAVM.  

4.4 Testing: Specification-Based Test Automation 

Automated testing can play at least two roles in the 

development of Big SaaS: it supports continuous evolution 

and it ensures the quality of crowdsourcing in service 

customization.  

There are a number of approaches to automated testing 

for software in general and for service-oriented systems in 

particular. In [36], we proposed a collaborative approach 

that realizes automated testing of composite web services 

through composition of test services, as illustrated in Figure 

8. In this approach, each web service is accompanied by a 

testing service, and the framework of automated testing 

contains a number of general test services for test case 

generation, test adequacy measurement, test result 

correctness checking, etc. A test request for the composition 

of services is submitted to a test broker, which decomposes 

the testing task into subtasks if needed and if so, searches 

for and invokes appropriate test services for each sub-task. 

The searching and invocation of test services (and the initial 

registration) employs ontologies both of software testing 

and of the application domain.  

 

Figure 8. Collaborative Automated Testing of Web Services [36] 

 

This approach was devised for web services and should 

be applicable to Big SaaS, but we believe a formal 

specification language like SOFIA would make the test 

automation efficient without developing various test 

services.  

 

 

Figure 9. Architecture of ASSAT Testing Tool 
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Techniques of software test automation based on 

algebraic specifications have been investigated since 1980s 

for procedural languages [37, 38], OO software [39, 40], 

and component-based systems [41], etc. More recently, we 

have been developing an automated testing tool called 

ASSAT [42] for testing web services based on formal 

specification written in SOFIA [43]. Figure 9 shows the 

architecture of the tool and Figure 10 shows its GUI. Such 

testing tools can achieve complete automation of the whole 

testing process including test case generations, test 

invocation and test result correctness checking.  

Although SOFIA and ASSAT were originally developed 

for web services, the principles underlying the language and 

the implementation of the tool are applicable to Big SaaS. It 

is worth further research to adapt them to Big SaaS and 

evaluate their effectiveness.   

It is worth noting that there are two approaches to the 

quality assurance of customization. The first is brutal force 

approach. In this approach, all possible compositions of 

services and all possible configurations of the SaaS 

application are tested up to a certain level of combination 

adequacy, say the coverage of all 2-way or 3-way 

combinations, before the system is released to the users. 

This approach is viable only when the number of possible 

service compositions and configurations is small. 

Unfortunately, even for a SaaS application of modest scale, 

there could be a huge number of test cases even to cover 2-

way or 3-way combinations of services and configurations.  

The second is the automated online testing approach. 

During the development process, testing focus at the 

individual services to ensure each service is correct with 

respect to its specification. The most popular and important 

combinations and configurations of the services are also 

tested. When a user builds his or her own customized 

version of the system, the customization, which is a 

composition and configuration of the services, it is then 

tested automatically against the specification. In this 

approach, automated testing plays a crucial role to support 

customization of services. It requires testing to be performed 

with little human involvement because crowdsourcing-based 

customization is conducted by the users.  

5 Conclusion 

In this paper we argue that an era of Big SaaS is 

emerging. It differs from existing SaaS applications in the 

number of tenants/users and the complexity of their 

relationships, as well as in the size and complexity of the 

program code. They will possess and utilize Big Data to 

provide great added value to their services. Developing Big 

SaaS applications will impose grave challenges to software 

and service engineering to reduce the societal risks to an 

acceptable level, to enable trustable crowdsourcing-based 

customization, to maintain conceptual integrity of the 

system and to support continuous evolution. We argued that 

these challenges must be met in all stages of the software 

development lifecycle.  

In particular, in the specification phase, an algebraic 

specification language can support formal development of 

service-oriented systems to improve reliability. It also helps 

to maintain conceptual integrity by providing a formal 

definition of the conceptual model. It supports 

crowdsourcing-based customization by linking formal 

specification to the ontological description of services. 

Moreover, testing can be automated based on algebraic 

specifications. This also helps with continuous evolution.  

Also, for the architectural design phase, a tenant-level 

 

Figure 10. Interface of the ASSAT tool.  



checkpointing facility could play a significant role in 

reducing societal risks. In the implementation phase, a new 

paradigm of programming is desirable and we are exploring 

the potential of an agent-oriented programming language. In 

the testing phase, automation is essential and formal 

specification will make this possible.  
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