
Big SaaS: The Next Step Beyond Big Data

Hong Zhu, Ian Bayley, M. Younas, David Lightfoot, Basel Yousef and Dongmei Liu

Applied Formal Methods Research Group

Department of Computing and Communication Technologies

 Oxford Brookes University, Oxford OX33 1HX, UK

E-mail: hzhu@brookes.ac.uk

Abstract
Software-as-a-Service (SaaS) is a model of cloud

computing in which software functions are delivered to the

users as services. The past few years have witnessed its

global flourishing. In the foreseeable future, SaaS

applications will integrate with the Internet of Things,

Mobile Computing, Big Data, Wireless Sensor Networks,

and many other computing and communication technologies

to deliver customizable intelligent services to a vast

population.

This will give rise to an era of what we call Big SaaS

systems of unprecedented complexity and scale. They will

have huge numbers of tenants/users interrelated in complex

ways. The code will be complex too and require Big Data

but provide great value to the customer.

With these benefits come great societal risks, however,

and there are other drawbacks and challenges. For

example, it is difficult to ensure the quality of data and

metadata obtained from crowdsourcing and to maintain the

integrity of conceptual model. Big SaaS applications will

also need to evolve continuously. This paper will discuss

how to address these challenges at all stages of the software

lifecycle.

1 Introduction

Software-as-a-Service (SaaS) is a cloud computing model

in which computer applications are delivered to the users as

services [1, 2]. It contrasts with the hitherto more

conventional practice of selling applications as products to

be owned by the customer, and has led to a revolution in

what functions can be offered. Table 1 lists just some of the

many successful SaaS applications that have arisen over the

past few years.

There is, however, less research on SaaS than on other

related areas such as Big Data, Internet of Things (or Cyber-

Physical Systems), Wireless Sensor Networks etc. For this

reason, it is desired to assess the start of the art for both

research and applications. This paper does this and then

identifies future directions, recognizes the main challenges,

outlines our assumptions and approach, and finally recounts

recent progress.

The paper is organized as follows. Section 2 defines the

notion of Big SaaS applications. Section 3 identifies the

major challenges in their development. Section 4 discusses

approaches to solving these problems and reports our

preliminary work. Section 5 concludes the paper with a

summary.

Table 1 Examples of SaaS Applications
SaaS Application Area

Booking.com Hotel booking

EasyChair Conference management

Ebay Online shopping

Facebook Web portal and Social networking media

Gmail Message communication

Just Eat Online order for Take Away restaurants

Lastminute.com Travel agency

LinkedIn Social networking media for professionals

Moodle Online Learning Platform

ResearchGate Social networking media for researchers

Rightmove Estate Agency

SalesForce.com Customer Relationship Management

WhatsApp Instant message communication

2 The Growth of SaaS

Those SaaS applications well known to the public today

are mostly small, but our vision of the near future is that an

era of Big SaaS is emerging. Here, we define Big SaaS

applications as those SaaS applications with the following

characteristics.

(1) Big Tenancy. A Big SaaS application usually serves a

large number of tenants and users that may well be

interrelated in a complex way.

Examples of this include:

• Just Eat: 40,800 takeaway restaurants (in 13 countries)

and has 6 million users with active accounts.

• Booking.com: 638,960 properties (in 211 countries)

with over 800,000 room-nights reserved per day.

• Rightmove (UK’s largest online estate property

advertisement portal): 19,304 agent and new homes

advertisers, for more than 1 million properties.

Examples of complex interrelationships include

hierarchies (e.g. a tenant may have sub-tenants etc.) and

users being associated with many tenants or no particular

tenants.

(2) Big Data. Large volumes of data will be processed

when the number of tenants and users is large.

For example, in January 2014, the Rightmove.com

website had a record 100 million visits viewing 1.5 billion

pages.

(3) Big Code. For a Big SaaS application, the software will

be typically large in size and high in complexity.

Already, SaaS applications are connected to social media

or even offer their own domain-specific social networking.

SalesForce and Moodle are examples of this. Many already

have mobile phone or tablet apps. Inevitably, in the near

future, this will extend to Internet of Things, Wireless

Sensor Networks, robots etc, making the size and

complexity of the code even greater.

(4) Big Value. SaaS applications already provide extra

services that were hitherto not possible.

For example, Booking.com provides two types of cross-

tenant services that individual hotel websites cannot: (a) for

the hotel customers, access to a network of over 8000

affiliate partners, (b) for property owners, personalized

account management to help to optimize revenue. Similarly,

Rightmove.com claims that property sellers are 5x more

likely to find a buyer here than any other website.

Because of this Big Value, SaaS applications generate

more revenue and profits with greater productivity than ever

before, and it seems likely that this trend will continue. For

example, Rightmove generated £167m revenue in 2014, up

19% from £140m in 2013, with a similar increase in profits.

So, it seems likely that SaaS applications will advance

towards Big SaaS and Big Value in particular.

3 The Challenges

The development of Big SaaS applications poses three

types of challenges common to all socio-technical systems.

(1) Social challenges, for society as a whole, to accept the

changes to various business, finance, legal, ethical and

moral aspects;

(2) Technical challenges, for industry and researchers, to

develop new techniques and novel applications of

existing techniques; and finally,

(3) Engineering challenges, for engineers and

methodologists, to develop new processes, methods and

tools to produce applications systematically, efficiently

and even automatically.

Recent effort has focused on enabling techniques for

SaaS applications. The engineering, on the other hand, is

still ad hoc so we will focus only on this. These are what we

recognize as the grand challenges to the advance of Big

SaaS.

3.1 Societal Risks

For a SaaS application, the risk RiskSaaS of failure is:

RiskSaaS = R × T × C,

where T is the number of tenants reside in the system; R is

the failure rate of the system; C is the average consequence

of a failure per tenant.

For a software application system that is owned by the

customers, the total risk RiskWS of failure globally is:

RiskWS = R’ × C’ × S,

where S is the number of copies of the system running at the

same time globally; R’ is the failure rate of the system, and

C’ is the average consequence of a failure to the customer

who runs a copy of the software.

Assume that each tenant runs one copy of the system (i.e.

T=S), and that the SaaS is of the same level of reliability as

the customer owned software (i.e. R = R’). Then, we have

that RiskSaaS = RiskWS, if C=C’.

From this one can conclude that the two modes of

software have equal risks of failure. However, the

calculation makes sense only for so-called individual risks.

There is, however, a concept of societal risks, borrowed

from safety engineering, where the risks from SaaS are

considered greater.

In general, individual risk is the risk for one person of

loss of property or life due to system failures. In safety

engineering, whether the risk is tolerable can be judged

relatively easily for individuals as people knowingly take

and accept risks all the time. Travelling in a car brings the

risk of an accident but a train crash that kills many people

causes an immense public reaction even many more die per

year on roads than on trains.

These situations are addressed by estimating societal risk,

expressed as the relationship between the probability of a

catastrophic incident and the number of users affected. It

can be represented as an F-N curve that plots the expected

frequency (F) of failure and the number (N or more) of users

affected by each failure. Figure 1 illustrates the difference

between societal risks for SaaS and those for customer-

owned software of similar reliability.

These risks are exacerbated if failure recovery is slow, as

with the two recent outages of Salesforce’s CRM system.

They each took more than 10 hours to recover, during which

users of more than 100,000 tenants were deprived of the

service.

Figure 1 Illustration of the Difference in Societal Risks

Therefore, it is crucial for SaaS application developers to

reduce the societal risk significantly to an acceptable level.

3.2 Trustable Crowdsourcing

When there are a large number of tenants, it is highly

desirable that a SaaS application supports customization so

Number of Effected Users

F
re

q
u

e
n
c
y

 o
f

F
ai

lu
re

 SaaS Application

Customer Owned SW

that the specific needs of the customers and their users can

be accommodated. However, for Big SaaS, such

customization cannot be done by the service provider

manually. A solution that adopted by almost all existing

successful SaaS applications is crowdsourcing. This means

that the customers perform customization themselves.

For example, Rightmove provides a facility for the estate

agents to upload themselves information on the properties

for sale or to let. Likewise, Booking.com enables property

owners to set room prices and room availabilities. Similarly,

EBay enables sellers to enter the information about the

goods for sale and the method of payment. Such facilities

are fairly simple, however, when compared to Salesforce’s

facility to let customers build their own applications. An

unsolved problem is how to ensure the quality of data and of

system configurations obtained by crowdsourcing. This is

the second grand challenge to Big SaaS.

3.3 Continuous Evolution

Continuous evolution has been applied to software

development practice for web-based systems, as a part of

agile methodologies. In this approach, a software system is

revised, tested and updated so frequently that the notion of

versions and releases no longer makes sense. Moreover,

continuous evolution also requires that such updates and

releases go live without any interruption to service. This is

of paramount importance for Big SaaS but the

unprecedented scale and complexity of Big SaaS presents a

challenge.

Imagine the situation where hundreds of thousands of

tenants each have their own customized version of the

system running simultaneously on a number of big clusters

distributed around the globe. At the same time numerous

new tenants are also performing customization and

configuration to join the system. As both of these are

happening, developers are committing multiple changes to

the system in parallel to fix bugs, to introduce new

functions, and to refactor system structure. These changes

will inevitably interact with each other while each change

may have devastating impact for a large number of users.

After a few days of such frequent modifications, the

relations between the components could soon become a

spaghetti-like mess. No current software change impact

analysis tool could be used here and yet updates will have to

go live without interruption to the service. The pressure to

complete the testing, verification and validation of each

change within a short time with a high adequacy will be

several magnitudes higher than ever before.

To enable Big SaaS to be evolved continuously, we must

overcome the barriers in software engineering, especially

the methods and tools for change impact analysis, for

testing, verification and validation, and for on-line

refactoring of software structure.

3.4 Conceptual Integrity

Conceptual integrity is one of the key features of a good

software design. It means that there is a simple conceptual

model of the system in which its structure, functionality and

dynamic behavior can be understood.

It appears that the design of a good conceptual model for

a Big SaaS application and maintaining its integrity both

play a crucial role in development and maintenance. They

also play a role in the customization and continuous

evolution of the system. Currently, such a conceptual model

is rarely formally defined, and often not even documented

explicitly, but conveyed instead informally through

demonstrations, case studies, online training materials,

marketing articles, etc. The advantages of such an approach

is that it is user-oriented, but it leaves much scope for

ambiguity, incompleteness and misunderstanding.

On the other hand, most online documentation is too

developer-oriented, with technical details in place of

information about the conceptual model. Ontology and

semantic web services can provide user-understandable

descriptions of services at the conceptual model level.

However, a weakness of ontology based service descriptions

is that they are fragmented. Moreover, such documentation

and descriptions of services are not verifiable and testable.

A link seems missing from the conceptual model to low-

level system specification.

4 Research Directions

In this section, we seek for potential solutions to the

engineering problems raised in the previous section. We

focus on four phases of the software development lifecycle:

functional specification, architectural design,

implementation and testing. For each of these, we will

briefly review the existing work, outline our approach,

report the preliminary progresses we have made so far, and

point out directions for future research.

4.1 Design: Fault Tolerance Architectures

The societal risk must be addressed by appropriate

architectural design of SaaS applications. Chong and

Carraro asserted that “A well-designed SaaS application is

scalable, multi-tenant-efficient, and configurable” [1].

These are the three key differentiators that separate it from a

poorly-designed SaaS application. Based on architectural

features, they proposed a 4-level maturity model of SaaS

applications shown in Figure 2.

Level 1 is ad-hoc, the least mature, and essentially the

same as the traditional application service provider (ASP)

model of software delivery. Each subsequent level adds one

of the three key features (configurability, multi-tenant

efficiency, scalable in that order). It is no surprise that

almost all successful SaaS applications nowadays employ an

architecture model of level 3 and 4, and it seems inevitable

that level 4 will be needed for Big SaaS, because, as Chong

and Carraro argued, “[such] a SaaS system is scalable to an

arbitrarily large number of customers … without requiring

additional re-architecting of the application, and changes

or fixes can be rolled out to thousands of tenants as easily

as a single tenant” [1].

However, this architecture has not addressed the societal

risks caused by system level failures. Addressing this

problem, in [3] we suggested integrating the architecture

with a fault tolerance facility to reduce the consequences of

system-scale failures with reduced probability of failure and

quicker recovery from failure.

Figure 2 Four-Level SaaS Maturity Model [1]

Fault-tolerance is one of the most challenging issues of

distributed and high performance computing [4]. The

extensive research in the past few years for cloud computing

in particular can be classified according to the fault to be

tolerated.

Resource-level fault tolerance aims to achieve high

reliability in individual computing resources, such as

processor, memory, I/O and network bandwidth, which are

lent to users as services, etc. [5,6].

Infrastructure-level fault tolerance techniques include

those for virtual machines (VM) or virtual clusters [7], with

required availability and reliability via tolerance of

underlying hardware failures [8, 9].

At platform level, fault tolerance facilities have been

provided in various parallel programming models, such as

MapReduce, in which a failed map or reduce task is

restarted and/or relocated to a new compute node. The

performances of two most commonly used checkpoint /

restart techniques for distributed systems, i.e. the

Distributed Multi-Threaded Checkpointing and Berkeley

Lab Checkpoint/Restart library, have been evaluated in

Amazon Elastic Compute Cloud EC2 environment [10].

However, there is no work at application level for SaaS.

Moreover, almost all research on fault tolerance in cloud

computing assumes that a set of virtual machines are

deployed on a number of physical servers and a virtual

machine is created for one tenant/user. Thus, they are only

applicable to those SaaS applications in the multi-instance

architecture of Chong and Carraro’s level 2, but not suitable

for those in the multi-tenancy architectures of level 3 and 4.

In summary, while some of the above techniques are

useful to reduce failure rate of lower level entities, they have

not addressed satisfactorily the problem of the high societal

risks of Big SaaS. The current practice still relies on

traditional periodical backup operations. For example,

Salesforce backs up all data to a tape storage on a nightly

basis. This traditional checkpoint-and-rollback fault

tolerance technique is unsatisfactory for Big SaaS

applications. In fact, Salesforce’s tenants also use third party

facilities for backing up their own data.

Addressing this problem, in [3], we proposed a new

approach called tenant-level checkpointing and implemented

a prototype called Tench. In this approach, instead of saving

the whole system’s state, each checkpointing only saves a

part of system state related to a specific tenant.

This is important because saving the state of the whole

system with one checkpointing operation will cause I/O

contention and long delays, as all users of all tenants lose

access to the system.

Figure 3 Integration of a fault tolerance facility with SaaS

Application Architecture

Figure 3 shows the architecture of such a fault tolerance

facility and how it is integrated with the service-oriented

SaaS application architecture [1].

In comparison with existing bulk checkpointing

techniques, our preliminary theoretical and empirical studies

demonstrated that tenant-level checkpointing increase the

performance by a factor of O(N), where N is the number of

tenants [11]. It has the following advantages.

First, while a SaaS application runs continuously, tenant-

level checkpointing can target a specific tenant when the

users of the tenant are less active. Thus, a checkpoint can be

created without causing too much disruption to normal

operations of the system, as requests for services from other

tenants are not blocked.

Second, tenants with different quality of service

Service
Monitoring

Checkpoint-

and-Rollback

Services

Checkpoint

Management

C
h

e
c
k
p

o
in

tin
g

O

p
e

ra
tio

n

R
o

llb
a

c
k

O
p

e
ra

tio
n

 Checkpoint
Database

SaaS Application Architecture Checkpointing Facility

Architecture

requirements (e.g., different reliability levels) can be treated

differently by having different checkpoint frequencies.

Third, tenant-level checkpointing can be implemented to

block only those users of the tenant being checkpointed

without affecting any other users. The experiments reported

in [3] have shown that the latency of creating a checkpoint

for a tenant only depends on the size of the tenant's state. It

is independent of the number of tenants.

Moreover, partial checkpointing enables different types

of data to be treated differently, with the more important

data being checkpointed more frequently. An example of

higher priority data would be metadata as it plays an

important role in SaaS applications.

Finally, but most importantly, recovery from a system-

scale failure can proceed tenant by tenant so that the most

important tenants are roll-backed first. This significantly

reduces the total outage time and hence the societal risk of

system-scale failures.

It is worth noting that VM checkpointing, replication and

live migration facilities [12] not only provide fault tolerant

solutions to reliability problems, but also balance service

work load [13], reduce system energy consumption of data

centers [14], and can even the cost of subscription per user

[15]. Similar benefits can be obtained from a tenant-level

checkpointing facility like Tench for SaaS applications that

do not run on virtual machines.

Therefore, tenant level checkpointing could be a viable

fault-tolerance solution to Big SaaS’ societal risk problem.

4.2 Specification: Algebraic Method

Formal methods have proved their value by their

successful applications in safety-critical systems. They can

significantly improve software reliability and ensure system

safety. Their application in the development of Big SaaS

can reduce their societal risk, too.

Although this is considered to be a myth [16, 17], formal

methods are widely regarded too expensive to be used.

However, the great value of Big SaaS applications makes

formal methods viable as its cost would then be justifiable.

They can also be easy to learn for ordinary software

engineers [18].

Moreover, we believe that formal methods can also

provide better solutions to the problems of maintaining

conceptual integrity, trustworthy crowdsourcing, and

continuous evolution. The following reports our preliminary

work on how formal methods address these issues.

4.2.1 Support for Crowdsourcing-Based Customization

As discussed in Section 2, it is highly desirable to include

a crowdsourcing-based customization facility in Big SaaS

applications. In this approach, services are discovered and

composed by the customers with little support from the

service provider. One approach to realize such

customization is to employ semantic descriptions of the

services as illustrated in Figure 4.

Figure 4. Customization of a SaaS Application in SOA

The results of these customizations and compositions

must be of high reliability, due to our requirement to

minimize societal risks. To achieve this service semantics

need accurate descriptions, which should also be the

following:

• Comprehensible: easy for users to understand even if

they have no IT professional knowledge or skills.

• Abstract: the design and implementation details hidden

from the users for comprehensibility and also to protect

intellectual property.

• Machine-Searchable for the discovery, composition and

configuration of services.

• Testable so that service providers and users can both

verify the service’s correctness with respect to semantic

descriptions.

However, no existing technique satisfies all of these

requirements. They tend to fall into two categories. The

majorities are based on ontology and use a vocabulary to

annotate services. The others are based on the mathematical

notations of formal methods.

Semantic Web Services are an example of the former

approach [19] and OWL-S was the first major ontology

definition language for this purpose [20]. It provides a set of

constructs for describing the properties and capabilities of

Web Services in a machine-readable format. Formal

methods were applied to provide a precise mathematical

meaning in a formal ontology. An alternative approach is

the Web Service Modelling Ontology (WSMO) [21], which

is a conceptual model that uses the Web Services Modelling

Language (WSML) [22]. As well as Big Web Services,

work has also been carried out on how to specify the

semantics of RESTful web services, such as, MicroWSMO/

hRESTS [23], WADL [24] and SA-REST [25].

The above works all take the same approach to specify

the semantics of services. That is, a vocabulary is defined by

ontology of its application domain to give the meanings of

the input and output parameters, as well as the functions of

the services. Such descriptions are easy for human

developers to understand and efficient for computers to

process. However, they cannot provide a verifiable and

PaaS

IaaS

 SaaS

 Service Service Service

Meta-data

Data Data Data

Tenant User User User

Service Service

Ontology
of

Applic-
ation

Domain

Service Ontology
of

platform
services

Ontology
of HW

Users
Requirements

Integration &
Testing

Service
Composition and

Configuration

S
e

rv
ic

e
 R

e
g

is
tr

y

Deploy

Customization
represented as

Meta-data

testable definition of a service's function, because any

ontology is limited to stereotypes formed from the

relationship between the concepts and their instances.

Formal methods, as an alternative to the ontological

approach, have been developed over the past 40 years to

define the semantics of software systems in mathematical

notations. One such formal method, algebraic specification

was first proposed in the 1970s as an implementation-

independent specification technique for defining the

semantics of abstract data types. Over these years, it has

been advanced to specify concurrent systems, state-based

systems and software components, all based on solid

foundations of the mathematical theories of behavioural

algebras [26] and co-algebras [27]. We argue that it is

particularly suitable for the development of Big SaaS.

Algebraic specifications are at a very high level of

abstraction. They are independent of any implementation

details. One attractive feature they have is that they can be

used directly in automated software testing; see Section 4.4.

This feature is particularly important for SaaS engineering,

because, when services are customized and composed

together by the customer, testing must be performed

automatically without the developer’s support.

In [28], we investigated the application of the algebraic

specification method to service-oriented software by

extending and combining the behavioural algebra and co-

algebra techniques. The algebraic specification language

CASOCC, which originally designed for traditional

software entities, such as abstract data types, classes and

components, was extended to CASSOC-WS for the formal

specification of Big Web Services. A tool was developed to

automatically generate the signatures of algebraic

specifications from WSDL descriptions of Big Web

Services. CASOCC-WS was also applied to RESTful web

services [29]. A tool was developed to check syntax-level

consistency of formal specifications. A case study was

conducted applying CASOCC-WS to a real industrial

system, GoGrid. Based on these works, a new algebraic

formal specification language called SOFIA [43] was

proposed to improve the usability of algebraic specification

languages when applied to services.

However, algebraic specifications and other formal

methods do not directly support efficient searching of

services. To bridge the gap between algebraic specification

and ontological descriptions, we proposed in [30] to derive

the former from the latter, thereby augmenting algebraic

specification with the machine-readable and human-

understandable attributes of ontology. A software tool called

TrS2O (Translator from Specification to Ontology) has been

designed and implemented [30]. It translates formal

specifications in SOFIA to ontological descriptions of

services in OWL. Figure 6 shows the overall structure of the

TrS2O Tool.

Figure 6. The Overall Structure of The TrS2O Tool

Service!

Specification!

in!SOFIA!

Parser!

and!

Syntax!

Checker!

Ontology!!!!!

Generator!
Service!

Ontology!!
Parser!

Tree!

Error!Report!

Services!

Description!

Generator!
Service!

Profile!

TrS2O&

Figure 5 Ontology generated from the SOFIA specification

A case study of the RESTful web service interface of an

actual industrial system called GoGrid shows that the

approach is practically useful.

4.2.2 Formal Specification of Conceptual Models

One advantage of the algebraic method is that the

infrastructure, platform, application domain knowledge, and

the services of a SaaS application can all be formally

specified in the same language and decomposed into a

number of reusable specification packages.

For example, in the case study of GoGrid’s RESTful

API, we first specified the RESTful web service in a

package, then used that to specify the basic constructs of

computing infrastructure, and then used both packages to

specify the services that GoGrid provides. Figure 5 gives the

ontology generated from the SOFIA specification of

RESTful web services.

Therefore, the specification of domain concepts can be

used to serve as a formal specification of the conceptual

model of the system. This specification supports automated

testing and its internal consistency can be verified. This

enables it to support the maintenance of conceptual

integrity, too.

4.3 Implementation: New Paradigm of Programming

Currently, most web-based applications, including those

for SaaS, are implemented in many different programming

and scripting languages and even several different

paradigms. This complicates development and makes it

difficult to develop supporting tools. A desirable alternative

is to have a new single paradigm that is particularly suitable

for SaaS applications.

The agent-oriented paradigm has long been considered

suitable for dynamic environments such as the Internet [31],

and many research efforts have been reported in the

literature [32]. However, the IT industry has been slow to

adopt the approach. There are a number of possible reasons

for this. First, the notion of agents seems to be too strongly

linked to distributed artificial intelligence for software

engineers to accept it. Secondly, there are no efficient

implementations of agent-oriented programming languages.

We now report our work in progress that addresses these

problems.

4.3.1 Agent-Oriented Programming Language

To address the first problem, we proposed a simplified

model of agent [33, 34]. Agents are service providers that

consist of:

• actions that the agent can perform, representing the

services it provides or requests it can submit,

• variables, which represents its internal state of the agent,

• behaviour rules, forming the body of the service, that

determine how the requests are processed,

• collaborating agents, from which the service requests are

received. This set can be updated at runtime.

For example, the following is the Hello World example

of the language CAOPLE, which we are developing.

caste Peer;
 action say(word: string);
 init say("Hello world!")
end Peer

Caste is the classifier of agents so agents are instances of

castes. In the above example, the caste Peer is defined. It can

take the action of say(“Hello world!”) and it does this when

the agent is created. An agent is therefore an active

autonomous computational entity.

Castes can be extended to sub-castes just as classes in

object-orientation have subclasses. For example, the

following is a sub-caste of Peer.

caste GreetingPeer inherits Peer;
 observes all in Peer;
 body
 when exists A in Peer: say("Hello world!") do
 say("Welcome to the world!")
 end
end GreetingPeer

An agent of GreetingPeer observes the actions taken by

all agents of Peer, as described in the observes clause, which

defines its collaborative agents. When there is an agent in

the caste Peer that takes the action say(“Hello world!”), it will

react with the action say("Welcome to the world!"). In general,

an agent communicates with other agents by taking

observable actions to send messages and it receives

messages by observing the observable actions of its

collaborative agents. An action can be targeted to one or a

set of specific agents. For example, if the say statement can

be changed to one of the following:

say("Welcome to the world!") to All in Peer;
say("Welcome to the world!") to A;

If the target receiver is omitted, the default is public.

In contrast to the notation of class in object-oriented

programming, an agent can be a member of multiple castes

at once and its membership can be changed dynamically at

runtime by executing one of the caste membership

statements:

• Join casteID: to become a member of casteID;

• Quit casteID: to quit the membership of casteID;

• Suspend casteID: to suspend the execution of the body of

casteID;

• Resume casteID: to resume the execution of the body of

casteID;

• MoveTo casteID: to quit from the current caste and

become a member of the named caste.

Using castes and the inheritance relationships between

them, one can encapsulate different behaviours in different

contexts together with a set of related state variables,

actions, and collaborative agents. The flexible casteship

enables agent to have adaptability and to be easy to

compose and configure. For example, the following shows

how agent can adapt its behaviour according to the context

by change its caste membership.

caste CheerfulPeer inherits Peer;
 body
 when exists A in Peer: say("Hello world!") do
 say(“Hi, good morning.”);
 end;
end CheerfulPeer
caste SmartPeer inherits Peer;
 observes DateTime: Clock;
 body
 when DateTime: Tick() do
 if DateTime.Day = Monday then Join FriendlyPeer
 else Join CheerfulPeer
 end;
 end;
end SmartPeer

The above just a few key features of the agent-oriented

programming language CAOPLE. Readers are referred to

[34] for more details. In general, we believe that a new

programming paradigm such as agent-orientation will

enable the implementation of SaaS applications at a high

level of abstraction. Thus, it is worth pursuing.

4.3.2 Implementation of CAOPLE Language

Our approach to the implementation of the CAOPLE

programming language is to translate CAOPLE source code

into machine code for a virtual machine [35].

Our virtual machine, called CAVM, differs from other

language specific virtual machines like JVM in that it

consists of two parts: a local execution engine LEE and a

communication engine CE. The LEE executes the program’s

computational code, while the CE realises communication

between agents distributed over a computer network.

Figure 7 Compiling, deploying and executing CAOPLE code

As illustrated in Figure 7, the castes in a CAOPLE

program are compiled so that one Object Code module is

generated from each caste Source Code. It is deployed to a

Computer node that runs a communication engine. An agent

of a caste can be created on any Computer node that runs an

execution engine. It will load the object code module of the

caste and execute the code on the machine. For cross-

machine communications between agents, the messages are

send to the communication engine where the caste resides

and further distributed to execution engines where the target

agents executes. They may be passed through one or more

other communication engine. The reader is referred to [35]

for more details of the design, implementation and

experiment results of CAVM.

4.4 Testing: Specification-Based Test Automation

Automated testing can play at least two roles in the

development of Big SaaS: it supports continuous evolution

and it ensures the quality of crowdsourcing in service

customization.

There are a number of approaches to automated testing

for software in general and for service-oriented systems in

particular. In [36], we proposed a collaborative approach

that realizes automated testing of composite web services

through composition of test services, as illustrated in Figure

8. In this approach, each web service is accompanied by a

testing service, and the framework of automated testing

contains a number of general test services for test case

generation, test adequacy measurement, test result

correctness checking, etc. A test request for the composition

of services is submitted to a test broker, which decomposes

the testing task into subtasks if needed and if so, searches

for and invokes appropriate test services for each sub-task.

The searching and invocation of test services (and the initial

registration) employs ontologies both of software testing

and of the application domain.

Figure 8. Collaborative Automated Testing of Web Services [36]

This approach was devised for web services and should

be applicable to Big SaaS, but we believe a formal

specification language like SOFIA would make the test

automation efficient without developing various test

services.

Figure 9. Architecture of ASSAT Testing Tool

Computer C1

Computer C2

Computer C3
LEE1

CE2
CE1

LEE2

Computer Cn

LEEk

CAOPLE

Source Code
Caste SC1 Caste SCn

CAVM Object Code

Caste OC1
Caste OCn

Compile

Deploy

Figure 5. The architecture of CAVM

Test BrokerTester T1

Testing Service

of A1

Service A1

Tester T2

Testing Service

of A3

Service A3

Testing Service

of A2

Service A2

O
n
to

lo
g
y
 M

an
ag

em
en

t

UDDI Registry Matchmaker

Techniques of software test automation based on

algebraic specifications have been investigated since 1980s

for procedural languages [37, 38], OO software [39, 40],

and component-based systems [41], etc. More recently, we

have been developing an automated testing tool called

ASSAT [42] for testing web services based on formal

specification written in SOFIA [43]. Figure 9 shows the

architecture of the tool and Figure 10 shows its GUI. Such

testing tools can achieve complete automation of the whole

testing process including test case generations, test

invocation and test result correctness checking.

Although SOFIA and ASSAT were originally developed

for web services, the principles underlying the language and

the implementation of the tool are applicable to Big SaaS. It

is worth further research to adapt them to Big SaaS and

evaluate their effectiveness.

It is worth noting that there are two approaches to the

quality assurance of customization. The first is brutal force

approach. In this approach, all possible compositions of

services and all possible configurations of the SaaS

application are tested up to a certain level of combination

adequacy, say the coverage of all 2-way or 3-way

combinations, before the system is released to the users.

This approach is viable only when the number of possible

service compositions and configurations is small.

Unfortunately, even for a SaaS application of modest scale,

there could be a huge number of test cases even to cover 2-

way or 3-way combinations of services and configurations.

The second is the automated online testing approach.

During the development process, testing focus at the

individual services to ensure each service is correct with

respect to its specification. The most popular and important

combinations and configurations of the services are also

tested. When a user builds his or her own customized

version of the system, the customization, which is a

composition and configuration of the services, it is then

tested automatically against the specification. In this

approach, automated testing plays a crucial role to support

customization of services. It requires testing to be performed

with little human involvement because crowdsourcing-based

customization is conducted by the users.

5 Conclusion

In this paper we argue that an era of Big SaaS is

emerging. It differs from existing SaaS applications in the

number of tenants/users and the complexity of their

relationships, as well as in the size and complexity of the

program code. They will possess and utilize Big Data to

provide great added value to their services. Developing Big

SaaS applications will impose grave challenges to software

and service engineering to reduce the societal risks to an

acceptable level, to enable trustable crowdsourcing-based

customization, to maintain conceptual integrity of the

system and to support continuous evolution. We argued that

these challenges must be met in all stages of the software

development lifecycle.

In particular, in the specification phase, an algebraic

specification language can support formal development of

service-oriented systems to improve reliability. It also helps

to maintain conceptual integrity by providing a formal

definition of the conceptual model. It supports

crowdsourcing-based customization by linking formal

specification to the ontological description of services.

Moreover, testing can be automated based on algebraic

specifications. This also helps with continuous evolution.

Also, for the architectural design phase, a tenant-level

Figure 10. Interface of the ASSAT tool.

checkpointing facility could play a significant role in

reducing societal risks. In the implementation phase, a new

paradigm of programming is desirable and we are exploring

the potential of an agent-oriented programming language. In

the testing phase, automation is essential and formal

specification will make this possible.

References

[1] F. Chong and G. Carraro, Architecture strategies for catching

the long tail, Microsoft Corporation, April 2006. URL:
https://msdn.microsoft.com/en-us/library/aa479069.aspx.

Last access on 3 May 2015.

[2] W-T. Tsai, X. Bai, Y. Huang: ��� Software-as-a-service (SaaS):
perspectives and challenges. SCIENCE CHINA Information

Sciences 57(5), pp1-15 (2014)

[3] B. Yousef, H. Zhu and M. Younas, Tenant level
checkpointing of meta-data for multi-tenancy SaaS, In Proc.

of IEEE SOSE 2014, Oxford, UK.

[4] T. Kraska and B. Trushkowsky, The new database
architectures, IEEE Internet Comp. 17(3), pp72-75, 2013.

[5] I. Jangjaimon and N.-F. Tzeng, Design and implementation

of effective checkpointing for multithreaded applications on
future clouds,” in Proc. of IEEE CLOUD 2013, pp. 438-445. ���

[6] I. Jangjaimon and N.-F. Tzeng, “Effective cost reduction for

elastic clouds under spot instance pricing through adaptive
checkpointing, IEEE Transactions on Computers 64(2),

pp396–409, 2015.
[7] P. Lu, B. Ravindran, and C. Kim, VPC: Scalable, low

downtime checkpointing for virtual clusters, in Proc. of

SBAC- PAD 2012, pp203–210.

[8] A. Agbaria and R. Friedman, Virtual-machine-based hetero-
geneous checkpointing, Software: Pract. & Exp. 32(12),

pp1175-1192, 2002. ���

[9] T. C. Bressoud and F. B. Schneider, Hypervisor-based fault
tolerance, ACM Trans. Comp. Syst. 14(1), pp80-107, 1996. ���

[10] B. Azeem and M. Helal, Performance evaluation of

checkpoint/ restart techniques: For MPI applications on
Amazon cloud, in Proc. of INFOS 2014, ppPDC49-PDC57.

[11] H. Zhu, B. Yousef, and M. Younas, Evaluation of a tenant

level checkpointing technique for SaaS applications, Proc. of
IEEE CLOUD 2015. (In press)

[12] H. Liu, H. Jin, X. Liao, C. Yu, and C.-Z. Xu, Live virtual

machine migration via asynchronous replication and state
synchronization,” IEEE Transactions on Parallel and

Distributed Systems 22(12), pp1986–1999, 2011.

[13] D. Singh, J. Singh, and A. Chhabra, High availability of
clouds: Failover strategies for cloud computing using

integrated checkpointing algorithms, in Proc. of CSNT2012,

pp698– 703.
[14] S. Mondal and J. Muppala, Energy modeling of virtual

machine replication schemes with checkpointing in data

centers, in Proc. of BDCloud 2014, pp633–640.
[15] S. Yi, A. Andrzejak, D. Kondo, Monetary cost-aware

checkpointing and migration on Amazon cloud spot

instances, IEEE Trans.on Serv. Comp.5(4), pp512-524, 2012.
[16] A. Hall, Seven myths of formal methods, IEEE Software

7(5), pp11-19, 1990.

[17] J. P. Bowen, M. G. Hinchey, Seven more myths of formal
methods, IEEE Software 12(4), pp34-41, 1995.

[18] H. Zhu and B. Yu, An experiment with algebraic

specifications of software components, in Proc. of QSIC
2010, pp190-199.

[19] S. A. Mallraith, T. C. Son, & H. Zeng, Semantic web

services, IEEE Int. Systems, 2001(March/April), pp46-53.

[20] D. Martin, et al., Semantic Markup for Web Services (W3C

member submission): W3C. 2004.
[21] J. Bruijn, et al., Web service modeling ontology (WSMO),

(W3C member submission): W3C. 2005.

[22] J. Bruijn, et al., The web service modelling language WSML:
An overview, in Proc. of the 3rd European Semantic Web

Conference, pp590-604, 2006.

[23] J. Kopecky, K. Gomadam, & T. Vitvar, hRESTS: An HTML
microformat for describing RESTful web services, in Proc.

of WI-IAT 2008, pp619-625.

[24] M. J. Hadley, Web application description language
(WADL) SMLI TR-2006-153, Sun Microsystems, 2006.

[25] J. Lathem, K. Gomadam, & A. P. Sheth, SA-REST and

mashups: Adding semantics to RESTful services, in Proc. of
ICSC, pp469-476, 2007.

[26] J. A. Goguen, & G. Malcolm, A hidden agenda. Theoretical

Computer Science 245(1), pp55-101, 2000.
[27] F. Bonchi, & U. Montanari, A coalgebraic theory of reactive

systems. Electronic Notes in Theoretical Computer Science

209, pp201-215, 2008.
[28] H. Zhu and B. Yu, Algebraic Specification of Web Services,

Proc. of QSIC 2010, pp457-464.

[29] D. Liu, H. Zhu & I. Bayley, Applying algebraic specification
to cloud computing -- A case study of Infrastructure-as-a-

Service GoGrid, in Proc. of ICSEA 2012, pp407-414.

[30] D. Liu, H. Zhu, and I. Bayley, Transformation of algebraic
specifications into ontological semantic descriptions of Web

Services, International Journal of Services Computing 2(1),

pp58-71, 2014.
[31] N. R. Jennings, On agent-based software engineering.

Artificial Intelligence 117, pp277–296, 2000.

[32] B. Henderson-Sellers and P. Giorgini, (Eds.), Agent-oriented
Methodologies, Idea Group Publishing, 2005.

[33] H. Zhu, SLABS: A formal specification language for agent

based systems. SEKE 11(5), pp529–558, 2001.
[34] H. Zhu, Towards an agent-oriented paradigm of information

systems. Handbook of Research on Nature Inspired

Computing for Economy and Management, Jean-Philippe
Rennard (Ed), Chapter XLIV, pp679–691, 2006.

[35] B. Zhou and H. Zhu, A virtual machine for distributed agent-

oriented programming, in Proc. of SEKE 2008, pp729-734.
[36] H. Zhu and Y. Zhang, Collaborative testing of Web Services,

IEEE Trans. on Services Comp. 5(1), pp116-130, 2012.

[37] J. Gannon, P. McMullin, R. Hamlet, Data abstraction,
implementation, specification, and testing, ACM Trans. on

Program. Lang. and Syst. 3(3), pp211–223, 1981.

[38] G. Bernot, M.-C. Gaudel, and B. Marre, Software testing
based on formal specifications: a theory and a tool, Software

Engineering Journal 6(6), pp387–405, 1991.

[39] R.K. Doong & P.G. Frankl, The ASTOOT approach to
testing object-oriented programs, ACM TSEM 3(2), pp101–

130, 1994.

[40] M. Hughes, D. Stotts, Daistish: systematic algebraic testing
for OO programs, in Proc. of ISSTA 1996, pp53–61.

[41] B. Yu, L. Kong, Y.Zhang, and H. Zhu, Testing Java

components based on algebraic specifications, in Proc. of
ICST 2008, pp190–199.

[42] D. Liu, Y. Liu, X. Zhan, H. Zhu and I. Bayley, Automated

testing of Web Services based on algebraic specification, in
Proc. of IEEE SOSE 2015.

[43] D. Liu, H. Zhu, and I. Bayley, SOFIA: An Algebraic

Specification Language for Developing Services, in Proc. of
IEEE SOSE 2014, pp70–75.

