
BigBIRD: A Large-Scale 3D Database of Object Instances

Arjun Singh, James Sha, Karthik S. Narayan, Tudor Achim, Pieter Abbeel

Abstract— The state of the art in computer vision has rapidly
advanced over the past decade largely aided by shared image
datasets. However, most of these datasets tend to consist of
assorted collections of images from the web that do not include
3D information or pose information. Furthermore, they target
the problem of object category recognition—whereas solving the
problem of object instance recognition might be sufficient for
many robotic tasks. To address these issues, we present a high-
quality, large-scale dataset of 3D object instances, with accurate
calibration information for every image. We anticipate that
“solving” this dataset will effectively remove many perception-
related problems for mobile, sensing-based robots.

The contributions of this work consist of: (1) BigBIRD,
a dataset of 100 objects (and growing), composed of, for
each object, 600 3D point clouds and 600 high-resolution
(12 MP) images spanning all views, (2) a method for jointly
calibrating a multi-camera system, (3) details of our data
collection system, which collects all required data for a single
object in under 6 minutes with minimal human effort, and
(4) multiple software components (made available in open
source), used to automate multi-sensor calibration and the
data collection process. All code and data are available at
http://rll.eecs.berkeley.edu/bigbird.

I. INTRODUCTION AND RELATED WORK

Object recognition, the task of identifying a given object in

an image, remains an unsolved problem in computer vision.

Researchers typically dichotomize object recognition into (1)

category-level recognition, where various concrete objects

are assigned a single label (e.g. “Pepsi can” and “Coke can”

are both assigned the label “soda can”) and (2) instance-

recognition, where each concrete object is assigned a sepa-

rate label (e.g. “Pepsi can” and “Coke can” are given separate

labels). The computer vision and robotics approaches to the

recognition problem differ fundamentally in that (1) robots

in fixed environments typically need to interact with on the

order of a few hundred objects and (2) robotic perception

algorithms need to successfully localize and detect 3D object

poses in addition to identifying the correct object. We believe

that instance recognition suits many robotic tasks well, as

joint object detection and pose estimation are the primary

components of the instance recognition problem.

Though the advent of commodity RGB-D sensors, such

as the Microsoft Kinect, aid in addressing 3D pose detection

and localization by providing a depth channel in addition

to a color channel, instance recognition systems still cannot

reliably detect hundreds of objects [1], [2], [3]. We believe

that the primary issue currently hampering progress towards

reliable and robust instance recognition is the lack of a large-

scale dataset containing high-quality 3D object data; this

Department of Electrical Engineering and Computer Science, University
of California, Berkeley, Berkeley, CA 94709

Fig. 1. Our data-collection system. We place the object near the center of
the turntable, and our software takes care of the rest. Note the chessboard
on the turntable to merge clouds as the turntable moves. Sample objects
from the dataset can be seen sitting on top of the Ortery Photobench.

is because collecting such a dataset requires constructing a

reliable and high-quality 3D scanning system, which is a

significant undertaking.

A. Datasets

The last decade has witnessed rapid advances in computer

vision largely due to fundamental image datasets, such as

MNIST, Caltech-101, PASCAL, Labeled Faces in the Wild,

PASCAL, and most recently, ImageNet [4], [5], [6], [7],

[8], [9]. Unfortunately, the solution to most current 2D

vision datasets would not constitute a solution to instance

recognition as they currently target image retrieval tasks from

arbitrary images drawn from the web. In particular, while

some of these tasks emphasize detection, they do not directly

address the problem of pose estimation, a component crucial

to attaining high performance in instance recognition and

robotic tasks. While there exist several 3D vision datasets,

most datasets either (1) have few objects, (2) have low-

quality objects, (3) provide only single views of objects or

scenes, (4) don’t contain calibration and pose information, or

(5) provide low-resolution RGB data [10], [11], [12], [13],

[14], [15]. While addressing all five aspects would improve

the quality of instance recognition systems, aspect (5) would

also provide a venue to explore synergies and comparisons

between Kinect-style and multi-view stereo approaches to

3D model construction [16], [17], [18].

Furthermore, although most recent instance recognition

systems work with RGB-D data, there exist high-quality

instance recognition systems that use only RGB images,

such as MOPED, presented by Collet et al. [19]. However,

these generally work with higher-quality RGB images than

those provided by RGB-D sensors. Unfortunately, this makes

it quite difficult to compare RGB-D instance recognition

systems with RGB-only systems, as simply applying the

RGB-only systems to the images from RGB-D datasets

would yield unrepresentative results. Because we provide

high-quality RGB images in addition to the RGB-D data,

we can enable meaningful comparison of these systems.

The closest work to ours is that of Kasper et al. [20]. They

have a similar setup in which a laser scanner collects 3D

data and a stereo pair collects data from 360 points from the

viewing hemisphere. They also provide object meshes and

calibrated RGB data. However, their 3D data collection setup

is only semi-automated and their image collection setup takes

an additional 20 minutes. Although they provide a relatively

large number of objects (roughly 130 at the time of writing),

scaling up to thousands may be infeasible at that speed. Our

approach is fully automated after placing the object in the

system, and data collection takes less than 5 minutes per

object.

B. Data Collection

The chief obstacle to collecting a high-quality large-scale

object dataset involves constructing a reliable 3D scanning

system that can provide both high-quality depth and color in-

formation. Most commercial 3D scanners either provide only

range sensor and low-resolution color information and/or are

very expensive. Recent work demonstrates that KinectFu-

sion variants can provide high-quality 3D reconstructions

[21], [22], [23], [24]. However, some of these approaches

don’t provide calibrated RGB images, which are required

by many instance recognition platforms, and those that do

only provide low-resolution RGB images from the Kinect

sensor. Further, the data collection process requires a human

to slowly move a Kinect around the full object; even with

an automated turntable, a single Kinect attached to an arm

cannot image non-convex objects and translucent/transparent

objects due to the inherent limitations of Kinect-style RGB-

D sensors.

Using multiple Kinects and high-resolution DSLR cameras

along with an automated turntable constitutes one possible

approach to jointly reducing human effort while improving

RGB-D mesh quality. The presence of multiple types of

sensors determines highly accurate intrinsics for each sensor

as well as relative transformations between pairs of sensors.

Researchers have extensively studied this problem for both

single and multiple 2D cameras and have recently explored

it for single and multiple RGB-D sensors [25], [26], [27],

[28], [29], [30], [31]. Typical approaches involve first cal-

ibrating each sensor individually to compute its intrinsics,

computing stereo pairs between sensors to estimate each

sensor’s extrinsics, and then running a joint optimization

procedure to refine each sensor’s intrinsics and extrinsics.

For calibrating RGB-D sensors, many approaches require

additional hardware and/or setup from what is required

for 2D cameras. For example, Herrera et al. [25] present

a method that requires affixing a chessboard to a large,

flat plane, whereas typical 2D approaches simply require a

chessboard alone. Our method requires a source of infrared

light, but no additional hardware setup.

Additionally, interference between IR patterns complicates

constructing a data-collection system with multiple RGB-D

sensors. Butler et al. [32] propose an approach for mitigating

interference from multiple depth sensors. However, their

approach requires affixing a vibrating motor to each device,

which makes a static calibration procedure impossible and

also introduces more complexity into the system. We em-

ploy time-multiplexing, another common approach, which

involves turning off each camera when it is not taking a

picture. Concretely, we turn off the infrared emitter, which

is roughly two times faster than turning off the depth stream.

C. Contributions

To address the issues described above, we present the

following contributions:

1) A dataset which addresses the various shortcomings of

existing 2D and 3D datasets by providing the following

data per object: (1) 600 Kinect-style RGB-D images,

(2) 600 high-resolution images, (3) accurate calibration

information for every image, (4) segmented objects

per image, and (5) full-object meshes. We obtain 600

images by taking shots from 5 polar angles and 120

azimuthal angles, the latter equally spaced by 3�.

2) A method for jointly calibrating multiple RGB-D sen-

sors and cameras.

3) Details of our data collection system, which can collect

all required data for a single object in under 6 minutes,

where the only human effort required involves placing

an object on the turntable and running a single com-

mand.

4) Multiple software components, including software for

calibrating a single depth sensor, software for jointly

calibrating multiple sensors (RGB-D and 2D RGB),

and tools to simplify the data collection process.

In addition to helping to solve the instance recognition

problem, we believe that our dataset removes many obstacles

associated with large-scale 3D data and serves as a unified

dataset that bridges problems in graphics, computer vision,

and robotics. Our dataset can be used for benchmarks in

multiple areas, such as 3D mesh reconstruction (with and

without RGB-D), instance recognition, and object catego-

rization. We intend to continually add to our dataset, inviting

others to request and/or send us objects for which we have

not yet collected data. Test scenes and results will be made

available as well.

All data and code are available and regularly updated at the

following URL: http://rll.eecs.berkeley.edu/

bigbird. Available code includes a robust checkerboard

Fig. 2. Carmine mounted to Canon T3 using RGBDToolkit mount.

Fig. 3. Side view of all Carmines mounted to respective Canon T3s, pointed
at the Ortery Photobench. The dimensions of the Photobench are 31” D x
26”H x 26” W.

detector, calibration software for a single RGB-D sensor,

multi-sensor calibration, and various utilities for working

with depth sensors and point clouds in Python.

II. SYSTEM OVERVIEW

The sensors in our system comprise of 5 high resolution

(12.2 MP) Canon Rebel T3 cameras and five PrimeSense

Carmine 1.08 depth sensors. We mount each Carmine to one

of the T3s using a mount designed by RGBDToolkit [33], as

shown in Figure 2. Each T3 is then mounted to the Ortery

MultiArm 3D 3000.

We place each object on the turntable in the Ortery

Photobench 260. The Photobench contains a glass turntable,

which can be rotated in units of 0.5 degrees. It also has four

lights, consisting of 4000 LEDs, located at the bottom, the

back wall, the front corners, and the back corners. Using a

reverse-engineered driver, we can programmatically control

the lighting and rotation of the turntable.

To obtain calibrated data, we place a chessboard on the

turntable; the chessboard is always fully visible in at least

one of the cameras, specifically the Canon and Carmine

directly above the turntable (see 3). We refer to Carmine

as the reference camera. After calibrating all of the cameras

to find the transformations from each camera to the reference

camera, we can provide a good estimate of the pose for every

image.

For each object, we capture images with each camera at

each turntable position. We rotate the turntable in increments

of 3 degrees, yielding a total of 600 point clouds from the

Carmines and 600 high-resolution RGB images from the

Canon T3s. We then estimate poses for each camera, segment

each cloud and generate segmentation masks for each of the

600 views, and produce a merged cloud and mesh model.

Automation and speed are crucial to enabling large-scale

data collection; a significant amount of engineering is re-

quired to make the process as fast as possible.

Our system runs the following steps when collecting data

for a single object:

1) Start the depth and color stream for each Carmine.

Turn off the infrared emitter for each Carmine.

2) Repeat for each turntable orientation (every 3 degrees,

120 total orientations):

a) Start a thread for each Canon T3 that captures an

image.

b) Start a thread for each Carmine that captures a

color image.

c) Start a single thread that loops through each

Carmine, turning on the infrared emitter, cap-

turing a depth map, and turning off the infrared

emitter in sequence.

d) Once all of the above threads are done executing

in parallel, rotate the turntable by 3 degrees.

Using all Carmines simultaneously causes the projected

infrared patterns to interfere, leading to severe degradations

in data quality. One option involves stopping the depth stream

for each device not taking a depth image, and restarting the

depth stream immediately before taking an image. However,

stopping and starting a depth stream takes roughly 0.5s,

imposing a 5 minute minimum bound on collecting 120

images with each of the 5 cameras. Rather than stopping

the entire stream, we modified the OpenNI2 library to allow

turning off the infrared emitter while keeping the depth

stream open, which takes 0.25s. We present detailed timing

breakdowns in Table I.

We now discuss how we jointly calibrate the sensors.

III. CALIBRATION

The 10 sensors are situated in a quarter-circular arc, with

each Carmine mounted to a Canon T3, and each Canon T3

mounted to the arm. One of the overhead cameras, referred

to as the reference camera, can always see the chessboard

affixed to the turntable; specifically, we use the overhead

Carmine. In order to recover the pose of all of the other

sensors, we must estimate the transformation from each

sensor to the reference camera.

Kinect-style RGB-D sensor calibration involves estimating

the intrinsic matrix for the infrared (IR) camera, the intrinsic

matrix for the RGB camera, and the extrinsic rigid transform

from the RGB camera to the infrared camera. Highly accu-

rate calibration is crucial to achieving strong depth-to-color

Step Time (s)

Startup
Ortery Photobench Startup 3.5
Carmine Startup (depth and color) 9.3

Capture at each turntable position (done 120 times)
Capture images – performed in parallel 1.82

Capture Canon T3 images (all 5 in parallel) 1.2
Capture Carmine color (all 5 in parallel) 0.07
Capture Carmine depth (all 5 in sequence) 1.82

Rotate turntable 0.48
Total capture time 276

Shutdown 0.49

Total time for one object 289

TABLE I

TIMING INFORMATION FOR THE DATA-COLLECTION PROCESS. NOTE

THAT THE THREE IMAGE CAPTURE THREADS ALL RUN IN PARALLEL,

WHICH MEANS THAT THE IMAGE CAPTURE STEP TAKES AS LONG AS THE

LONGEST PROCESS.

registration. In our system, we not only need to calibrate

the intrinsics of each individual RGB-D sensor, but also the

extrinsics which yield the relative transformations between

each of the 10 sensors, both RGB-D and RGB.

Accurate calibration also enables registering depth maps

to different RGB images, including the higher-resolution

1280x1024 image provided by the Carmine (hardware reg-

istration only works when the color stream is at the same

resolution as the 640x480 depth stream). Although this is a

relatively well-studied problem [30], [25], obtaining strong

results is still nontrivial due to multiple details about the

Carmines that are not well documented.

Our method requires an external infrared light and a

calibration chessboard. At a high level, we take pictures of

the chessboard with the high-resolution RGB camera and the

RGB-D sensor’s infrared camera and RGB cameras1, as well

as a depth map. We then detect the chessboard corners in all

of the images. Note that we turn off the infrared emitter

before collecting infrared images, and turn it back on before

collecting depth maps.

After collecting data, we first initialize the intrinsic ma-

trices transformations for all fifteen cameras (five Canon

T3s, five Carmines with an RGB camera and IR camera

each) using OpenCV’s camera calibration routines, based on

the simple calibration method proposed by Zhang [28]. We

also initialize the relative transformations between cameras

using OpenCV’s solvePnP. We then construct an optimization

problem to jointly optimize the intrinsic parameters and

extrinsic parameters for all sensors.

A. Joint Optimization

We use an approach similar to that given by Le and

Ng [29]. Their approach requires that all sensors be grouped

into 3D systems. A stereo pair of cameras (RGB or IR)

yields one kind of 3D system (a stereo system), and a RGB-

D sensor’s infrared camera and projector yield the other (a

1It is vital that the Carmine and chessboard remain completely still while
both images are captured, as it is not possible to simultaneously take a color
and infrared image.

RGBD system). Each 3D system has intrinsic parameters,

used to produce 3D points, and extrinsic parameters, used to

transform 3D points into another system’s coordinate frame.

We construct and solve the optimization problem using Ceres

Solver [34].

The calibrator optimizes the intrinsic and extrinsic param-

eters such that 1) each 3D system produces 3D points that

match the physical characteristics of the chessboard (e.g. the

points are all planar, the points on a given chessboard row

are linear, and the distance between generated 3D points

match up with the true distance on the chessboard) and 2)

all 3D systems agree with each other on the locations of the

chessboard corners.

The intrinsic parameters of a RGBD 3D system consist

of the intrinsic matrix K and distortion parameters of the

sensor’s IR camera. The intrinsic parameters of a stereo

3D system consist of the intrinsic matrices and distortion

parameters of each camera, along with the rotation and

translation from one camera to the other.

The loss function is given by

G =
X

s2S

X

u2U

I(s, u) +
X

s1,s22S

E(s1, s2, u)

where I denotes the intrinsic cost, E denotes the extrinsic

cost, S denotes the set of all 3D systems and U denotes the

calibration data (i.e. the chessboard corners).

Let Q(s, ui) be a function that produces a 3D point for

the corner ui using the intrinsic parameters of system s. For

a stereo system, this entails triangulation, and for an RGBD

system, this is simply converting image coordinates to world

coordinates using the depth value provided by the sensor.

For a 3D system, the intrinsic cost is given by

I(s, ui) =
X

uj2U

(||Q(s, ui)−Q(s, uj)||− dij)
2

+
X

l2L

d(Q(s, ui), l)

+ d(Q(s, ui), p)

where dij is the ground-truth 3D distance between points

i and j on the chessboard, L is the set of lines that corner

ui belongs to, p is the plane that corner ui belongs to, and

d(Q(s, ui), p) measures the distance from the generated 3D

point to the plane.

The extrinsic cost is given by

E(s1, s2, ui) =||R12Q(s2, ui) + t12 −Q(s2, ui)||
2

where R12 and t12 represent the rotation and translation

needed to transform a point from the coordinate frame of

3D system s2 to s1.

The major difference between our approach and that of

Le and Ng is that we add one additional term to the

cost function for stereo pairs; specifically, we enforce that

epipolar constraints are satisfied by adding an additional term

to the stereo intrinsic cost function:

I(s, u) =||uT
1
Fu2||

2,

where F is the fundamental matrix implied by the current

values of the stereo pair’s intrinsic parameters, u1 are the

homogeneous coordinates of the calibration datum in the

first camera, and u2 are the homogeneous coordinates of the

calibration datum in the second camera.

We obtain the depth intrinsic matrix KDepth from the

infrared intrinsic matrix by subtracting off the offset between

the depth image and infrared image due to the convolution

window used by the internal algorithm. We found the values

suggested by Konolige and Mihelich [35] of -4.8 and -3.9

pixels the x and y directions, respectively, worked well.

Figure 4 shows the results of registering the depth map to the

RGB image using our calibration and also using hardware

registration.

Fig. 4. Comparison of hardware and software registration. The left image
shows a hardware-registered point cloud. Note the bleeding of the cardboard
in the background onto the Pringles can and the low resolution of the color
data. The right image shows a software-registered point cloud using our
calibration. Most of the bleeding of the cardboard onto the can has been
fixed, and we can use higher-resolution color data.

IV. 3D MODEL GENERATION

After calibrating each camera to the reference camera, we

proceed with model generation. At a high level, we:

1) Collect data from each Carmine and Canon as the

turntable rotates through 120 3� increments.

2) Filter each Carmine depth map to remove depth dis-

continuities (Section IV-A).

3) Generate point clouds for each Carmine view using

calibration intrinsics.

4) Merge the 5 point clouds for each of the 120 scenes

using calibration extrinsics.

5) Segment the object from the merged cloud (Section

IV-C).

6) Improve the object cloud quality for each of the 120
scenes through plane equalization (Section IV-B).

7) Merge the 120 scenes together to form a single cloud

using calibration extrinsics.

8) Create a mesh via Poisson Reconstruction [36], [37].

Fig. 5. Applying depth discontinuity filtering. Pixels marked in red are
considered unreliable due to either a discontinuity or neighboring pixels
that were not measured by the Carmine depth sensor. Before proceeding,
we discard depth measurements associated with the red pixels.

A. Depth Discontinuity Filtering

After collecting data from each Carmine and Canon sen-

sor, we run a depth discontinuity filtering step as suggested

by Whelan et al. [38], since depth map discontinuities tend

to yield imprecise depth and color measurements. To do so,

we associate each 3 × 3 patch p in the depth image with

a value max{(max p− pmid), (min p− pmid)} where pmid

refers to the center pixel’s depth. We keep all pixels whose

associated patch has a value lesser than some threshold. See

Figure 5 for an example of the pixels eliminated by depth

discontinuity filtering.

B. Plane Equalization

After obtaining a preliminary 3D mesh, we produce a

cleaner cloud through a procedure called plane equalization.

As we collect point clouds, recall that we compute the

transform from the turntable chessboard to the reference

camera via OpenCV’s solvePnP. Experimentally, we notice

slight depth ambiguities when computing these transforms,

evidenced by the non-aligned plane normals and inconsistent

depths presented in Figure 6. Since we know that the

turntable chessboard revolves about a circle roughly hori-

zontal to the ground, we refine each transform’s rotational

component and translational component by (1) computing a

new vector normal to be shared across all chessboards and

(2) enforcing the centers of each chessboard to lie on a circle.

Concretely, given a set T = {(R1, t1), . . . , (Rn, tn)}
of chessboard poses, we produce a refined set T 0 =
{(R0

1
, t0

1
), . . . , (R0

n, t
0

n)} of chessboard poses. Note that an

Ri operates on a plane with unit normal k̂ yielding a plane

with unit normal Ri[3], the third column of Ri. Ultimately,

we would like all plane normals to match; to do this, we

compute a unit vector û so as to minimize
Pn

i=1
(û ·Ri[3])

2.

We solve for û exactly by setting it to be the least eigenvector

of the covariance of all the Ri[3]s. We then compute each R0

i

by multiplying each Ri by the transform that takes Ri[3] to û

via rotation about the axis Ri[3]×û. We next compute each t0i
by projecting each ti onto the least squares circle determined

by {t1, · · · , tn}; this problem can be solved quickly by

Fig. 6. The chessboard poses for each turntable location are shown in
the frame of the reference camera. On the left, the chessboard poses are
determined by solvePnP. On the right, we refine these pose estimates using
the plane equalization method described in Section IV-B. The refined board
poses are significantly cleaner.

projecting {t1, · · · , tn} onto a plane, computing the least

squares circle in the plane’s basis, and projecting each point

onto the resulting circle. In practice, plane equalization runs

in negligible time (< 0.1 s) for n = 120 and yields higher

quality point clouds (see Figure 7).

Fig. 7. Constructed point clouds for one object. On the left, the cloud is
constructed using the raw solvePnP poses; the cloud has multiple shifted
copies of the object due to misalignment. On the right, the cloud is
constructed with the output of the plane equalization procedure; the cloud
is much cleaner and well-aligned.

C. Object segmentation

As discussed above, for a given turntable angle, we

merge the 5 Carmine point clouds into a single cloud using

calibration extrinsics. To segment the object from this cloud,

we first discard all points outside of the Ortery PhotoBench.

We then discard all points below the turntable plane (which

was identified in the previous step), and lastly conduct

agglomerative clustering to remove tiny clusters of points.

D. Accuracy

Although we use a naive approach for building 3D models,

their accuracy is better than the models used by Xie et al.

[1] to obtain state-of-the-art RGBD instance recognition

results. In Figure 8, we give a rough idea of the accuracy

of our 3D models by projecting a representative mesh onto

an image from one of the Canon cameras (which is not

used to build the mesh), showing that the system is well

calibrated and produces reasonable meshes. We expect that

more sophisticated algorithms can produce higher-fidelity 3D

models.

Fig. 8. The 3D mesh is projected onto one of the Canon images.

E. Limitations

Our approach relies solely on point cloud data from the

Carmines when building the 3D mesh models. However,

Kinect-style RGB-D sensors are known to perform poorly for

certain objects, including transparent and highly-reflective

objects, such as the bottle shown in Figure 9. For these

objects, the 3D models may be missing or of poor quality.

However, by incorporating methods that also use RGB data,

we anticipate being able to provide high-quality 3D models

for many of these objects in the future.

Fig. 9. An example object for which Kinect-style RGB-D sensors yield
poor-quality point clouds.

V. DATASET USAGE

We anticipate our dataset to be used for multiple related

computer vision problems, including object instance recogni-

tion, object category recognition, and 3D object model gen-

eration. The dataset, and all code used to generate it, can be

obtained at our website (http://rll.eecs.berkeley.edu/bigbird).

A. Obtaining the Dataset

Due to the large size (and many uses) of the dataset (each

object has roughly three gigabytes of data), it is impractical

to provide a single downloadable file for the entire dataset,

and inconvenient to have a single downloadable file per

object. On our website, we provide an automated way to

download the data for various use-cases. Instructions for

downloading the data are provided on the website. The

settings can be configured to download whichever subset of

the following components are desired:

1) High-resolution (12MP) images (.jpg)

2) Low-resolution Carmine images (.jpg)

3) Raw point clouds (.pcd)

4) Depth maps (.h5)

5) Segmented point clouds (.pcd)

6) Segmentation masks (.pbm)

7) 3D mesh model (.ply)

B. Instance Recognition

A set of test scenes using the objects from the dataset

will be made available on the website. As we collect more

objects, we will collect more test scenes. In order to facilitate

meaningful comparison of similar algorithms, we plan to

collect and record results of different methods on the same

subset of the test data on the website.

C. 3D Model Generation

Although we have used a very naive approach to gen-

erating 3D models (i.e. concatenating all point clouds and

running Poisson reconstruction), the data is well-suited for

evaluating algorithms for generating 3D models of objects

from RGB and RGB-D sources. The current release of the

data does not contain ground-truth object models; however,

we plan to obtain 3D-printed models and provide data for

them. As more sophisticated algorithms are used on our data,

we plan to provide better 3D models as well.

VI. CONCLUSIONS

We believe this dataset will significantly accelerate

progress in robotic perception, especially the instance recog-

nition problem. We also believe it can lead to benchmarks for

a variety of areas from computer graphics, computer vision,

and robotics, including 3D object reconstruction, recognition,

and grasping.

All of our code and data, including calibration data, object

instance data, and test scenes are available at the following

URL: http://rll.eecs.berkeley.edu/bigbird.

We plan to continue adding to our dataset; we invite others

to request and/or send us objects which we have not yet

scanned. Please contact us regarding such requests.

ACKNOWLEDGEMENTS

This work is supported in part by ONR Grant #N00014-

12-1-0756 and by ONR YIP Award #N00014-13-1-0570.

Arjun Singh is supported by an NDSEG Fellowship. Karthik

Narayan is supported by an NSF Graduate Fellowship. We

thank Ortery Technologies for their support.

REFERENCES

[1] Ziang Xie, Arjun Singh, Justin Uang, Karthik S. Narayan, and Pieter
Abbeel. Multimodal blending for high-accuracy instance recognition.
In IROS, 2013.

[2] J. Tang, S. Miller, A. Singh, and P. Abbeel. A textured object
recognition pipeline for color and depth image data. In ICRA, 2012.

[3] N. Vaskevicius, K. Pathak, A. Ichim, and A. Birk. The jacobs robotics
approach to object recognition and localization in the context of the
icra’11 solutions in perception challenge. In ICRA, 2012.

[4] Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist database, 1998.

[5] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative
visual models from few training examples: An incremental bayesian
approach tested on 101 object categories. Comput. Vis. Image Underst.,
106(1):59–70, 2007.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) challenge.
International Journal of Computer Vision, 88(2):303–338, 2010.

[7] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. Technical report, 2007.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human
detection. In ICCV, 2005.

[10] Willow Garage. Solutions in perception challenge, May 2011.

[11] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and
T. Darrell. A category-level 3-d object dataset: Putting the kinect to
work. 2011.

[12] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-
view rgb-d object dataset. In ICRA, 2011.

[13] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation
and support inference from rgbd images. In ECCV, 2012.

[14] J. Sturm, J. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In IROS, 2012.

[15] D. Cremers and K. Kolev. Multiview stereo and silhouette consistency
via convex functionals over convex domains. 33, 2011.

[16] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view
stereopsis. PAMI, 32(8), 2010.

[17] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Towards
internet-scale multi-view stereo. In CVPR, 2010.

[18] J. Guillemaut and A. Hilton. Joint multi-layer segmentation and
reconstruction for free-viewpoint video applications. Int. J. Comput.

Vision, 93(1):73–100, 2011.

[19] Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. The
MOPED framework: Object Recognition and Pose Estimation for
Manipulation. 2011.

[20] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. The kit object
models database: An object model database for object recognition,
localization and manipulation in service robotics. The International

Journal of Robotics Research, 31(8):927–934, 2012.

[21] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: real-time 3d reconstruction and interaction using a
moving depth camera. In UIST, 2011.

[22] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In ISMAR, 2011.

[23] Kaess M. Fallon M. F. Johannsson H. Leonard J. J. McDonald J. B.
Whelan, T. Kintinuous: Spatially extended kinectfusion. In RSS

Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
2012.

[24] Q. Zhou, S. Miller, and V. Koltun. Elastic fragments for dense scene
reconstruction. In ICCV, 2013.

[25] C. D. Herrera, J. Kannala, and J. Heikkilä. Accurate and practical
calibration of a depth and color camera pair. In CAIP, 2011.

[26] C. Zhang and Z. Zhang. Calibration between depth and color sensors
for commodity depth cameras. In ICME, 2011.

[27] A. Geiger, F. Moosmann, O. Car, and B. Schuster. A toolbox for
automatic calibration of range and camera sensors using a single shot.
In ICRA, 2012.

[28] Z. Zhang. Flexible camera calibration by viewing a plane from
unknown orientations. In ICCV, 1999.

[29] Q. V. Le and A. Y. Ng. Joint calibration of multiple sensors. In IROS,
2009.

[30] Jan Smisek, Michal Jancosek, and Tomas Pajdla. 3d with kinect. In
Consumer Depth Cameras for Computer Vision, pages 3–25. Springer,
2013.

[31] Michael Warren, David McKinnon, and Ben Upcroft. Online Cali-
bration of Stereo Rigs for Long-Term Autonomy. In International

Conference on Robotics and Automation (ICRA), Karlsruhe, 2013.

[32] D Alex Butler, Shahram Izadi, Otmar Hilliges, David Molyneaux,
Steve Hodges, and David Kim. Shake’n’sense: reducing interference
for overlapping structured light depth cameras. In Proceedings of

the 2012 ACM annual conference on Human Factors in Computing

Systems, pages 1933–1936. ACM, 2012.

[33] James George, Alexander Porter, Jonathan Minard, and Mike Heavers.
Rgbd toolkit, 2013.

[34] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

[35] K. Konolige and P. Mihelich. Technical description of kinect calibra-
tion, 2013.

[36] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruc-

tion. In SGP, 2006.
[37] P. Cignoni, M. Corsini, and G. Ranzuglia. Meshlab: an open-source

3d mesh processing system. ERCIM News, 2008(73), 2008.
[38] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard,

and John McDonald. Robust tracking for real-time dense rgb-d
mapping with kintinuous. 2012.

