
Vol. 31 no. 1 2015, pages 10–16
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu595

Genome analysis Advance Access publication September 3, 2014

BigDataScript: a scripting language for data pipelines
Pablo Cingolani1,2,*, Rob Sladek2 and Mathieu Blanchette1

1McGill University School of Computer Science, 3480 University Street, Montreal, Qu�ebec H3A 0E9 and 2McGill
University and G�enome Qu�ebec Innovation Centre, 740 Dr. Penfield Avenue, Montr�eal, Qu�ebec H3A 0G1, Canada

Associate Editor: John Hancock

ABSTRACT

Motivation: The analysis of large biological datasets often requires

complex processing pipelines that run for a long time on large com-

putational infrastructures. We designed and implemented a simple

script-like programming language with a clean and minimalist syntax

to develop and manage pipeline execution and provide robustness to

various types of software and hardware failures as well as portability.

Results: We introduce the BigDataScript (BDS) programming lan-

guage for data processing pipelines, which improves abstraction

from hardware resources and assists with robustness. Hardware ab-

straction allows BDS pipelines to run without modification on a wide

range of computer architectures, from a small laptop to multi-core

servers, server farms, clusters and clouds. BDS achieves robustness

by incorporating the concepts of absolute serialization and lazy pro-

cessing, thus allowing pipelines to recover from errors. By abstracting

pipeline concepts at programming language level, BDS simplifies im-

plementation, execution and management of complex bioinformatics

pipelines, resulting in reduced development and debugging cycles as

well as cleaner code.

Availability and implementation: BigDataScript is available under

open-source license at http://pcingola.github.io/BigDataScript.

Contact: pablo.e.cingolani@gmail.com

Received on June 16, 2014; revised on August 15, 2014; accepted on

August 28, 2014

1 INTRODUCTION

Processing large amounts of data is becoming increasingly im-

portant and common in research environments as a consequence
of technology improvements and reduced costs of high-

throughput experiments. This is particularly the case for gen-
omics research programs, where massive parallelization of micro-

array- and sequencing-based assays can support complex

genome-wide experiments involving tens or hundreds of thou-
sands of patient samples (Zuk et al., 2014). With the democra-

tization of high-throughput approaches and simplified access to
processing resources (e.g. cloud computing), researchers must

now routinely analyze large datasets. This paradigm shift with
respect to the access and manipulation of information creates

new challenges by requiring highly specialized skill, such as im-

plementing data-processing pipelines, to be accessible to a much
wider audience.
A data-processing pipeline, referred as ‘pipeline’ for short, is a

set of partially ordered computing tasks coordinated to process

large amounts of data. Each of these tasks is designed to solve

specific parts of a larger problem, and their coordinated out-

comes are required to solve the problem as a whole. Many of

the software tools used in pipelines that solve big data genomics

problems are CPU, memory or I/O intensive and commonly run

for several hours or even days. Creating and executing such pipe-

lines require running and coordinating several of these tools to

ensure proper data flow and error control from one analysis step

to the next. For instance, a processing pipeline for a sequencing-

based genome-wide association study may involve the following

steps (Auwera et al., 2013): (i) mapping DNA sequence reads

obtained from thousands of patients to a reference genome; (ii)

identifying genetic changes present in each patient genome

(known as ‘calling’ variants); (iii) annotating these variants

with respect to known gene transcripts or other genome land-

marks; (iv) applying statistical analyses to identify genetic vari-

ants that are associated with differences in the patient

phenotypes; and (v) quality control on each of the previous

steps. Even though efficient tools exist to perform each of

these steps, coordinating these processes in a scalable, robust

and flexible pipeline is challenging because creating pipelines

using general-purpose computer languages (e.g. Java, Python

or Shell scripting) involves handling many low-level process syn-

chronization and scheduling details. As a result, process coord-

ination usually depends on specific features of the underlying

system’s architecture, making pipelines difficult to migrate. For

example, a processing pipeline designed for a ‘multi-core server’

cannot directly be used on a cluster because running tasks on a

cluster requires queuing them using cluster-specific commands

(e.g. qsub). Therefore, if using such a language, programmers

and researchers must spend significant efforts to deal with archi-

tecture-specific details that are not germane to the problem of

interest, and pipelines have to be reprogrammed or adapted to

run on other computer architectures. This is aggravated by the

fact that the requirements change often and the software tools

are constantly evolving.
In the context of bioinformatics, there are several frameworks

to help implement data-processing pipelines; although a full com-

parison is beyond the scope of this article, we mention a few that

relate to our work: (i) Snakemake (K €oster and Rahmann, 2012)

written as a Python domain-specific language (DSL), which has a

strong influence from ‘make’ command. Just as in ‘make’, the

workflow is specified by rules, and dependencies are implied be-

tween one rule’s input files and another rule’s output files. (ii)

Ruffus (Goodstadt, 2010), a Python library, uses a syntactic

mechanism based on decorations. This approach tends to

spread the pipeline structure throughout the code, making main-

tenance cumbersome (Sadedin et al., 2012). (iii) Leaf (Napolitano*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/1/10/2365800 by guest on 16 August 2022

http://pcingola.github.io/BigDataScript
mailto:pablo.e.cingolani@gmail.com
,
``
''
;
 very
s
 (GWAS)
",0,0,2
",0,0,2
``
''
-
,
paper
'
'
 the
;
.
 this
;
,.
XPath error Undefined namespace prefix

et al., 2013), which is also written as a Python library, expresses
pipelines as graphs ‘drawn’ using ASCII characters. Although
visually rich, the authors acknowledge that this representation

is harder to maintain than the traditional code. (iv) Bpipe
(Sadedin et al., 2012) is implemented as a DSL on top of
Groovy, a Java Virtual Machine (JVM)-based language. Bpipe

facilitates reordering, removing or adding pipeline stages, and
thus, it is easy for running many variations of a pipeline. (v)
NextFlow (www.nextflow.io), another Groovy-based DSL, is

based on data flow programming paradigm. This paradigm sim-
plifies parallelism and lets the programmer focus on the coord-
ination and synchronization of the processes by simply specifying

their inputs and outputs.
Each of these systems creates either a framework or a DSL on

a pre-existing general-purpose programming language. This has
the obvious benefit of leveraging the language’s power, expres-

siveness and speed, but it also means that the programmer may
have to learn the new general-purpose programming language,
which can be taxing and take time to master. Some of these

pipeline tools use new syntactic structures or concepts (e.g.
NextFlow’s data-flow programming model or Leaf’s pipeline
drawings) that can be powerful, but require programming out-

side the traditional imperative model, and thus might create a
steep learning curve.
In this article, we introduce a new pipeline programming lan-

guage called BigDataScript (BDS), which is a scripting language
designed for working with big data pipelines in system architec-
tures of different sizes and capabilities. In contrast to existing

frameworks, which extend general-purpose languages through
libraries or DSLs, our approach helps to solve the typical chal-
lenges in pipeline programming by creating a simple yet powerful

and flexible programming language. BDS tackles common prob-
lems in pipeline programming by transparently managing infra-
structure and resources without requiring explicit code from the

programmer, although allowing the programmer to remain in
tight control of resources. It can be used to create robust pipe-
lines by introducing mechanisms of lazy processing and absolute

serialization, a concept similar to continuations (Reynolds, 1993)
that helps to recover from several types of failures, thus improv-
ing robustness. BDS runs on any Unix-like environment (we

currently provide Linux and OS.X pre-compiled binaries) and
can be ported to other operating systems where a Java runtime
and a GO compiler are available.

Unlike other efforts, BDS consists of a dedicated grammar
with its own parser and interpreter, rather than being imple-
mented on top of an existing language. Our language is similar

to commonly used syntax and avoids inventing new syntactic
structures or concepts. This results in a quick-to-learn, clean
and minimalistic language. Furthermore, creating our own inter-

preter gives better control of pipeline execution and allows us to
create features unavailable in general-purpose language (most
notably, absolute serialization). This comes at the expense of

expressiveness and speed. BDS is not as powerful as Java or
Python, and our simple interpreter cannot be compared with
sophisticated just-in-time execution or JVM-optimized byte-

code execution provided by other languages. Nonetheless, in
our experience, most bioinformatics pipelines rely on simple pro-
grammatic constructs. Furthermore, in typical pipelines, the vast

majority of the running time is spent executing external

programs, making the executing time of the pipeline code itself
a negligible factor. For these reasons, we argue that BDS offers a
good trade-off between simplicity and expressiveness or speed.

2 METHODS

In our experience, using general-purpose programming languages to de-

velop pipelines is notably slow owing to many architecture-specific details

the programmer has to deal with. Using an architecture agnostic language

means that the pipeline can be developed and debugged on a regular

desktop or laptop using a small sample dataset and deployed to a cluster

to process large datasets without any code changes. This significantly

reduces the time and effort required for development cycles. As BDS is

intended to solve or simplify the main challenges in implementing, testing

and programming data processing pipelines without introducing a steep

learning curve, our main design goals are (i) simple programming lan-

guage; (ii) abstraction from system’s architecture; and (iii) robustness to

hardware and software failure during computationally intensive data ana-

lysis tasks. In the next sections, we explore how these concepts are im-

plemented in BDS.

2.1 Language overview

BDS is a scripting language whose syntax is similar to well-known im-

perative languages. BDS supports basic programming constructs (if/

else, for, while, etc.) and modularity constructs such as functions

and ‘include’ statements, which are complemented with architecture-

independent mechanisms for basic pipeline runtime control (such as

task, sys, wait and checkpoint). At runtime, the BDS back-

end engine translates these high-level commands into the appropriate

architecture-dependent instructions. At the moment, BDS does not sup-

port object-oriented programming, which is indeed supported by other

pipeline tools based on libraries/DSL extending general-purpose pro-

gramming languages. The complete language specification and documen-

tation is available online at http://pcingola.github.io/BigDataScript.

Unlike most scripting languages, BDS is strongly typed, allowing de-

tection of common type conversion errors at the initial parsing stage

(pseudo-compilation) rather than at runtime (which can happen after

several hours of execution). As the syntax of strict typing languages

tends to be more verbose owing to longer variable declaration statements,

we provide a type inference mechanism (operator ‘:=’) that improves

code readability. For example (Listing 1), the variables ‘in’ and ‘out’ are

automatically assigned the types the first time they are used (in this case,

the type is assigned to be string).

2.2 Abstraction from resources

One of the key features of BDS is that it provides abstraction from most

architecture-specific details. In the same way that high-level programming

languages such as C or Java allow abstraction of the CPU type and other

hardware features, BDS supports system-level abstraction, including the

number and the type of computing-nodes or CPU-cores that are available

to the pipeline and its component tasks, whether firing another process

may saturate the server’s memory or whether a process is executed im-

mediately or queued.

Pipeline programming requires effective task management, particularly

the ability to launch processes and wait for processes to finish execution

before starting others. Task management can be performed using a single

BDS statement, independently of whether this is running on a local com-

puter or a cluster. Processes are executed using the task statement, which

accepts an optional list of resources required by the task (for example, see

Listing 1). The task consists of running a fictitious system command

myProcess and diverting the output to ‘output.file’. BDS currently

supports the following architectures: (i) local, single or multi-core com-

puter; (ii) cluster, using GridEngine, Torque and Moab; (iii) server farm,

11

BigDataScript

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/1/10/2365800 by guest on 16 August 2022

``
''
.
;
domain-specific language
-
very
www.nextflow.io
-
'
quite
,
paper
while
 very
 (JIT)
very
due
Since
:
-
http://pcingola.github.io/BigDataScript
Since
due
;
;
,
``
''

using ssh access; and (iv) cloud, using EC2 and StarCluster. Depending

on the type of architecture on which the script is run, the task will be

executed by calling the appropriate queuing command (for a cluster) or

by launching it directly (for a multi-core server).

BDS performs process monitoring or cluster queue monitoring to make

sure all tasks end with a successful exit status and within required time

limits. This is implemented using the ‘wait’ command, which acts as a

barrier to ensure that no statement is executed until all tasks finished

successfully. Listing 2 shows a two-step pipeline with task dependencies

using a ‘wait’ statement (Line 13). If one or more of the ‘task’ execu-

tions fail, BDS will wait until all remaining tasks finish and stop script

execution at the ‘wait’ statement. An implicit ‘wait’ statement is added at

the end of the main execution thread, which means that a BDS script does

not finish execution until all tasks have finished running. It is common for

pipelines to need multiple levels of parallel execution; this can be achieved

using the ‘parallel’ statement (or ‘par’ for short). Wait statements

accept a list of task IDs/parallel IDs in the current execution thread.

In addition to supporting explicitly defined task dependencies, BDS

also automatically models implicit dependencies using a directed acyclic

graph (DAG) that is inferred from information provided in the depend-

ency operators (‘5–’) contained in ‘task’ statements (see Listing 2, line

8). Finally, the ‘dep’ expression defines a task whose conditions are not

evaluated immediately (as it happens in ‘task’ expressions) but only

executed if required to satisfy a ‘goal’. Using ‘dep’ and ‘goal’ makes

it easier to define pipelines in a ‘declarative’ manner that is similar to

other pipeline tools, as tasks are executed only if the output needs to be

updated with respect to the inputs, independent of the intermediate re-

sults file, which might have been deleted.

2.3 Robustness

BDS provides two different mechanisms that help create robust pipelines:

lazy processing and absolute serialization. When a processing pipeline

fails, BDS automatically cleans up all stale output files to ensure that

rerunning the pipeline will produce a correct output. If a BDS program is

interrupted, typically by pressing Ctrl-C on the console, all scheduled

tasks and running jobs are terminated or deallocated from the cluster.

In addition to immediately releasing computing resources, a clean stop

means that users do not have to manually dequeue tasks, which allows

them to focus on the problem at hand without having to worry about

restoring a clean state.

Lazy processing. Complex processing pipelines are bound to fail owing

to unexpected reasons that range from data format problems to hardware

failures. Rerunning a pipeline from scratch means wasting days on recal-

culating results that have already been processed. One common ap-

proach, when using general-purpose scripting languages, is to edit the

script and comment out some steps to save processing time, which is

inelegant and error prone. A better approach is to develop pipelines

that incorporate the concept of lazy processing (Napolitano et al.,

2013), a concept popularized by the ‘make’ command (Feldman, 1979)

used to compile programs, and which simply means the work is not done

twice. This concept is at the core of many of the pipeline programming

tools, such as SnakeMake, Ruffus, Leaf and Bpipe. By design, when lazy

processing pipelines are rerun using the same dataset, they avoid unneces-

sary work. In the extreme case, if a lazy processing pipeline is run on an

already successfully processed dataset, it should not perform any process-

ing at all.

BDS facilitates the creation of lazy processing pipelines by means of

the dependency operator (‘5–’) and conditional task execution

(see Listing 1, line 5 for an example). The task is defined as ‘task

(out5– in)’, meaning that it is executed only if ‘out’ file needs to be

updated with respect to ‘in’ file: for example, if ‘output.file’ file does

not exist, has zero length, is an empty directory or has been modified

before ‘input.file’.

Absolute serialization. This refers to the ability to save and recover a

snapshot of the current execution state, compiled program, variables,

scopes and program counter, a concept similar to ‘con-tinuations’

(Reynolds, 1993). BDS can perform an absolute serialization of the cur-

rent running state and environment, producing ‘checkpoint files’ from

which the program can be re-executed, either on the same computer or

on any other computer, exactly from the point where execution termi-

nated. Checkpoint files (or ‘checkpoints’ for short) also allow all variables

and the execution stack to be inspected for debugging purposes (‘bds -i

checkpoint.chp’). The most common use of checkpoints is when a

task execution fails. On reaching a ‘wait’ statement, if one or more tasks

have failed, BDS creates a checkpoint, reports the reasons for task exe-

cution failure and terminates. Using the checkpoint, pipeline execution

can be resumed from the point where it terminated (in this case, at the

most recently executed ‘wait’ statement) and can properly re-execute

pending tasks (i.e. the tasks that previously failed execution).

Limitations. BDS is designed to afford robustness to the most common

types of pipeline execution failures. However, events such as full cluster

failures, emergency shutdowns, head node hardware failures or network

problems isolating a subset of nodes may result in BDS being unable to

exit cleanly, leading to an inconsistent pipeline state. These problems can

be mitigated by a special purpose ‘checkpoint’ statement that, as the

name suggests, allows the programmer to explicitly create checkpoints.

Given that the overhead of creating checkpoints is minimal (a few milli-

seconds compared with hours of processing time for a typical pipeline),

carefully crafted checkpoint statements within the pipeline code can be

useful to prevent losing processed data, mitigate damage and minimize

the overhead when rerun, which can be critical for long running pipelines.

2.4 Other features

Here we mention some selected features that are useful in pipeline pro-

gramming. Extensive documentation is available at http://pcingola.

github.io/BigDataScript.

Automatic logging. Logging all actions performed in pipelines is im-

portant for three reasons: (i) it helps debugging; (ii) it improves repeat-

ability; and (iii) it performs audits in cases where detailed documentation

and logging are required by regulatory authorities (such as clinical trials).

1
2
3
4
5
6
7

#!/usr/bin/env bds

in := “input.file”
out := “output.file”
task (out <- in, cpus=2, timeout=6*HOUR) {
sys myProcess $in > $out # Invoke command

}

Listing 1. pipeline.bds program. A simple pipeline example featuring a task invoking a fictitious command ‘myProcess’ defined to require 2 CPUs

and a maximum of 6h of execution time (Line 5)

12

P.Cingolani et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/1/10/2365800 by guest on 16 August 2022

,
s
-
,
 in order
``
''
s
ince
-
due
-
``
''
-
-
-
<monospace>-</monospace>
<monospace>-</monospace>
,
;
``
''
``
''
``
''
Up
 such as
to
-
very
http://pcingola.github.io/BigDataScript
http://pcingola.github.io/BigDataScript

Creating log files is simple, but it adds boilerplate code and increases the

complexity of the pipeline. BDS performs automatic logging in three

different ways. First, it directs all process StdOut/StdErr output to the

console. Second, as having a single output can be confusing when dealing

with thousands of processes running in parallel, BDS automatically logs

each process’s outputs (StdOut and StdErr) and exit codes in separate

clearly identified files. Third, BDS creates a report showing both an over-

view and details of pipeline execution (Fig. 1).

Automatic command line parsing. Programming flexible data pipelines

often involves parsing command-line inputs—a relatively simple but te-

dious task. BDS simplifies this task by automatically assigning values to

variables specified through the command line. As an example, if the

program in Listing 1 is called ‘pipeline.bds’, then invoking the pro-

gram as ‘pipeline.bds -in another.file’ will automatically re-

place the value of variable ‘in’ with ‘another.file’.

Task re-execution. Tasks can be re-executed automatically on failure.

The number of retries can be configured globally (as a command-line

argument) or by a task (using the ‘retry’ variable). Only after failing

‘retry+1’ times will a task will be considered to have failed.

2.5 BDS implementation

BDS is programmed using Java and GO programming languages. Java is

used for high-level actions, such as performing lexical analysis, parsing,

creating abstract syntax trees (AST), controlling AST execution, serial-

izing processes, queuing tasks, etc. Low-level details, such as process

execution control, are programmed in GO. As BDS is intended to be

used by programmers, it does not rely on graphical interfaces and does

not require installation of complex dependencies or Web servers.

Figure 2 shows the cascade of events triggered when a BDS program is

invoked. First the script pipeline.bds (Fig. 2A) is compiled to an

AST structure (Fig. 2B) using ANTLR (Parr, 2007). After creating the

AST, a runnable-AST (RAST) is created. RAST nodes are objects rep-

resenting statements, expressions and blocks from our BDS implementa-

tion. These nodes can execute BDS code, serializing their state, and

recover from a serialized file, thus achieving absolute serialization. The

script is run by first creating a scope and then properly traversing the

RAST (Fig. 2C). We note that if needed, this approach could be tuned to

perform efficiently, as demonstrated by modern languages, such as Dart.

When recovering from a checkpoint, the scopes and RAST are de-

serialized (i.e. reconstructed from the file) and then traversed in ‘recovery

mode’, meaning that the nodes do not execute BDS code. When the node

that was executed at the time of serialization event is reached, BDS

switches to ‘run mode’ and the execution continues. This achieves execu-

tion recovery from the exact state at serialization time. Checkpoints are

the full state of a program’s instance and are intended as a recovery

mechanism from a failed execution. This includes failures owing to cor-

rupted or missing files, as BDS will re-execute all failed tasks when re-

covering, thus correcting outputs from those tasks. However, checkpoints

are not intended to recover from programming errors, where the user

modifies the program to fix a bug, as a previously generated checkpoint is

no longer valid respect to the new source code.

When a task statement is invoked, process requirements, such as

memory, CPUs and timeouts, can optionally be specified. Depending

on the architecture, BDS either checks that the underlying system has

appropriate resources (CPUs and memory) to run the process (e.g. local

computer or ssh-farm) or relies on the cluster management system to

appropriately allocate the task. If all task requirements are met, a

script file is created (Fig. 2D), and the task is executed by running an

instance of bds-exec, a program that controls execution (Fig. 2E). This

indirection is necessary for five reasons, which are described in detail

below: (i) process identification, (ii) timeout enforcement, (iii) logging,

(iv) exit status report and (v) signal handling.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#!/usr/bin/env bds

// Step 1: Parallel processing of input files
string[] outs // Define a list of strings
for(int i=0 ; i < 100 ; i++) {
 in := “input_$i.file”
 out := “output_$i.file”
 task (out <- in, cpus=2, timeout=6*HOUR) {
 sys myProcess $in > $out
 }
 outs.add(out) // Add all output files here
}
wait // Optional: Wait for all tasks to finish

// Step 2: Process all outputs from previous step
mainOut := “main.txt”
mainIn := outs.join(‘ ‘) // Create a string with all names (space-separated)
task (mainOut <- outs, mem=10*G) {
 sys myProcessAll $mainIn > $mainOut
}

Listing 2. pipeline_2.bds program. A two-step pipeline with task dependencies. The first step (line 9) requires to run ‘myProcess’ command on a

hundred input files, which can be executed in parallel. The second step (line 19) processes the output of those hundred files and creates a single output file

(using fictitious ‘myProcessAll’ command). It should be noted that we never explicitly state which hardware we are using: (i) if the pipeline is run on a

dual-core computer, as each process requires 2 CPUs, one ‘myProcess’ instance will be executed at the time until the 100 tasks are completed; (ii) if it is

run on a 64-core server, then 32 ‘myProcess’ instances will be executed in parallel; (iii) if it is run on a cluster, then 100 ‘myProcess’ instances will be

scheduled and the cluster resource management system will decide how to execute them; and (iv) if it is run on a single-core computer, execution will fail

owing to lack of resources. Thus, the pipeline runs independent of the underlying architecture. The task defined in line 18 depends on all the outputs from

tasks in line 8 (‘mainOut5– outs’)

13

BigDataScript

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/1/10/2365800 by guest on 16 August 2022

ince
,
 -
up
-
Since
.
abstract syntax tree (
)
.
,
.
very
``
''
``
''
due
ince
 in order
ince
,
.
.
,

Process identification means that bds-exec reports its process ID

(PID), so that BDS can kill all child processes if the BDS script execution

is terminated for some reason (e.g. the Ctrl-C key is pressed at the

console).

Timeout enforcement has to be performed by bds-exec as many

underlying systems do not have this capability (e.g. a process running

on a server). When a timeout occurs, bds-exec sends a kill signal to all

child processes and reports a timeout error exit status that propagates to

the user terminal and log files.

Logging a process means that bds-exec redirects stdout and

stderr to separate log files. These files are also monitored by the

main BDS process, which shows the output on the console. As there

might be thousands of processes running at the same time and operating

systems have hard limits on the number of simultaneous file descriptors

available for each user, opening all log files is not an option. To overcome

this limit, BDS polls log file sizes, only opening and reading the ones that

change.

Exit status has to be collected to make sure a process finished success-

fully. Unfortunately, there is no unified way to do this, and some cluster

systems do not provide this information directly. By saving the exit status

to a file, bds-exec achieves two goals: (i) unified exit status collection

and (ii) exit status logging.

Signal handling is also enforced by bds-exec making sure that a

kill signal correctly propagated to all subprocesses, but not to parent

processes. This is necessary because there is no limit on the number of

indirect processes that a task can run, and Unix/Posix systems do not

provide a unified way to obtain all nested child processes. To be able to

keep track of all subprocesses, bds-exec creates a process group and

spawns the subprocess in it. When receiving a signal from the operating

system, bds-exec traps the signal and propagates a kill signal to the

process group.

3 RESULTS

To illustrate the use of BDS in a real-life scenario, we present an

implementation of a sequencing data analysis pipeline. This

example illustrates three key BDS properties: architecture inde-

pendence, robustness and scalability. The data we analyzed in this

example consist of high-quality short-read sequences (200� cover-

age) of a human genome corresponding to a person of European

ancestry from Utah (NA12877), downloaded from Illumina plat-

inum genomes (http://www.illumina.com/platinumgenomes).
The example pipeline we created follows current best practices

in sequencing data analysis (McKenna et al., 2010), which in-

volves the following steps: (i) map reads to a reference genome

using BWA (Li and Durbin, 2009), (ii) call variants using

GATK’s HaplotypeCaller and (iii) annotate variants using

SnpEff (Cingolani et al., 2012b) and SnpSift (Cingolani et al.,

2012a). The pipeline makes efficient use of computational re-

sources by making sure tasks are parallelized whenever possible.

Figure 3 shows a flowchart of our implementation, while the

pipeline’s source code is available at ‘include/bio/seq’ directory

of our project’s source code (https://github.com/pcingola/

BigDataScript).
Architecture independence. We ran the exact same BDS pipe-

line on (i) a laptop computer; (ii) a multi-core server (24 cores,

256GB shared RAM); (iii) a server farm (5 servers, 2 cores each);

(iv) a 1200-core cluster; and (v) the Amazon AWS Cloud com-

puting infrastructure (Table 1). For the purpose of this example

and to accommodate the fact that running the pipeline on a

laptop using the entire dataset would be prohibitive, we limited

our experiment to reads that map to chromosome 20. The

Fig. 1. BDS report showing pipeline’s task execution timeline

Fig. 2. Execution example. (A) Script ‘pipeline.bds’. (B) The script is

executed from a terminal. The GO executable invokes main BDS, written

in JAVA, performs lexing, parsing, compilation to AST and runs AST.

(C) When the task statement is run, appropriate checks are performed.

(D) A shell script ‘task1.sh’ is created, and a bds-exec process is

fired. (E) bds-exec reports PID, executed the script ‘task1.sh’ while

capturing stdout and stderr as well as monitoring timeouts and OS

signals. When a process finishes execution, the exit status is logged

14

P.Cingolani et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/1/10/2365800 by guest on 16 August 2022

Since
in order
,
-
since
In order
-
-
-
-
1
s
x
http://www.illumina.com/platinumgenomes
,
,
,
https://github.com/pcingola/BigDataScript
https://github.com/pcingola/BigDataScript
:
-

architectures involved were based on different operating systems

and spanned about three orders of magnitude in terms of the

number of CPUs (from 4 to 1200) and RAM (from 8GB to 12

TB). BDS can also create a cluster from a ‘server farm’ by coor-

dinating raw SSH connections to a set of computers. This mini-

malistic setup only requires that the computers have access to a

shared disk, typically using NFS, which is a common practice in

companies and university networks.

In all cases, the overhead required to run the BDS script itself

accounted for52ms per task, which is negligible compared with

typical pipeline runtimes of several hours.
Robustness. To assess BDS’s robustness, we ran the pipeline on

a cluster where �10% of the nodes have induced hardware fail-

ures. As opposed to software failures, which are usually detected

by cluster management systems, hardware node failures are typ-

ically more difficult to detect and recover from. In addition, we

elevated the cluster load to 495% to make sure the pipeline

was running on less than ideal conditions. As shown in

Table 1, the pipeline finished successfully without any human

intervention and required only 30% more time than in the

ideal case scenario because BDS had to rerun several failed

tasks. This shows how BDS pipelines can be robust and recover

from multiple failures by using lazy processing and absolute seri-

alization mechanisms.
Scalability. To assess BDS’s scalability, we ran exactly the

same pipeline on two datasets that vary in size by several

orders of magnitude (Table 2): (i) a relatively small dataset

(chromosome 20 subset, �2GB) that would typically be used

for development, testing and debugging and (ii) a high-depth

whole-genome sequencing dataset (over 200� coverage, roughly

1.5 TB).

4 DISCUSSION

We introduced BDS, a programming language that simplifies

implementing, testing and debugging complex data analysis pipe-

lines. BDS is intended to be used by programmers in a similar

way to shell scripts, by providing ‘glue’ for several tools to ensure

that they execute in a coordinated way. Shell scripting was popu-

larized when most personal computers had a single CPU and

clusters or clouds did not exist. One can thus see BDS as extend-

ing the hardware abstraction concept to data-center level while

retaining the simplicity of shell scripting.

BDS tackles common problems in pipeline programming by

abstracting task management details at the programming lan-

guage level. Task management is handled by two statements

(‘task’ and ‘wait’) that hide system architecture details, leading

Table 1. Architecture independence example

System CPUs RAM Notes

Laptop (OS.X) 4 8GB

Server (Linux) 24 256GB

Server farm (ssh) 16 8Gb Server farm using 8 nodes, 2 cores each.

Cluster (PBS Torque) 1200 12 TB High load cluster (over 95%).

Cluster (MOAB) (Random failures) 1200 12 TB High load cluster (over 95%). Hardware induced failures.

Cloud (AWS+SGE) Inf. Inf. StarCluster, 8m1.large instances.

Notes: Running the same BDS-based pipeline, a sequence variant calling and analysis pipeline, on the same dataset (chr20) but different architectures, operating systems and

cluster management systems.

Fig. 3. Whole-genome sequencing analysis pipeline’s flow chart, showing

how computations are split across many nodes

Table 2. Scaling dataset sized by a factor of �1000

Dataset Dataset size System CPUs RAM

chr20 2GB Laptop (OS.X) 4 8GB

Whole genome 1.5 TB Cluster (MOAB) 22000 80 TB

Notes: The same sample pipeline run on dataset of 2GB (reads mapping to human

chromosome 20) and 1.5 TB (whole-genome data set). Computational times vary

according to system’s resources, utilization factor and induced hardware failures.

15

BigDataScript

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/1/10/2365800 by guest on 16 August 2022

3
,
``
''
less than
to
In order
approximately
over
;
-
,
 very
X
``
''

to cleaner and more compact code than general-purpose lan-
guages. BDS also provides two complementary robustness mech-
anisms: lazy processing and absolute serialization.
A key feature is that being architecture agnostic, BDS allows

users to code, test and debug big data analysis pipelines on dif-
ferent systems than the ones intended for full-scale data process-
ing. One can thus develop a pipeline on a laptop and then run

exactly the same code on a large cluster. BDS also provides
mechanisms that eliminate many boilerplate programming
tasks, which in our experience significantly reduce pipeline de-

velopment times. BDS can also reduce CPU usage, by allowing
the generation of code with fewer errors and by allowing more
efficient recovery from both software and hardware failures.

These benefits generally far outweigh the minimal overhead
incurred in typical pipelines.

ACKNOWLEDGEMENTS

The authors would like to thank Hernan Gonzalez for imple-

menting bug fixes; Fernando Garcia Sanz for testing and con-
tributing to the documentation; and Louis Letourneau his
feedback on useful features in pipeline design.

Funding: This work was supported by NIH grants to R.S. (T2D-
GENES, U01 DK085545-01) and by an NSERC Discovery
grant to M.B. P.C. is a scholar of the McGill CIHR Systems
Biology training program. R.S. is a recipient of a Chercheur

Boursier award from the Fonds de la Recherche en Sant�e du
Qu�ebec and a New Investigator Award from the Canadian
Institutes of Health Research.

Conflict of Interest: none declared.

REFERENCES

Auwera,G.A. et al. (2013) From FastQ data to high-confidence variant calls: the

genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinformatics,

11.10. 11–11.10. 33.

Cingolani,P. et al. (2012a) Using Drosophila melanogaster as a model for genotoxic

chemical mutational studies with a new program, SnpSift. Frontiers in genetics,

3, 35.

Cingolani,P. et al. (2012b) A program for annotating and predicting the effects of

single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila

melanogaster strain w1118; iso-2; iso-3. Fly, 6, 80–92.

Feldman,S.I. (1979) Make—a program for maintaining computer program.

Software, 9, 255–265.

Goodstadt,L. (2010) Ruffus: a lightweight python library for computational pipe-

lines. Bioinformatics, 26, 2778–2779.

K€oster,J. and Rahmann,S. (2012) Snakemake—a scalable bioinformatics workflow

engine. Bioinformatics, 28, 2520–2522.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25, 1754–1760.

McKenna,A. et al. (2010) The genome analysis toolkit: a MapReduce framework

for analyzing next-generation DNA sequencing data. Genome Res., 20,

1297–1303.

Napolitano,F. et al. (2013) Bioinformatic pipelines in Python with Leaf. BMC

Bioinformatics, 14, 201.

Parr,T. (2007) The Definitive ANTLR Reference: Building Domain-specific

Languages. Pragmatic Bookshelf Raleigh, NC.

Reynolds,J.C. (1993) The discoveries of continuations. LISP Symbol. Comput., 6,

233–247.

Sadedin,S.P. et al. (2012) Bpipe: a tool for running and managing bioinformatics

pipelines. Bioinformatics, 28, 1525–1526.

Zuk,O. et al. (2014) Searching for missing heritability: designing rare variant asso-

ciation studies, Proc. Natl Acad. Sci.s, 111, E455–E464.

16

P.Cingolani et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/1/10/2365800 by guest on 16 August 2022

very

