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ABSTRACT

Multi-user multiple-input multiple-output (MU-MIMO) is the lat-
est communication technology that promises to linearly increase
the wireless capacity by deploying more antennas on access points
(APs). However, the large number of MIMO antennas will generate
a huge amount of digital signal samples in real time. This imposes
a grand challenge on the AP design by multiplying the computa-
tion and the I/O requirements to process the digital samples. This
paper presents BigStation, a scalable architecture that enables real-
time signal processing in large-scale MIMO systems which may
have tens or hundreds of antennas. Our strategy to scale is to exten-
sively parallelize the MU-MIMO processing on many simple and
low-cost commodity computing devices. Our design can incremen-
tally support more antennas by proportionally adding more com-
puting devices. To reduce the overall processing latency, which is
a critical constraint for wireless communication, we parallelize the
MU-MIMO processing with a distributed pipeline based on its com-
putation and communication patterns. At each stage of the pipeline,
we further use data partitioning and computation partitioning to in-
crease the processing speed. As a proof of concept, we have built a
BigStation prototype based on commodity PC servers and standard
Ethernet switches. Our prototype employs 15 PC servers and can
support real-time processing of 12 software radio antennas. Our re-
sults show that the BigStation architecture is able to scale to tens to
hundreds of antennas. With 12 antennas, our BigStation prototype
can increase wireless capacity by 6.8× with a low mean process-
ing delay of 860µs. While this latency is not yet low enough for
the 802.11 MAC, it already satisfies the real-time requirements of
many existing wireless standards, e.g., LTE and WCDMA.
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1. INTRODUCTION
The proliferation of mobile devices like tablets and smartphones,

along with many data-intensive applications, has created tremen-
dous demands for high-speed wireless communication. It has been
predicted that the amount of net traffic carried on wireless (e.g., Wi-
Fi and 3G/4G) will exceed the amount of wired traffic by 2015 [9].
To satisfy this demand, next-generation wireless networks need to
be engineered with a capacity matching their wired counterpart,
e.g., to deliver giga-bits per second of throughput to each network
user just like existing Ethernet.

One way to get more wireless capacity is to use more spectrum.
However, it is well understood that wireless spectrum is a scarce re-
source and also shared among all wireless transmitters. Therefore,
the capacity improvement from adding spectrum is still limited,
and it is hard to keep up with traffic demands. A more promising
approach is to increase spectral efficiency with Multi-user MIMO

(MU-MIMO). MU-MIMO allows multiple users to transmit sig-
nals concurrently. With multiple antennas, MU-MIMO access point
(AP) will mesh the digital samples from all antennas together and
jointly decode data for each user (Figure 1(a)). By adding more an-
tennas to the APs, MU-MIMO has the potential to increase wireless
capacity significantly – linearly with the number of deployed anten-
nas. Indeed, the whole wireless industry is moving in this direction.
For example, the 4G (LTE) standard [1] has defined MU-MIMO op-
erations with eight antennas at the basestation, and the new Wi-Fi
standard, IEEE 802.11ac, also specifies up to eight antennas to pro-
vide a 1 Gbps data rate to up to four users simultaneously. Recent
literature further suggests the possibility of even larger-scale MU-
MIMO systems with tens to hundreds of antennas to support tens of
concurrent users [16–18]. However, how to build such a powerful
AP and how well MU-MIMO may work in practice remain open
research questions.
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Figure 1: An AP with many (MU-)MIMO antennas. (a) Tra-

ditional AP design: A central unit jointly processes all sample

streams from all antennas. (b) BigStation: Baseband sample

streams and computation are parallelized among many simple

processing units.

As the number of antennas on the AP increases, the demand for
MU-MIMO processing grows accordingly, which imposes a huge
challenge on the AP design. For example, an 802.11ac AP uses two
MIMO antennas and a 160 MHz wide channel to support a 1 Gbps
link to one user. To support 20 simultaneous 1 Gbps users, the
same AP would need to have 40 antennas 1. Collectively, these 40
antennas generate digital samples at 200 Gbps in real time, which
would require the AP to have a processing capability of multiple
trillions of operations per second for MU-MIMO decoding (Sec-
tion 2.2). This, however, is far beyond the capability of any ex-
isting single computing device (i.e., single processor or accelera-
tion chip). Therefore, a scalable MU-MIMO system should ex-
plore parallelism in signal processing and employ an architecture
to distribute the computation modules effectively among a number
of simple processing units.

In this research, we propose such a scalable architecture, named
BigStation, which extensively parallelizes the MU-MIMO process-
ing across many simple and low-cost commodity computing de-
vices (Figure 1(b)). Our design can incrementally scale out to sup-
port more MIMO antennas by proportionally adding more process-
ing units and the interconnecting bandwidth. To reduce the over-
all processing latency, which is critical for wireless communica-
tion, we parallelize the MU-MIMO processing with a distributed
pipeline based on its computation and communication patterns. At
each stage of the pipeline, we further use data partitioning and com-

putation partitioning to exploit the parallelism inside a processing
unit as well as across multiple units.

As a proof of concept, we present the design and implementa-
tion of BigStation based on commodity PC servers and standard
Ethernet switches. Besides serving as an instantiation of our scal-
able architecture, our exploration also provides a first study toward
a large-scale software radio based centralized wireless infrastruc-
ture [2, 8], which holds the promise of reducing the cost and im-
proving the efficiency of existing wireless networks. We have built
a BigStation prototype with 15 PC servers connected to an 1/10Gb
Ethernet switch, and software radio front-ends supporting 12 an-
tennas. We have evaluated our prototype, and our main findings
are:

• The BigStation architecture is scalable. Our benchmarks and
analysis show that BigStation readily supports a few dozens
of antennas with current mid-range PC servers. With more
powerful high-end servers, we can scale BigStation to 100
antennas.

1As we will show later, the AP may need even more than 40 anten-
nas to avoid channel hardening [11].

• With the distributed pipeline architecture, BigStation has a
low mean end-to-end processing delay of 860 µs. While this
latency may not be low enough to implement 802.11-type
MAC layer acknowledgment, it already satisfies the real-time
requirements for many existing wireless standards, e.g., LTE
and WCDMA.

• The capacity of a MU-MIMO system does not scale linearly
if the number of the AP antennas (M ) equals the sum of client
antennas (N ). The capacity may even decrease as N grows
large due to wireless channel hardening [11]. However, the
MU-MIMO capacity does scale linearly if the AP has more
antennas (M > N ). With 12 antennas, our BigStation proto-
type can support 9 (M = 1.4N ) concurrent transmitters and
increase the wireless capacity by 6.8× compared to a single-
antenna radio.

The rest of the paper is organized as follows: Section 2 outlines
MU-MIMO background and the system design challenges when the
number of antennas grows large. We discuss our parallelization
principles in Section 3. Section 4 presents the distributed pipeline
architecture of BigStation. In Section 5, we apply our BigSta-
tion design principles in a system based on PC servers. Section 6
presents the implementation details and Section 7 evaluates our pro-
totype. We discuss related work in Section 8 and Section 9 con-
cludes the paper.

2. BACKGROUND

2.1 Multi-user MIMO
In a MU-MIMO system, a multi-antenna access point (AP) can

provide simultaneous links to many independent clients over the
shared wireless medium. Let M denote the number of antennas
at the AP and N the total aggregate number of antennas from all
active clients. As long as N ≤ M , the MU-MIMO system can sup-
port up to N concurrent data streams, potentially achieving N times
the capacity gain over single-antenna systems for the same channel
width. In contrast, a single-user MIMO system can serve only one
client at a time, where the capacity gain is bounded by the number
of antennas at the client, which can be far smaller than N . We as-
sume the MU-MIMO system is based on OFDM, the most popular
wireless communication technology. OFDM subdivides the chan-
nel into many narrow orthogonal subcarriers. Since each subcarrier
is narrow, its channel can be considered flat fading.

In the uplink direction, all N antennas at the clients will simulta-
neously transmit symbols to the AP. These concurrent symbols add
up at each of the M receiving antennas. Let yk

i (t) denote the re-
ceived signal on antenna i on subcarrier k. Let Y k(t) be the vector
[yk

1 , y
k
2 , · · · , y

k
M ]T . We have

Y k(t) = HkXk(t),

where Xk(t) = [xk
1 , x

k
2 , · · · , x

k
N ]T is the vector of transmitted

symbols, and Hk is the M × N channel matrix on subcarrier k.
Hereafter, for simplicity, we may omit the superscript k when there
is no ambiguity. To decode each xj , the AP needs to first com-
pute the pseudo-inverse of H , H+ = (H∗H)−1H∗. Then, the AP
should multiply H+ with the received signal vector Y (t) to obtain
the transmitted symbols X(t), as H+H = I . This operation is
called spatial demultiplexing, where receiver antennas collectively
recover each symbol stream transmitted by each sender antenna.
Finally, the AP will feed these spatial streams through a channel
decoder, e.g., Viterbi or Turbo decoder, to decode the information
bits.
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Figure 2: A typical frame format for MU-MIMO transmis-

sions. Each transmitter will send an orthogonal pilot symbol

for wireless channel measurement. After that, all data symbols

are transmitted together.

In the downlink direction, the M AP antennas will simultane-
ously transmit to the N antennas at the clients. Similar to the
uplink operations but reversed, the AP first encodes the informa-
tion bits with a forward error correction (FEC) code (channel en-
coding). It also computes a pseudo-inverse of the channel matrix
H , H+ = H∗(HH∗)−1. Then, for every outgoing symbol (after
channel encoding), the AP performs precoding by multiplying the
symbol with the channel inverse,

X ′(t) = H+X(t).

and transmits the precoded symbols instead. This way, the N re-
ceiving antennas will just receive the data symbols targeted at them-
selves, while the interference is canceled out as

Y (t) = HX ′(t) = HH+X(t) = X(t).

This decoding and precoding method is called zero-forcing, as it ef-
fectively removes the mutual interference among concurrent trans-
missions.

In a practical MU-MIMO system, transmissions are grouped into
frames, as shown in Figure 2. Each frame has a preamble before the
data symbols. During this preamble portion, each sender can trans-
mit a known pilot symbol orthogonally for the receivers to learn the
wireless channel H .

Although MU-MIMO is well-understood in information theory,
only small-scale MU-MIMO (i.e., M < 10) systems have been
implemented recently [6, 19] and adopted in wireless standards,
e.g., 802.11ac [4], LTE [1], and WiMax. However, large-scale
MU-MIMO setups, with tens or even hundreds of antennas, remain
largely unexplored. One important reason is that, as the number of
antennas increases, the computation requirement grows multiplica-
tively, and may far exceed the capability of a single computing de-
vice. Indeed, this challenge has motivated previous works [12, 18]
to settle for a simpler algorithm (conjugate processing) to scale,
but at the expense of significant performance loss. For example,
as reported in [18], the capacity may be reduced by a factor of 4
compared to when using the aforementioned zero-forcing method.
In the next subsection, we first outline the challenges for real-time
MU-MIMO processing, and then we present our approach to ad-
dress this challenge by parallelizing the zero-forcing MU-MIMO
computation across many processing units.

2.2 Challenges for real-time MU-MIMO pro-
cessing

From the above discussion, we can see that a MU-MIMO AP
needs to handle a significant amount of signal processing. With
more concurrent users supported, the computation load and the in-
ternal datapath bandwidth requirement grow multiplicatively. In the

following, we study the magnitude of such computation and com-
munication requirements in a MU-MIMO AP.

Inside a high-speed digital wireless communication system, each
antenna will generate (or consume) a fairly large amount of high-
fidelity digital samples. Depending on the channel width and the
physical layer (PHY) design, this number may range from 416 Mbps
(802.11g, 20 MHz channel) to 5 Gbps (802.11ac, 160 MHz chan-
nel), per antenna. If the AP has M antennas, the aggregate data rate
of digital samples will be simply multiplied by M . For example,
802.11ac uses 2× 2 MIMO over 160 MHz of wireless spectrum to
deliver one giga-bit-per-second (Gbps) wireless link. To support 20
concurrent 1 Gbps wireless users, a MU-MIMO AP needs to have
at least 40 antennas. The aggregate volume for the sample streams
would exceed 200 Gbps.

Such a large amount of digital samples requires substantial com-
putation to process. Let R be the digital sample rate per antenna,
and W be the number of subcarriers in the wireless channel. Based
on the MU-MIMO operations described previously, we can esti-
mate the computational complexity as follows. Clearly, since we
need to support N data streams, the computation complexity for
the channel decoder is O(NR). For spatial demultiplexing, which
needs to compute a matrix vector multiplication, the complexity
is O(NMR). The complexity for channel inversion, which must
be calculated for every frame, is O(MN2W/Tf ), where Tf is the
transmission time of a frame. To get a sense of how many cycles
are actually needed, we can do some back-of-the-envelope calcula-
tions for the above 40-antenna MU-MIMO case. According to the
802.11ac specification, when the channel width is 160 MHz, we
have W = 468 and R ≈ 5 Gbps. We also have N = M = 40, to
support 20 concurrent 1 Gbps users. On the uplink, decoding a sin-
gle stream using a Viterbi decoder takes approximately 137 GOPS
(operations per second) by one estimate [14]. Multiplying by the
number of antennas, the channel decoding part requires approx-
imately 5.5 TOPS in total. Spatial demultiplexing adds another
1.5 TOPS. If we assume a 2 ms frame transmission time, channel
inversion needs another 269 GOPS. Adding them up, the AP will
need a processing capability to support as many as 7.27 TOPS! The
downlink is less demanding, but the estimate is still 1.7 TOPS.

These numbers are simply astronomical, far beyond the capabil-
ity of a single piece of processing hardware today (or even in the
near future given existing technology trends). As one data point for
reference, state-of-the-art multi-core CPUs or DSPs on the market
can only process on the order of 50 GOPS per chip. To build a MU-
MIMO system to handle this kind of computation load and possibly
scale up further, it will require serious thinking in the signal pro-
cessing architecture and the system design, as well as non-trivial
engineering efforts.

3. DESIGN PRINCIPLES
Our goal is to build a scalable AP architecture that can support a

large number of MIMO antennas, say tens or hundreds. Our strat-
egy to scale is to parallelize the MU-MIMO processing into many
small pieces, each of which can fit into an available computing de-
vice (or a processing unit). As far as our architecture is concerned,
such a computing device can be a general purpose processor (i.e.,
CPU), DSP, FPGA, or even a custom-designed ASIC. However, as
we will show later, the specific properties of MU-MIMO and wire-
less communications have placed fundamental constraints on how
we can parallelize the processing. In this section, we start with a set
of principles that guide our practical system design.

Distributed pipeline. One simple idea for parallelization is to par-
tition the sample streams into blocks and send each block to a dif-
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ferent processing unit for processing. Let us assume the sample
block lasts for tb seconds, and the module needs tp time to pro-

cess. Then, deploying ⌈
tp

tb
⌉ processing units will provide enough

capacity to process all sample streams. This simple solution sounds
reasonable, as wireless transmissions are naturally separated into
frames (Figure 2). In practice, however, sending a whole frame to
a single processing unit can introduce a prohibitively long delay
for real-time wireless communication. Taking the example we have
used in Section 2.2, it can easily take 1s to process a single frame
with a top-of-the-line processor (e.g., an Intel 8-core CPU clocked
at 3 GHz), while actual wireless protocols require a processing la-
tency two or three orders of magnitude smaller, e.g., 10 ms delay
for WCDMA and 3 ms for LTE.

Given this delay concern, our first design principle should be:
The processing functions of a frame should be parallelized in a dis-

tributed pipeline. At each stage of the pipeline, the computation is
further distributed across multiple processing units. Since each unit
may execute only a small portion of the computing task, the overall
processing time is significantly reduced.

Data partitioning and computation partitioning. The ideal way
to parallelize computation among multiple processing units at a
given stage of the pipeline is data partitioning, which divides the
digital samples into multiple independent data sets. Each data set
is then sent to a distinct unit to be processed individually, until the
results from all sets reach the barrier at the next pipeline stage and
are synchronized there. In a MU-MIMO system, there are many op-
portunities to exploit parallelism through data partitioning: At the
channel inversion and spatial demultiplexing stages, we can parti-
tion samples by subcarrier, each of which can be processed individ-
ually; while at the channel decoding stage, symbols belonging to
one spatial stream are grouped together and processed by a sepa-
rate channel decoder.

Data partitioning itself can provide enough parallelism as long
as the individual data set can be processed in one processing unit
in real time. However, if the computation for one data unit is still
too much (e.g., to invert a very large channel matrix with a dimen-
sion of 500×500), further computation partitioning should be per-
formed to take advantage of any parallelization opportunity within
the processing unit or across multiple units. In Section 5, we will
discuss in detail how to partition the computation of MU-MIMO
signal processing algorithms.

4. DISTRIBUTED PIPELINE
Figure 3 illustrates the distributed pipeline architecture of BigSta-

tion. The first stage in the pipeline consists of front-side modules

(FS) which are directly attached to the antennas. The second stage
is composed of channel inversion modules (CI) where the pseudo-
inverse of the channel matrix is computed. The third and fourth
stages include spatial demultiplexing modules (SD) and channel de-

coding modules (CD) for the uplink, or a set of precoding modules

(PR) and channel encoding modules (CE) for the downlink. Each
stage may further comprise multiple modules for parallel process-
ing. The actual number of modules at one stage is flexible and
configurable, depending on the computational load – a function of
the MU-MIMO configuration and the signal processing algorithms
used – as well as the processing capability of the hardware running
these modules. Therefore, the architecture is highly scalable and
agnostic to implementation choices. Each stage can scale horizon-
tally, as the number of antennas or clients increases, or as the MU-
MIMO algorithms evolve to be more computationally demanding.

In the uplink pipeline (Figure 3(a)), the FS module performs
time synchronization to find the starting point of a frame. Then,
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Figure 3: BigStation Architecture. (a) Up-link; (b) down-link.

it identifies each OFDM symbol and removes the time-domain re-
dundancy, i.e., the cyclic-prefix (CP). Next, it translates the time-
domain symbols into frequency-domain symbols via FFT, and re-
moves the frequency-domain redundancy, i.e., the guard subcarri-
ers. The pilot symbols are then sent to the CI modules for com-
puting the pseudo-inverse of the channel matrix. Depending on the
channel matrix dimension and the hardware processing power, each
CI module may handle one or multiple subcarriers. Data symbols
are directly sent to the SD modules. Similarly, the symbols are
partitioned by subcarrier, and each SD module may handle only a
subset of subcarriers. After obtaining the channel inverse from the
CI modules, the SD modules extract each spatial stream from the
input symbols. Symbols belonging to the same spatial stream are
sent to the same CD module. The CD modules are responsible for
mapping the symbols to soft bits and finally decode the original
information bits.

On the downlink (Figure 3(b)), the concurrent information bit-
streams are first encoded with FEC and then mapped to different
subcarriers at the CE modules. Symbols on each subcarrier are
then partitioned across different PR modules, where the symbols
are precoded with the channel inverse – computed at the CI modules
above. The precoded symbols on all subcarriers are collected at the
FS modules, which then perform an IFFT and add CP to generate
the time-domain OFDM symbols. Finally, all FS modules control
the radio interfaces to transmit the waveforms simultaneously on all
BigStation antennas.

5. BigStation ON PC SERVERS
As a proof of concept, we develop a BigStation system on a clus-

ter of commodity servers. Besides producing an instantiation of
our scalable architecture, our exploration also provides a first feasi-
bility study of software radio based centralized wireless infrastruc-
ture [2, 8]. We use commodity multi-core x86 servers as physical
processing units and standard Ethernet switches to connect them.
Each PC server can host one or more signal processing modules as
described in the previous section. Radio front-ends (antennas) are
attached to the servers that run the FS modules. All signal process-
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ing algorithms run in software on the PC servers in real time. In
a sense, our BigStation implementation can be considered a large-
scale PC-based software radio for MU-MIMO.

Building upon standard and commodity hardware components
makes our system easy to scale. Not only can we incrementally add
more servers and switches to meet growing capacity requirements,
but also we align with current technology trends and take advan-
tage of the latest offerings. Naturally, the BigStation architecture
may be implemented using other technologies as well, e.g., DSP
or FPGA chips as the physical processing units. Given the limited
processing power on each DSP or FPGA chip, however, we believe
similar parallelized structures and methods will be needed. There-
fore, the insights of our design and implementation will be general
and valuable for making large-scale MU-MIMO a reality.

In this section, we present the detailed design. Specifically, we
focus on exploiting parallelism to speed up processing at each stage
of the distributed pipeline. Our strategy to parallelize involves data
partitioning across servers (§ 5.1) and computation partitioning in-
side a server (§ 5.2) as well as across servers (§ 5.3).

5.1 Data partitioning
Data partitioning provides a simple method to leverage paral-

lelism among multiple servers. As discussed earlier, in a MU-
MIMO system, the channel inversion and spatial demultiplexing
steps can be performed separately for each subcarrier, while the
channel decoder should operate on symbols on all subcarriers that
belong to the same spatial stream. That said, each spatial stream
may be fed to a different channel decoder and decoded individu-
ally. Therefore, we partition the symbols by subcarrier at the chan-
nel inversion and demultiplexing stages, but by spatial stream at the
channel decoding stage.

Data partitioning significantly reduces the computation and in-
ternal I/O requirements, since each server only needs to handle a
small portion of the data now. With subcarrier partitioning, the I/O
bandwidth required for one SD module (or a CI module) is RM

W
,

when serving M antennas. Take 802.11ac as an example, which
has W = 52 subcarriers on a 20 MHz channel (R = 416 Mbps)
or W = 468 subcarriers on a 160 MHz channel (R = 5 Gbps).
Each subcarrier only consumes 10 Mbps of the bandwidth per an-
tenna. With today’s Ethernet technology (10 Gbps, and advancing
to 40 Gbps), the data volume is hardly a bottleneck until M >
1000. With spatial stream partitioning, each decoding module may
only handle one spatial stream. Even with a 160 MHz wide chan-
nel, the required bandwidth (∼ 5 Gbps) may also be accommodated
easily. Accordingly, the computational requirement is reduced by
up to a factor of W for each CI or SD module and a factor of N for
each CD module.

5.2 Computation partitioning inside a server
Today’s high-end PC servers are predominantly built on shared-

memory multi-core architecture. Therefore, we can further explore
parallelism across multiple cores to speed up MU-MIMO signal
processing. In this subsection, we study the three core signal pro-
cessing algorithms used in a MU-MIMO system: 1) matrix multi-
plication, 2) matrix inversion, and 3) channel decoding, e.g., Viterbi.

Matrix multiplication. The basic idea to parallelize matrix multi-
plication is to divide the matrices into a group of small blocks, and
assign the multiplication of each block to a distinct CPU core. For
example, to compute H∗H (an intermediate step in the channel in-
version, see §2.1) with two cores, we can divide H = (H1H2)

T
.

continueous stream of convolutionally coded bits 

Overlapped bits: 2D

Decoded 

bits: L

inter-block

gap

B

Figure 4: The parallelized Viterbi decoder.

Then, the result matrix

R = H∗H = (H∗

1H
∗

2 )

(

H1

H2

)

= (H∗

1H1 +H∗

2H2) .

Each H∗

i Hi operation can be assigned to a different CPU core and
is much less complex compared to the original matrix multiplica-
tion.

Matrix inversion. The direct way to invert a square matrix is to
use the Gauss-Jordan method. Its complexity grows with O(N3),
where N is the size of each dimension of the matrix. Again, we
can partition the computation by assigning different sets of rows to
different CPU cores. Each core can perform Gaussian elimination
on these rows independently [7]. With N units, the computational
complexity can be reduced to O(N2).

Channel decoding. Parallelizing the decoding algorithm is straight-
forward for block-based channel codes, e.g., Turbo and LDPC (Low-
Density Parity Check) codes. In these coding schemes, bits are di-
vided into blocks, e.g., of a few hundreds to thousands of bits, and
are encoded separately. We can simply assign each coded block to
a separate CPU core (or a separate PC server) and achieve a higher
aggregate throughput. However, parallelization becomes tricky for
codes that work on a continuous bit stream, for example, the con-
volutional code widely used in wireless communication standards.
Consequently, the corresponding decoding algorithm, i.e., Viterbi
decoding, cannot be parallelized naively as it needs to decode over
a continuous bit stream as well. In this paper, we develop a trick
that artificially partitions the bit stream into independent blocks of
L bits, and assigns each block to a different core (or a separate PC
server). The negative effect of this artificial partition is that it breaks
the convolutional property of the code and may significantly reduce
the decoding performance at the edges of blocks. Fortunately, this
issue can be mitigated by overlapping the blocks as shown in Fig-
ure 4. Each block contains a prefix and a suffix of D bits each,
which help the decoding path in between to converge to optimum.
The Viterbi decoder processes the entire block, but only outputs the
bits between the prefix and the suffix. According to the Viterbi the-
orem, when D is large enough, i.e., D ≥ 5 ∗ K, where K is the
constraint length of the convolutional code (typically K = 7 as
in the 802.11 standard), with a probability close to 1, the decoded
bits from blocks are identical to those from processing the entire bit
stream [22].

We did further analysis to choose the right block size. Clearly, a
larger block size would be more efficient as it amortizes the over-
head of prefixes and suffixes, but a larger block also means a longer,
undesirable decoding latency. We therefore aim at fully utilizing the

computational power while keeping the block size as small as pos-

sible. This can be achieved if we keep the inter-block gap as small
as possible. The ideal value of this gap is zero, meaning that a new
block is scheduled on the same core right after the previous block is
finished. Assuming the coded bit-stream comes at a rate of u, a de-
coder module can process at a rate of v, and there are m processing
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units, the inter-block gap will be zero if

u
B

v
= mL.

This equation implies that during the processing of a block, exactly
m blocks worth of bits will arrive, and each processing core can
take a new block immediately after it finishes the current one. Tak-
ing B = L+ 2D, we have

L∗ =
2Du

mv − u
.

When the input rate is close to the processing capacity (i.e., u →
mv), L∗ will increase quickly. To prevent an unreasonable delay,
we choose a bound Lmax = 2048. With this upper bound, the
prefix and suffix overhead combined is less than 3%.

5.3 Computation partitioning across servers
If data partitioning does not provide enough parallelism for each

signal processing module to be executed on one PC server, we can
further parallelize the operations across multiple servers. This can
happen when M becomes very large – large enough that processing
the smallest data set (e.g., a single subcarrier) may still require more
than the processing power of a PC server.

Channel inversion. The parallel matrix inversion algorithm dis-
cussed previously can be used across servers, where we send sub-
sets of rows to different servers and each server can perform Gaus-
sian elimination in parallel. However, one difficulty is pivoting. In
Gaussian elimination, pivoting exchanges two rows, so that the di-
agonal entry used in elimination is nonzero and has, preferably, a
large magnitude. To pivot across servers is cumbersome, as it may
cause all servers to exchange information about their rows of data,
incurring a heavy overhead on the network. Fortunately, the chan-
nel matrix in MU-MIMO is Hermitian (i.e., H∗H) and pivoting is
not necessarily needed [7]. The servers only need to broadcast the
row that is used for elimination for each iteration. Since each row
will be sent at most once for one elimination iteration, the commu-
nication overhead is bounded by the size of the matrix.

Another concern for parallelizing matrix inversion across servers
arises from the need to synchronize among all servers at every elim-
ination iteration. Given the non-deterministic delays in Ethernet,
this could cause blocking in many servers and hold up the comple-
tion of channel inversion. However, these servers need to process a
series of matrices, one for each new incoming frame. With a care-
fully designed multi-threaded algorithm, a server can immediately
work on the next matrix if it is blocked on the current one. As a
consequence, the aggregate throughput will not be affected.

Spatial demultiplexing. As M grows, a PC server may not be able
to handle spatial demultiplexing for M antennas even on a single
subcarrier. If a server only has enough power to compute the mul-
tiplication of a K ×K matrix with a K-vector in real time, an SD
module in this system will only be able to handle K < M anten-
nas. Therefore, the computation of any xi should be separated to
⌈M
K
⌉ servers. We show how this can be done in Figure 7. The M

FS servers send y1, · · · , yM to the first group of ⌈M
K
⌉ SD servers.

Each SD server then computes a partial result for x1, · · · , xk, and
sends them to be further combined at another layer of servers. Re-
peatedly, we construct ⌈N

K
⌉ such groups to output all x1, · · · , xN .

The whole operation proceeds in two phases. In the first spread

phase, each FS server multicasts yi to the intermediate ( i−1

K
+1)th

servers in all ⌈N
K
⌉ groups. Each intermediate server then computes

the partial results for K spatial streams. In the second reduce phase,
the partial results are combined accordingly at another N servers to
generate the final xj .

y1 yk yM

s
p
re
a
d

re
d
u
c
e

x1 xk xNxN-k+1

Figure 5: Deep distributed pipeline for spatial demultiplexing

for an extremely large M . Some communication links are omit-

ted for clarity.

5.4 Putting it all together
To summarize, here is how the distributed processing pipeline is

constructed in BigStation:

Uplink:

• For pilot symbols after FFT, the FS server divides subcarriers
into W

ci
groups and sends each group to a distinct CI server,

assuming each server can handle ci subcarriers.

• For data symbols after FFT, the FS server divides subcarriers
into W

cs
groups and sends each group of symbols to a distinct

SD server, assuming each server can handle cs subcarriers.

• Each CI server performs channel inversion on the received
pilot bits and sends the result to the corresponding SD server.

• Each SD server separates the spatial streams from incoming
symbol streams, and sends symbols belonging to one spatial
stream to one CD server.

• Each CD server collects symbols from all subcarriers for one
spatial stream and performs channel decoding.

Downlink:

• Each CE server generates channel coded bits and maps them
onto symbols on each subcarrier. It divides subcarriers into
W
cs

groups and sends each group of symbols to a distinct PR
server, assuming each server can handle cs subcarriers.

• Each CE server also divides channel state information of all
subcarriers into W

ci
groups and sends each group to a distinct

CI server, assuming each CI server can handle ci subcarriers.

• Each CI server performs channel inversion on the received
channel state information and sends the precoding vectors to
the corresponding PR server.

• Each PR server performs precoding on incoming symbol streams
and sends symbols belonging to one spatial stream to a dis-
tinct FS server.

• The FS servers cooperatively transmit the precoded symbols
simultaneously.

In cases where a single server cannot handle the computation for
a single subcarrier (i.e., ci or cs < 1), the corresponding server
may be replaced by a deeper pipeline of servers as discussed in
Section 5.3.
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(a)

(b)
Figure 6: BigStation radio front-end built from Sora MIMO

kit. (a) Sora MIMO Kit. (b) BigStation radio front-end, con-

taining three Sora MIMO Kits.

6. IMPLEMENTATION

6.1 Hardware platform
For our study, we have used two commodity PC models. One is

a desktop PC with an Intel Core i7 3770 CPU and 8 GB memory
on an ASUS P8Z77-M motherboard. The second is a Dell server
with an Intel Xeon E5520 CPU (2.26 GHz, 4 cores) and 16 GB
memory. The desktop PCs are primarily used as front-side (FS)
servers and are connected to the software radio front-ends with mul-
tiple antennas. The radio front-end is based on the newly devel-
oped Sora MIMO Kit, as shown in Figure 6(a). Each Sora MIMO
Kit integrates a Sora radio control board (RCB [20]) and 4 phase-
coherent RF daughter boards, whose maximal operating bandwidth
is 20 MHz each. The RCB is connected to a PC with an external
PCIEx4 cable. We use 3 Sora MIMO kits to support 12 MU-MIMO
antennas (Figure 6(b)). These 3 kits are synchronized by an external
clock source.

The Dell servers are used as channel inversion (CI) or spatial
demultiplexing (SD) servers. We have 15 such servers in total, all
connected to a Pronto 3290 Ethernet switch, which has 48 1 Gbps
ports and 4 10 Gbps ports.

The FS servers also connect to the same switch. Ideally, all
FS servers should use 10 Gbps connections, since each FS server
would generate sample data at 1.6 Gbps (416 Mbps × 4 anten-
nas). Unfortunately, we do not have enough 10 Gbps ports on the
switch – three out of the four 10G ports are connected to CI and SD
servers (§ 7.2). Therefore, we use four 1 Gbps ports instead. All
our PC servers are running Windows Server 2008 R3.

6.2 Underlying software support

SIMD library. Our signal processing software is implemented us-
ing the signal processing library from Sora SDK [20], which has
been highly optimized for SIMD-capable Intel CPUs. We have ex-
tended the library to support parallel algorithms among multiple
cores (§5.2).

Table 1: Communication over multiple cores (Gbps).

# of cores Receive Send Receive & Send

1 5.9 9.2 2.4 (R) / 7.8 (S)
2 8.6 9.4 5.1 (R) / 7.0 (S)
4 9.2 9.4 5.9 (R) / 6.8 (S)

Parallelizing communication across cores. Besides the compu-
tation, the underlying software should also handle the communica-
tion among BigStation servers. This is especially critical for the
CI servers and the SD servers as they are required to receive/send
data from/to all FS servers. In the following, we focus on the CI
and SD servers. Since both CI and SD servers are equipped with
10 Gbps NICs, ideally we would like the server to be able to han-
dle full-speed traffic on both the uplink and the downlink, at a total
throughput of 20 Gbps. However, such an amount of data traffic
cannot be handled by a single CPU core in our PC server. As a
consequence, we need to further exploit multi-core parallelism to
handle network traffic as well.

We study the impact of using multiple cores on network commu-
nication experimentally. In our experiments, we let one SD server
receive 12 digital sample streams generated from all FS servers as
fast as possible. Since we are focusing on the communication per-
formance, we instruct the SD server to directly send the received
digital samples to a CD server without performing spatial demulti-

plexing.
Table 1 summarizes the results. Although we can send fast enough

to saturate the link (9.2 Gbps) with a single core, the receiving
throughput is only about 5.9 Gbps. Since now CPU is the bot-
tleneck, multiplexing sending and receiving on the same core may
reduce throughput in both directions and also cause huge unfair-
ness between the uplink and the downlink (Table 1 row 1, column
3). Using two CPU cores, we can almost achieve the full link speed
for either sending or receiving. However, with simultaneous send-
ing/receiving operations, the total throughput we can get in both
directions is 12 Gbps, despite the theoretical maximum of 20 Gbps.
We have carefully checked our code to avoid any interlocking be-
tween our sending and receiving procedures. Therefore, we believe
there are some interactions inside the Mellanox driver/NIC. Un-
fortunately, both the driver and the NIC are closed to us, which
prevents us from finding the exact reasons. Adding more cores for
communication does not improve the performance any further. This
is reasonable as now the NIC becomes the bottleneck. Therefore,
in our implementation, we use two threads, each of which is pinned
to one physical core, to handle incoming and outgoing traffic sepa-
rately.

Another potential issue for the SD server is incast TCP collapse.
This is because the SD server may need to receive data from many
TCP sessions from the FS servers. For example, in our case, there
are 12 concurrent TCP connections synchronized at one switch port.
The short-term burstiness from many TCP connections may over-
flow the switch buffer, causing intensive packets losses, TCP re-
transmissions, and even TCP timeouts. This potential incast prob-
lem can have significant adverse impacts on the performance of
BigStation. While other researchers have suggested various ways
to solve the TCP incast problem by modifying TCP or adding ECN
tuning on the switch [23], we adopt a simple application-level flow
control mechanism to avoid this problem. In standard TCP, the re-
ceiving side maintains a window that controls how many packets
can be sent to this server without receiving an ACK. The window
size is carefully chosen so that it will avoid buffer overflow for the
underlying switch, but at the same time deliver good throughput.
Since BigStation uses a dedicated Ethernet and all traffic patterns
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Table 2: Comparison of different locking mechanisms in a SD

server. There are four computing threads and the processing

throughput is measured by MSps (sample-per-second).

naive write-back lock-free

62.2 78.15 81.45

are known, the receiving server can simply distribute its window
equally among all of its upstream servers. Since the number of
packets in aggregate will not exceed the switch buffer capacity, the
incast problem is avoided. Further, our application-level flow con-
trol helps to keep the Ethernet switch buffer occupancy at a very low
level, and therefore reduce the Ethernet communication latency.

Lock-free computing structure. After the receiving thread reads
data from the network, it will put them into local buffers. Then, the
computing threads need to read data from all input queues and com-
pute a result for each of the output queues. How should the comput-
ing threads interact with these data queues? Figure 7 illustrates two
possible ways to connect the servers and queues. In Figure 7(a),
the computing thread can read symbols from all input queues; once
it gets a data block from one queue, it computes partial results for
all output queues, e.g., an SD server calculates the products of an
entire column of H+ and the input symbol block of Y . However,
this may create heavy contention for the output queues as multi-
ple computing threads may try to write to the same output queue at
the same time. While the output queues can be protected by locks,
these locks will be heavily contended for.

A carelessly implemented locking mechanism may significantly
reduce the system performance. For example, in our initial imple-
mentation, the computing thread would lock a buffer in the output
queue, perform the computation, write back the results in the buffer,
and then release the lock. We call this scheme naive locking. Naive

locking significantly reduces the system processing throughput as it
locks the buffer for an unnecessarily long period.

A better scheme is using write-back locks. In this scheme, the
computing thread calculates the result in a temporary buffer first.
Only after the computation of an entire data block does the thread
acquire the lock on the output queue, write back the results, and re-
lease the lock. This approach requires a computing thread to main-
tain an additional buffer for each output queue, but will greatly re-
duce the locking time.

The best approach, however, is to avoid locks completely. As
shown in Figure 7(b), while each computing thread is still able to
read from all input queues, it is only responsible for updating a
small group of output queues. Since each output queue is assigned
to only one computing thread, contention is avoided.

Table 2 compares the processing throughput of an SD server with
different locking schemes. We can see the lock-free scheme has the
best performance, while naive locking can reduce the processing
throughput by 23%.

Thread and core allocation. A final question to ask is how we as-
sign the computing threads to CPU cores. We have tried a few dif-
ferent configurations. We find that mixing the computing and com-
munication threads on one CPU core, or on two hyper-threading
cores that share the same physical core, would significantly reduce
the communication throughput. This is because both the computing
and the communication threads will compete fiercely for the CPU
resource. This result leads to our first rule: Isolating the communi-

cation and computing threads on different physical cores. Second,
we find that assigning only one computing thread to a core has the
best performance. This is reasonable as our computing thread has
been highly optimized to maximize CPU utilization. Therefore, as-

comm. thrd comp. thrd queue

(a) (b)

Figure 7: Software pipeline in the processing server.

signing more threads to the same core will only incur additional
overhead (e.g., context-switching). Also, we find utilizing hyper-
threading for computing threads does not increase the overall pro-
cessing throughput. Nor does it decrease the performance. There-
fore, our second rule is: The number of computing threads should

be between the numbers of physical and hyper-threading cores that

are dedicated to computation.

6.3 Link layer operations
Our current BigStation prototype employs a very simple TDMA

MAC. Each TDMA time slot is 2 ms long and fits one frame. The
slot can be dynamically allocated to uplink or downlink transmis-
sions by a simple packet scheduler. For each uplink frame, all trans-
mitters need to send out an orthogonal training symbol (pilot) for
BigStation to learn the channel state information (CSI) (Figure 2).
Each training symbol is 8 µs long and contains a repeated pattern
like the 802.11 long training symbol (LTS), which can be used to
estimate the carrier frequency offset between each transmitter and
BigStation.

BigStation relies on channel reciprocity to obtain downlink CSI
from the uplink channel measurements. We use an approach similar
to that in [18] to calibrate the coefficients between the uplink and
downlink channels. Basically, an internal calibration is performed
first among all antennas on BigStation, after which an equivalent
downlink channel matrix can be derived from the uplink channel
measurements. This internal calibration is only needed once when
BigStation boots up. We omit the algorithm here and refer the in-
terested readers to [18] for the details.

BigStation maintains a database to store all CSI. Once a new
channel measurement is taken (e.g., through an uplink transmis-
sion), the database is updated. The CSI is removed after the chan-
nel coherence time. In this work, we manually set this time to
20 ms. We defer the dynamic estimation of the channel coherence
time to future work. When scheduling downlink MU-MIMO trans-
missions, all selected clients should have a fresh CSI record taken
within the coherence time.

7. EVALUATION

7.1 Micro-benchmarks
We first evaluate the capability of our existing servers for sig-

nal processing in BigStation. By benchmarking the server perfor-
mance, we try to answer the following question: how many servers

do we need to build a BigStation with a given capacity? Specif-
ically, we consider three example configurations: Medium scale,
100 Mbps to 6 users; 2) Large scale, Gbps to 10 users; and 3) Ultra-

large scale, Gbps to 50 users. The parameters of these three con-
figurations are listed in Table 3. We perform all our experiments
on the Dell servers with Intel Xeon E5520 CPUs (§6). Addition-
ally, for large scale and ultra-large scale settings, we also consider
another high-end server configuration with more CPU cores. For
example, the latest Dell server is equipped with 32 cores [3].
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Table 3: Example configurations of BigStation

Channel
width

W M
Rate per
spatial
stream

Medium scale 20 MHz 52 12 54 Mbps
Large scale 80 MHz 234 40 293 Mbps

Ultra-large scale 160 MHz 468 100 585 Mbps

Parallel algorithms. As discussed earlier, the complexity of chan-
nel inversion increases with O(N2M). Therefore, it is more likely
to become a bottleneck as M increases (and N increases accord-
ingly, i.e., N = M in the worst case). Figure 8(a) shows the pro-
cessing time of the channel inversion on a single CPU core with
different N values. Clearly, we can see that the processing time
increases quickly with N , although the absolute processing time is
actually affordable when N is modest (< 50). For example, when
N is 12, inverting a single channel matrix takes merely 10µs. Re-
call that only one channel inversion is computed for every frame.
So a single core is able to handle about 200 subcarriers, if the frame
length is 2 ms. When N is 40, the channel inversion time for a
single subcarrier increases to 236µs. Still using 2ms frames as an
example, a single core can handle 8 subcarriers. When N grows
to 100, the invertion time rises to 3.3 ms, and a single core is not
able to handle even one subcarrier in real time. Parallel processing
among multiple cores is then essential. Figure 8(b) shows the pro-
cessing time of inverting a single channel using multiple cores. We
can see that with more cores, the processing time is reduced propor-
tionally. For example, when there are four cores to invert a channel
matrix in parallel, the processing time for N = 100 can decrease
to 607µs. One 4-core PC server can handle 3 subcarriers.

Figure 9 shows the spatial demultiplexing throughput. With a
single core, the demultiplexing throughput for 10 spatial streams
from M = 10 antennas is around 4 Gbps, sufficient to support 50
subcarriers. The throughput, however, reduces to 888 Mbps and
400 Mbps, when M is 40 and 100 respectively. We can similarly
improve the processing speed with multiple cores. With 4 cores,
our server can speed up processing by 4 times to 3.2 Gbps or 8
subcarriers (M = 40) worth, and 1.6 Gbps or 1 subcarrier (M =
100).

We further evaluate our parallelized Viterbi algorithm in Fig-
ure 10. Similarly, the decoding throughput increases linearly with
the number of cores. With 4 cores, our server can deliver a through-
put of 283 Mbps.

Summary. Based on the above micro-benchmarks, we can extrap-
olate the number of servers needed to construct BigStation at dif-
ferent scales. We note that in all three example configurations, the
computation is the bottleneck. However, as discussed in §6.2, we
still need to allocate one or two cores on each server to handle the
network traffic. Table 4 summarizes the results.

Although our design can scale even with low-end, 4-core servers,
we have not considered the network cost. Indeed, we expect the cost
of network devices to be significant, but this issue can be mitigated
by upgrading servers. Given the existing trend of server technolo-
gies, we expect more cores to become available even for low-cost
commodity servers. With more cores per server, the number of total
required servers decreases proportionally, thereby reducing the cost
of network devices. All in all, we conclude that our architecture
can scale to tens to hundreds of antennas with very wide channel
widths.
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Figure 8: Processing time of matrix inversion. (a) Using a single

CPU core. (b) Using multiple cores.
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Table 4: # of servers to construct BigStation

4-core servers 32-core servers
CI SD CD CI SD CD

Medium scale 1 2 4 1 1 1
Large scale 15 30 80 2 4 10

Ultra-large scale 156 468 300 20 59 25
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BigStation

Figure 11: Layout of our testing environment. The BigStation

prototype is mounted on a mobile rack in the middle of a cu-

bicle. Clients are not marked as they move around in nearby

cubicles.

7.2 System performance

Testbed. We have built a medium-scale BigStation with 12 anten-
nas on our 15-server platform (§6.1). We deploy one CI server and
two SD servers – each SD server handles 26 subcarriers. All SD
and CI servers are connected to the 10G ports on the Pronto Ether-
net switch. We deploy a decoding server on each of the remaining
12 PC servers.

We test our prototype in a typical office environment with cubi-
cles. Figure 11 shows the layout of our testbed. We have also de-
ployed 9 single-antenna clients in nearby cubicles around BigSta-
tion. Since the clients are close to BigStation, the signal-to-noise
ratios (SNRs) between the client antennas and BigStation are high,
usually between 20 ∼ 30 dB.

Sum peak rate. The first question we ask is does large-scale MU-

MIMO even make sense? Can we indeed linearly scale wireless ca-
pacity with more antennas on BigStation? We let increasing num-
bers of clients send data packets to BigStation. Then, BigStation
tries to decode each spatial stream and finds out its peak rate, i.e.,
the maximal modulation rate it can support on each spatial stream.
Since we use 802.11a modulation rates, the peak rate is capped at
54 Mbps for each stream. For each experiment, we collect 500
frames.

In the first experiment, we always let M = N . This case is in-
teresting as it can fully utilize the antennas on BigStation. To do
so, we randomly pick N antennas from the 12 antennas on BigSta-
tion and use only these N sample streams to decode packets. To
our surprise, the sum peak rate of N spatial streams does not scale
as we expected (“dot” line in Figure 12). When N is small, i.e., 2
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Figure 13: Channel matrix condition number with different N ,

M = β N .

and 3, the capacity seems to increase linearly – with a small slope.
When N becomes larger, the sum peak rate remains unchanged
or even decreases! The reason behind this observation lies in the
random antenna selection for MU-MIMO operations in BigStation,
which induces wireless channel hardening [11]. In an M×N MU-
MIMO system, when N is large, the sum rate can be modeled as
follows [11]:

C =

N
∑

n=1

log
(

1 + P/[N(H∗

H)−1
n,n]

)

(1)

≈ N log (1 + P/(M/N − 1)) (2)

where P is the total transmission power and H is the channel ma-
trix. Equation 2 converges to a constant value when M = N [15].

To avoid channel hardening, in our second experiment, instead of
limiting M = N , we use all 12 antennas regardless of how many
senders there are. Interestingly, we see the sum peak rate indeed
grows linearly as more senders transmit (solid line in Figure 12).
When there are 9 concurrent senders, the sum peak rate increases
by 6.8× compared to a single-antenna setup! Therefore, BigStation

indeed linearly scales wireless capacity if M > N .
The next natural question to ask is how many antennas should

BigStation have in order to support any given N clients? To answer
this question, we vary antenna configurations and measure the con-
dition number of the wireless channel matrix. The condition num-
ber shows how well the channel matrix inverse can be used to de-
multiplex spatial streams [21]. Well-conditioned channels, whose
condition numbers are small (close to 1), can decorrelate the spa-
tial streams without much distortion. Conversely, a large condition
number will significantly reduce the SNRs of spatial streams after
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Figure 14: CDF of the end-to-end delay of BigStation. (a) Un-

der a light load. (b) Under a heavy load. The x-axis is in loga-

rithmic scale.

spatial demultiplexing. Let M = β N . Figure 13 shows the chan-
nel condition number with increasing number of transmitters under
different β values. We find that with slight over-provisioning, i.e.,
M = 1.1N , the channel condition number decreases prominently,
by as much as 5 dB. Further increasing M will result in better-
conditioned channels. However, when β > 1.4, the reduction be-
comes less pronounced.

System delay. Besides the processing throughput, the processing
latency is another critical metric for wireless communications. In
the following, we characterize the delay performance of BigStation.
To measure the overall processing delay, instead of sending to a CD
sever, we let the SD servers send symbols back to the FS server af-
ter spatial demultiplexing. The FS server can timestamp both the
original symbol generation and the return of the corresponding de-
multiplexed symbol, and compute the delay. We note that this mea-
sured delay excludes the channel decoding delay, which is fixed to
be 9 µs according to our benchmark.

We first measure the processing latency of BigStation in a light
load situation, where the FS servers generate a frame every 10 ms.
Figure 14(a) shows the cumulative distribution function (CDF) of
processing delay. We can see that the mean processing latency is
as low as 860 µs, and the 90th percentile is below 1.4 ms. How-
ever, when the traffic load becomes heavier, a heavy-tailed delay
CDF appears. Figure 14(b) shows the latency measurements when
the FS servers continuously generate back-to-back frames. We can
observe that while the mean latency is still around 860 µs, a small
portion of the frames may experience excessive delay (the 90th per-
centile is 20 ms). After a closer examination, we find this behavior
is due to TCP retransmissions. Under a heavy load, the underlying
network may occasionally see packet losses and TCP retransmis-
sions. The SD server requires symbols from all antennas before
it can finalize the output. Therefore, even if one TCP connection
slows down, the entire MU-MIMO frame, as well as a few subse-
quent frames, is delayed.

Table 5 summarizes the delay breakdown of various components
in BigStation. The data presented here are measured in the light
load situation. In this case, we find the network delay is actually
small (∼ 300µs). This is because our application-level rate con-
trol can keep the network queues small. Instead, most of the delay
is incurred while the symbol packets are waiting in queues on the
CI/SD servers. This behavior is also because the SD (CI) server
requires symbols from all antennas before deriving final results.
Therefore, the variance in the packet transmission times from dif-
ferent FS servers will translate into a queuing delay on the SD (CI)
server.

In conclusion, BigStation has a low mean processing delay (<
1ms). While this delay may not be sufficiently low for 802.11 MAC

Table 5: Delay of components in BigStation. Unit is in (µs). The

number in the brackets is the 90th percentile.

CI server SD server
CD server

Net CI Net SD

280 (410) 680 (1,190) 330 (450) 550 (990) 9 (9)

layer ACK, which requires micro-second level latency, it already
satisfies the real-time requirements for many other wireless proto-
cols, e.g., LTE and WCDMA. Finally, we note that when the system
is heavily loaded, the processing delay exhibits a heavy-tailed dis-
tribution, where a small portion of the frames may experience ex-
cessively long delays. This long tail latency can be mitigated with
resource over-provisioning, but at the expense of low system effi-
ciency. Alternatively, we can apply many techniques developed for
predictable service times in the distributed systems community to
control the latency in our distributed MU-MIMO processing [5,10].
We defer a deep investigation in this direction to our future work.

8. RELATED WORK
MU-MIMO has been extensively discussed in the information

theory literature. Small-scale MU-MIMO (i.e., M < 10) has been
implemented and experimented with in many real systems [6, 19].
Recent wireless standards, e.g., 802.11ac [4], LTE [1], WiMAX
etc., have proposed to include small-scale MU-MIMO in their fu-
ture evolution. While small-scale MU-MIMO can improve the wire-
less capacity to some extent, this improvement has been fundamen-
tally limited by the number of antennas on the AP. With the growing
demand of mobile traffic, it is desirable to build large-scale MU-
MIMO systems that employ tens or hundreds of antennas and im-
prove spectral efficiency by at least an order of magnitude.

The issue of scaling MU-MIMO systems has recently received
much interest from both the theory community [12,13,17] and sys-
tem builders [16, 18]. JMB [16] proposed to scale a MU-MIMO
system by federating a number of small APs. The authors proposed
a distributed algorithm to synchronize the phases of several APs.
Therefore, these APs can perform joint beamforming and send con-
current packets to different users. However, JMB does not consider
the scalability of the AP. As discussed earlier (§2.2), channel inver-
sion and precoding processing will soon become bottlenecks with
increasing M and N .

Realizing this difficulty, Hoydis et al. have proposed massive

MIMO [12]. Assuming an infinite number of antennas on the AP,
they show simpler conjugate beamforming can deliver the same per-
formance as zero-forcing beamforming. Argos [18] is a large-scale
MU-MIMO system with 64 antennas that employs conjugate beam-
forming. The authors have developed a local precoding method
that distributes the conjugate beamforming operations to each ra-
dio module (similar to the FS module in BigStation). However,
with a finite number of antennas on the AP, conjugate beamform-
ing incurs a significant performance loss compared to zero-forcing
beamforming. In their experiments, the performance loss can be as
large as a factor of 4. Further, this local method only applies to the
downlink, and the uplink processing does not yet scale. Although
Argos removes the need for channel inversion (at the expense of
performance), it still relies on a central module for spatial demulti-
plexing and decoding. As we have shown earlier, these two oper-
ations are more computationally demanding and more likely to be
bottlenecks. In contrast, BigStation does not compromise the per-
formance, but addresses the MU-MIMO scaling challenge by par-
allelizing the computation and communication among many simple
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and low-cost devices. Consequently, BigStation achieves incremen-
tal scalability by adding more computing devices. Our experiment
on a BigStation prototype with 12 antennas shows a peak rate gain
of 6.8× compared to the single-antenna radio. In comparison, Ar-
gos only reports a 5.7× capacity improvement with 64 antennas,
due to suboptimal conjugate processing.

The comparison in theory between zero-forcing and the conju-
gate processing (also called matched filter) is presented in [13]. Our
results agree with [13], but we use real measured data from a prac-
tical large MIMO system.

BigStation is also related to much parallel computing work. Many
schemes to parallelize the digital signal processing in BigStation
have been previously studied in other contexts [7]. However, as far
as we know, BigStation is the first work to parallelize MU-MIMO
operations to scale the system to tens or hundreds of antennas.

9. CONCLUSION
This paper presents BigStation, a scalable architecture for large-

scale MU-MIMO systems. Our strategy to scale is to extensively
parallelize the MU-MIMO processing on many simple and low-
cost commodity computing devices. Therefore, our design can in-
crementally scale to support more MIMO antennas by proportion-
ally adding more processing units and interconnecting bandwidth.
After carefully analyzing the computation and communication pat-
terns of MU-MIMO, we parallelize MU-MIMO processing with a
distributed pipeline to reduce the overall processing delay. At each
stage of the pipeline, we further use data partitioning and computa-
tion partitioning to increase the processing speed.

We have built a BigStation prototype with 15 PC servers and
standard Ethernet switches. Our prototype can support real-time
MU-MIMO processing for 12 antennas. Our benchmarks show that
the BigStation architecture is able to scale to tens to hundreds of
antennas. With 12 antennas, our BigStation prototype can increase
the wireless capacity by 6.8× with a low mean processing delay of
860 µs. This latency already satisfies the real-time requirements of
many existing wireless standards, e.g., LTE and WCDMA.
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