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1. Introduction

The study of submanifolds in contact metric manifolds from Riemannian geomet-
ric point of view was initiated in 1970’s and it is a very active field during the last
quarter of century. In contact metric manifolds there are two polar submanifolds
tangent to Reeb vector field: invariant submanifolds and anti-invariant submani-
folds [18]. Invariant submanifolds are minimal (see, [1]) and hence automatically
critical points of the 2-energy functional, that is, biharmonic (2-harmonic) in the
sense of Eells and Sampson [8]. However, anti-invariant submanifolds are not so in
general. Thus, it is natural and interesting to investigate the class of nonminimal
biharmonic anti-invariant submanifolds in contact metric manifold.
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A Sasakian space form is regarded as an odd dimensional analogue of a com-
plex space form, and therefore it is among the most important contact metric
manifolds. Many interesting results on submanifolds in a Sasakian space form
have been obtained by many differential geometers. The purpose of this paper is
to obtain the following:

(i) the existence and uniqueness theorems of nonminimal biharmonic anti-inva-
riant submanifolds in Sasakian space forms of low dimension,

(ii) the stability conditions of nonminimal biharmonic anti-invariant submani-
folds in Sasakian space forms of general dimension.

2. Preliminaries

A (2n + 1)-dimensional differentiable manifold N2n+1 is called a contact manifold
if there exists a globally defined 1-form η such that η ∧ (dη)n 6= 0. On a contact
manifold there exists a unique global vector field ξ satisfying

dη(ξ, X) = 0, η(ξ) = 1, (2.1)

for all X ∈ TN2n+1. The vector field ξ is called Reeb vector field.
Moreover it is well-known that there exist a tensor field φ of type (1, 1), a

Riemannian metric g which satisfy

φ2 = −I + η ⊗ ξ,

g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(ξ, X) = η(X), (2.2)

dη(X, Y ) = g(X, φY ),

for all X, Y ∈ TN2n+1 (see, for instance, [1]).
The structure (φ, ξ, η, g) is called contact metric structure and the manifold

N2n+1 with an contact metric structure is said to be a contact metric manifold.

A contact metric manifold is said to be a Sasakian manifold if it satisfies [φ, φ] +
2dη ⊗ ξ = 0 on N2n+1, where [φ, φ] is the Nijenhuis torsion of φ. On Sasakian
manifolds, we have

(∇̄Xφ)Y = g(X, Y )ξ − η(Y )X, (2.3)

∇̄Xξ = −φX, (2.4)

for any vector fields X and Y , where ∇̄ is the Levi-Civita connection of N2n+1.
The tangent planes in TpN

2n+1 which is invariant under φ are called φ-section
(see, [1]). The sectional curvature of φ-section is called φ-sectional curvature.

If the φ-sectional curvature is constant on N2n+1, then N2n+1 is said to be of
constant φ-sectional curvature.

Complete and connected Sasakian manifolds of constant φ-sectional curvature are
called Sasakian space forms. Denote Sasakian space forms of constant φ-sectional
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curvature c by N2n+1(c). The curvature tensor R̄ of N(c) is given by

R̄(X,Y )Z =
c + 3

4
{g(Y, Z)X − g(Z,X)Y }+

c− 1

4
{η(X)η(Z)Y

−η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+g(Z, φY )φX − g(Z, φX)φY + 2g(X, φY )φZ}. (2.5)

Let Mm be a submanifold tangent to ξ. If φ(TMm) ⊂ T⊥Mm, then Mm is called
an anti-invariant submanifold. If φ(TMm) ⊂ TMm, then Mm is said to be an
invariant submanifold.

If η restricted to Mm vanishes, then Mm is called an integral submanifold, in
particular if m = n, it is called a Legendre submanifold.

Let x : Mm → N2n+1 be an isometric immersion. Denote the Levi-Civita
connection of N2n+1 (resp. Mm) by ∇̄ (resp. ∇). The formulas of Gauss and
Weingarten are given respectively by

∇̄XY = ∇XY + h(X,Y ),

∇̄XV = −AV X + DXV,
(2.6)

where X, Y ∈ TMm, V ∈ T⊥Mm. Here h,A and D are the second fundamental
form, the shape operator and the normal connection, respectively. The following
relation holds: 〈

AV X,Y
〉

=
〈
h(X, Y ), V

〉
, (2.7)

where
〈
,
〉

:= g(, ).
The mean curvature vector H is given by H = 1

m
trace h. If H = 0 at any

point, Mm is called minimal. The allied mean curvature vector is defined by
a(H) =

∑2n+1
r=m+1 tr(AHAVr)Vr, where {Vr} are mutually orthogonal normal vector

fields. If Mm satisfies a(H) ≡ 0, then it is called Chen submanifold.
Denote by R the Riemann curvature tensor of Mm. Then the equations of

Gauss, Codazzi and Ricci are given respectively by〈
R(X, Y )Z,W

〉
=

〈
Ah(Y,Z)X, W

〉
−

〈
Ah(X,Z)Y,W

〉
+

〈
R̄(X,Y )Z,W

〉
, (2.8)

(R̄(X, Y )Z)⊥= (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z), (2.9)〈
RD(X, Y )V1, V2

〉
=

〈
R̄(X, Y )V1, V2

〉
+

〈
[AV1 , AV2 ](X), Y

〉
, (2.10)

where X, Y, Z, W (resp. V1 and V2) are vectors tangent (resp. normal) to Mm,
RD(X,Y ) = [DX , DY ]−D[X,Y ], and ∇̄h is defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ). (2.11)

Hereafter, submanifolds and immersions mean isometrically immersed manifolds
and isometric immersions, respectively.

The dimension of anti-invariant submanifolds in contact metric (2n + 1)-
manifolds is less than or equal to n + 1 (see, [18]). In general, the study of
anti-invariant submanifolds is difficult. However in case the dimension is maxi-
mum, we do have some good properties as the study of Legendre submanifolds. In
fact, we have the following existence and uniqueness theorems for anti-invariant
(n + 1)-submanifolds in Sasakian space form N2n+1(c) (see, [2]):
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Theorem 1. Let (Mn+1,
〈
·, ·

〉
) be an (n + 1)-dimensional simply connected Rie-

mannian manifold. Suppose that there exist an unit global vector field ξ on M and
a symmetric bilinear TM-valued form α on M such that for X, Y, Z, W ∈ TM ,
we have 〈

α(X, Y ), ξ
〉

= 0, ∇Xξ = 0, (2.12)

and the equations

α(X, ξ) = X − η(X)ξ, (2.13)〈
R(X, Y )Z,W

〉
=

〈
α(X,W ), α(Y, Z)

〉
−

〈
α(X,Z), α(Y,W )

〉
+

c + 3

4
{
〈
Y, Z

〉〈
X, W

〉
−

〈
Z,X

〉〈
Y,W

〉
}+

c− 1

4
{η(X)η(Z)

〈
Y,W

〉
−η(Y )η(Z)

〈
X,W

〉
+ η(Y )η(W )

〈
X,Z

〉
− η(X)η(W )

〈
Y, Z

〉
}, (2.14)〈

α(X, Y ), Z)−
〈
α(X, Z), Y

〉
+

〈
X, Y

〉
η(Z)−

〈
X, Z

〉
η(Y ) = 0, (2.15)

(∇Xα)(Y, Z) = (∇Y α)(X, Z) (2.16)

are satisfied, where η denotes the dual 1-form of ξ. Then there exists an anti-
invariant immersion into a Sasakian space form x : (Mn+1,

〈
·, ·

〉
) → N2n+1(c)

whose second fundamental form h satisfies h(X, Y ) = −φα(X,Y ).

Theorem 2. Let x1, x2 : Mn+1 → N2n+1(c) be two anti-invariant immersions of
a connected Riemannian (n+1)-manifold into a Sasakian manifold N2n+1(c) with
second fundamental form h1 and h2. If there is a vector field ξ̄ on Mn+1 such that
xi
∗p(ξ̄) = ξxi(p) for any i and p ∈ Mn+1 and that〈

h1(X,Y ), φx1
∗Z

〉
=

〈
h2(X, Y ), φx2

∗Z
〉

for all vector fields X, Y , Z tangent to Mn+1, there exists an isometry A of
N2n+1(c) such that x1 = A ◦ x2.

3. Biharmonic maps

Let (Mm, g) and (Nn, g̃) be Riemannian manifolds and f : Mm → Nn a smooth
map. The tension field τ(f) of f is a section of the vector bundle f ∗TNn defined
by

τ(f) := tr(∇fdf) =
m∑

i=1

{∇f
ei
df(ei)− df(∇ei

ei)},

where ∇f , ∇ and {ei} denote the induced connection, the connection of Mm and
a local orthonormal frame field of Mm respectively.

A smooth map f is said to be a harmonic map if its tension field vanishes. It
is well-known that f is harmonic if and only if f is a critical point of the energy:

E(f |Ω) =

∫
Ω

m∑
i=1

g̃(df(ei), df(ei))dvg

over every compact domain Ω of Mm. Here dvg denotes the volume form of g.
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J. Eells and J. H. Sampson [8] suggested to study 2-harmonic maps which are
critical points of 2-energy E2:

E2(f |Ω) =

∫
Ω

g̃(τ(f), τ(f))dvg.

If f is an isometric immersion, the functional E2 is given by

E2(f |Ω) = m2

∫
Ω

g̃(H, H)dvg,

where H is the mean curvature vector field.
The Euler-Lagrange equation of the functional E2 was computed by Jiang [11]

as follows:
Jf (τ(f)) = 0. (3.1)

Here the operator Jf is the Jacobi operator of harmonic maps defined by

Jf (V ) := ∆̄fV −Rf (V ), V ∈ Γ(f ∗TNn), (3.2)

∆̄f := −
m∑

i=1

(∇f
ei
∇f

ei
−∇f

∇eiei
),Rf (V ) :=

m∑
i=1

RNn

(V, df(ei))df(ei), (3.3)

where RNn
is the curvature tensor of Nn.

In particular, if Nn is the Euclidean n-space En and f = (x1, . . . , xn) is an
isometric immersion, then

Jf (τ(f)) = (−∆M∆Mx1, . . . ,−∆M∆Mxn),

where ∆M is the Laplace operator acting on C∞(Mm). Thus the 2-harmonicity
for an isometric immersion into Euclidean space is equivalent to the biharmonicity
in the sense of Chen (see [6]). For this reason, 2-harmonic maps are frequently
called biharmonic maps. Nonharmonic biharmonic maps are said to be proper.

Remark 3. It is natural and interesting to investigate isometric immersions
which attain the least value of E2 for given two Riemannian manifolds M and
N . B.-Y. Chen [6] introduced new Riemannian invariants and established in-
equalities between the new invariants and |H|2. Isometric immersions satisfying
the equality case of Chen’s inequalities are the ones which attain the least value
of E2. In [13], the fourth author studied CR-immersions into complex hyperbolic
spaces satisfying the equality case of Chen’s inequalities.

Here we would like to exhibit a known result on biharmonic Legendre submanifolds
in the unit sphere.

Consider the complex Euclidean (n + 1)-space Cn+1 and identify z = (x1 +
iy1, . . . , xn+1 + iyn+1) ∈ Cn+1 with (x1, . . . , xn+1, y1, . . . , yn+1) ∈ E2n+2. Let J be
its usual almost complex structure. It is well-known that a Sasakian space form
N2n+1(1) is isomorphic to S2n+1(1) endowed with the Sasakian structure induced
by J of Cn+1. (For example, see [1].)

There are no proper biharmonic Legendre curves in S3(1) (cf. [3], [9]). On the
other hand, in [17] the author explicitly determined biharmonic Legendre surfaces
in S5(1).
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Proposition 4. [17] Let f : M2 → S5(1) ⊂ C3 be a proper biharmonic Legendre
immersion. Then the position vector f = f(x, y) of M2 in C3 is given by

f(x, y) =
1√
2
(eix, ie−ix sin

√
2y, ie−ix cos

√
2y). (3.4)

Let f : M → En be an isometric immersion. If the position vector f can be
written as

f = f1 + f2, ∆Mf1 = λ1f1, ∆Mf2 = λ2f2,

for two different constants λ1 and λ2, then f is said to be of 2-type (see, [5]). We
put

f1(x, y) :=
1√
2
(eix, 0, 0),

f2(x, y) :=
1√
2
(0, ie−ix sin

√
2y, ie−ix cos

√
2y).

Then we have f = f1 + f2, ∆Mf1 = f1 and ∆Mf2 = 3f2. Thus (3.4) is of 2-type.
Now, put g1(x) = (cos x, sin x) and g2(y) = 1√

2
(1, sin

√
2y, cos

√
2y) ∈ S2(1).

Then we see that f(x, y) can be written as f(x, y) = g1 ⊗ g2 (for more details on
the tensor product immersions, see [7]). We remark that g2 is proper biharmonic
in S2(1) (see, [4]).

We shall show how to construct new examples of proper biharmonic submani-
folds from proper biharmonic submanifolds and minimal submanifolds in the unit
sphere by using tensor product immersions.

Proposition 5. Let g1 : Mm → Sp−1(1) and g2 : Nn → Sq−1(1) be isometric
immersions. The tensor product immersion g1 ⊗ g2 : Mm × Nn → Spq−1(1) is
proper biharmonic if and only if one of g1 and g2 is proper biharmonic and the
other is minimal.

Proof. Let H̄1, H̄2, H̄ be the mean curvature vector fields of g1, g2, g1⊗ g2 in Ep,
Eq, Epq, respectively. We put

BIH1 = ∆̄g1H̄1 − 2mH̄1 −m(2− |H̄1|2)g1, (3.5)

BIH2 = ∆̄g2H̄2 − 2nH̄2 − n(2− |H̄2|2)g2, (3.6)

BIH = ∆̄g1⊗g2H̄ − 2(m + n)H̄ − (m + n)(2− |H̄|2)g1 ⊗ g2. (3.7)

Then, the vanishing of BIH1, BIH2 and BIH is equivalent to the biharmonicity
of g1, g2 and g1 ⊗ g2 respectively (see [4]). We have

H̄ = 1
m+n

(
mH̄1 ⊗ g2 + ng1 ⊗ H̄2

)
, (3.8)

∆̄g1⊗g2H̄ = 1
m+n

(
m∆̄g1H̄1 ⊗ g2 − 2mnH̄1 ⊗ H̄2 + ng1 ⊗ ∆̄g2H̄2

)
. (3.9)
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By (3.5)-(3.9) we get

BIH =
m

m + n
BIH1 ⊗ g2 +

n

m + n
g1 ⊗BIH2 −

2mn

m + n
H1 ⊗H2, (3.10)

where H1 (resp. H2) is the mean curvature field of Mm in Sp−1(1) (resp. Sq−1(1)).
It follows from (3.10) that BIH = 0 if and only if one of g1 and g2 is proper
biharmonic and the other is minimal. �

From Proposition 5, we can construct infinity proper biharmonic submanifolds in
the unit sphere.

Inoguchi studied biharmonic Hopf cylinders in Sasakian 3-space forms (see,
Corollary 3.2 in [9]). We remark that Hopf cylinders are anti-invariant surfaces.
By the similar way as in [9], we can prove the following:

Proposition 6. Let M2 be a proper biharmonic anti-invariant surface in Sasaki-
an space forms N3(c). Then c > 1 and M2 is a surface of constant mean curvature√

c−1
2

.

Proof. We choose an orthonormal frame {e1, e2} such that e2 = ξ. Then from (2.4)
we have

〈
∇ei

ej, ek

〉
= 0 for i, j = 1, 2. Moreover h(e1, e1) = 2κφe1, h(e2, e2) = 0

and h(e1, e2) = −φe1 for some function κ. We may assume that κ is positive. The
equation of Coddazi (2.9) gives e2κ = 0. Thus, by the similar computations due
to [9], κ2 is constant and equal to c−1

4
. This proves the proposition. �

Corollary 7. There exists no proper biharmonic Legendre curve in Sasakian space
forms N3(c) with c ≤ 1.

By applying Theorem 1 and 2, we see that a surface in Proposition 6 exists
uniquely. From Corollary 7, we state that there exist no proper biharmonic
anti-invarint surfaces in S3(1). To the contrary, by using proper biharmonic
Legendre immersion (3.4), we can construct proper biharmonic anti-invariant 3-
submanifolds in S5(1) ⊂ C3 as follows:

f(x, y, z) =
1√
2
(eix, ie−ixsin

√
2y, ie−ixcos

√
2y)eiz. (3.11)

Theorems 1, 2, Proposition 6 and (3.11) motivate us to consider the following
problem:

In the case of n > 1, classify proper biharmonic anti-invariant (n+1)-submanifolds
in Sasakian (2n + 1)-space forms.

In the next section, in the case of n = 2 we obtain the existence and uniqueness
theorem of such submanifolds.
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4. Biharmonic anti-invariant 3-submanifolds

Let M3 be a proper anti-invariant 3-submanifold in Sasakian space forms N5(c)
and {ei} orthonormal frame fields along M3 such that e3 = ξ. We may assume
that H = αφe1, where α ∈ C∞(M) and α > 0. Then using (2.3), (2.4) and (2.6),
we see that the second fundamental forms take the following forms:

h(e1, e1) = λφe1 + µφe2,

h(e2, e2) = (3α− λ)φe1 − µφe2,

h(e3, e3) = 0, (4.1)

h(e1, e2) = µφe1 + (3α− λ)φe2,

h(e1, e3) = −φe1,

h(e2, e3) = −φe2,

for some functions λ and µ.
We put ωj

i (ek) =
〈
∇ek

ei, ej

〉
. Using (2.4) we obtain

ω3
i = 0, (i = 1, 2, 3). (4.2)

From the Codazzi equation (2.9), we have the following Lemma.

Lemma 8.

e1(3α− λ) + 3µω2
1(e1) = e2µ + 3(λ− 2α)ω2

1(e2), (4.3)

−e1µ + 3(3α− λ)ω2
1(e1) = e2(3α− λ) + 3µω2

1(e2), (4.4)

e1µ + 3(λ− 2α)ω2
1(e1) = e2λ− 3µω2

1(e2), (4.5)

ω2
1(e3) = 0, (4.6)

e3(λ) = e3(µ) = e3(α) = 0. (4.7)

Proof. Since M3 is an anti-invariant submanifold in Sasakian space forms, we get

(R̄(X, Y )Z)⊥ = 0

by (2.5). From (∇̄e1h)(e2, e2) = (∇̄e2h)(e1, e2) and (∇̄e1h)(e1, e2) = (∇̄e2h)(e1, e1)
by (2.9), we have (4.3), (4.4) and (4.5). Putting X = e1, Y = e3 and Z =
e3 in (2.9), the relation (4.6) is obtained. Similarly, by using (∇̄e1h)(e1, e3) =
(∇̄e3h)(e1, e1) and (∇̄e2h)(e2, e3) = (∇̄e3h)(e2, e2), we get (4.7). �

Assume that f : M3 → N5(c) is biharmonic, namely M3 satisfies JfH = 0. We
shall compute JfH by using ωj

i , λ, α and µ. Due to Chen [5],

∆̄fH = tr(∇̄AH) + ∆DH + (trA2
φe1

)H + a(H), (4.8)

where a(H) = trace(AHAφe2)φe2 and tr(∇̄AH) =
∑3

i=1(ADeiH
ei + (∇ei

AH)ei).
Using (2.5), (4.1), (4.2), (4.6) and (4.7), we get the following lemma by

straight-forward computations.
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Lemma 9.

(i) tr(∇̄AH) = [2{(e1α)λ+(e2α)µ}+α{(e1λ)+(e2µ)+µω1
2(e1)+λω2

1(e2)}]e1

+[2{(e1α)µ+(e2α)(3α− λ)}+α{e1µ + e2(3α− λ)+λω2
1(e1)+µω2

1(e2)}]e2

−2{e1α + αω2
1(e2)}e3, (4.9)

(ii) ∆DH = [−e1e1α− e2e2α + α{ω2
1(e1) + ω2

1(e2)}]φe1

−[2{(e1α)ω2
1(e1) + (e2α)ω2

1(e2)}+ α{e1(ω
2
1(e1)) + e2(ω

2
1(e2))}]φe2, (4.10)

(iii) tr(A2
φe1

) = λ2 + 2µ2 + (3α− λ)2 + 2, (4.11)

(iv) a(H) = 3α2µφe2, (4.12)

(v) Rf (H) = (2c + 1)H. (4.13)

From the biharmonicity, we have

∆̄fH = (2c + 1)H.

Remark 10. In [14]–[17], the fourth author studied surfaces satisfying ∆̄fH =
βH for a constant β in Sasakian space forms and complex space forms.

Hence, using Lemma 9 we obtain the following system of partial differential equa-
tions.

Lemma 11.

(i) 2{(e1α)λ+(e2α)µ}+α{(e1λ)+(e2µ)+µω1
2(e1)+λω2

1(e2)}=0, (4.14)

(ii) 2{(e1α)µ + (e2α)(3α− λ)}
+α{e1µ + e2(3α− λ) + λω2

1(e1) + µω2
1(e2)} = 0, (4.15)

(iii) e1α + αω2
1(e2) = 0, (4.16)

(iv) −e1e1α− e2e2α + α{ω2
1(e1) + ω2

1(e2)}
+α{λ2 + 2µ2 + (3α− λ)2 + 2} − α(2c + 1) = 0, (4.17)

(v) −2{(e1α)ω2
1(e1) + (e2α)ω2

1(e2)}
+α{e1(ω

2
1(e1)) + e2(ω

2
1(e2))}+ 3α2µ = 0. (4.18)

Combining (4.4) and (4.5) yields

e2α = αω2
1(e1). (4.19)

It follows from (4.2), (4.6), (4.7), (4.16) and (4.19) that[
1

α
e1,

1

α
e2

]
= 0, (4.20)[

1

α
e1, e3

]
= 0, (4.21)[

1

α
e2, e3

]
= 0. (4.22)
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Hence there exists a local coordinate system {x, y, z} such that

1

α
e1 =

∂

∂x
,

1

α
e2 =

∂

∂y
, e3 =

∂

∂z
. (4.23)

From (4.7) we obtain that α, λ and µ are functions of x and y. Also by (4.16)
and (4.19) we have

ω2
1(e1) = αy, ω2

1(e2) = −αx, (4.24)

where fx = ∂f
∂x

and fy = ∂f
∂y

for a function f . Substituting (4.23) and (4.24) into

(4.18), we obtain that µ = 0, i.e., M3 is a Chen submanifold. Replacing (4.3),
(4.4), (4.14) and (4.15) by derivatives with respect to x and y, we get

α(3α− λ)x = −3(λ− 2α)αx, (4.25)

3(3α− λ)αy = α(3α− λ)y, (4.26)

(λα)x = 0, (4.27)

9ααy = (λα)y. (4.28)

By solving this system, we obtain α, λ are constant and hence ωj
i = 0 from (4.2),

(4.6) and (4.24). Therefore by (4.17) we have

λ2 + (3α− λ)2 + 1− 2c = 0. (4.29)

Also, by using the Gauss equation (2.8) we obtain

c + 3

4
+ λ(3α− λ)− (3α− λ)2 = 0. (4.30)

Since α and λ are real numbers, c must satisfy c ≥ 1+14
√

2
23

from (4.29) and (4.30).

Further α =

√
11c−9±

√
23c2−2c−17

6
and λ = 7(c−1)

12α
.

By using a coordinate change αx̃ = x, αỹ = y, we can rewrite the metric
tensor as g = dx̃2 + dỹ2 + dz2. Then e1 = ∂

∂x̃
, e2 = ∂

∂ỹ
. Consequently, by applying

Theorem 1 and 2 we can state the following:

Theorem 12. Let M3 be a proper biharmonic anti-invariant submanifold in Sa-
sakian space forms N5(c). Then c ≥ 1+14

√
2

23
and at each point p ∈ M3 there exists

a suitable local coordinate system {x, y, z} on a neighborhood of p such that the
metric tensor g and the second fundamental form h take the following forms:

(I) g = dx2 + dy2 + dt2,

h(∂x, ∂x) =
7(c− 1)

12α
φ∂x,

h(∂y, ∂y) =

(
3α− 7(c− 1)

12α

)
φ∂x,

(II) h(∂z, ∂z) = 0,

h(∂x, ∂y) =

(
3α− 7(c− 1)

12α

)
φ∂y,

h(∂x, ∂z) = −φ∂x,

h(∂y, ∂z) = −φ∂y,
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where ∂x = ∂
∂x

, ∂y = ∂
∂y

, ∂z = ∂
∂z

, and α =

√
11c−9±

√
23c2−2c−17

6
(6= 0).

Conversely, suppose that c is a constant satisfying c ≥ 1+14
√

2
23

and let g be the
metric tensor on a simply-connected domain V ⊂ R3 defined by (I). Then, up to
rigid motions of N5(c), there exists a unique anti-invariant immersion of (V, g)
into N5(c) whose second fundamental form is given by (II). Moreover such an
immersion is proper biharmonic.

Corollary 13. Let A(c) be the number of proper biharmonic anti-invariant 3-
submanifold in Sasakian space forms N5(c). Then we have:

(i) if c < 1+14
√

2
23

, A(c) = 0;

(ii) if c = 1 or 1+14
√

2
23

, A(c) = 1;

(iii) if c > 1+14
√

2
23

and c 6= 1, A(c) = 2.

Corollary 14. (3.11) is the only proper biharmonic anti-invariant 3-submanifolds
in S5(1).

Proof. We can easily check that the metric tensor and the second fundamental
form of (3.11) take the form (I) and (II) in Theorem 12. �

In the case of n > 2, the classification has not been completed yet.

5. Stability of biharmonic anti-invariant submanifolds

In [11] Jiang obtained the second variation formula for the bienergy E2. But in
case that the ambient space is not locally symmetric, it is difficult to compute
the formula. We remark that Sasakian space forms are not locally symmetric
in general. In this section, we shall compute the second variation formula for a
biharmonic anti-invariant immersion into Sasakian space forms by the similar way
as in [12].

Let f : Mn+1 → N2n+1(c) be a biharmonic anti-invariant immersion from
a compact n-dimensional manifold into a (2n + 1)-dimensional Sasakian space
form. Let F : R × Mn+1 :→ N2n+1(c) be a smooth variation of f such that
F (0, p) = f(p) for any p ∈ M . Let

(
∂
∂t

)
(t,p)

and X(t,p) be the vector fields which

are the extension of ∂
∂t

on R and X on Mn+1 to R ×Mn, respectively. We put
ft(p) = F (t, p). The corresponding variational vector field V is given by

V (p) =
d

dt

∣∣∣∣
t=0

ft(p) = dF
( ∂

∂t

)
(0,p)

.

We recall the following from [12].

1

2

d2

dt2

∣∣∣∣
t=0

E2(ft) =

∫
Mn

〈
I(V ), V

〉
dvg, (5.1)

where
I(V ) = ∇̃ ∂

∂t
{−∆̄ftτt − traceRN(dft·, τt)dft·}

∣∣
t=0

, (5.2)
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∇̃ = ∇F and τt = τ(ft).
If (5.1) is non-negative for any vector field V , then f or Mn+1 is said to be

stable. Otherwise it is said to be unstable.
We shall calculate (5.2) more precisely.

−∇̃ ∂
∂t

∆̄ftτt

∑(
∇̃ ∂

∂t
∇̃ei

∇̃ei
τt − ∇̃ ∂

∂t
∇̃∇eiei

τt

)
=

∑{
RN

(
dft

( ∂

∂t

)
, dft(ei)

)
(∇̃ei

τt) + ∇̃ei
∇̃ ∂

∂t
∇̃ei

τt + ∇̃[ ∂
∂t

,ei]
∇̃ei

τt

}
−

∑{
RN

(
dft

( ∂

∂t

)
, dft(∇ei

ei)
)
τt + ∇̃∇eiei

∇̃ ∂
∂t

τt + ∇̃[ ∂
∂t

,∇eiei]
τt

}
. (5.3)

As in [12], we have

∇̃ ∂
∂t

τt

∣∣∣∣
t=0

= −∆̄fV − traceRN(df ·, V )df · = −Jf (V ). (5.4)

Let {ei} be a geodesic frame field around an arbitrary point p ∈ Mn+1. Then
from (5.3) and (5.4), when t = 0, at p we get

Lemma 15.

−∇̃ ∂
∂t

∆̄ftτt

∣∣∣∣
t=0

=
∑{

RN(V, ei)(∇̄ei
τ) + ∇̄ei

(RN(V, ei)τ)
}

+∆̄JfV, (5.5)

where ∇̄ = ∇f , τ = τ0.

We need the following lemma in order to compute (5.5) more precisely.

Lemma 16.

(i) RN(V, ei)(∇̄ei
τ) =

c + 3

4

(〈
ei, ∇̄ei

τ
〉
V −

〈
∇̄ei

τ, V
〉
ei

)
+

c− 1

4

{
η(V )η(∇̄ei

τ)ei −
〈
ei, ∇̄ei

τ
〉
η(V )ξ (5.6)

+
〈
∇̄ei

τ, φei

〉
φV −

〈
∇̄ei

τ, φV
〉
φei + 2

〈
V, φei

〉
φ(∇̄ei

τ)
}

,

(ii) ∇̄ei
(RN(V, ei)τ) = −ε + 3

4
∇̄ei

(
〈
τ, V

〉
ei) +

ε− 1

4

{
∇̄ei

(〈
τ, φei

〉
φV

−
〈
τ, φV

〉
φei + 2

〈
V, φei

〉
φτ

)}
. (5.7)

Proof. By using the fact that τ is normal to Mn+1 and ξ, we can easily obtain
(5.6) and (5.7) from (2.5). �
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We continue to calculate (5.2). Using (2.2)–(2.5), we have

−∇̃ ∂
∂t

traceRN(dft·, τt)dft ·

= −c + 3

4

∑
∇̃ ∂

∂t

{〈
τt, dF (ei)

〉
dF (ei)−

〈
dF (ei), dF (ei)

〉
τt

}
−c− 1

4

∑
∇̃ ∂

∂t

{
η(dF (ei))η(dF (ei))τt − η(τt)η(dF (ei))dF (ei)

+
〈
dF (ei), dF (ei)

〉
η(τt)ξ −

〈
τt, dF (xi)

〉
η(dF (ei))ξ

+3
〈
dF (ei), φτt

〉
φ(dF (ei))−

〈
dF (ei), φ(dF (ei))

〉
φτt

}
,

= −c + 3

4

∑{〈
∇̃ ∂

∂t
τt, dF (ei)

〉
dF (ei) +

〈
τt, ∇̃ ∂

∂t
dF (ei)

〉
dF (ei)

+
〈
τt, dF (ei)

〉
∇̃ ∂

∂t
dF (ei)− 2

〈
∇̃ ∂

∂t
dF (ei), dF (ei)

〉
τt −

〈
dF (ei), dF (ei)

〉
∇̃ ∂

∂t
τt

}
−c− 1

4

∑[
2
〈
dF (ei), ξ

〉{〈
∇̃ ∂

∂t
dF (ei), ξ

〉
−

〈
dF (ei), φ(dF

( ∂

∂t

)
)
〉}

τt

+η(dF (ei))
2∇̃ ∂

∂t
τt −

{〈
∇̃ ∂

∂t
τt, ξ

〉
−

〈
τt, φ(dF

( ∂

∂t

)
)
〉}

η(dF (ei))dF (ei)

−η(τt)
{〈
∇̃ ∂

∂t
dF (ei), ξ

〉
−

〈
dF (ei), φ(dF

( ∂

∂t

)
)
〉}

dF (ei)

−η(τt)η(dF (ei))∇̃ ∂
∂t

dF (ei) + 2
〈
∇̃ ∂

∂t
dF (ei), dF (ei)

〉
η(τt)ξ

+
〈
dF (ei), dF (ei)

〉{〈
∇̃ ∂

∂t
τt, ξ

〉
−

〈
τt, φ(dF

( ∂

∂t

)
)
〉}

ξ

−
〈
dF (ei), dF (ei)

〉
η(τt)φ(dF

( ∂

∂t

)
)−

〈
∇̃ ∂

∂t
τt, dF (ei)

〉
η(dF (ei))ξ

−
〈
τt, ∇̃ ∂

∂t
dF (ei)

〉
η(dF (ei))ξ

−
〈
τt, dF (ei)

〉{〈
∇̃ ∂

∂t
dF (ei), ξ

〉
−

〈
dF (ei), φ(dF

( ∂

∂t

)
)
〉}

ξ

+
〈
τt, dF (ei)

〉
η(dF (ei))φ(dF

( ∂

∂t

)
) + 3

{〈
∇̃ ∂

∂t
dF (ei), φτt

〉
φ(dF (ei))

+
〈
dF (ei),

〈
dF

( ∂

∂t

)
, τt

〉
ξ − η(τt)dF

( ∂

∂t

)
+ φ(∇̃ ∂

∂t
τt)

〉
φ(dF (ei))

+
〈
dF (ei), φτt

〉(〈
dF

( ∂

∂t

)
, dF (ei)

〉
ξ − η(dF (ei))dF

( ∂

∂t

)
+ φ(∇̃ ∂

∂t
dF (ei))

)}
−

〈
∇̃ ∂

∂t
dF (ei), φ(dF (ei))

〉
φτt

−
〈
dF (ei),

〈
dF

( ∂

∂t

)
, dF (ei)

〉
ξ − η(dF (ei))dF

( ∂

∂t

)
+ φ(∇̃ ∂

∂t
dF (ei))

〉
φτt

−
〈
dF (ei), φ(dF (ei))

〉{〈
dF

( ∂

∂t

)
, τt

〉
ξ − η(τt)dF

( ∂

∂t

)
+ φ(∇̃ ∂

∂t
τt)

}]
. (5.8)

We need the following lemma.
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Lemma 17. ∇̃ ∂
∂t

dF (ei)

∣∣∣∣
t=0

= ∇̃ei
dF ( ∂

∂t
)

∣∣∣∣
t=0

= ∇̄ei
V .

From (5.8) and Lemma 17 we deduce the following:

Lemma 18.

−∇̃ ∂
∂t

traceRN(dft·, τt)dft · |t=0

= −c + 3

4

{
− (JfV )> +

∑(〈
τ, ∇̄ei

V
〉
ei − 2

〈
∇̄ei

V, ei

〉
τ
)
+(n + 1)JfV

}
−c− 1

4

{
2
〈
∇̄ξV, ξ

〉
τ + (1− n)

(〈
JfV, ξ

〉
+

〈
τ, φV

〉)
ξ −

〈
τ, ∇̄ξV

〉
ξ + 3(JfV )⊥

+3
∑(〈

∇̄ei
V, φτ

〉
φei +

〈
ei, φτ

〉(〈
V, ei

〉
ξ + φ(∇̄ei

V )
))}

, (5.9)

where (JfV )> (resp. (JfV )⊥) denotes the tangent (resp. normal) part of JfV .

Consequently, we obtain the second variation formula as follows:

Theorem 19. Let f be a biharmonic anti-invariant immersion from a compact
(n + 1)-dimensional manifold Mn+1 into a Sasakian space form N2n+1(c). Let
{ft} be a smooth variation of f such that f0 = f and V be the corresponding
variational vector field. Then we have

1

2

d2

dt2

∣∣∣∣
t=0

E2(ft) =

∫
Mn+1

〈
I(V ), V

〉
dvg,

where

I(V ) = −c + 3

4

{
|τ |2V + 2trace

〈
∇̄·τ, V

〉
·+2trace

〈
τ, ∇̄·V

〉
·+

〈
τ, V

〉
τ

−2trace
〈
∇̄·V, ·

〉
τ − (JfV )> + (n + 1)JfV

}
+

c− 1

4

{
− 2

〈
∇̄ξV, ξ

〉
τ +

〈
τ, ∇̄ξV

〉
ξ + η(V )trace(η(∇̄·τ)·) + |τ |2η(V )ξ

+2trace
〈
∇̄·τ, φ·

〉
φV − 2trace

〈
∇̄·τ, φV

〉
φ · −4φ(∇̄(φV )>V )−

〈
V, φτ

〉
ξ

+η(V )φτ − 4φ(∇̄φτV ) + 2trace
〈
τ, φ(∇̄·V )

〉
φ · −3

〈
τ, φV

〉
φτ

+2trace
〈
∇̄·V, φ·

〉
φτ + 2nη(V )φτ + 2η(V )(φV )>

+(n− 1)η(JfV )ξ − 3(JfV )⊥
}

+∆̄JfV. (5.10)

Proof. When we compute (5.7), we use the following:

∇̄ei
(φV ) =

〈
ei, V

〉
ξ − η(V )ei + φ(∇̄ei

V ),

∇̄ei
(φei) = ξ + φh(ei, ei).

Combining (5.2), Lemma 15, 16 and 18 we get (5.10). �
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We put
F (X) :=

〈
h(X, X), φX

〉
for a vector field X of Mn+1. F (φτ) is globally defined on Mn+1. In the case of
n = 1, then F (φτ) coincides with −||τ ||2. However it is not true in general. In
terms of ||τ || and F (φτ), we give the sufficient conditions for proper biharmonic
anti-invariant submanifolds to be unstable.

Theorem 20. Let Mn+1 be a compact proper biharmonic anti-invariant subman-
ifold in a Sasakian space form N2n+1(c). If∫

Mn+1

{
(c + 3)||τ ||4 − 3(c− 1)F (φτ)

}
dvg > 0, (5.11)

then Mn+1 is unstable.

Proof. We take τ as the variational vector field V . By Theorem 19, (2.6) and
(2.7) we have〈

I(τ), τ
〉

= −(c + 3)||τ ||4 − 3(c− 1)
〈
h(φτ, φτ), τ

〉
. (5.12)

This completes the proof. �

It follows from Proposition 6 and (II) in Theorem 12 that (c + 3)||τ ||4 − 3(c −
1)F (φτ) > 0 if n = 1 or 2. Therefore applying Theorem 20 we state the following:

Corollary 21. Let Mn+1 be a compact proper biharmonic anti-invariant subman-
ifold in Sasakian space form N2n+1(c). If n ≤ 2, then Mn+1 is unstable.

There is a special vector field along submanifolds in contact manifolds, i.e., Reeb
vector field ξ. Thus, it is natural and interesting to consider variations V ∈
Span{ξ} := {aξ|a ∈ C∞(Mn+1)}. We call such variations R-variations. If the
second variation (5.1) under any R-variation is non-negative, f or Mn+1 is said
to be R-stable. Otherwise it is said to be R-unstable.

Theorem 22. Let Mn+1 be a compact proper biharmonic anti-invariant subman-
ifold in Sasakian space forms N2n+1(c). Then Mn+1 is R-stable if and only if
λ1 ≥ 5c−17

4
, where λ1 is the first eigenvalue of the Laplacian acting on C∞(Mn+1).

Proof. Let f be an isometric proper biharmonic anti-invariant immersion from
Mn+1 into N2n+1(ε). We take aξ as the variational vector field, where a ∈
C∞(Mn+1). We can easily see the following:

∆̄f (aξ) = (∆Ma + na)ξ + 2φgrada + aφτ, (5.13)

Rf (aξ) = anξ. (5.14)
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By using Theorem 19, (5.13), (5.14) and Stokes’ theorem, we obtain∫
Mn+1

〈
I(aξ), aξ

〉
dv

=

∫
Mn+1

{
− a2|τ |2 +

〈
∆̄f (Jf (aξ)), aξ

〉
+

1− 5ε− 4n

4

〈
Jf (aξ), aξ

〉}
dvg

=

∫
Mn+1

{
− a2|τ |2 +

〈
Jf (aξ), ∆̄f (aξ)

〉
+

1− 5c− 4n

4
(∆Ma)a

}
dvg

=

∫
Mn+1

{
(∆Ma)2 + n(∆Ma)a + 4||grada||2 +

1− 5c− 4n

4
(∆Ma)a

}
dvg

=

∫
Mn+1

{
(∆Ma)2 +

17− 5c

4
(∆Ma)a

}
dvg. (5.15)

This completes the proof. �

Corollary 23. Compact biharmonic anti-invariant (n + 1)-submanifolds of
N2n+1(c) with c ≤ 17

5
are R-stable.

Theorem 22 implies that the spectral geometry of compact proper biharmonic
anti-invariant submanifolds of maximum dimension in Sasakian space forms is
important.
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