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Abstract. We study the eigenvalues of the biharmonic operators and the buckling
eigenvalue on complete, open Riemannian ifioéals. We show that the first eigenvalue of
the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a
generalization of the buckling eigenvaluedagive applications to studying the stability of
minimal Lagrangian submanifolds in Kéhler manifolds.

1. Introduction. This paper is concerned with eigenvalues of the biharmonic oper-
ators and the buckling eigenvalue for complete Riemannian manifolds. We are mostly con-
cerned with relating bounds for these eigenvalues to the behavior of the ends of the manifold.
Let M be a complete Riemannian manifold. is calledparabolic if every non-positive sub-
harmonic function onV/ reduces to a constant. By and £ of M we mean an unbounded
connected component of the complement of a compact subset. Af witidbe called para-
bolic if there exists a complete parabolic Riemannian manifold whose only eéhdfisV is
a surface these concepts are conformally invariant.

Let 2 ccC M be a relatively compact subdomain with smooth boundary.A.et 0 be
a smooth function o/ and consider the eigenvalue problem

A% — APu=0 in 2,

1)
u=0d,u=0 o0nas2,

whereA? = AA denotes the biharmonic operator. Denote the eigenvaluesiby Az <
A3 <---,Aj=A;(P, £2). Let

A1(P, M) := inf A1(P,$2).
f2CccM

THEOREM 1.1. If M is a complete, open, parabolic Riemannian manifold, then
A1(P, M) =0.

We recall a well-known result of Fischer-@ole and Schoen which states that any com-
plete, minimal surface in a three dimensional manifold with uniformly positive scalar cur-
vature is unstable in the sense that there are compactly supported variations of the surface
which decrease its area. Oh [4] introduced the concept of Hamiltonian stability for minimal
Lagrangian submanifolds in a K&hler manifold. In view of the similarities between minimal
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surfaces in 3-manifolds and minimal Lagrangsurfaces in Kéhler manifold of real dimen-
sion 4, we are lead to the following conjecture:

Let f : ¥2 — X*beaminimal, Lagrangian immersion of an open surfaceinto a Kahler
4-manifold whose Ricci curvature has a positive lower bound. Assume that the metric induced
on X iscomplete. Then theimmersion is hot Hamiltonian stable.

In Section 5 we give results in this direction. For a subdom@imf a Riemannian
manifold, we 1etC2°(£2) denote the space of smooth functions with compact suppat.in
We introduce a natural generalization of buckling eigenvalue

/ (Auy?
pL) = inf T
C; <9>/|W|z

which we use to study the stability of minimal, Lagrangian submanifolds in K&hler manifolds.
We show:

A complete minimal Lagrangian submanifold with at least two nonparabolic endsin a
Kéahler manifold with uniformly positive Ricci curvature is not Hamiltonian stable.

In particular, we verify the conjecture given above in the case where the surface has at
least two nonparobolic ends. We also provide a large supply of examples to which this result
applies.

The author would like to express his appreciation to Dr. John Parker for a helpful con-
versation concerning the examples at the end of Chapter 5.

In the final section, we use an idea of Payne [7] to give an upper bound for the buckling
eigenvalue of a relatively compact, convex domain in a Riemannian manifold in terms of the
first Dirichlet eigenvalue of the Laplaciamd a lower bound for the Ricci curvature.

2. Capacities. Let{£2;};—0,1,2.. be an exhaustion of a Riemannian maniféfdoy
relatively compact subdomains, and Jet := 22, — £20;j = 1,2,... . Letw; denote the
harmonic measure @fs2; with respect ta4 ;, satisfying

Aw; =0 in Aj,
2 w;j =0 ondsp,
wj = 1 on 3!2].
The (harmonic) capacity of A is defined to be
1
©) = :=/ |V, |?.
M Aj
It is well-known thatM is parabolic if and only if

. 1
im — =0.
j=oo
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Letv; be the biharmonic function defined by
szj =0 inAj;,
4) dv;j =0 onodA;,
vj =w; 0ndA;.

In analogy with the above we define thidnarmonic capacity of A ; by
1

(5) — :=/ (Avj)z.
Uj Aj

For any region2 c M, defineL%(.Q) = {h € L?(2) |Ah = 0}. Note that by Weyl's lemma
L2.(£2) is a closed subspace bf(£2).

LEMMA 2.1.
2
(4,
() Ypj= sup ~— 2",
L2,(A)) |Vh|?
Aj
2
(4,
(ii) v = sup ——2 L
L%(A) / h?
A

J

PROOF Leth € L2 (A;). Then

(f, ) = (f, v ) = ([ o) = ([, ) (] o)

with equality if 2 = w;. To prove(ii) note that

2 2 2
(% *dh) =<% vj*dh) =<% h*dvj+/ (vjAh—hAv.,-)>
9524 IA; IA; Aj
2
= (f ) =, #)( ], 2)
Aj Aj Aj

with equality ifh = Av;. O
COROLLARY 2.1. Thesequence {1/v;};—1 2 . decreases monotonically.

PROOF Let;’ > j > Oandh; := Avj. Then

2 2
1 02, 02
Vv

> : > =

1
j 12 / 12, vjr
/A- J A, 7

/'/
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Let B, denote the geodesic ball about a fixeds M . ForO < r < R let A, g =
Br — B,. Letw,  denote the harmonic measureddfz with respect ta, g.

LEMMA 2.2. LetO<r < RandO0<a < b <1 Let (1/n){a < wrr < b}) denote
the harmonic capacity of {a¢ < w, p < b}, i.€,

A/ ({a < ong < b)) = / Vol?,

{a<wr g <b}
where w is the harmonic function with constant value O on {w, g = a} and constant value 1
on{w, g = b}. Then

1 1
U la <orp <) < g
PROOF  Simply note that
Wr R —a
~bh—a

Therefore
1 1

/ IVol? < 5
{a<wrg<b} (b —a) prr

3. Boundsfor the biharmonic capacity.
PrROPOSITION 3.1. If M isa complete parabolic manifold, then

lim 1/v. g =0.
R— o0

PROOF  Without loss of generality we may assume- 1. Leth € L%(ALR). Then
forany¢ € C°(A1Rr)

o=y§ gzh*dhzf (C2|Vh|? + 2¢h(VE, Vh)).
dA1LR ALR

Therefore
1/2 1/2
/ ¢2|Vh|252/ |¢h<v;,Vh>|52<f ;2|w|2> (/ h2|V¢|2)
A1 R A1 R A1 r AR
and hence
®) / ;2|Vh|254/ vl
A1 r A1 r

Now consider the regiofil/2 < w1, g/2} C A1 r/2. Let
p = distanc€d By, {1/2 < w1 r/2}) .

SinceM is assumed to be parabolic, the family of functidns r,2} converge to zero uni-
formly on compact subsets & — B1 and hence

(7 lim p=o00.

R—o0
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One sees that there exists a functigne C;°(A,r) suchthatg = 1 0on{1/2 < wy g/2} and
IV¢rl® < c(1/R*+1/p7)
wherec is a constant independent Bf It therefore follows from (6) that

4c(1/R? + 1/p%) h? > / |Vh|?.
{1/2<w1 r/2}

A1r
Therefore, using (i) of Lemma 2.1 and Lemma 2.2 we obtain

2
(£,
16c(1/R? +1/p?)(1/pua,r/2) = 4c(1/R? +1/p?) ——22K

/ |Vh|?
{1/2<w1, Rr/2}
2
(% *dh)
-~ JBR ,
_7/ 2
ALR

1
16¢(1/R? + 1/ (1/p1 rs2) = o

and hence using (ii) of Lemma 2.1

and the result follows. O

PROOF OFTHEOREM 1.1. The first eigenvalud (P, £2) appearing in (1) is charac-
terized by

(Af)?
Ap= inf £
CE(2) / pf2
2
Define a function: on By by
1 X e B_l ,

u(x) =
l1—vir x€Ar,
Thenu lies in the Sobolev spadé’g’z(BR) of functions which have square integrable distri-

butional derivatives of orders less than or equal to two and which vanish to first order on the
boundary. The Laplacian afis given by

0 X € B1,
Au(x) :=

—Avig x€Air.
By taking f = u, we obtain

1
A1(BR) | P<—.
B1 V1R
The result then follows from Proposition 3.1. O
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4. Bucklingeigenvalues. Let M be a complete Riemannian manifold andsbe a
relatively compact subdomain with smooth immersed boundary.blitiding eigenvalue of

£2 is defined by
/ (Au)?
(8) B1($2) == _inf ——!
IoF: (m/IWIZ

There exists a smooth functianon £2 satifying
A2u+,31Au=0 in 2,
9 du=0 onas,
u=0 onoas.
We define theyeneralized buckling eigenvalue a1 as follows. Letd2 = 1 U--- Uy, be
the decomposition af §2 into disjoint components. Leb; denote the solution of
Azwi =0 in 2,
dyw; =0 on as2,
w; =4;; ony;,

and letW := sparfws, ..., w,}. Define

f (Au)?
(10) o1 = a1(82) = olﬂf —_
ueCX()oW / Vul?

It can be shown by direct methods that the infimum is attained ©§(&) functionu satis-
fying
(11) A%w+aiAw =0 in

hw=0 onadZ w=c; ony;,

wherec; are constants.
Note the trivial inequalityy; < 1 and that the two agree #$2 is connected.

PROPOSITION 4.1. Let 2 cC £’ cC M. Assume that 952’ is connected and that
2 =8"—(D1U---UD,), whereeach D; is a subdomain with connected boundary. Then

12) @1(£2) = p1(2') = 2(2).

PROOF Letu be a competing function in (10). We assume= 0 ond£2’ by subtract-
ing an apropriate constant fromif necessary. Let;, j =1, ... , n denote the constant value
cj = ulap, and define
u xe€8,

u'(x) = {

¢cj xeDj.
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Thenu' e Wg’z(.@’) and therefore

(Au')? f (Au)?
B1(22') < = =82

/|w’|2 /|Vu|2
fodd 2

This proves the first inequality in (12) by takitige infimum of the last quotient on the right.
The second inequality in (12) was proved in [5]. O

In two dimensions we can relatg to another widely studied eigenvalue problem.

THEOREM 4.1. Let (M?, dM) be a compact surface with smooth boundary. Denote
the Gaussian curvature by K . Let o1 denote the first eigenval ue of the problem:

Au—Ku+ou=0, nNM u=0 onaiM.
Then o1 > o7 holds.

PROOF Let w be the function appearing in (11). By the Lichnerowicz formula, we
have

A%|Vw|2 = |VVw|?2 + K (Vw, Vw) + (Vw, VAw) .
Expanding out the left hand side gives
IVw|A|Vw| + |V|Vw||? = |VVw|? + K (Vw, Vw) + (Vw, VAw) .
Combining this with Kato's inequality,
[VIVw|| < [VVuw],
yields the distributional inequality
[Vw|A|Vw| — K[Vw|? < (Vw, VAW) .

Note that|Vw| = 0 holds on the boundary. Integrating and using the variational characteri-
zation ofoq then gives

61/ |Vw|? < —/(IVwIAIVwI — K|Vwl)

< —/(Vw, VAw) :/(Aw)2=a1/|Vw|2,

from which the result follows. O
Let M be a complete open Riemannian manifold. We define
ar(M) = inf a1(£2).
2ccM

THEOREM 4.2. Let M be a complete, open Riemannian manifold with at least two
nonparabolic ends. Then a1 (M) = 0.
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REMARK. Let M denote the Poincaré disc equipped with the metric of constant cur-
vature —1. Clearly M has exactly one end which is non-parabolic. It is well-known that
rM(M) = 1/4. If 2 cc M, then we can always find a domad®' as in the statement of
Proposition 4.1. Therefore1 (M) > 1/4. This shows that the assumption on the number of
non-parabolic ends in the theorem cannotrbprioved without additional assumptions on the
geometry.

We will need the following result of Li and Tam ([2], [3]).

THEOREM 4.3 (Li-Tam). Let M be a complete, open Riemannian manifold with at
least two digjoint non-parabolic ends. Denote one of themby &£1. Let p € M and define

fr by

Afr =0 in Bgr(p),
(13) fr=1 ondBgr(p)Né&,
fr=0 ondBr(p) —&1.

Then there exists a sequence R; — oo such that f, converges uniformly on compact subsets
of M to a nonconstant, positive harmonic function with finite Dirichlet energy.

PROOF OF THEOREM (4.2). Denote one of the nonparabolic endséy Choose
p € M and letvg denote the solution of

AZUR =0 in Bg,

(14)
0, vg =0 on 0By,

vg=1 onodoBrNE&1, vg=0 oOnoBr —¢&;.

As in the proof of Lemma 2.1, one can show

2
(15) |Avgll3 = sup <f >|<dh> // 2.
L2,(Bg) \/OBrNEL B

Also, as in the proof of Proposition 2.1, we have

:2|Vh|254/ 12|V 2

Bg Bg

forall i € L2, (Bg), ¢ € C2(Bg). Choosing; to be a standard cut-off function with= 1
on Br/2 gives

/B [ 0= / G
Br Bgj2

forallh € L%(BR), wherec is a constant independent Bf Thus by (15)

2
(16) ||Avg||5 < (¢/R?) sup (y{ *dh) / f IVAI2 = (c/R?)(L/1r)2) »
dBRrNEL BR/Z

L2, (Bg)
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where Y ur/2 is the harmonic capacity a8z — Bg/2. Let fg, be as in Theorem 4.3. Note
that by Dirichlet’s Principle

(17) / |WR,|22/ IV /.12
Br, Br,

Therefore for alk

(18) a1(M) < [|Avg,|15/11Vvg: |15 < (¢/RD(L/ 1, j2) / / IV fr;l?
BR,
Note that the sequencé/lr, 2 is decreasing withand by a well known property of harmonic
functions
/ IV fri? = f IVfI?>0.
Bry Bry
The proof is completed by lettingtend tooco in (18) i

5. Stability of minimal Lagrangian submanifolds.  Let (X%, w) be a symplectic
manifold. Ann-dimensional submanifold

f:L—>X

is calledLagrangian if f*w = 0.

We will be concerned with the special case whéis a Kahler manifolde is its Kéhler
form andL is aminimal Lagrangian submanifold. Let denote the almost complex structure
of X and note that’ defines an isometry between the tangent space and normal space at each
point of L.

Leté € I'.(L L) (:= the space of compactly supported sections of the normal bundle of
L) and Iet8§|L| denote the second variation of volumelofn the directiort. Following Oh
([4]), we call L Hamiltonian stable if and only if

(19) SZIL| >0

forall¢ € I'.(L L) of the form

(20) E=J(Vu), ueC™(L).

In addition we will callL weakly Hamiltonian stable if and only if (19) holds for dlas in
(20) withu € C2°(L).

PROPOSITION 5.1. Let X be a Kéhler manifold and let L be a minimal, Lagrangian
submanifold of X. Assume that for some ¢ > 0, Ricx > ¢ - ds2. Then the following hold.
(i) L isHamiltonian stableonly if ¢1(L) > c.
(i) L isweakly Hamiltonian stable only if 1(L) > c.
(i) If X isEinstein-K&hler with Ricy = ¢ - ds)z(, ¢ > 0, then the conditions appearing
in (i) and (ii) are both necessary and sufficient.
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PROOF The second variation formula for minimal submanifolds shows thati$f a
smooth function such thatu has compact support then

825, L] = fL(|vvu|2 + Ricz (Vu, Vu) — Ricx (JVu, JVu)).
Integrating the Lichnerowicz formula
A%qulz = |VVu|? + Ric, (Vu, Vu) + (Vu, VAu),
gives
0= fL(WwF + Ricz(Vu, Vu) — (Au)?)
so that
820,IL < /L«Au)z—cwmz)

with equality if X is Einstein withc defined as in (iii). IfVu has compact support in a domain
£2, then clearly: must be constant; on each connected boundary compongntThen

wi=u —chwj

is an element oWé’z(Q) and can hence be approximated by a smooth function with compact
support. From this, (i), (i) and (iii) follow. ]

As a consequence, we obtain.

THEOREM 5.1. Let X be a Kéhler manifold with Ricy > ¢ - ds}z( for some constant
¢ > Oand let L be a complete, open, minimal Lagrangian submanifold with at least two
digoint non-parabolic ends. Then L is not Hamiltonian stable.

EXAMPLES. In [1], Lawson constructed minimal immersiofs: ¥, — S° of closed,
genusg surfaces. LetGy 4 denote the Grassmannian of oriented pIaneE‘}n The Gauss
mapg : Xy — G2 4 assigns to each poipt € ¥, the normal bundle to the immersidhat
the pointp. Lawson refers to this map as the bipolar map and showgjtigalso defines a
minimal immersion which induces the same conformal structur®E @s F. As noted in [5],
this map also defines a Lagrangian surface in the Kahler-Einstein magigold

Forg > 1, we select a closed curyeC X which generates a nontrivial cyclic subgroup
(y) of 71(X). We identify r1(X) with the group of deck transformations of the universal
coverX and then consider the covering surfate:= X /(y). The lift g, of g to X1 clearly
defines a minimal, Lagrangian surface. It is not difficult to see Mgtwith the conformal
structure induced frong 1, is conformally an annulugl < |z|] < R < oo}. In particular,
this means thaE; has exactly two nonparabolic ends. Sir€g, has constant positive Ricci
curvature, we can conclude from Theorem 5.1 thgis not Hamiltonian stable.
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6. Appendix. In [7], Payne showed that for a convex domain in the plane, the in-
equality
B1 < 4
holds. Here we will extend Payne’s ideas to show the following.
THEOREM 6.1. Let 2 be a relatively compact subdomain with smooth, immersed
boundary in a Riemannian manifold M. Suppose that 92 has non positive mean curvature
H with respect to the outward pointing normal and that the Ricci curvature of M satisfies

2
(A

Ricy > ———.
M ="y

Then
PL(82) < Tr1(82) + 3a?
holds.
PROOF Letu be an eigenfunction for1. Then
(Au?)? = 2(1Vu|? = ru?)? = 40 2u* + |Vul* + 2uAu|Vu|?)
|Vu?|? = 4u?|Vul|?.
It follows that

/4(}\51/‘ +|Vul* + 2uru|Vul?) d X

(21) B1 =<
/4u2|vu|2d2

Note that
0= f u3(Vu,n) ds = /((Vu3, Vu) — rqu®)
082

=3/u2|Vu|2—k1/u4.

Using this in (21), we obtain
(22) Pr<ri+-————=1A1+0.

By Stoke’s theorem, we have

2 2

</ |Vu|4> = (—/udiv(qulZVu)>
2
= (/(uw, V|Vul? —Aluvw)

5/u2|vu|2/|V|vu|2—,\1uvu|2.
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This gives

92 < (/ |V|Vu|2—AluVu|2>/</u2|Vu|2>
=A§+/|V|vu|2|2//u2|vu|2—2A1f<uvu,V|vu|2>//u2|vu|2.

We expand the numerator in the last term
/(uVu, V|Vul?) = (1/2)/(Vu2, V|Vul?)
= (~1/2) / |Vul?Au?
=— /(|Vu|4 — au?|Vul?).
Inserting this in the estimate féF and replacing in (22), gives

(23) 6%< </ |V|Vu|2|2>/</u2|Vu|2) + 2010 — A2 = + 2060 — A2,

We may assume that > 0 holds in$2 so that the outward pointing normal 82 isn =
—Vu/|Vu|. Thus,

3| Vul? = 2(V,Vu, Vu) = —2|Vu|(V,Vu, n)
= 2|Vu|(Vy,Vu, ¢;) = —=2|Vu|*(Vy,n, e;)
= 2nH|Vul?,

wheren = dimM. Using the assumption o and the Lichnerowicz formula, we obtain

03275 2nH|W|4=7§ |Vu|?0,|Vu|?
a2

982
:/|V|Vu|2|2+/2|Vu|2(|V2u|2+Ric(Vu,Vu)—A1|Vu|2).
Using|V|Vu|?|? < 4|Vu|?|V2u|? and the previous inequality, we have

0> 2)\1/ |Vu|4—2/|Vu|2RiC(Vu,Vu)
> /(2|Vu|2|v2u|2+ V[ Val??)

> 3/|V|Vu|2|2.

We arrive at
r< ((4/3)/(A1|Vu|4— |Vu|2RiC(Vu,Vu))//uzlvmz.

This gives
62 < (10/3)A0 — A2 + 4?0 ,
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from which the result easily follows. O
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