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Abstract. We study the eigenvalues of the biharmonic operators and the buckling
eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of
the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a
generalization of the buckling eigenvalue and give applications to studying the stability of
minimal Lagrangian submanifolds in Kähler manifolds.

1. Introduction. This paper is concerned with eigenvalues of the biharmonic oper-
ators and the buckling eigenvalue for complete Riemannian manifolds. We are mostly con-
cerned with relating bounds for these eigenvalues to the behavior of the ends of the manifold.
Let M be a complete Riemannian manifold.M is calledparabolic if every non-positive sub-
harmonic function onM reduces to a constant. By anend E of M we mean an unbounded
connected component of the complement of a compact subset. An endE will be called para-
bolic if there exists a complete parabolic Riemannian manifold whose only end isE . If M is
a surface these concepts are conformally invariant.

Let Ω ⊂⊂ M be a relatively compact subdomain with smooth boundary. LetP > 0 be
a smooth function onM and consider the eigenvalue problem

�2u − ΛPu = 0 in Ω ,

u = ∂nu = 0 on ∂Ω,
(1)

where�2 = �� denotes the biharmonic operator. Denote the eigenvalues byΛ1 ≤ Λ2 ≤
Λ3 ≤ · · · , Λj = Λj(P,Ω). Let

Λ1(P,M) := inf
Ω⊂⊂M

Λ1(P,Ω) .

THEOREM 1.1. If M is a complete, open, parabolic Riemannian manifold, then
Λ1(P,M) = 0.

We recall a well-known result of Fischer-Colbrie and Schoen which states that any com-
plete, minimal surface in a three dimensional manifold with uniformly positive scalar cur-
vature is unstable in the sense that there are compactly supported variations of the surface
which decrease its area. Oh [4] introduced the concept of Hamiltonian stability for minimal
Lagrangian submanifolds in a Kähler manifold. In view of the similarities between minimal
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surfaces in 3-manifolds and minimal Lagrangian surfaces in Kähler manifold of real dimen-
sion 4, we are lead to the following conjecture:

Let f : Σ2 → X4 be a minimal, Lagrangian immersion of an open surface into a Kähler
4-manifold whose Ricci curvature has a positive lower bound. Assume that the metric induced
on Σ is complete. Then the immersion is not Hamiltonian stable.

In Section 5 we give results in this direction. For a subdomainΩ of a Riemannian
manifold, we letC∞

c (Ω) denote the space of smooth functions with compact support inΩ .
We introduce a natural generalization of buckling eigenvalue

β1(Ω) := inf
C∞

c (Ω)

∫
(�u)2

∫
|∇u|2

,

which we use to study the stability of minimal, Lagrangian submanifolds in Kähler manifolds.
We show:

A complete minimal Lagrangian submanifold with at least two nonparabolic ends in a
Kähler manifold with uniformly positive Ricci curvature is not Hamiltonian stable.

In particular, we verify the conjecture given above in the case where the surface has at
least two nonparobolic ends. We also provide a large supply of examples to which this result
applies.

The author would like to express his appreciation to Dr. John Parker for a helpful con-
versation concerning the examples at the end of Chapter 5.

In the final section, we use an idea of Payne [7] to give an upper bound for the buckling
eigenvalue of a relatively compact, convex domain in a Riemannian manifold in terms of the
first Dirichlet eigenvalue of the Laplacianand a lower bound for the Ricci curvature.

2. Capacities. Let {Ωj }j=0,1,2,... be an exhaustion of a Riemannian manifoldM by
relatively compact subdomains, and letAj := Ωj − Ω̄0 ; j = 1, 2, . . . . Let ωj denote the
harmonic measure of∂Ωj with respect toAj , satisfying

�ωj = 0 in Aj ,

ωj = 0 on ∂Ω0 ,

ωj = 1 on ∂Ωj .

(2)

The (harmonic) capacity of Aj is defined to be

1

µj

:=
∫

Aj

|∇ωj |2 .(3)

It is well-known thatM is parabolic if and only if

lim
j→∞

1

µj

= 0 .
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Let vj be the biharmonic function defined by

�2vj = 0 in Aj ,

∂nvj = 0 on ∂Aj ,

vj = ωj on ∂Aj .

(4)

In analogy with the above we define thebiharmonic capacity of Aj by

1

νj

:=
∫

Aj

(�vj )
2 .(5)

For any regionΩ ⊂ M, defineL2
H (Ω) = {h ∈ L2(Ω) |�h = 0}. Note that by Weyl’s lemma

L2
H(Ω) is a closed subspace ofL2(Ω).

LEMMA 2.1.

1/µj = sup
L2

H (Aj )

( ∮
∂Ωj

∗dh

)2

∫
Aj

|∇h|2
.(i)

1/νj = sup
L2

H (Aj )

( ∮
∂Ωj

∗dh

)2

∫
Aj

h2
.(ii)

PROOF. Let h ∈ L2
H (Aj) . Then

( ∮
∂Ωj

∗dh

)2

=
(∮

∂Aj

ωj ∗ dh

)2

=
( ∫

Aj

〈∇ωj ,∇h〉
)2

≤
( ∫

Aj

|∇ωj |2
)( ∫

Aj

|∇h|2
)

with equality ifh = ωj . To prove(ii) note that
( ∮

∂Ωj

∗dh

)2

=
( ∮

∂Aj

vj ∗ dh

)2

=
( ∮

∂Aj

h ∗ dvj +
∫

Aj

(vj�h − h�vj )

)2

=
( ∫

Aj

h�vj

)2

≤
( ∫

Aj

h2
)(∫

Aj

(�vj )
2
)

with equality ifh = �vj . �

COROLLARY 2.1. The sequence {1/νj }j=1,2,... decreases monotonically.

PROOF. Let j ′ > j > 0 andhj ′ := �vj ′ . Then

1

νj

≥

( ∮
∂Ωj

∗dhj ′
)2

∫
Aj

h2
j ′

>

( ∮
∂Ω ′

j

∗dhj ′
)2

∫
Aj ′

h2
j ′

= 1

νj ′
.

�
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Let Br denote the geodesic ball about a fixedp ∈ M . For 0 < r < R let Ar,R :=
BR − B̄r . Let ωr,R denote the harmonic measure of∂BR with respect toAr,R.

LEMMA 2.2. Let 0 < r < R and 0 ≤ a < b ≤ 1. Let (1/µ)({a ≤ ωr,R ≤ b}) denote
the harmonic capacity of {a ≤ ωr,R ≤ b}, i.e.,

(1/µ)({a ≤ ωr,R ≤ b}) :=
∫

{a≤ωr,R≤b}
|∇ω|2 ,

where ω is the harmonic function with constant value 0 on {ωr,R = a} and constant value 1
on {ωr,R = b}. Then

(1/µ)({a ≤ ωr,R ≤ b}) ≤ 1

(b − a)2

1

µr,R

.

PROOF. Simply note that

ω = ωr,R − a

b − a
.

Therefore ∫
{a≤ωr,R≤b}

|∇ω|2 ≤ 1

(b − a)2

1

µr,R

.

�

3. Bounds for the biharmonic capacity.

PROPOSITION 3.1. If M is a complete parabolic manifold, then

lim
R→∞ 1/νr,R = 0 .

PROOF. Without loss of generality we may assumer = 1. Leth ∈ L2
H (A1,R). Then

for anyζ ∈ C∞
c (A1,R)

0 =
∮

∂A1,R

ζ 2h ∗ dh =
∫

A1,R

(ζ 2|∇h|2 + 2ζh〈∇ζ,∇h〉) .

Therefore∫
A1,R

ζ 2|∇h|2 ≤ 2
∫

A1,R

|ζh〈∇ζ,∇h〉| ≤ 2

( ∫
A1,R

ζ 2|∇h|2
)1/2( ∫

A1,R

h2|∇ζ |2
)1/2

and hence ∫
A1,R

ζ 2|∇h|2 ≤ 4
∫

A1,R

h2|∇ζ |2 .(6)

Now consider the region{1/2 ≤ ω1,R/2} ⊂ A1,R/2. Let

ρ := distance(∂B1, {1/2 ≤ ω1,R/2}) .

SinceM is assumed to be parabolic, the family of functions{ω1,R/2} converge to zero uni-
formly on compact subsets ofM − B1 and hence

lim
R→∞ ρ = ∞ .(7)
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One sees that there exists a functionζR ∈ C∞
0 (A1,R) such thatζR ≡ 1 on{1/2 ≤ ω1,R/2} and

|∇ζR|2 ≤ c(1/R2 + 1/ρ2) ,

wherec is a constant independent ofR. It therefore follows from (6) that

4c(1/R2 + 1/ρ2)

∫
A1,R

h2 ≥
∫

{1/2≤ω1,R/2}
|∇h|2 .

Therefore, using (i) of Lemma 2.1 and Lemma 2.2 we obtain

16c(1/R2 + 1/ρ2)(1/µ1,R/2) ≥ 4c(1/R2 + 1/ρ2)

( ∮
∂BR

∗dh

)2

∫
{1/2≤ω1,R/2}

|∇h|2

≥

( ∮
∂BR

∗dh

)2

∫
A1,R

h2
,

and hence using (ii) of Lemma 2.1

16c(1/R2 + 1/ρ2)(1/µ1,R/2) ≥ 1

ν1,R

and the result follows. �

PROOF OFTHEOREM 1.1. The first eigenvalueΛ1(P,Ω) appearing in (1) is charac-
terized by

Λ1 = inf
C∞

c (Ω)

∫
Ω

(�f )2

∫
Ω

Pf 2
.

Define a functionu onBR by

u(x) :=
{

1 x ∈ B̄1 ,

1 − v1,R x ∈ A1,R ,

Thenu lies in the Sobolev spaceW2,2
0 (BR) of functions which have square integrable distri-

butional derivatives of orders less than or equal to two and which vanish to first order on the
boundary. The Laplacian ofu is given by

�u(x) :=
{

0 x ∈ B1 ,

−�v1,R x ∈ A1,R .

By takingf = u, we obtain

Λ1(BR)

∫
B1

P ≤ 1

ν1,R

.

The result then follows from Proposition 3.1. �
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4. Buckling eigenvalues. Let M be a complete Riemannian manifold and letΩ be a
relatively compact subdomain with smooth immersed boundary. Thebuckling eigenvalue of
Ω is defined by

β1(Ω) := inf
C∞

c (Ω)

∫
(�u)2

∫
|∇u|2

.(8)

There exists a smooth functionu onΩ satifying

�2u + β1�u = 0 in Ω ,

∂nu = 0 on ∂Ω ,(9)

u = 0 on ∂Ω .

We define thegeneralized buckling eigenvalue α1 as follows. Let∂Ω = γ1 ∪ · · · ∪ γn be
the decomposition of∂Ω into disjoint components. Letwi denote the solution of

�2wi = 0 in Ω ,

∂nwi = 0 on ∂Ω ,

wi = δi,j on γj ,

and letW := span{w1, . . . , wn}. Define

α1 = α1(Ω) := inf
u∈C∞

c (Ω)⊕W

∫
(�u)2

∫
|∇u|2

.(10)

It can be shown by direct methods that the infimum is attained by aC4(Ω) functionu satis-
fying

�2w + α1�w = 0 in Ω

∂nw ≡ 0 on ∂Ω w ≡ cj on γj ,
(11)

wherecj are constants.
Note the trivial inequalityα1 ≤ β1 and that the two agree if∂Ω is connected.

PROPOSITION 4.1. Let Ω ⊂⊂ Ω ′ ⊂⊂ M . Assume that ∂Ω ′ is connected and that
Ω = Ω ′ − (D̄1 ∪ · · · ∪ D̄n), where each Dj is a subdomain with connected boundary. Then

α1(Ω) ≥ β1(Ω
′) ≥ λ1(Ω

′) .(12)

PROOF. Let u be a competing function in (10). We assumeu ≡ 0 on∂Ω ′ by subtract-
ing an apropriate constant fromu if necessary. Letcj , j = 1, . . . , n denote the constant value
cj = u|∂Dj and define

u′(x) :=
{

u x ∈ Ω ,

cj x ∈ D̄j .
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Thenu′ ∈ W
2,2
0 (Ω ′) and therefore

β1(Ω
′) ≤

∫
Ω ′

(�u′)2

∫
Ω ′

|∇u′|2
=

∫
Ω

(�u)2

∫
Ω

|∇u|2
.

This proves the first inequality in (12) by takingthe infimum of the last quotient on the right.
The second inequality in (12) was proved in [5]. �

In two dimensions we can relateα1 to another widely studied eigenvalue problem.

THEOREM 4.1. Let (M2, ∂M) be a compact surface with smooth boundary. Denote
the Gaussian curvature by K . Let σ1 denote the first eigenvalue of the problem:

�u − Ku + σu = 0 , in M u ≡ 0 on ∂M .

Then α1 ≥ σ1 holds.

PROOF. Let w be the function appearing in (11). By the Lichnerowicz formula, we
have

�
1

2
|∇w|2 = |∇∇w|2 + K(∇w,∇w) + 〈∇w,∇�w〉 .

Expanding out the left hand side gives

|∇w|�|∇w| + |∇|∇w||2 = |∇∇w|2 + K(∇w,∇w) + 〈∇w,∇�w〉 .

Combining this with Kato’s inequality,

|∇|∇w|| ≤ |∇∇w| ,
yields the distributional inequality

|∇w|�|∇w| − K|∇w|2 ≤ 〈∇w,∇�w〉 .

Note that|∇w| ≡ 0 holds on the boundary. Integrating and using the variational characteri-
zation ofσ1 then gives

σ1

∫
|∇w|2 ≤ −

∫
(|∇w|�|∇w| − K|∇w|2)

≤ −
∫

〈∇w,∇�w〉 =
∫

(�w)2 = α1

∫
|∇w|2 ,

from which the result follows. �

Let M be a complete open Riemannian manifold. We define

α1(M) := inf
Ω⊂⊂M

α1(Ω) .

THEOREM 4.2. Let M be a complete, open Riemannian manifold with at least two
nonparabolic ends. Then α1(M) = 0.
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REMARK. Let M denote the Poincaré disc equipped with the metric of constant cur-
vature−1. ClearlyM has exactly one end which is non-parabolic. It is well-known that
λ1(M) = 1/4. If Ω ⊂⊂ M, then we can always find a domainΩ ′ as in the statement of
Proposition 4.1. Thereforeα1(M) ≥ 1/4. This shows that the assumption on the number of
non-parabolic ends in the theorem cannot be improved without additional assumptions on the
geometry.

We will need the following result of Li and Tam ([2], [3]).

THEOREM 4.3 (Li-Tam). Let M be a complete, open Riemannian manifold with at
least two disjoint non-parabolic ends. Denote one of them by E1. Let p ∈ M and define
fR by

�fR = 0 in BR(p) ,

fR = 1 on ∂BR(p) ∩ E1 ,(13)

fR = 0 on ∂BR(p) − E1 .

Then there exists a sequence Ri → ∞ such that fRi converges uniformly on compact subsets
of M to a nonconstant, positive harmonic function with finite Dirichlet energy.

PROOF OF THEOREM (4.2). Denote one of the nonparabolic ends byE1. Choose
p ∈ M and letvR denote the solution of

�2vR = 0 in BR ,

∂nvR = 0 on ∂BR ,
(14)

vR = 1 on ∂BR ∩ E1 , vR = 0 on ∂BR − E1 .

As in the proof of Lemma 2.1, one can show

‖�vR‖2
2 = sup

L2
H (BR)

(∮
∂BR∩E1

∗dh

)2 /∫
BR

h2 .(15)

Also, as in the proof of Proposition 2.1, we have∫
BR

ζ 2|∇h|2 ≤ 4
∫

BR

h2|∇ζ |2

for all h ∈ L2
H (BR), ζ ∈ C∞

c (BR). Choosingζ to be a standard cut-off function withζ ≡ 1
onBR/2 gives

(c/R2)

∫
BR

h2 ≥
∫

BR/2

|∇h|2

for all h ∈ L2
H (BR), wherec is a constant independent ofR. Thus by (15)

||�vR||22 ≤ (c/R2) sup
L2

H (BR)

(∮
∂BR∩E1

∗dh

)2 / ∫
BR/2

|∇h|2 = (c/R2)(1/µR/2) ,(16)



MINIMAL LAGRANGIAN SUBMANIFOLDS 537

where 1/µR/2 is the harmonic capacity ofBR − BR/2. Let fRi be as in Theorem 4.3. Note
that by Dirichlet’s Principle ∫

BRi

|∇vRi |2 ≥
∫

BRi

|∇fRi |2 .(17)

Therefore for alli

α1(M) ≤ ||�vRi ||22/||∇vRi ||22 ≤ (c/R2
i )(1/µRi/2)

/ ∫
BR1

|∇fRi |2 .(18)

Note that the sequence 1/µRi/2 is decreasing withi and by a well known property of harmonic
functions ∫

BR1

|∇fRi |2 →
∫

BR1

|∇f |2 > 0 .

The proof is completed by lettingi tend to∞ in (18) �

5. Stability of minimal Lagrangian submanifolds. Let (X2n, ω) be a symplectic
manifold. Ann-dimensional submanifold

f : L → X

is calledLagrangian if f ∗ω ≡ 0.
We will be concerned with the special case whenX is a Kähler manifold,ω is its Kähler

form andL is aminimal Lagrangian submanifold. LetJ denote the almost complex structure
of X and note thatJ defines an isometry between the tangent space and normal space at each
point ofL.

Let ξ ∈ Γc(⊥ L) (:= the space of compactly supported sections of the normal bundle of
L) and letδ2

ξ |L| denote the second variation of volume ofL in the directionξ . Following Oh
([4]), we callL Hamiltonian stable if and only if

δ2
ξ |L| ≥ 0(19)

for all ξ ∈ Γc(⊥ L) of the form

ξ = J (∇u) , u ∈ C∞(L) .(20)

In addition we will callL weakly Hamiltonian stable if and only if (19) holds for allξ as in
(20) withu ∈ C∞

c (L).

PROPOSITION 5.1. Let X be a Kähler manifold and let L be a minimal, Lagrangian
submanifold of X. Assume that for some c > 0, RicX ≥ c · ds2

X. Then the following hold.
(i) L is Hamiltonian stable only if α1(L) ≥ c.
(ii) L is weakly Hamiltonian stable only if β1(L) ≥ c.
(iii) If X is Einstein-Kähler with RicX = c · ds2

X, c > 0, then the conditions appearing
in (i) and (ii) are both necessary and sufficient.
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PROOF. The second variation formula for minimal submanifolds shows that ifu is a
smooth function such that∇u has compact support then

δ2
J∇u|L| =

∫
L

(|∇∇u|2 + RicL(∇u,∇u) − RicX(J∇u, J∇u)) .

Integrating the Lichnerowicz formula

�
1

2
|∇u|2 = |∇∇u|2 + RicL(∇u,∇u) + 〈∇u,∇�u〉 ,

gives

0 =
∫

L

(|∇∇u|2 + RicL(∇u,∇u) − (�u)2)

so that

δ2
J∇u|L| ≤

∫
L

((�u)2 − c|∇u|2)

with equality ifX is Einstein withc defined as in (iii). If∇u has compact support in a domain
Ω , then clearlyu must be constantcj on each connected boundary componentγj . Then

w := u −
∑

cjwj

is an element ofW2,2
0 (Ω) and can hence be approximated by a smooth function with compact

support. From this, (i), (ii) and (iii) follow. �

As a consequence, we obtain.

THEOREM 5.1. Let X be a Kähler manifold with RicX ≥ c · ds2
X for some constant

c > 0 and let L be a complete, open, minimal Lagrangian submanifold with at least two
disjoint non-parabolic ends. Then L is not Hamiltonian stable.

EXAMPLES. In [1], Lawson constructed minimal immersionsF : Σg → S3 of closed,
genusg surfaces. LetG2,4 denote the Grassmannian of oriented planes inR4. The Gauss
mapg : Σg → G2,4 assigns to each pointp ∈ Σ, the normal bundle to the immersionF at
the pointp. Lawson refers to this map as the bipolar map and shows thatg is also defines a
minimal immersion which induces the same conformal structure onΣ asF . As noted in [5],
this map also defines a Lagrangian surface in the Kähler-Einstein manifoldG2,4.

Forg > 1, we select a closed curveγ ⊂ Σ which generates a nontrivial cyclic subgroup
〈γ 〉 of π1(Σ). We identifyπ1(Σ) with the group of deck transformations of the universal
coverΣ̃ and then consider the covering surfaceΣ1 := Σ̃/〈γ 〉. The lift g 1 of g to Σ1 clearly
defines a minimal, Lagrangian surface. It is not difficult to see thatΣ1, with the conformal
structure induced fromg 1, is conformally an annulus{1 < |z| < R < ∞}. In particular,
this means thatΣ1 has exactly two nonparabolic ends. SinceG2,4 has constant positive Ricci
curvature, we can conclude from Theorem 5.1 thatg 1 is not Hamiltonian stable.
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6. Appendix. In [7], Payne showed that for a convex domain in the plane, the in-
equality

β1 ≤ 4λ1

holds. Here we will extend Payne’s ideas to show the following.

THEOREM 6.1. Let Ω be a relatively compact subdomain with smooth, immersed
boundary in a Riemannian manifold M . Suppose that ∂Ω has non positive mean curvature
H with respect to the outward pointing normal and that the Ricci curvature of M satisfies

RicM ≥ −3a2

4
.

Then
β1(Ω) ≤ 7λ1(Ω) + 3a2

holds.

PROOF. Let u be an eigenfunction forλ1. Then

(�u2)2 = (2(|∇u|2 − λ1u
2))2 = 4(λ2

1u
4 + |∇u|4 + 2u�u|∇u|2) ,

|∇u2|2 = 4u2|∇u|2 .

It follows that

β1 ≤

∫
4(λ2

1u
4 + |∇u|4 + 2u�u|∇u|2) dΣ∫

4u2|∇u|2 dΣ

.(21)

Note that

0 =
∮

∂Ω

u3〈∇u, n〉 ds =
∫

(〈∇u3,∇u〉 − λ1u
4)

= 3
∫

u2|∇u|2 − λ1

∫
u4 .

Using this in (21), we obtain

β1 ≤ λ1 +

∫
|∇u|4∫

u2|∇u|2
=: λ1 + θ .(22)

By Stoke’s theorem, we have( ∫
|∇u|4

)2

=
(

−
∫

u div(|∇u|2∇u)

)2

=
( ∫

〈u∇u,∇|∇u|2 − λ1u∇u〉
)2

≤
∫

u2|∇u|2
∫

|∇|∇u|2 − λ1u∇u|2 .
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This gives

θ2 ≤
( ∫

|∇|∇u|2 − λ1u∇u|2
)/(∫

u2|∇u|2
)

= λ2
1 +

∫
|∇|∇u|2|2

/ ∫
u2|∇u|2 − 2λ1

∫
〈u∇u,∇|∇u|2〉

/ ∫
u2|∇u|2.

We expand the numerator in the last term∫
〈u∇u,∇|∇u|2〉 = (1/2)

∫
〈∇u2,∇|∇u|2〉

= (−1/2)

∫
|∇u|2�u2

= −
∫

(|∇u|4 − λ1u
2|∇u|2) .

Inserting this in the estimate forθ2 and replacing in (22), gives

θ2 ≤
( ∫

|∇|∇u|2|2
)/( ∫

u2|∇u|2
)

+ 2λ1θ − λ2
1 =: Γ + 2λ1θ − λ2

1 .(23)

We may assume thatu > 0 holds inΩ so that the outward pointing normal to∂Ω is n =
−∇u/|∇u|. Thus,

∂n|∇u|2 = 2〈∇n∇u,∇u〉 = −2|∇u|〈∇n∇u, n〉
= 2|∇u|〈∇ei∇u, ei〉 = −2|∇u|2〈∇ei n, ei〉
= 2nH |∇u|2 ,

wheren = dimM. Using the assumption onH and the Lichnerowicz formula, we obtain

0 ≥ 2
∮

∂Ω

2nH |∇u|4 =
∮

∂Ω

|∇u|2∂n|∇u|2

=
∫

|∇|∇u|2|2 +
∫

2|∇u|2(|∇2u|2 + Ric(∇u,∇u) − λ1|∇u|2) .

Using|∇|∇u|2|2 ≤ 4|∇u|2|∇2u|2 and the previous inequality, we have

0 ≥ 2λ1

∫
|∇u|4 − 2

∫
|∇u|2Ric(∇u,∇u)

≥
∫

(2|∇u|2|∇2u|2 + |∇|∇u|2|2)

≥ 3
∫

|∇|∇u|2|2 .

We arrive at

Γ ≤
(

(4/3)

∫
(λ1|∇u|4 − |∇u|2Ric(∇u,∇u)

)/ ∫
u2|∇u|2 .

This gives
θ2 ≤ (10/3)λθ − λ2 + a2θ ,
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from which the result easily follows. �
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