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Abstract We show that every proper biharmonic curve in a 3-dimensional Sasakian
space form of constant holomorphic sectional curvature H is a helix (both of whose
geodesic curvature and geodesic torsion are constants). In particular, if H �= 1, then it
is a slant helix, that is, a helix which makes constant angle α with the Reeb vector field
with the property κ2 + τ 2 = 1 + (H − 1) sin2 α. Moreover, we construct parametric
equations of proper biharmonic herices in Bianchi–Cartan–Vranceanu model spaces
of a Sasakian space form.
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1 Introduction

Let M be a Riemannian 3-manifold with Levi-Civita connection ∇ and Riemannian
curvature R. A curve γ parametrized by the arc-length in M is said to be biharmonic
if it satisfies ∇3

TT + R(κN, T)T = 0. Here T, N and κ denote the tangent vector field,
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principal normal vector field and geodesic curvature, respectively. Obviously geode-
sics are biharmonic. Non-geodesic biharmonic curves are called proper biharmonic
curves.

Chen and Ishikawa [13] showed nonexistence of proper biharmonic curves in
Euclidean 3-space E

3. (Dimitrić [14] obtained the same result independently.) More-
over they classified all proper biharmonic curves in Minkowski 3-space E

3
1. See

also [17].
In Caddeo et al. [7] studied biharmonic curves in the unit 3-sphere. More precisely,

they showed that proper biharmonic curves in S3 are circles of geodesic curvature 1
or helices which are geodesics in the Clifford minimal torus.

On the other hand, there are few results on biharmonic curves in arbitrary Rie-
mannian manifolds.

The Heisenberg group H3 is a Cartesian 3-space R
3(x, y, z) furnished with group

structure

(x, y, z) · (x′, y′, z′) =
(

x + x′, y + y′, z + z′ + 1
2
(xy′ − x′y)

)
.

Let us denote by η the canonical contact form of the Heisenberg group;

η = dz + 1
2
(ydx − xdy).

Then dx2 + dy2 + η ⊗ η is a naturally reductive left-invariant Riemannian metric
on H3.

In recent paper Caddeo et al. [10], studied biharmonic curves in H3. Caddeo–Oni-
ciuc–Piu actually showed that biharmonic curves in H3 are helices, that is curves with
constant geodesic curvature κ and geodesic torsion τ . They gave an explicit formula
for proper biharmonic helices in H3.

Moreover they proved the nonexistence of proper biharmonic Legendre curves in
H3. This nonexistence result has been obtained by the second named author indepen-
dently [18]. In [18], it is shown that there are proper biharmonic Legendre curves in
Sasakian space form of constant ϕ-holomorphic sectional curvature greater than 1.

As is well known the unit 3-sphere S3 admits a structure of Sasakian space form
compatible to the metric of constant curvature 1. The Heisenberg group is homothetic
to the Sasakian space form R

3(−3) of constant ϕ-holomorphic sectional curvature −3.
It is well known that complete and simply connected 3-dimensional Sasakian space
forms are realized as the following unimodular Lie groups together with left invariant
Sasakian structures – special unitary group SU(2), the Heisenberg group H3 or the
universal covering group of special linear group SL2R.

These facts motivate us to generalize results in [10] to general Sasakian space
forms. In this paper we study biharmonic curves in unimodular homogeneous contact
Riemannian 3-manifolds. We shall deduce the biharmionic equations for curves in
general 3-dimensional unimodular Lie groups with left invariant contact Riemannian
structures.

In Sect. 3, we shall show that every proper biharmonic curve in a 3-dimensional
Sasakian space form of constant holomorphic sectional curvature H is a helix (with
constant geodesic curvature and geodesic torsion). In particular, if H �= 1, then it is a
slant helix, that is, a helix which makes a constant angle α with the Reeb vector field
such that κ2 + τ 2 = 1 + (H − 1) sin2 α.
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Furthermore, in Sect. 4 we shall obtain explicitly parametric equations of proper
biharmonic helices in Bianchi–Cartan–Vranceanu model spaces of Sasakian space
forms.

2 Preliminaries

2.1

Let (N, h) and (M, g) be Riemannian manifolds. Denote by RN and R the Riemannian
curvature tensors of N and M, respectively. We use the sign convention:

RN(X, Y) = [∇X , ∇Y ] − ∇[X,Y], X, Y ∈ �(TN).

For a smooth map φ : N → M, the Levi-Civita connection ∇ of (N, h) induces a
conncetion ∇φ on the pull-back bundle φ∗TM = ∪p∈NTφ(p)M.

The section T (φ) := tr ∇φdφ is called the tension field of φ. A map φ is said to be
harmonic if its tension field vanishes identically.

Definition 2.1 A smooth map φ : N → M is said to be biharmonic if it is a critical
point of the bienergy functional:

E2(φ) =
∫
N

1
2
|T (φ)|2dvh.

The Euler–Lagrange equation of the bienergy is given by T2(φ) = 0. Here the section
T2(φ) is defined by

T2(φ) = −	φT (φ) + tr R(T (φ), dφ)dφ

and called the bitension field of φ. The operator 	φ is the rough Laplacian acting on
�(φ∗TM) defined by

	φ := −
n∑

i=1

(
∇φ

ei∇φ
ei − ∇φ

∇N
ei ei

)
,

where {ei}n
i=1 is a local orthonormal frame field of N. Obviously, every harmonic map

is biharmonic. Non-harmonic biharmonic maps are called proper biharmonic maps.
In particular, if the target manifold M is the Euclidean space E

m, the biharmonic
equation of a map φ : N → E

m is

	h	hφ = 0,

where 	h is the Laplace–Beltrami operator of (N, h).

2.2

For later use, here, we recall the biharmonic equation for curves. Let γ (s) : I → M
be a curve defined on an open interval I and parametrized by arc-length. Then the
bitension field is given by

T2(γ ) = ∇γ ′∇γ ′∇γ ′γ ′ + R(∇γ ′γ ′, γ ′)γ ′.
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Now let us consider biharmonicity of curves in 3-dimensional Riemannian mani-
folds. Let (T, N, B) be the Frenet frame field along γ . Then the Frenet frame satisfies
the following Frenet–Serret equations:⎧⎨

⎩
∇TT = κN,
∇TN = −κT + τB,
∇TB = −τN,

(2.1)

where κ = |T (γ )| = |∇TT| is the geodesic curvature of γ and τ its geodesic torsion.
A helix is a curve with constant geodesic curvature and geodesic torsion. In par-

ticular, curves with constant nonzero geodesic curvature and zero geodesic torsion
are called (Riemannian) circles. Note that geodesics are regarded as helices with zero
geodesics curvature and torsion.

By using (2.1), we find that a curve γ : I → M is biharmonic if and only if{
κκ ′ = 0,
R(κN, T)T + (κ ′′ − κ3 − κτ 2)N + (2τκ ′ + κτ ′)B = 0.

(2.2)

In particular, if M3 is of constant curvature c, then the Riemannian curvature R is
given explicitly by

R(X, Y)Z = c{g(Y, Z)X − g(Z, X)Y},
which gives R(∇TT, T)T = cκN. This together with (2.2) implies that there are no
proper biharmonic curves in Euclidean 3-space E

3 (cf. [13,14]) or in hyperbolic 3-space
H3 (cf. [8]).

On the other hand, Caddeo–Montaldo–Oniciuc classified proper biharmonic curves
in S3.

Theorem 2.1 ([7]) Let γ be a proper biharmonic curve in S3. Then κ ≤ 1 and have two
cases:

• κ = 1 and γ is a circle of radius 1/
√

2;
• 0 < κ < 1 and γ is a helix, which is a geodesic in the Clifford minimal torus

S1(1/
√

2) × S1(1/
√

2).

In the former case, γ is congruent to

1√
2

(
cos(

√
2s), sin(

√
2s), c1, c2

)
, c2

1 + c2
2 = 1.

In the latter case, γ is congruent to

1√
2

(
cos(as), sin(as), cos(bs), sin(bs)

)
.

Remark 2.1 The biharmonicity condition T2(φ) = 0 makes sense for maps between
semi-Riemannian manifolds. Although, the Euclidean 3-space E

3 does not admit a
proper biharmonic curve, Minkowski 3-space E

3
1 contains proper biharmonic curves.

See Chen-Ishikawa’s paper [13]. In [17], it is pointed out that proper biharmonic
curves in Minkowski 3-space are helices with property κ2 − τ 2 = 0.

For general informations on biharmonic maps, we refer to [9] and references
therein.
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3 Biharmonic curves in contact 3-manifolds

3.1

A 3-dimensional smooth manifold M3 is called a contact manifold, if it admits a global
differential 1-form η such that η ∧ (dη) �= 0 everywhere on M. This form η is called
the contact form of M. Given a contact form η, we have a unique vector field ξ , which
is called the characteristic vector field, satisfying η(ξ) = 1 and dη(ξ , X) = 0 for any
vector field X.

A Riemannian metric g is an associate metric to a contact structure η if there exists
a tensor field ϕ of type (1.1) satisfying

ϕ2 = −I + η ⊗ ξ , η(X) = g(X, ξ), dη(X, Y) = g(X, ϕY).

We refer to (η, g) or (ϕ, ξ , η, g) as a contact metric structure.
For a 3-dimensional contact metric manifold M3, one may define naturally an

almost complex structure J on M × R by

J
(

X, f
d
dt

)
=

(
ϕX − f ξ , η(X)

d
dt

)
,

where X is a vector field tangent to M, t the coordinate of R and f a function on M×R.
If the almost complex structure J is integrable, then the contact metric manifold M is
said to be a normal contact metric manifold or a Sasakian manifold.

A plane section 
x at a point x of a contact Riemannian 3-manifold is called a
holomorphic plane if it is invariant under ϕx. The sectional curvature function of holo-
morphic planes is called the holomorphic sectional curvature. In particular, Sasakian
3-manifolds of constant holomorphic sectional curvature are called 3-dimensional
Sasakian space forms.

Simply connected and complete 3-dimensional Sasakian space forms are classified
as follows:

Proposition 3.1 ([6]) Simply connected and complete 3-dimensional Sasakian space
forms M3(H) of constant holomorphic sectional curvature H are isomorphic to one of
the following unimodular Lie groups with left invariant Sasakian structures: the special
unitary group SU(2) for H > −3, the Heisenberg group for H = −3, or the universal
covering group S̃L(2, R) of the special linear group SL(2, R) for H < −3. The Sasakian
space form M3(1) is the unit 3-sphere S3 with the canonical Sasakian structure.

As is well known, the maximum dimension of the isometry group of Riemann-
ian 3-manifold is 6. Moreover Riemannian 3-manifolds with 6-dimensional isometry
group are of constant curvature. Since, there are no Riemannian 3-manifolds with
5-dimensional isometry group (see e.g., [20, p. 47, Theorem 3.2]), it is natural to study
biharmonic curves in Riemannian 3-manifolds with 4-dimensional isometry group.

The 3-dimensional Sasakian space forms are naturally reductive homogeneous
spaces and have four-dimensional isometry group.

On these reasons, we shall study biharmonic curves in homogeneous contact
Riemannian 3-manifolds, especially, Sasakian space forms. Hereafter we investigate
homogeneous contact Riemannian 3-manifolds which are unimodular (as Lie groups).
Our general reference is Perrone’s paper [24]. For general theory of contact Riemann-
ian geometry, especially Sasakian geometry, we refer to [5].
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3.2

Let M be a 3-dimensional unimodular Lie group with a left-invariant Riemannian
metric g = 〈·, ·〉. Then M admits its compatible left-invariant contact Riemannian
structure if and only if there exists an orthonormal basis {e1, e2, e3} of the Lie algebra
m such that (cf. [24]):

[e1, e2] = 2e3, [e2, e3] = c2e1, [e3, e1] = c3e2.

The Reeb vector filed ξ is obtained by left translation of e3. The contact distribution
D is spanned by e1 and e2.

By the Koszul formula, one can calculate the Levi-Civita connection ∇ in terms of
the basis {e1, e2, e3 = ξ} as follows:

∇e1 e2 = 1
2
(c3 − c2 + 2)e3, ∇e1 e3 = −1

2
(c3 − c2 + 2)e2,

∇e2 e1 = 1
2
(c3 − c2 − 2)e3, ∇e2 e3 = −1

2
(c3 − c2 − 2)e1,

∇e3 e1 = 1
2
(c3 + c2 − 2)e2, ∇e3 e2 = −1

2
(c3 + c2 − 2)e1,

(3.1)

all others are zero.
In particular, M is Sasakian if and only if c2 = c3 = c, and it is of constant ϕ-holo-

morphic sectional curvature H = −3 + 2c (cf. [24]). The Riemannian curvature R is
given by

R(e1, e2)e2 =
{1

4
(c3 − c2)

2 − 3 + c3 + c2

}
e1,

R(e1, e3)e3 =
{

− 1
4
(c3 − c2)

2 − 1
2
(c3

2 − c2
2) + 1 − c2 + c3

}
e1,

R(e2, e1)e1 =
{1

4
(c3 − c2)

2 − 3 + c3 + c2

}
e2,

R(e2, e3)e3 =
{1

4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

}
e2,

R(e3, e1)e1 =
{

− 1
4
(c3 − c2)

2 − 1
2
(c3

2 − c2
2) + 1 − c2 + c3

}
e3,

R(e3, e2)e2 =
{1

4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

}
e3.

(3.2)

3.3

Now we study biharmonic curves in homogeneous contact Riemannian 3-manifold
M. Let γ : I → M be a curve parametrized by arc-length with the Frenet frame
(T, N, B). Expand T, N, B as T = T1e1 + T2e2 + T3e3, N = N1e1 + N2e2 + N3e3,
B = B1e1 + B2e2 + B3e3 with respect to the basis {e1, e2, e3 = ξ}. Since (T, N, B) is
positively oriented,

B1 = T2N3 − T3N2, B2 = T3N1 − T1N3, B3 = T1N2 − T2N1. (3.3)
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We call the angle function between T and ξ , the contact angle of γ . By definition,
the contact angle α(s) is computed by the formula cos α(s) = g(T, ξ). Curves with
constant contact angle are called slant curves.

By using the curvature formula (3.2), we have

R(κN, T)T = κR(N1e1 + N2e2 + N3e3, T1e1 + T2e2 + T3e3)(T1e1 + T2e2 + T3e3)

= κ
[{

B1
2
(1

4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)

− B2
2
(1

4
(c3 − c2)

2 + 1
2
(c3

2 − c2
2) − 1 + c2 − c3

)

+ B3
2
(1

4
(c3 − c2)

2 − 3 + c2 + c3

)}
N

{
− B1N1

(1
4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)

+ B2N2

(1
4
(c3 − c2)

2 + 1
2
(c3

2 − c2
2) − 1 + c2 − c3

)

− B3N3

(1
4
(c3 − c2)

2 − 3 + c2 + c3

)}
B

]
. (3.4)

Here we have used the relations (3.3). Hence, from (2.2) and (3.4) the biharmonic
equation for γ becomes:

T2(γ ) = ∇3
TT + R(κN, T)T

= (−3κκ ′)T +
[
(κ ′′ − κ3 − κτ 2) + κ

{
B1

2
(1

4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)

−B2
2
(1

4
(c3 − c2)

2 + 1
2
(c3

2 − c2
2) − 1 + c2 − c3

)

+B3
2
(1

4
(c3 − c2)

2 − 3 + c2 + c3

)}]
N (3.5)

+
[
(2τκ ′ + κτ ′) + κ

{
− B1N1

(1
4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)

+B2N2

(1
4
(c3 − c2)

2 + 1
2
(c3

2 − c2
2) − 1 + c2 − c3

)

−B3N3

(1
4
(c3 − c2)

2 − 3 + c2 + c3

)}]
B

= 0.

Thus we have

Theorem 3.1 Let γ : I → M be a curve parametrized by arc-length in a 3-manifold
unimodular Lie group M with a left-invariant contact Riemannian metric. Then γ is a
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proper biharmonic curve if and only if

κ = constant �= 0,

κ2 + τ 2 = B1
2
(1

4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)

− B2
2
(1

4
(c3 − c2)

2 + 1
2
(c3

2 − c2
2) − 1 + c2 − c3

)

+ B3
2
(1

4
(c3 − c2)

2 − 3 + c2 + c3

)
,

τ ′ = B1N1

(1
4
(c3 + c2)

2 − c2
2 + 1 + c2 − c3

)

− B2N2

(1
4
(c3 − c2)

2 + 1
2
(c3

2 − c2
2) − 1 + c2 − c3

)

+ B3N3

(1
4
(c3 − c2)

2 − 3 + c2 + c3

)
.

In particular, if M is Sasakian, then γ is a proper biharmonic curve if and only if⎧⎨
⎩

κ = constant �= 0
κ2 + τ 2 = 1 + 2(c − 2)η(B)2

τ ′ = 2(c − 2)η(B)η(N),
(3.6)

where c = c2 = c3.
In addition, γ is a proper biharmonic helix in a Sasakian space form M if and only

if the geodesic curvature κ and geodesic torsion τ satisfy the following conditions:{
κ2 + τ 2 = 1 + 2(c − 2)η(B)2,
(c − 2)η(B)η(N) = 0.

Since the condition c = 2 reflects the case of a space of constant curvature 1, we
get the following result.

Proposition 3.2 Let M be a 3D unimodular Lie group with a left-invariant Sasaki-
an structure except the case of constant curvature 1 and let γ : I → M be a non-
geodesic curve parametrized by arc-length whose geodesic curvature κ is constant. If
η(B)η(N) �= 0, then γ is never biharmonic.

Proof This can be verified using an argument similar to [10, Proposition 3.3]. ��
From Theorem 3.1 and Proposition 3.2, we have

Theorem 3.2 Let M be a 3-dimensional Sasakian space form and let γ : I → M be a
non-geodesic curve parametrized by arc-length.

1. If M is not of constant curvature 1, then γ is biharmonic if and only if γ is a helix
with the property: ⎧⎨

⎩
κ �= 0,
η(B)η(N) = 0,
κ2 + τ 2 = 1 + 2(c − 2)η(B)2.

(3.7)

2. If there exist proper biharmonic helices such that η(B)η(N) �= 0, then M is of
constant curvature 1.

The following result can be proved in a similar way to that of [10, Proposition 4.1].
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Proposition 3.3 Let M be a 3-dimensional Sasakian space form and let γ : I → M be
a non-geodesic curve parametrized by arc length. If η(B) = 0, then τ 2 = 1 and γ is not
biharmonic.

This implies the following (cf. [10, Remark 5.8]).

Corollary 3.1 Let M be a 3-dimensional Sasakian space form except the case of con-
stant curvature 1 and let γ : I → M be a non-geodesic biharmonic helix parametrized
by arc-length. Then ⎧⎨

⎩
η(B) = constant �= 0,
η(N) = 0,
κ2 + τ 2 = 1 + 2(c − 2)η(B)2.

Now, we investigate non-geodesic biharmonic helices in a 3-dimensional Sasakian
space form.

Lemma 3.1 (cf. [10]) Let M be a 3-dimensional Sasakian space form and let γ : I → M
be a non-geodesic curve parametrized by arc-length. If η(N) = 0, then γ is a slant curve.
More precisely, the tangent vector filed has the form:

T(s) = sin α0 cos β(s)e1 + sin α0 sin β(s)e2 + cos α0e3, (3.8)

where α0 is the constant contact angle.

Proof Since M is Sasakian, by using the 1st Frenet-Serret equation, it follows that

κN = (T ′
1 − T2T3(c − 2))e1 + (T ′

2 + T1T3(c − 2))e2 + T ′
3e3. (3.9)

From (3.9), we get easily N3 = 0 if and only if T ′
3 = 0. Hence we obtain the required

result. ��
Theorem 3.3 Let M be a 3-dimensional Sasakian space form except the case of con-
stant curvature 1 and let γ : I → M be a non-geodesic biharmonic curve parametrized
by arc-length. Then γ is obtained by integrating the following ordinary differential
equation:

dγ

ds
(s) = sin α0 cos(As + a) e1 + sin α0 sin(As + a) e2 + cos α0 e3,

where A = −(c − 1) cos α0 ± √
(−2c + 5) cos2 α0 + 2(c − 2).

Moreover, if c < 2, then α0 ∈
(

0, cos−1
√

2c−4
2c−5

]⋃ [
cos−1

(
−

√
2c−4
2c−5

)
, π

)
.

Proof In the proof of Proposition 3.3, since α0 ∈ R, we have obtained

∇TT = − sin α0(β
′ + (c − 2) cos α0)(sin βe1 − cos βe2)

= κN,

where κ = |−sin α0(β
′+(c−2) cos α0)|. We assume that − sin α0(β

′+(c−2) cos α0 > 0.
Then

κ = − sin α0(β
′ + (c − 2) cos α0) (3.10)

and
N = sin βe1 − cos βe2.
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Thus we get
B = cos β cos α0e1 + sin β cos α0e2 − sin α0e3. (3.11)

But, by using (3.1) (c2 = c3 − c) we have

∇TN = cos β(β ′ + (c − 1) cos α0)e1 + sin β(β ′ + (c − 1) cos α0)e2 − sin α0e3. (3.12)

So, from (3.11) and (3.12) the geodesic torsion τ of γ is given by

τ = (cos α0)(β
′ + (c − 2) cos α0) + 1. (3.13)

If γ is a curve with γ ′ = T, then it is a proper biharmonic curve if and only if⎧⎨
⎩

β ′ = constant, (τ = constant)
β ′ �= (c − 2) cos α0, (κ �= 0)

κ2 + τ 2 = 1 + 2(c − 2)B2
3.

(3.14)

From (3.11), (3.12), (3.13) and (3.14) we obtain

(β ′)2 + 2(c − 1) cos α0β
′ + (c − 2)

(
(c + 2) cos2 α0 − 2

) = 0,

from which we get

β ′ = −(c − 1) cos α0 ±
√

(−2c + 5) cos2 α0 + 2(c − 2) = A.

��
For the case c = 0, the ODE in Theorem 3.3 can be integrated explicitly. See

Sect. 4.2 and [10].
Theorem 3.3 implies that non-geodesic biharmonic curves in 3-dimensional Sasa-

kian space forms except the case of constant curvature 1 are slant helices.
To characterize biharmonic curves in Sasakian space forms geometrically, here we

use the canonical fibering of Sasakian space forms.
Let M be a 3-dimensional Sasakian manifold. Then M is said to be regular if its

Reeb vector field ξ generates a one-parameter group K of isometries on M, such that
the action of K on M is simply transitive. The Killing vector field ξ induces a regular
one-dimensional (1D) Riemannian foliation on M. We denote by M := M/ξ the orbit
space (the space of all leaves) of a regular Sasakian 3-manifold M under the K-action.

The Sasakian structure on M induces a Kähler structure on the orbit space M.
Further the natural projection π : M → M is a Riemannian submersion [23]. It is easy
to see that M is a Sasakian space form of constant ϕ-holomorphic sectional curvature
H if and only if M is a space form of curvature H + 3 (cf. [22]).

Hereafter we assume that M is a regular Sasakian space form of dimension 3. Let
γ (s) be a non-geodesic biharmonic curve as before. Then its tangent vector field and
principal normal vector field are given by

T(s) = sin α0 cos(As + a) e1 + sin α0 sin(As + a) e2 + cos α0 e3,

N(s) = sin(As + a)e1 − cos(As + a)e2.

Here we note that the contact distribution D is spanned by e1, e2. Let γ = π ◦ γ be
the projection of γ onto M. Direct computation shows that the arc-length parameter
s̄ of γ is

s̄ = s sin α0.
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This formula says somewhat more. In fact, this implies that s is the arc-length param-
eter of γ if and only if γ is a Legendre curve. In such a case, γ is a horizontal lift
of γ .

The Frenet frame {T(s̄), N(s̄)} of γ is given by

T(s̄) = 1
sin α0

π∗T(s), N(s̄) = ±π∗N(s).

Thus the geodesic curvature κ̄ of γ is given by

κ(s̄) = ±1

sin2 α0
κ(s).

Hence γ is a Riemannian circle, i.e., a curve of constant (nonzero) geodesic curvature.

Corollary 3.2 The projected curve of a non-geodesic biharmonic curve in a regular 3D
Sasakian space form is a Riemannian circle in the orbit space.

Let S = π−1{γ } be the inverse image of the projected curve γ . Then it is known
that S is a flat surface with constant mean curvature κ̄/2. This flat surface is called the
Hopf cylinder over γ . (See [3,29]).

Corollary 3.2 implies that every proper biharmonic helix lies in a Hopf cylinder
over a Riemannian circle (Compare with Remark 5.3 of [7]).

Remark 3.1 In [10], it is pointed out that Hopf cylinders over Riemannian circles
in the Heisenberg group M3(−3) are not biharmonic (Remark 5.3). More generally
there are no proper biharmonic cylinders in Sasakian space form M3(H) of constant
ϕ-holomorphic sectional curvature H ≤ 1 [18].

4 Bianchi–Cartan–Vranceanu spaces

To describe proper biharmonic curves in 3-dimensional Sasakian space form explicitly,
it is convenient to use another model of Sasakian space form.

4.1 Bianchi–Cartan–Vranceanu model space

Let c be a real number and set

D =
{
(x, y, z) ∈ R

3(x, y, z) | 1 + c
2
(x2 + y2) > 0

}
.

Note that D is the whole R
3(x, y, z) for c ≥ 0. On the region D, we equip the following

Riemannian metric:

gc = dx2 + dy2

{1 + c
2 (x2 + y2)}2 +

(
dz + ydx − xdy

1 + c
2 (x2 + y2)

)2

. (4.1)

Take the following orthonormal frame field on (D, gc):

u1 =
{

1 + c
2
(x2 + y2)

} ∂

∂x
− y

∂

∂z
, u2 =

{
1 + c

2
(x2 + y2)

} ∂

∂y
+ x

∂

∂z
, u3 = ∂

∂z
.

Then the Levi-Civita connection ∇ of this Riemannian 3-manifold is described as

∇u1 u1 = c yu2, ∇u1 u2 = −c yu1 + u3, ∇u1 u3 = −u2,
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∇u2 u1 = −c xu2 − u3, ∇u2 u2 = c xu1, ∇u2 u3 = u1, (4.2)

∇u3 u1 = −u2, ∇u3 u2 = u1, ∇u3 u3 = 0.

[u1, u2] = −c yu1 + c xu2 + 2u3, [u2, u3] = [u3, u1] = 0. (4.3)

Define the endomorphism field ϕ by

ϕu1 = u2, ϕu2 = −u1, ϕu3 = 0.

The dual one-form η of the vector field ξ = u3 is a contact form on D and satisfies

dη(X, Y) = g(X, ϕY), X, Y ∈ X(D).

Moreover the structure (ϕ, ξ , η, g) is Sasakian. Moreover, (D, gc) is of constant holo-
morphic sectional curvature H = −3+2c. (cf. [3,29]). Hereafter we denote this model
(D, gc) of a Sasakian space form by M3(H). The one-parameter family of Riemannian
3-manifolds {M3(H)}H∈R is classically known by L. Bianchi [4], E. Cartan [12] and
G. Vranceanu [31] (See also Kobayashi [20]). The model M3(H) of Sasakian 3-space
form is called the Bianchi–Cartan–Vranceanu model of 3D Sasakian space form.

The Reeb flows are the translations in the z-directions. Hence the orbit space
M2(H + 3) = M3(H)/ξ is given explicitly by

M2 =
({

(x, y) ∈ R
2 | 1 + c

2
(x2 + y2) > 0

}
,

dx2 + dy2

{1 + c
2 (x2 + y2)}2

)

The natural projection π : M3(H) → M2(H + 3) is

π(x, y, z) = (x, y).

The frame field {u1, u2, u3} is not left invariant. Thus we can not choose ei = ui and
apply our results in Section 2 directly, except the case c = 0.

However, since the Reeb vector field ξ is u3 and it is left invariant, thus we may
choose e3 = u3. (Note that in the case c = 0, we can choose u1 = e1, u2 = e2.)

For a curve γ (s) = (x(s), y(s), z(s)) in M3(H) parameterized by arc-length, we can
expand the tangent vector field as

T = T1e1 + T2e2 + T3e3 = T̂1u1 + T̂2u2 + T̂3u3.

In these expansions, we have T3 = T̂3. Analogously, we consider expansions for N(s)
and B(s) and get the relations N3 = N̂3, B3 = B̂3.

Then in a similar way as in section 4, we compute

R(κN, T)T = κ
[{

B̂2
3(2c − 3) + B̂2

2 + B̂2
1

}
N − {

B̂3N̂3(2c − 3) + B̂2N̂2 + B̂1N̂1
}
B

]

and

T2(γ ) = ∇3
TT + R(κN, T)T

= (−3κκ ′)T +
[
(κ ′′ − κ3 − κτ 2) + κ

{
B2

3(2c − 3) + B̂2
2 + B̂2

1

}]
N

+
[
(2τκ ′ + κτ ′) − κ

{
B3N3(2c − 3) + B̂2N̂2 + B̂1N̂1

}]
B (4.4)

with respect to {u1, u2, u3}.
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Lemma 3.1 is adjusted in the following way:

Lemma 4.1 Let M3(H) be a Bianchi–Cartan–Vranceanu model space of the 3D Sasa-
kian space form and γ : I → M a non-geodesic curve parametrized by arc-length. If
N3 = 0, then γ is a slant curve. More precisely, the tangent vector filed has the form:

T(s) = sin α0 cos β̂(s)u1 + sin α0 sin β̂(s)u2 + cos α0u3, (4.5)

where α0 is the constant contact angle.

In the case c = 0, we notice that β̂(s) = β(s), where β(s) is defined in the proof of
Proposition 3.3.

Let γ (s) = (x(s), y(s), z(s)) be a curve in M3(H). Then the tangent vector field T
of γ is

T =
(

dx
ds

,
dy
ds

,
dz
ds

)
= dx

ds
∂

∂x
+ dy

ds
∂

∂y
+ dz

ds
∂

∂z
.

Using the relations:

∂

∂x
= 1

1 + c
2 (x2 + y2)

(u1 + yu3),
∂

∂y
= 1

1 + c
2 (x2 + y2)

(u2 − xu3),
∂

∂z
= u3,

we get

dx
ds

=
{

1 + c
2
(x2 + y2)

}
T̂1,

dy
ds

=
{

1 + c
2
(x2 + y2)

}
T̂2,

dz
ds

= T̂3 − 1
1 + c

2 (x2 + y2)

(
dx
ds

y − x
dy
ds

)
.

Hence we obtain the following ODE:

Corollary 4.1 Let γ : I → M3(H) be a non-geodesic biharmonic helix parametrized
by arc-length in the Bianchi-Cartan-Vranceanu model of Sasakian space form. Then
the parametric equations of γ are given by

dx
ds

(s) = sin α0 cos β̂(s)
{

1 + c
2
(x(s)2 + y(s)2)

}
, (4.6)

dy
ds

(s) = sin α0 sin β̂(s)
{

1 + c
2
(x(s)2 + y(s)2)

}
, (4.7)

dz
ds

(s) = cos α0 + 1
{1 + c

2 (x(s)2 + y(s)2)}
{

x(s)
dy
ds

(s) − y(s)
dx
ds

(s)
}

. (4.8)

4.2 Explicit formulas of biharmonic curves

In this section, we give the solution of the ODE-system (4.6)–(4.8) explicitly.
We calculate along a slant curve γ with the contact angle α̂ = α0. Then we have

κ = − sin α0(β̂
′ + cy sin α0 cos β̂ − cx sin α0 sin β̂ − 2 cos α0), (4.9)

τ = cos α0(β̂
′ + cy sin α0 cos β̂ − cx sin α0 sin β̂ − 2 cos α0) + 1. (4.10)
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From this, by using Corollary 3.1, we find that γ is a proper biharmonic curve if and
only if (cf. [10, Remark 5.8])

{
β̂ ′ + c sin α0(y cos β̂ − x sin β̂) − 2 cos α0 = nonzero constant,
κ2 + τ 2 = 1 + 2(c − 2)B2

3.
(4.11)

From (4.9), (4.10) and the first equation of (4.11), we obtain

c sin α0(x sin β̂ − y cos β̂) = β̂ ′ − cos α0 ∓
√

2(c − 2) − (2c − 5) cos2 α0 (4.12)

under the assumption 2(c − 2) − (2c − 5) cos2 α0 ≥ 0.
Let us solve the ODE for the following divided cases.
(I) Case-1 c = 0: Then (4.12) is reduced to

β̂ ′ = cos α0 ±
√

5 cos2 α0 − 4 = constant.

Namely, β̂ ′ is a constant, say A, hence β̂(s) = As+b, b ∈ R. Thus, from (4.6) and (4.7)
we have the following result (cf. [10]):

x(s) = 1
A

sin α0 sin(As + b) + x0, (4.13)

y(s) = − 1
A

sin α0 cos(As + b) + y0, (4.14)

z(s) = {cos α0 + sin2 α0/(2A)}s (4.15)

− sin α0

2A
{x0 cos(As + b) + y0 sin(As + b)} + z0.

(II) Case-2 c �= 0 (c �= 2): Then together with (4.12), we see that the equation (4.8)
becomes

dz
ds

= 1
c
{β̂ ′ + (c − 1) cos α0 ∓

√
2(c − 2) − (2c − 5) cos2 α0}.

Thus we have

z(s) = 1
c
β̂(s) + 1

c
{(c − 1) cos α0 ∓

√
2(c − 2) − (2c − 5) cos2 α0}s + z0 (4.16)

where z0 is a constant. We now compute the x- and y-coordinates. We put h(s) :=
1 + c

2 (x(s)2 + y(s)2). Then (4.6), (4.7) becomes

dx
ds

= sin α0 cos β̂(s)h(s),
dy
ds

= sin α0 sin β̂(s)h(s),

respectively. We note that the function h(s) satisfies the following ODE:

d
ds

log |h(s)| = c sin α0(cos β̂(s)x(s) + sin β̂(s)y(s)).

On the other hand, from the first equation of (4.11), we have

d2

ds2 β̂(s) = dβ̂

ds
(s)

d
ds

log |h(s)|. (4.17)
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First, if dβ̂/ds = 0, then (x(s), y(s)) is a line in the orbit space. Hence we have the
following parametrization:

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ sin α0 cos β̂0

∫
h(s)ds

sin α0 sin β̂0
∫

h(s)ds
1
c {(c − 1) cos α0 ∓ √

2(c − 2) − (2c − 5) cos2 α0}s

⎞
⎠ +

⎛
⎝ x0

y0
z0

⎞
⎠ .

Next, we assume that dβ̂/ds �= 0. Then from (4.17) we get

h(s) = r
dβ̂

ds
(s), r ∈ R\{0}.

Hence we obtain

(x(s), y(s)) = (r sin α0 sin β̂(s) + x0, −r sin α0 cos β̂(s) + y0).

It only remains to obtain z(s) in this case dβ̂/ds �= 0.
(a) Subcase-1 c > 0:
In this case, then the orbit space is the whole plane R

2(x, y). The projected curve
γ̄ (s) is a circle (x − x0)

2 + (y − y0)
2 = r2 sin2 α0. Since, M is homogeneous, we may

assume that γ̄ is a circle centered at (0, 0). Then the angle function β̂ is given by

β̂(s) =
(

c
2

r sin2 α0 + 1
r

)
s.

Hence the z-coordinate is given by

z(s) = 1
c

{
c
2

r sin2 α0 + 1
r

+ (c − 1) cos α0 ∓
√

2(c − 2) − (2c − 5) cos2 α0

}
s + z0.

(b) Subcase-2 c < 0:
In this case, the orbit space is the disk x2 + y2 < R2, where R = √−2/c. According

to the radius of the circle, there are three possibilities: closed circles, horocycles or
open circles.

We consider a circle through the origin (0, 0). Namely (x(s), y(s)) = (r sin β̂(s) +
r, −r cos β̂(s)). Then the above three possibilities correspond to the following condi-
tions:

1. γ̄ is a closed circle if and only if r < R/2,
2. γ̄ is a horocycle if and only if r = R/2,
3. γ̄ is an open circle if and only if r > R/2.

For the circle (x(s), y(s)) = (r sin β̂(s) + r, −r cos β̂(s)), h(s) = 1 + cr2(1 + sin β̂(s)).
From (4.12), the angle function β̂ satisfies

d
ds

β̂(s) = cr sin α0(1 + sin β̂(s)) + cos α0 ±
√

2(c − 2) − (2c − 5) cos2 α0.

From this, we get
∫

dβ̂

A sin β̂ + B
= s + s0,

where

A = cr sin α0, B = cr sin α0 + cos α0 ±
√

2(c − 2) − (2c − 5) cos2 α0.
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Introducing a new variable t := tan(β̂/2), then when B �= 0, we have

2
λ − µ

log

∣∣∣∣ t − λ

t − µ

∣∣∣∣ = s + s.

where

λ = −A + √
A2 − B2

B
, µ = −A − √

A2 − B2

B
,

and hence (4.16) gives

z(s) = 2
c

tan−1

{
µ exp(

(λ−µ)
2 B(s + s0)) − λ

exp(
(λ−µ)

2 B(s + s0)) − 1

}

+1
c
{(c − 1) cos α0 ∓

√
2(c − 2) − (2c − 5) cos2 α0}s + z0.

Next, if B = 0, then

cr sin α0(s + s0) =
∫

dβ̂

sin β̂
= log

∣∣∣∣∣tan
β̂

2

∣∣∣∣∣ .

From this, it follows that

β̂(s) = 2 tan−1{exp(cr sin α0(s + s0))}.
Then we get

z(s) = 2
c

tan−1{exp(cr sin α0(s + s0))}

+1
c
{(c − 1) cos α0 ∓

√
2(c − 2) − (2c − 5) cos2 α0}s + z0.

Remark 4.1 The explicit parametrizations of biharmonic Legendre helices (i.e., the
case cos α0 = 0) in the Bianchi-Cartan-Vranceanu model of M3(H) are independently
obtained by R. Caddeo, C. Oniciuc and P. Piu. Their result was presented at the poster
session of the conference “Curvature and Geometry, in honor of Lieven Vanhecke",
Lecce, 11–14 June 2003.

Acknowledgements The authors thank to the referee for useful suggestions and remarks for the
revised version.

References

1. Baikoussis, C., Blair D.E.: On Legendre curves in contact 3-manifolds. Geom. Dedicata 49,
135–142 (1994)

2. Baird, P., Kamissoko, D.: On constructing biharmonic maps and metrics. Ann. Global Anal. Geom.
23, 65–75 (2003)

3. Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi–
Cartan–Vranceanu spaces. In: PDE’s, Submanifolds and Affine Differential Geometry (Warsaw,
2000), Banach Center Publ., vol. 57, pp. 67–87. Polish Acad. Sci., Warsaw (2002)

4. Bianchi, L.: Lezioni di Geometrie Differenziale. E. Spoerri Librao-Editore (1894)
5. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds, vol. 203. Prog. Math.

Birkhäuser, Boston-Basel-Berlin (2002)



Biharmonic curves in 3-dimensional Sasakian space forms 701

6. Blair, D.E., Vanhecke, L.: Symmetries and ϕ-symmetric spaces. Tôhoku Math. J. 39(2), 373–383
(1997)

7. Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds of S3. Int. J. Math. 12, 867–876
(2001)

8. Caddeo, R., Montaldo, S., Oniciuc, C.: Biharmonic submanifolds in spheres. Israel J. Math. 130,
109–123 (2002)

9. Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds,
arXiv:math.DG/0510636.

10. Caddeo, R., Oniciuc, C., Piu, P.: Explicit formulas for biharmonic non-geodesic curves of the
Heisenberg group, Rend. Sem. Mat. Univ. e Politec. Torino 62(3), 265–278 (2004)

11. Caddeo, R., Oniciuc, C., Piu, P.: Poster sesion, curvatures and Geometry, in honor of Lieven
Vanhecke, Lecce 11–14/6/2003

12. Cartan, E.: Leçon sur la geometrie des espaces de Riemann, 2nd edn. Gauthier-Villards, Paris
(1946)

13. Chen, B.Y., Ishikawa, S.: Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu
Univ. Ser. A 45(2), 323–347 (1991)
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