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BIHARMONIC CURVES IN CONTACT GEOMETRY

HÜSEYIN KOCAYIǦIT AND H. HILMI HACISALIHOǦLU

Abstract. We study biharmonic curves in contact geometry whose mean cur-
vature vector field is in the kernel of Laplacian. We give some results for bi-
harmonic curves in Sasakian 3-space. We also give some characterizations for
Legendre curves in the same space.

1. Introduction and Preliminaries.

Let M be a smooth manifold. A contact form η on M is a 1-form such that
(dη)n ∧ η 6= 0. A manifold M together with a contact form is called a contact
manifold [4,10]. The distribution D defined by the Phaffi an equation η = 0 is
called the contact structure determined by η. That is,

D = {x ∈ χ(M)| η : χ(M)→ C∞(M,R), η(X) = 0}
(see, for instance, [4,10]). The maximum dimension of integral submanifold of

D is (dimM −1)/2. An integral submanifold of D of maximum dimension is called
a Legendre submanifold of (M,η) [3].
The reel vector field ζ (killing vector field) is defined by

η(ζ) = 1, dη(ζ, .) = 0

(see [10]).
On a contact manifold (M, η), there exist an endomorphism field φ and a Rie-

mannian metric g satisfying

φ2 = −I + η ⊗ ζ,
g(φX, φY ) = g(X, Y )− η(X)η(Y ),
dη(X, Y ) = 2g(X, φY ),

for all vector fields X and Y on M . The structure tensors (ζ, φ, g) is called the
associated almost contact structure of η [10].
A contact manifold (M, η, ζ, φ, g) is said to be a Sasaki manifold if M satisfies
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(∇Xφ)Y = g(X, Y )ζ − η(Y )X

(see [10]).
Since ζ is a globally defined unit vector field, the contact manifold M admits a

Lorentz metric. In fact let us define h by

h = g − 2η ⊗ η.
Then h is a Lorentz metric which satisfies the following formulae:

h(X, ζ) = −η(X),
h(φX, φY ) = h(X, Y ) + η(X)η(Y ),
dη(X, Y ) = 2h(X, φY ).

We call the Lorentz metric h by associated Lorentz metric of M (see [8], [9]).
Let us define by ∇ the Levi-Civita connection of the Lorentz metric h. Then ∇

is related to the Levi-Civita connection ∇g of g by the following formula:

∇XY = ∇gXY + 2 (η(X)φY + η(Y )φX) .

Now let (M, η, ζ, φ, g) be a Sasaki manifold. Then the associated Lorentz metric
h satisfies the following equation (Theorem 3 in [2]):

(∇Xφ)Y = h(X,Y )ζ + η(Y )X,
∇Xζ = −φX.

The reel vector field ζ is globally defined timelike killing vector field on the
Lorentz manifold (M,h). The resulting manifold (M, η, ζ, φ, g) is called a Lorentz-
Sasaki manifold or Sasakian spacetime (see [2], [6]).
Now let M3 = (M, η, ζ, φ, g) be a contact 3-manifold with an associated metric

g. A curve γ = γ(s) : I → M parameterized by the arclength parameter is said to
be a Legendre curve if γ is tangent to contact distribution D of M . It is obvious
that γ is Legendre if and only if η(γ′) = 0.
Let γ be a Legendre curve onM3. Then we can take a Frenet frame {V1, V2, V3}

so that V1 = γ′ and V3 = ζ.
Now we assume that M is a Sasaki manifold. Then the following equality is

defined

(∇Xφ)Y = g(X, Y )ζ − η(Y )X, X, Y ∈ χ(M).

The Frenet-Serret formulae of γ are given explicitly by ∇′γV1∇′γV2
∇′γV3

 =

 0 κ 0
−κ 0 1
0 −1 0

 V1
V2
V3

 . (1.1)
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The function κ is called the curvature of γ. Namely, every Legendre curve has
constant torsion 1 (see [1]). In particular, a curve γ parametrized by the arclength
is said to be a geodecis if κ = 0. Note that if κ = 0, then automatically τ = 0.
More generally a curve with constant curvature and zero torsion is called a (Rie-

mannian) circle. Geodesics are regarded as Riemannian circles of zero curvatures.
A circular helix is a curve whose curvature and torsion are constants. Geodesics

and Riemannian circles are regarded as degenerate helices. Helices which are neither
geodesics nor circles are frequently called proper helices.
Let us denote by ∆ the Laplace-Beltrami operator of γ and by H the mean

curvature vector field along γ.
The Frenet-Serret formulae of γ imply that the mean curvature vector field H is

given by

H = ∇′γγ′ = ∇′γV1 = κV2, (1.2)
where κ is the curvature of γ.
The Laplace-Beltrami operator of γ is defined by

∆H = −∇′2γ H (1.3)

(see [5], [7]).
Definition 1.1. A unit speed Legendre curve γ = I → M3 on Sasakian 3-

manifold is said to be biharmonic if ∆H = 0(i.e., ∆H = ∆2γ = 0).
Chen and Ishikawa [5] classified biharmonic curves in semi-Euclidean space Env .

In this paper we shall give the characterizations of biharmonic curves in contact
geometry in terms of curvature.

2. Biharmonic Curves on Sasakian 3-Manifolds with Rimennian Metric.

In this section we give the characterizations for biharmonic curves on Sasakian
3-manifolds. By using the obtained results we give some conditions for these curves
to be helix.

Theorem 2.1. Let γ be a unit speed Legendre curve on Sasakian 3-manifold and
let λ be a real constant. Then Legendre curve γ is a circular helix if and only if the
following differential equation satisfies

∆H + λH = 0 (2.1)
where λ = −κ2 − 1.

Proof. By the use of (1.1), (1.2) and (1.3) we get that

∆H = 3κκ′V1 + (κ3 + κ− κ′′)V2 − 2κ′V3, (2.2)

λH = λκV2. (2.3)
So, the proof follows from (2.1), (2.2) and (2.3). �
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Theorem 2.2. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. Then
γ satisfies the following differential equation

∇′3γ V1 + λ1∇′2γ V1 + λ2∇′γV1 + λ3V1 = 0, (2.4)

where

λ1 = −2κ
′

κ ,

λ2 = κ2 + 1− κ′′2−2κ(κ′2
κ3 ,

λ3 = κκ′.

Proof. By the use of Frenet-Serret formulae (1.1), we have

∇′2γ V1 = −κ2V1 + κ′V2 + κV3. (2.5)

By differentiating (2.5) with respect to arc parameter we obtain

∇′3γ V1 = −2κκ′V1 − κ2∇′γV1 + κ′′V2 + κ′∇′γV2 + κ′V3 + κ∇′γV3. (2.6)

From the second equation of (1.1) we get

V3 = ∇′γV2 + κV1, (2.7)

and from the first equation of (1.1) we have

V2 =
1

κ
∇′γV1. (2.8)

Substituting (2.8) into (2.7) we obtain

V3 =

(
1

κ

)′
∇′γV1 +

1

κ
∇′2γ V1 + κV1. (2.9)

Differentiating (2.9) gives

∇′γV3 =
1

κ
∇′3γ V1 + 2

(
1

κ

)′
∇′2γ V1 +

[
κ+

(
1

κ

)′′]
∇′γV1 + κ′V1. (2.10)

Substituting (2.8) into the third equation of (1.1) we have

∇′γV3 = − 1

κ
∇′γV1. (2.11)

Substituting (2.11) into the third equation of (2.10) and doing the regulations
we have

∇′3γ V1 + λ1∇′2γ V1 + λ2∇′γV1 + λ3V1 = 0,

where
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λ1 = −2
κ′

κ
, λ2 = κ2 + 1− κ′′2 − 2κ(κ′2

κ3
, λ3 = κκ′, (2.12)

that finishes the proof. �

Corollary 1. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. If the
Legendre curve γ is geodesic, then the curve γ is a circular helix.

Proof. Let γ be a geodesic curve. Then ∇′γV1 = 0 which gives that κ is constant
i.e., γ is a circular helix. �

Corollary 2. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. If the
Legendre curve γ is a circular helix, then the differential equation characterizing
the curve γ is

∇′3γ V1 + (κ2 + 1)∇′γV1 = 0. (2.13)

Proof. The proof follows from (2.4) immediately. �

Theorem 2.3. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. Then
γ satisfies the following differential equation

∇′3γ V2 + λ1∇′2γ V2 + λ2∇′γV2 + λ3V2 = 0, (2.14)

where

λ1 = −κ
′′

κ′
, λ2 = −(1 + κ2), λ3 = 3κκ′ − κ′′2)

κ′
.

Proof. The proof is obtained immediately by considering the similar way used in
the proof of Theorem 2.1. �

Corollary 3. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. If the
Legendre curve γ is a circular helix, then the differential equation characterizing
the curve γ is

∇′3γ V2 + (κ2 + 1)∇′γV2 = 0.

Proof. The proof follows from (2.4) immediately. �

Theorem 2.4. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. Then
γ satisfies the following differential equation

∇′3γ V3 + λ1∇′2γ V3 + λ2∇′γV3 + λ3V3 = 0, (2.15)

where

λ1 = −κ
′

κ
= λ3, λ2 = 1 + κ2.



40 HÜSEYIN KOCAYIǦIT AND H. HILMI HACISALIHOǦLU

Proof. From the third equation of equation (1.1) we have

∇′2γ V3 = −∇′γV2. (2.16)

Substituting the second equation of equation (1.1) into (2.16) we get

∇′2γ V3 = κV1 − V3. (2.17)

Differentiating (2.17) gives

∇′3γ V3 = κ′V1 + κ∇′γV1 −∇′γV3. (2.18)

From the third equation of Equation (1.1) we have

∇′γV3 = −V2. (2.19)

From the first equation of Equation (1.1) and (2.19) we get

∇′γV1 = −κ∇′γV3. (2.20)

Similarly, from the second equation of Equation (1.1) we have

V1 =
1

κ
V3 −

1

κ
∇′γV2. (2.21)

From (2.16) and (2.21) we obtain

V1 =
1

κ
V3 −

1

κ
∇′2γ V3. (2.22)

Then, writing (2.20) and (2.22) in the (2.18) we have (2.15). �

Corollary 4. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. If the
Legendre curve γ is a circular helix, then the differential equation characterizing
the curve γ is

∇′3γ V3 + (1 + κ2)∇′γV3 = 0. (2.23)

Proof. The proof is clear from Theorem 2.4. �

3. Biharmonic Curves on Sasakian 3-Manifolds with Lorentzian Metric.

Let γ be a Legendre curve on Sasakian 3-manifold M . Then according to the
Lorentzian metric the Frenet-Serret formulae of γ are given explicitly by ∇′γV1∇′γV2

∇′γV3

 =

 0 κ 0
−κ 0 ε
0 −1 0

 V1
V2
V3

 , (3.1)

where ε = ∓1 is the torsion of γ [3]. The Laplacian operator ∆ and the mean
curvature H of γ are defined, respectively, by
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∆ = −ε∇′2γ , (3.2)

and

H = ∇′γV1. (3.3)

Theorem 3.1. Let γ be a unit speed Legendre curve on Sasakian 3-manifold and
let λ be a real constant. Then Legendre curve γ is a circular helix if and only if the
following differential equation satisfies

∆H = λH,

then κ is a constant and

λ = ε+ κ2. (3.4)

Proof. By (3.1), (3.2) and (3.3), we get (3.4). The converse statement of Theorem
3.1. is also fine. �

Corollary 5. Let γ be a unit speed Legendre curve on Sasakian 3-manifold (M, g).
Then γ is a Legendre circular helix whose Killing vector field is timelike (respectively
spacelike) if and only if ∆H = λH where λ = 1− κ2(respectively λ = 1 + κ2).

Proof. The proof is easily seen by Theorem 3.1. �

Corollary 6. Let γ be a unit speed Legendre curve on Sasakian 3-manifold (M, g).
Then γ is a Legendre biharmonic circular helix, whose Killing vector field is timelike
(respectively spacelike) if and only if κ = ±1 (respectively, κ = ±i) .

Proof. The proof is easily seen by Theorem 5. �

Theorem 3.2. Let γ be a unit speed curve with Lorentzian metric on Sasakian
3-manifold (M, g). Then γ satisfies the following differential equation

∇′3γ V1 + λ1∇′2γ V1 + λ2∇′γV1 + λ3V1 = 0, (3.5)

where

λ1 = −2
κ′

κ
, λ2 = κ2 + ε− κ′′2 − 2κ(κ′2

κ3
, λ3 = κκ′.

Proof. We get (3.5) by using (3.1). �

Corollary 7. Let γ be a unit speed Legendre curve on Sasakian 3-manifold with
Lorentzian metric. If the Legendre curve γ is geodesic then the equation character-
izing the curve γ is

κκ′ = 0. (3.6)
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Proof. Let γ be a geodesic curve. Then the proof is clear from Corollary 1. �

Corollary 8. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. If the
Legendre curve γ is a circular helix then the differential equation characterizing the
curve γ is

∇′3γ V1 + (κ2 + ε)∇′γV1 = 0. (3.7)

Proof. By (3.5), we get (3.7). �

Theorem 3.3. Let γ be a unit speed curve with Lorentzian metric on Sasakian
3-manifold (M, g). Then γ satisfies the following differential equation

∇′3γ V2 + λ1∇′2γ V2 + λ2∇′γV2 + λ3V2 = 0, (3.8)

where

λ1 = −κ
′′

κ′
, λ2 = κ2 + ε, λ3 = 3κκ′ − κ′′(1 + κ2)

κ′
.

Proof. We get (3.8) by using (3.1). �

Corollary 9. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. If the
Legendre curve γ is a circular helix, then the differential equation characterizing
the curve γ is

∇′3γ V2 + (κ2 + ε)∇′γV2 = 0. (3.9)

Proof. By (3.8), we get (3.9). �

Theorem 3.4. Let γ be a unit speed curve with Lorentzian metric on Sasakian
3-manifold (M, g). Then γ satisfies the following differential equation

∇′3γ V3 + λ1∇′2γ V3 + λ2∇′γV3 + λ3V3 = 0, (3.10)

where

λ1 = −κ
′

κ
, λ2 = κ2 + ε, λ3 = −εκ

′

κ
.

Proof. We get (3.10) by using (3.1). �

Corollary 10. Let γ be a unit speed Legendre curve on Sasakian 3-manifold. If
the Legendre curve γ is a circular helix, then the differential equation characterizing
the curve γ is

∇′3γ V3 + (κ2 + ε)∇′γV3 = 0. (3.11)

Proof. By (3.10), we get (3.11). �
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Özet:Bu çalı̧smada, contact geometride ortalama eǧrilik vektör
alanı, Laplasyan operatörünün çekirdeǧinde olan biharmonik eǧrileri
inceleriz. Sasakian 3-uzayında biharmonic eǧriler için bazısonuçlar
veririz. Bununla birlikte, aynıuzayda Legendre eǧriler için bazı
karakterizasyonlarıveririz.
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