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Abstract. We find the characterization of maximum dimensional proper-biharmonic

integral C-parallel submanifolds of a Sasakian space form and then we classify such subman-

ifolds in a 7-dimensional Sasakian space form. Working in the sphere S
7 we explicitly find

all 3-dimensional proper-biharmonic integral C-parallel submanifolds. We also determine the

proper-biharmonic parallel Lagrangian submanifolds of CP 3.

1. Introduction. As suggested in 1964 by Eells and Sampson in their famous paper

[17], the biharmonic maps ψ : (M, g) → (N, h) between Riemannian manifolds are a nat-

ural generalization of harmonic maps. The harmonic maps are critical points of the energy

functional

E(ψ) = 1

2

∫

M

|dψ|2 vg ,

while the biharmonic maps are critical points of the bienergy functional

E2(ψ) = 1

2

∫

M

|τ (ψ)|2 vg ,

where τ (ψ) = trace ∇dψ is the tension field that vanishes for harmonic maps. The Euler-

Lagrange equation for the bienergy functional was derived by Jiang in 1986 (see [25]):

τ2(ψ) = −�τ(ψ) − trace RN (dψ, τ(ψ))dψ

= 0

where τ2(ψ) is the bitension field of ψ . Since any harmonic map is biharmonic, we are

interested in non-harmonic biharmonic maps, which are called proper-biharmonic.

An important case of biharmonic maps is represented by the biharmonic Riemannian

immersions, or biharmonic submanifolds, i.e., submanifolds for which the inclusion map is

biharmonic. In Euclidean spaces the biharmonic submanifolds are the same as those defined

by Chen in [13], as they are characterized by the equation �H = 0, where H is the mean

curvature vector field and � is the rough Laplacian.
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Pursuing the founding of proper-biharmonic submanifolds in Riemannian manifolds the

attention was first focused on space forms, and classification results in this context were ob-

tained, for example, in [8, 11, 13, 16]. More recently such results were also found in spaces

of non-constant sectional curvature (see, for example, [12, 23, 28, 29, 33]).

A different and active research direction is the study of proper-biharmonic submanifolds

in pseudo-Riemannian manifolds (see, for example, [2, 3, 14]).

During the efforts of studying the biharmonic submanifolds in space forms, the Eu-

clidean spheres proved to be a very giving environment for obtaining examples and classi-

fication results (see [7] for detailed proofs). Then, the fact that odd-dimensional spheres can

be thought as a class of Sasakian space forms (which do not have constant sectional curvature,

in general) led to the idea that the next step would be the study of biharmonic submanifolds

in Sasakian space forms. Following this direction, the proper-biharmonic Legendre curves

and Hopf cylinders in a 3-dimensional Sasakian space form were classified in [24], whilst in

[19] their parametric equations were found. In [20] all proper-biharmonic Legendre curves

in any dimensional Sasakian space forms were classified, and it was provided a method to

obtain proper-biharmonic anti-invariant submanifolds from proper-biharmonic integral sub-

manifolds. Also, classification results for proper-biharmonic hypersurfaces were obtained in

[21].

The goals of our paper are to characterize the maximum dimensional proper-biharmonic

integral, and integral C-parallel, submanifolds in a Sasakian space form, and then to use these

results in order to obtain the 3-dimensional proper-biharmonic integral C-parallel submani-

folds of a 7-dimensional Sasakian space form. The paper is organized as follows. In Section

2 we briefly recall some general facts on Sasakian space forms with a special emphasis on

the notion of integral C-parallel submanifolds, and also present some old and new results

concerning the proper-biharmonic submanifolds in odd-dimensional spheres. Section 3 is de-

voted to the study of the biharmonicity of maximum dimensional integral submanifolds in

a Sasakian space form. We obtain the necessary and sufficient conditions for such a sub-

manifold to be biharmonic, prove some non-existence results and find the characterization

of proper-biharmonic integral C-parallel submanifolds of maximum dimension. In Section

4 we classify all 3-dimensional proper-biharmonic integral C-parallel submanifolds in a 7-

dimensional Sasakian space form, whilst in Section 5 we find these submanifolds in the 7-

sphere endowed with its canonical and deformed Sasakian structures introduced by Tanno in

[30]. In the last section we classify the proper-biharmonic parallel Lagrangian submanifolds

of CP 3 by determining their horizontal lifts, with respect to the Hopf fibration, in S
7(1).

For a general account of biharmonic maps see [26] and The Bibliography of Biharmonic

Maps (http://people.unica.it/ biharmonic/).

CONVENTIONS. We work in the C∞ category, that means manifolds, metrics, connec-

tions and maps are smooth. The Lie algebra of vector fields on M is denoted by C∞(T M).

The manifold M is always assumed to be connected.
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2. Preliminaries.

2.1. Integral C-parallel submanifolds of a Sasakian manifold. A contact metric

structure on an odd-dimensional manifold N2n+1 is given by (ϕ, ξ, η, g), where ϕ is a tensor

field of type (1, 1) on N , ξ is a vector field, η is a 1-form and g is a Riemannian metric such

that

ϕ2 = −I + η ⊗ ξ , η(ξ) = 1

and

g(ϕU, ϕV ) = g(U, V )−η(U)η(V ), g(U, ϕV ) = dη(U, V ) for all U,V ∈ C∞(T N) .

A contact metric structure (ϕ, ξ, η, g) is called normal if

Nϕ + 2dη ⊗ ξ = 0 ,

where

Nϕ(U, V ) = [ϕU, ϕV ] − ϕ[ϕU,V ] − ϕ[U, ϕV ] + ϕ2[U,V ] for all U,V ∈ C∞(T N) ,

is the Nijenhuis tensor field of ϕ.

A contact metric manifold (N, ϕ, ξ, η, g) is regular if for any point p ∈ N there exists a

cubic neighborhood such that any integral curve of ξ passes through it at most once; and it is

strictly regular if all integral curves of ξ are homeomorphic to each other.

A contact metric manifold (N, ϕ, ξ, η, g) is a Sasakian manifold if it is normal or, equiv-

alently, if

(∇N
U ϕ)(V ) = g(U, V )ξ − η(V )U for all U,V ∈ C∞(T N) ,

where ∇N is the Levi-Civita connection on (N, g). We shall often use in our paper the formula

∇N
U ξ = −ϕU , which holds on a Sasakian manifold.

Let (N, ϕ, ξ, η, g) be a Sasakian manifold. The sectional curvature of a 2-plane gen-

erated by U and ϕU , where U is a unit vector orthogonal to ξ , is called ϕ-sectional curva-

ture determined by U . A Sasakian manifold with constant ϕ-sectional curvature c is called a

Sasakian space form and is denoted by N(c). The curvature tensor field of a Sasakian space

form N(c) is given by

RN (U, V )W = ((c + 3)/4){g(W, V )U − g(W,U)V } + ((c − 1)/4){η(W)η(U)V

−η(W)η(V )U + g(W,U)η(V )ξ − g(W, V )η(U)ξ

+g(W, ϕV )ϕU − g(W, ϕU)ϕV + 2g(U, ϕV )ϕW } .

The classification of the complete, simply connected Sasakian space forms N(c) was given

in [30]. Thus, if c = 1 then N(1) is isometric to the unit sphere S
2n+1 endowed with its

canonical Sasakian structure, and if c + 3 > 0 then N(c) is isometric to S
2n+1 endowed with

the deformed Sasakian structure introduced by Tanno in [30], which we present below.
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Let S
2n+1 = {z ∈ C

n+1; |z| = 1} be the unit (2n + 1)-dimensional Euclidean sphere.

Consider the following structure tensor fields on S
2n+1: ξ0(z) = −J z for each z ∈ S

2n+1,

where J is the usual complex structure on C
n+1 defined by

J z = (−y1, . . . ,−yn+1, x1, . . . , xn+1)

for z = (x1, . . . , xn+1, y1, . . . , yn+1), and ϕ0 = s ◦J , where s : TzC
n+1 → TzS

2n+1 denotes

the orthogonal projection. Equipped with these tensors and the standard metric g0, the sphere

S
2n+1 becomes a Sasakian space form with ϕ0-sectional curvature equal to 1, denoted by

S
2n+1(1).

Now, consider the deformed Sasakian structure on S
2n+1

η = aη0 , ξ =
1

a
ξ0 , ϕ = ϕ0 , g = ag0 + a(a − 1)η0 ⊗ η0 ,

where a is a positive constant. The structure (ϕ, ξ, η, g) is still a Sasakian structure and

(S2n+1, ϕ, ξ, η, g) is a Sasakian space form with constant ϕ-sectional curvature c = 4/a−3 >

−3, denoted by S
2n+1(c) (see also [10]).

A submanifold Mm of a Sasakian manifold (N2n+1, ϕ, ξ, η, g) is called an integral sub-

manifold if η(X) = 0 for any vector field X tangent to M . We have ϕ(T M) ⊂ NM and

m ≤ n, where T M and NM are the tangent bundle and the normal bundle of M , respectively.

Moreover, for m = n, one gets ϕ(NM) = T M . If we denote by B the second fundamental

form of M then, by a straightforward computation, one obtains the relation

g(ϕZ,B(X, Y )) = g(ϕY,B(X,Z))

for any vector fields X,Y and Z tangent to M (see also [6]). We also note that Aξ = 0, where

A is the shape operator of M (see [10]).

A submanifold M̃ of N is said to be anti-invariant if ξ is tangent to M̃ and ϕ maps the

tangent bundle to M̃ into its normal bundle.

Next, we shall recall the notion of an integral C-parallel submanifold of a Sasakian man-

ifold (see, for example, [6]). Let Mm be an integral submanifold of a Sasakian manifold

(N2n+1, ϕ, ξ, η, g). Then M is said to be integral C-parallel if ∇⊥B is parallel to the charac-

teristic vector field ξ , where ∇⊥B is given by

(∇⊥B)(X, Y,Z) = ∇⊥
XB(Y,Z) − B(∇XY,Z) − B(Y,∇XZ)

for any vector fields X,Y,Z tangent to M , ∇⊥ and ∇ being the normal connection and the

Levi-Civita connection on M , respectively. Thus, Mm is an integral C-parallel submani-

fold if (∇⊥B)(X, Y,Z) = S(X, Y,Z)ξ for any vector fields X, Y , Z tangent to M , where

S(X, Y,Z) = g(ϕX,B(Y,Z)) is a totally symmetric tensor field of type (0, 3) on M . It is

not difficult to check that, when m = n, ∇⊥B = 0 if and only if B = 0, i.e., Mn is totally

geodesic.

Now, let Mm be an integral submanifold of a Sasakian manifold N2n+1, and denote by

H its mean curvature vector field. We say that H is C-parallel if ∇⊥H is parallel to ξ , i.e.,

∇⊥
XH = θ(X)ξ , where θ is a 1-form on M . As we shall see, θ(X) = g(H, ϕX) for any vector

field X tangent to M .
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In general, a Riemannian submanifold M of N is called parallel if ∇⊥B = 0, and we

say that H is parallel if ∇⊥H = 0.

The following two results shall be used later in this paper and, for the sake of complete-

ness, we also provide their proofs.

PROPOSITION 2.1. If the mean curvature vector field H of an integral submanifold

Mn of a Sasakian manifold (N2n+1, ϕ, ξ, η, g) is parallel then Mn is minimal.

PROOF. Let X,Y be two vector fields tangent to M . Since

g(B(X, Y ), ξ) = g(∇N
X Y, ξ) = −g(Y,∇N

X ξ) = g(Y, ϕX) = 0

we have B(X, Y ) ∈ ϕ(T M) and, in particular, H ∈ ϕ(T M). Then

g(∇⊥
XH, ξ) = g(∇N

X H, ξ) = −g(H,∇N
X ξ) = g(H, ϕX) .

Thus, if ∇⊥H = 0 it follows that g(H, ϕX) = 0 for any vector field X tangent to M , and this

means H = 0, since M has maximal dimension. ✷

PROPOSITION 2.2. Let (N2n+1, ϕ, ξ, η, g) be a Sasakian manifold and Mm be an in-

tegral C-parallel submanifold with mean curvature vector field H . The following hold:
(1) ∇⊥

XH = g(H, ϕX)ξ , for any vector field X tangent to M , i.e., H is C-parallel;
(2) the mean curvature |H | is constant;
(3) if m = n, then �⊥H = H .

PROOF. In order to prove (1), we consider {Xi}mi=1 to be a local geodesic frame at

p ∈ M . Then we have at p

(∇⊥B)(Xi ,Xj ,Xj ) = ∇⊥
Xi

B(Xj ,Xj ) = g(B(Xj ,Xj ), ϕXi)ξ

and, by summing for j = 1, . . . ,m, we obtain ∇⊥
Xi

H = g(H, ϕXi)ξ . Then, for (2), we have

X(|H |2) = 2g(H,∇⊥
XH) = 2g(H, ϕX)g(H, ξ) = 0

for any vector field X tangent to M , i.e., |H | is constant.

For the last item, we assume that m = n. As ∇N
X ξ = −ϕX, from the Weingarten

equation, we get Aξ = 0, where Aξ is the shape operator of M corresponding to ξ , and

∇⊥
X ξ = ∇N

X ξ = −ϕX. Thus

�⊥H = −
n

∑

i=1

∇⊥
Xi

∇⊥
Xi

H = −
n

∑

i=1

∇⊥
Xi

(g(H, ϕXi)ξ)

= −
n

∑

i=1

Xi(g(H, ϕXi))ξ −
n

∑

i=1

(g(H, ϕXi))∇N
Xi

ξ

= −
n

∑

i=1

Xi(g(H, ϕXi))ξ +
n

∑

i=1

(g(H, ϕXi))ϕXi

= −
n

∑

i=1

Xi(g(H, ϕXi))ξ + H .
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But, since ∇N
Xi

ϕXi = ϕ∇N
Xi

Xi + ξ , it results

Xi(g(H, ϕXi)) = g(∇N
Xi

H,ϕXi) + g(H, ϕ∇N
Xi

Xi + ξ)

= g(−AHXi + ∇⊥
Xi

H,ϕXi) + g(H, ϕB(Xi ,Xi))

= 0 .

We have just proved that �⊥H = H . ✷

2.2. Biharmonic submanifolds in S
2n+1(1). We shall first recall the notion of Frenet

curve of osculating order r as it is presented, for example, in [27]. Let (Mm, g) be a Riemann-

ian manifold and γ : I → M a curve parametrized by arc length, that is |γ ′| = 1. Then γ

is called a Frenet curve of osculating order r , 1 ≤ r ≤ m, if for all s ∈ I its higher order

derivatives

γ ′(s) = (∇0
γ ′γ

′)(s) , (∇γ ′γ ′)(s) , . . . , (∇r−1
γ ′ γ ′)(s)

are linearly independent but

γ ′(s) = (∇0
γ ′γ

′)(s) , (∇γ ′γ ′)(s) , . . . , (∇r−1
γ ′ γ ′)(s) , (∇r

γ ′γ
′)(s)

are linearly dependent in Tγ (s)M . Then there exist unique orthonormal vector fields

E1, E2, . . . , Er along γ such that

∇T E1 = κ1E2 , ∇T E2 = −κ1E1 + κ2E3, . . . , ∇T Er = −κr−1Er−1 ,

where E1 = γ ′ = T and κ1, . . . , κr−1 are positive functions on I .

REMARK 2.3. A geodesic is a Frenet curve of osculating order 1; a circle is a Frenet

curve of osculating order 2 with κ1 constant; a helix of order r, r ≥ 3, is a Frenet curve of

osculating order r with κ1, . . . , κr−1 constants; a helix of order 3 is simply called a helix.

In [24] Inoguchi proved that there are no proper-biharmonic Legendre curves in S
3(1)

whilst in [20] we found the parametric equations of all proper-biharmonic Legendre curves in

S
2n+1(1), n ≥ 2. These curves are given by the following theorem.

THEOREM 2.4 ([20]). Let γ : I → (S2n+1, ϕ0, ξ0, η0, g0), n ≥ 2, be a proper-

biharmonic Legendre curve parametrized by arc length. Then the parametric equation of

γ in the Euclidean space (R2n+2, 〈, 〉) is either

γ (s) = 1
√

2
cos(

√
2s)e1 + 1

√
2

sin(
√

2s)e2 + 1
√

2
e3 ,

where {ei,J ej }3
i,j=1 are constant unit vectors orthogonal to one another, or

γ (s) = 1
√

2
cos(As)e1 + 1

√
2

sin(As)e2 + 1
√

2
cos(Bs)e3 + 1

√
2

sin(Bs)e4 ,

where

A =
√

1 + κ1 , B =
√

1 − κ1 , κ1 ∈ (0, 1)

and {ei}4
i=1 are constant unit vectors orthogonal to one another, satisfying

〈e1,J e3〉 = 〈e1,J e4〉 = 〈e2,J e3〉 = 〈e2,J e4〉 = 0 , A〈e1,J e2〉 + B〈e3,J e4〉 = 0 .
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REMARK 2.5. We note that if γ is a proper-biharmonic Legendre circle, then E2 ⊥
ϕT and n ≥ 3. If γ is a proper-biharmonic Legendre helix, then g0(E2, ϕT ) = −A〈e1,J e2〉
and we have two cases: either E2 ⊥ ϕT and then {ei,J ej }4

i,j=1 is an orthonormal system

in R
2n+2, so n ≥ 3, or g0(E2, ϕT ) �= 0 and, in this case, g0(E2, ϕT ) ∈ (−1, 1) \ {0}.

We also observe that ϕT cannot be parallel to E2. When g0(E2, ϕT ) �= 0 and n ≥ 3 the

first four vectors (for example) in the canonical basis of the Euclidean space R
2n+2 satisfy

the conditions of Theorem 2.4, whilst for n = 2 we can obtain four vectors {e1, e2, e3, e4}
satisfying these conditions in the following way. We consider constant unit vectors e1, e3

and f in R
6 such that {e1, e3, f,J e1,J e3,J f } is a J -basis. Then, by a straightforward

computation, it follows that the vectors e2 and e4 have to be given by

e2 = ∓B

A
J e1 + α1f + α2J f , e4 = ±J e3 ,

where α1 and α2 are constants such that α2
1 + α2

2 = 1 − B2/A2 = 2κ1/A
2. As a concrete

example, we can start with the following vectors in R
6:

e1 = (1, 0, 0, 0, 0, 0) , e3 = (0, 0, 1, 0, 0, 0) , f = (0, 1, 0, 0, 0, 0)

and obtain

e2 =
(

0, α1, 0,−B

A
,α2, 0

)

, e4 = (0, 0, 0, 0, 0, 1) ,

where α2
1 + α2

2 = 1 − B2/A2.

The classification of all proper-biharmonic Legendre curves in a Sasakian space form

N2n+1(c) was given in [20]. This classification is invariant under an isometry Ψ of N which

preserves ξ (or, equivalently, Ψ is ϕ-holomorphic).

In order to find higher dimensional proper-biharmonic submanifolds in a Sasakian space

form we gave the following theorem.

THEOREM 2.6 ([20]). Let (N2n+1, ϕ, ξ, η, g) be a strictly regular Sasakian space

form with constant ϕ-sectional curvature c and let i : M → N be an m-dimensional integral

submanifold of N , 1 ≤ m ≤ n. Consider the cylinder

F : M̃ = I × M → N , F(t, p) = φt (p) = φp(t) ,

where I = S
1 or I = R and {φt }t∈I is the flow of the vector field ξ . Then F : (M̃, g̃ =

dt2 + i∗g) → N is an anti-invariant Riemannian immersion, and is proper-biharmonic if and

only if M is a proper-biharmonic submanifold of N .

Working with anti-invariant submanifolds rather than with cylinders, we can state the

following (known) result.

PROPOSITION 2.7. Let M̃m+1 be an anti-invariant submanifold of the strictly regular

Sasakian space form N2n+1(c), 1 ≤ m ≤ n, invariant under the flow-action of the char-

acteristic vector field ξ . Then M̃ is locally isometric to I × Mm, where Mm is an integral

submanifold of N . Moreover, we have

(1) M̃ is proper-biharmonic if and only if M is proper-biharmonic in N;
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(2) if m = n, then M̃ is parallel if and only if M is C-parallel;
(3) if m = n, then the mean curvature vector field of M̃ is parallel if and only if the

mean curvature vector field of M is C-parallel.

PROOF. The restriction ξ/M̃ of the characteristic vector field ξ to M̃ is a Killing vector

field tangent to M̃ . Since M̃ is anti-invariant, the horizontal distribution defined on M̃ is

integrable. Let p ∈ M̃ be an arbitrary point and M a small enough integral submanifold

of the horizontal distribution on M̃ such that p ∈ M . Then F : I × M → F(I × M) ⊂
M̃ , F(t, p) = φt (p), is an isometry. As M is an integral submanifold of the horizontal

distribution on M̃ , it is an integral submanifold of N .

The item (1) follows immediately from Theorem 2.6, and (2) and (3) are known and can

be checked by straightforward computations. ✷

As a surface in a strictly regular Sasakian space form which is invariant under the flow-

action of the characteristic vector field is also anti-invariant, we have the following corollary.

COROLLARY 2.8. Let M̃2 be a surface of N2n+1(c) invariant under the flow-action of

the characteristic vector field ξ . Then M̃ is locally isometric to I × γ , where γ is a Legendre

curve in N and, moreover, M̃ is proper-biharmonic if and only if γ is proper-biharmonic in

N .

Now, consider M̃2 a surface of N2n+1(c) invariant under the flow-action of the char-

acteristic vector field ξ and let T = γ ′ and E2 be the first two vector fields defined by the

Frenet equations of the above Legendre curve γ . As ∇F
∂/∂tτ (F ) = −ϕ(τ(F )), where ∇F is

the pull-back connection determined by the Levi-Civita connection on N , we can prove the

following proposition.

PROPOSITION 2.9. Let M̃2 be a proper-biharmonic surface of N2n+1(c) invariant un-

der the flow-action of the characteristic vector field ξ . Then M̃ has parallel mean curvature

vector field if and only if c > 1 and ϕT = ±E2.

COROLLARY 2.10. The proper-biharmonic surfaces of S
2n+1(1) invariant under the

flow-action of the characteristic vector field ξ0 are not of parallel mean curvature vector field.

We shall see that we do have examples of maximum dimensional proper-biharmonic

anti-invariant submanifolds of S
2n+1(1), invariant under the flow-action of ξ0, which have

parallel mean curvature vector field.

In [31] the parametric equations of all proper-biharmonic integral surfaces in S
5(1) were

obtained. Up to an isometry of S
5(1) which preserves ξ0, we have only one proper-biharmonic

integral surface given by

x(u, v) = 1
√

2
(exp(iu), i exp(−iu) sin(

√
2v), i exp(−iu) cos(

√
2v)) .

The map x induces a proper-biharmonic Riemannian embedding from the 2-dimensional torus

T 2 = R
2/Λ into S

5, where Λ is the lattice generated by the vectors (2π, 0) and (0,
√

2π).
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REMARK 2.11. We recall that an isometric immersion x : M → R
n+1 of a compact

manifold is said to be of k-type if its spectral decomposition contains exactly k non-constant

terms excepting the center of mass x0 = (Vol(M))−1
∫

M
x vg . When x0 = 0, the submanifold

is called mass-symmetric (see [13]). It was proved in [8, 9] that a proper-biharmonic compact

constant mean curvature submanifold Mm of S
n is either a 1-type submanifold of R

n+1 with

center of mass of norm equal to 1/
√

2, or a mass-symmetric 2-type submanifold of R
n+1.

Now, using [4, Theorem 3.5], where all mass-symmetric 2-type integral surfaces in S
5(1)

were determined, and [11, Proposition 4.1], the result in [31] can be (partially) reobtained.

Further, we consider the cylinder over x and we recover the result in [1]: up to an isom-

etry of S
5(1) which preserves ξ0, we have only one 3-dimensional proper-biharmonic anti-

invariant submanifold of S
5(1) invariant under the flow-action of ξ0 ,

y(t, u, v) = exp(−it)x(u, v) .

The map y is a proper-biharmonic Riemannian immersion with parallel mean curvature vec-

tor field and it induces a proper-biharmonic Riemannian immersion from the 3-dimensional

torus T 3 = R
3/Λ into S

5, where Λ is the lattice generated by the vectors (2π, 0, 0), (0, 2π, 0)

and (0, 0,
√

2π). Moreover, a closer look shows that y factorizes to a proper-biharmonic Rie-

mannian embedding in S
5, and its image is the Riemannian product between three Euclidean

circles, one of radius 1/
√

2 and each of the other two of radius 1/2. Indeed, we may consider

the orthogonal transformation of R
3 given by

T (t, u, v) =
(−t + u

√
2

,
−t − u

√
2

, v

)

= (t ′, u′, v′)

and the map y becomes

y1(t
′, u′, v′) = 1

√
2
(exp(i

√
2t ′), i exp(i

√
2u′) sin(

√
2v′), i exp(i

√
2u′) cos(

√
2v′)) .

Then, acting with an appropriate holomorphic isometry of C
4, y1 becomes

y2(t
′, u′, v′) =

(

1
√

2
exp(i

√
2t ′),

1

2
exp(i(u′ − v′)) ,

1

2
exp(i(u′ + v′))

)

and, further, an obvious orthogonal transformation of the domain leads to the desired results.

3. Biharmonic integral submanifolds of maximum dimension in Sasakian space

forms. Let (N2n+1, ϕ, ξ, η, g) be a Sasakian space form with constant ϕ-sectional curvature

c, and Mn an n-dimensional integral submanifold of N . We recall that this means η(X) = 0

for any vector field X tangent to M . We shall denote by B, A and H the second fundamental

form of M in N , the shape operator and the mean curvature vector field, respectively. By ∇⊥

and �⊥ we shall denote the connection and the Laplacian in the normal bundle. We have the

following theorem.
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THEOREM 3.1. The integral submanifold i : Mn → N2n+1 is biharmonic if and only

if

(3.1)







�⊥H + trace B(·, AH ·) − c(n + 3) + 3n − 3

4
H = 0 ,

4 trace A∇⊥
(·)H

(·) + n grad(|H |2) = 0 .

PROOF. Let us denote by ∇N , ∇ the Levi-Civita connections on N and M , respectively.

Consider {Xi}ni=1 to be a local geodesic frame at p ∈ M . Then, since τ (i) = nH , we have at

p

(3.2) τ2(i) = −�τ(i) − trace RN (di, τ (i))di = n

{ n
∑

i=1

∇N
Xi

∇N
Xi

H −
n

∑

i=1

RN (Xi ,H)Xi

}

.

Using the Weingarten equation ,

∇N
Xi

H = ∇⊥
Xi

H − AH (Xi)

and the Gauss equation, we get around p

∇N
Xi

∇N
Xi

H = ∇⊥
Xi

∇⊥
Xi

H − A∇⊥
Xi

H (Xi) − ∇Xi AH (Xi) − B(Xi , AH (Xi)) .

Thus, at p, one obtains

− 1

n
�τ(i) =

n
∑

i=1

∇N
Xi

∇N
Xi

H

= −�⊥H − trace B(·, AH ·) − trace A∇⊥
(·)H

(·) − trace ∇AH (·, ·) .

(3.3)

The next step is to compute trace ∇AH (·, ·). We obtain, at p,

trace ∇AH (·, ·) =
n

∑

i=1

∇Xi AH (Xi) =
n

∑

i,j=1

∇Xi (g(AH (Xi),Xj )Xj )

=
n

∑

i,j=1

Xi(g(AH (Xi),Xj ))Xj =
n

∑

i,j=1

Xi(g(B(Xj ,Xi),H))Xj

=
n

∑

i,j=1

Xi(g(∇N
Xj

Xi ,H))Xj ,
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and then

trace ∇AH (·, ·) =
n

∑

i,j=1

{g(∇N
Xi

∇N
Xj

Xi,H) + g(∇N
Xj

Xi,∇N
Xi

H)}Xj

=
n

∑

i,j=1

g(∇N
Xi

∇N
Xj

Xi ,H)Xj +
n

∑

i,j=1

g(B(Xj ,Xi),∇⊥
Xi

H)Xj

=
n

∑

i,j=1

g(∇N
Xi

∇N
Xj

Xi ,H)Xj +
n

∑

i,j=1

g(A∇⊥
Xi

H (Xi),Xj )Xj

=
n

∑

i,j=1

g(∇N
Xi

∇N
Xj

Xi ,H)Xj + trace A∇⊥
(·)H

(·) .

Further, using the expression of the curvature tensor field RN , we have

trace ∇AH (·, ·) =
n

∑

i,j=1

g(∇N
Xj

∇N
Xi

Xi + RN (Xi ,Xj )Xi + ∇N
[Xi ,Xj ]Xi ,H)Xj

+ trace A∇⊥
(·)H

(·)

=
n

∑

i,j=1

g(∇N
Xj

∇N
Xi

Xi,H)Xj +
n

∑

i,j=1

g(RN (Xi ,Xj )Xi ,H)Xj

+ trace A∇⊥
(·)H

(·) .

(3.4)

But

n
∑

i,j=1

g(∇N
Xj

∇N
Xi

Xi,H)Xj

=
n

∑

i,j=1

g(∇N
Xj

B(Xi ,Xi),H)Xj +
n

∑

i,j=1

g(∇N
Xj

∇Xi Xi,H)Xj

= n

n
∑

j=1

g(∇N
Xj

H,H)Xj +
n

∑

i,j=1

g(∇Xj ∇XiXi + B(Xj ,∇Xi Xi),H)Xj

= n

2
grad(|H |2)

(3.5)

and

n
∑

i,j=1

g(RN (Xi ,Xj )Xi ,H)Xj

=
n

∑

i,j=1

g(RN (Xi ,H)Xi,Xj )Xj = (trace RN (di,H)di)⊤ .

(3.6)
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Replacing (3.5) and (3.6) into (3.4), we have

trace ∇AH (·, ·) = n

2
grad(|H |2) + (trace RN (di,H)di)⊤ + trace A∇⊥

(·)H
(·)

and therefore

trace A∇⊥
(·)H

(·) + trace ∇AH (·, ·) =2 trace A∇⊥
(·)H

(·) + n

2
grad(|H |2)

+ (trace RN (di,H)di)⊤ .

(3.7)

Now, let {Xi}ni=1 be a local orthonormal frame on M . Then {Xi, ϕXj , ξ}ni,j=1 is a local

orthonormal frame on N . By using the expression of the curvature tensor field and H ∈
span{ϕXi; i = 1, . . . , n} one obtains, after a straightforward computation ,

RN (Xi,H)Xi = −c + 3

4
H + 3(c − 1)

4
g(ϕH,Xi)ϕXi .

Hence

trace RN (di,H)di =
n

∑

i=1

RN (Xi,H)Xi

= − (c + 3)n

4
H +

n
∑

i=1

3(c − 1)

4
g(ϕH,Xi)ϕXi

= −
(c + 3)n

4
H −

3(c − 1)

4
H

= −c(n + 3) + 3n − 3

4
H ,

(3.8)

which implies (trace RN (di,H)di)⊤ = 0.

From (3.2), (3.3), (3.7) and (3.8) we have

1

n
τ2(i) = − �⊥H − trace B(·, AH ·) + c(n + 3) + 3n − 3

4
H

− 2 trace A∇⊥
(·)H

(·) − n

2
grad(|H |2) ,

and we come to the conclusion. ✷

COROLLARY 3.2. Let N2n+1(c) be a Sasakian space form with constant ϕ-sectional

curvature c ≤ (3 − 3n)/(n + 3). Then an integral submanifold Mn with constant mean

curvature |H | in N2n+1(c) is biharmonic if and only if it is minimal.
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PROOF. Assume that Mn is a biharmonic integral submanifold with constant mean cur-

vature |H | in N2n+1(c). It follows, from Theorem 3.1, that

g(�⊥H,H) = −g(trace B(·, AH ·),H) + c(n + 3) + 3n − 3

4
|H |2

= c(n + 3) + 3n − 3

4
|H |2 −

n
∑

i=1

g(B(Xi , AH Xi),H)

= c(n + 3) + 3n − 3

4
|H |2 −

n
∑

i=1

g(AH Xi, AH Xi)

= c(n + 3) + 3n − 3

4
|H |2 − |AH |2 .

Thus, from the Weitzenböck formula

1

2
�|H |2 = g(�⊥H,H) − |∇⊥H |2 ,

one obtains

(3.9)
c(n + 3) + 3n − 3

4
|H |2 − |AH |2 − |∇⊥H |2 = 0 .

If c < (3 − 3n)/(n + 3), relation (3.9) is equivalent to H = 0. Now, assume that c =
(3 − 3n)/(n+ 3). As for integral submanifolds ∇⊥H = 0 is equivalent to H = 0, again (3.9)

is equivalent to H = 0. ✷

COROLLARY 3.3. Let N2n+1(c) be a Sasakian space form with constant ϕ-sectional

curvature c ≤ (3 − 3n)/(n + 3). Then a compact integral submanifold Mn is biharmonic if

and only if it is minimal.

PROOF. Assume that Mn is a biharmonic compact integral submanifold. As in the proof

of Corollary 3.2 we have

g(�⊥H,H) = c(n + 3) + 3n − 3

4
|H |2 − |AH |2

and so �|H |2 ≤ 0, which implies that |H |2 is constant. Therefore we obtain that M is

minimal in this case too. ✷

REMARK 3.4. From Corollaries 3.2 and 3.3 it is easy to see that in a Sasakian space

form N2n+1(c) with constant ϕ-sectional curvature c + 3 ≤ 0 a biharmonic compact inte-

gral submanifold, or a biharmonic integral submanifold Mn with constant mean curvature, is

minimal whatever the dimension of N is.

PROPOSITION 3.5. Let N2n+1(c) be a Sasakian space form and i : Mn → N2n+1 be

an integral C-parallel submanifold. Then (τ2(i))
⊤ = 0.

PROOF. Indeed, from Proposition 2.2 we have |H | is constant and ∇⊥H is parallel to

ξ , which implies that A∇⊥
XH = 0 for any vector field X tangent to M , since Aξ = 0. Thus we

conclude the proof. ✷
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PROPOSITION 3.6. A non-minimal integral C-parallel submanifold Mn of a Sasakian

space form N2n+1(c) is proper-biharmonic if and only if c > (7 − 3n)/(n + 3) and

trace B(·, AH ·) = c(n + 3) + 3n − 7

4
H .

PROOF. We know, from Proposition 2.2, that �⊥H = H . Hence, from Theorem 3.1

and the above proposition, it follows that Mn is biharmonic if and only if

trace B(·, AH ·) =
c(n + 3) + 3n − 7

4
H .

Next, if Mn verifies the above condition, we contract with H and get

|AH |2 = c(n + 3) + 3n − 7

4
|H |2 .

Since AH and H do not vanish it follows that c > (7 − 3n)/(n + 3). ✷

Now, let {Xi}ni=1 be an arbitrary orthonormal local frame field on the integral C-parallel

submanifold Mn of a Sasakian space form N2n+1(c), and let Ai = AϕXi , i = 1, . . . , n, be the

corresponding shape operators. Then, from Proposition 3.6, we obtain

PROPOSITION 3.7. A non-minimal integral C-parallel submanifold Mn of a Sasakian

space form N2n+1(c), c > (7 − 3n)/(n + 3), is proper-biharmonic if and only if







g(A1, A1) . . . g(A1, An)
...

...
...

g(An, A1) . . . g(An, An)













trace A1

...

trace An






= k







trace A1

...

trace An






,

where k = (c(n + 3) + 3n − 7)/4.

4. 3-dimensional biharmonic integral C-parallel submanifolds of a Sasakian space

form N7(c). In [6] Baikoussis, Blair and Koufogiorgios classified the 3-dimensional inte-

gral C-parallel submanifolds in a Sasakian space form (N7(c), ϕ, ξ, η, g). In order to obtain

the classification, they worked with a special local orthonormal basis (see also [15]). Here we

shall briefly recall how this basis is constructed.

Let i : M3 → N7(c) be an integral submanifold of non-zero constant mean curvature.

Let p be an arbitrary point of M , and consider the function fp : UpM → R given by

fp(u) = g(B(u, u), ϕu) ,

where UpM = {u ∈ TpM; g(u, u) = 1} is the unit sphere in the tangent space TpM . If

fp(u) = 0 for all u ∈ UpM , then, for any v1, v2 ∈ UpM such that g(v1, v2) = 0 we have that

g(B(v1, v1), ϕv1) = 0 , g(B(v1, v1), ϕv2) = 0 , g(B(v1, v2), ϕv1) = 0 .

Now, if {X1,X2,X3} is an arbitrary orthonormal basis at p, it follows that trace AϕXi = 0,

for any i ∈ {1, 2, 3}, and therefore H(p) = 0. Consequently, the function fp does not vanish

identically.
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Since UpM is compact, fp attains an absolute maximum at a unit vector X1. It follows

that










g(B(X1,X1), ϕX1) > 0 , g(B(X1,X1), ϕX1) ≥ |g(B(w,w), ϕw)| ,
g(B(X1,X1), ϕw) = 0 , g(B(X1,X1), ϕX1) ≥ 2g(B(w,w), ϕX1) ,

where w is a unit vector in TpM orthogonal to X1. It is easy to see that X1 is an eigenvector

of A1 = AϕX1
with corresponding eigenvalue λ1. Then, since A1 is symmetric, we consider

X2 and X3 to be unit eigenvectors of A1 orthogonal to each other and to X1. Further, we

distinguish two cases.

If λ2 �= λ3, we can choose X2 and X3 such that










g(B(X2,X2), ϕX2) ≥ 0 , g(B(X3,X3), ϕX3) ≥ 0 ,

g(B(X2,X2), ϕX2) ≥ g(B(X3,X3), ϕX3) .

If λ2 = λ3, we consider f1,p the restriction of fp to {w ∈ UpM; g(w,X1) = 0}, and we have

two subcases:

(1) The function f1,p is identically zero. In this case, we have










g(B(X2,X2), ϕX2) = 0 , g(B(X2,X2), ϕX3) = 0 ,

g(B(X2,X3), ϕX3) = 0 , g(B(X3,X3), ϕX3) = 0 .

(2) The function f1,p does not vanish identically. Then we choose X2 such that

f1,p(X2) is an absolute maximum. We have that










g(B(X2,X2), ϕX2) > 0 , g(B(X2,X2), ϕX2) ≥ g(B(X3,X3), ϕX3) ≥ 0 ,

g(B(X2,X2), ϕX3) = 0 , g(B(X2,X2), ϕX2) ≥ 2g(B(X3,X3), ϕX2) .

Now, with respect to the orthonormal basis {X1,X2,X3}, the shape operators A1, A2 = AϕX2

and A3 = AϕX3
, at p, can be written as

(4.1) A1 =





λ1 0 0

0 λ2 0

0 0 λ3



 , A2 =





0 λ2 0

λ2 α β

0 β µ



 , A3 =





0 0 λ3

0 β µ

λ3 µ δ



 .

We also have A0 = Aξ = 0. With these notations we have

(4.2) λ1 > 0 , λ1 ≥ |α| , λ1 ≥ |δ| , λ1 ≥ 2λ2 , λ1 ≥ 2λ3 .

For λ2 �= λ3 we get

(4.3) α ≥ 0 , δ ≥ 0 and α ≥ δ ,

and for λ2 = λ3 we obtain that

(4.4) α = β = µ = δ = 0

or

(4.5) α > 0 , δ ≥ 0 , α ≥ δ , β = 0 and α ≥ 2µ .
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We can extend X1 on a neighbourhood Vp of p such that X1(q) is a maximal point of

fq : UqM → R for any point q of Vp.

If the eigenvalues of A1 have constant multiplicities, then the above basis {X1,X2, X3},
defined at p, can be smoothly extended and we can work on the open dense subset of M

defined by this property.

Using this basis, in [6], the authors proved that, when M is an integral C-parallel subman-

ifold, the functions λi , i ∈ {1, 2, 3}, and α, β, µ, δ are constant on Vp. Then, they classified

all 3-dimensional integral C-parallel submanifolds in a 7-dimensional Sasakian space form.

According to that classification, if c + 3 > 0 then M is a non-minimal integral C-parallel

submanifold if and only if either:

Case I. M is flat, it is locally a product of three curves which are helices of osculating

orders r ≤ 4, and λ1 = (λ2 − (c + 3)/4)/λ, λ2 = λ3 = λ = constant �= 0, α = constant,

β = 0, µ = constant, δ = constant, such that −
√

c + 3/2 < λ < 0, 0 < α ≤ λ1, α > 2µ,

α ≥ δ ≥ 0, (c + 3)/4 + λ2 + αµ − µ2 = 0 and ((3λ2 − (c + 3)/4)/λ)2 + (α + µ)2 + δ2 > 0,

or

Case II. M is locally isometric to a product γ × M̄2, where γ is a curve and M̄2 is a

C-parallel surface, and either

(1) λ1 = 2λ2 = −λ3 =
√

c + 3/(2
√

2), α = µ = δ = 0, β = ±
√

3(c + 3)/(4
√

2).

In this case γ is a helix in N with curvatures κ1 = 1/
√

2 and κ2 = 1, and

M̄2 is locally isometric to the 2-dimensional Euclidean sphere of radius ρ =√
8/(3(c + 3)), or

(2) λ1 = (λ2 − (c + 3)/4)/λ, λ2 = λ3 = λ = constant, α = β = µ = δ = 0, such

that −
√

c + 3/2 < λ < 0 and λ2 �= (c + 3)/12. In this case, γ is a helix in N with

curvatures κ1 = λ1 and κ2 = 1, and M̄2 is the 2-dimensional Euclidean sphere of

radius ρ = 1/
√

(c + 3)/4 + λ2.

Now, identifying the shape operators Ai with the corresponding matrices, from Proposi-

tion 3.7, we get the following proposition.

PROPOSITION 4.1. A non-minimal integral C-parallel submanifold M3 of a Sasakian

space form N7(c), c > −1/3, is proper-biharmonic if and only if

(4.6)

( 3
∑

i=1

A2
i

)





trace A1

trace A2

trace A3



 = 3c + 1

2





trace A1

trace A2

trace A3



 ,

where matrices Ai are given by (4.1).

Now, we can state the theorem.

THEOREM 4.2. A 3-dimensional integral C-parallel submanifold M3 of a Sasakian

space form N7(c) is proper-biharmonic if and only if either:
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(1) c > −1/3 and M3 is flat and it is locally a product of three curves:
• a helix with curvatures κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1,

• a helix of order 4 with curvatures κ1 =
√

λ2 + α2, κ2 = (α/κ1)
√

λ2 + 1 and

κ3 = −(λ/κ1)
√

λ2 + 1,

• a helix of order 4 with curvatures κ1 =
√

λ2 + µ2 + δ2, κ2 = (δ/κ1)
√

λ2 + µ2 + 1 and κ3 = (κ2/δ)
√

λ2 + µ2, if δ �= 0, or a circle with curva-

ture κ1 =
√

λ2 + µ2, if δ = 0,

where λ, α,µ, δ are constants given by

(4.7)























































(

3λ2 −
c + 3

4

)(

3λ4 − 2(c + 1)λ2 +
(c + 3)2

16

)

+ λ4((α + µ)2 + δ2) = 0 ,

(α + µ)

(

5λ2 + α2 + µ2 − 7c + 5

4

)

+ µδ2 = 0 ,

δ

(

5λ2 + δ2 + 3µ2 + αµ − 7c + 5

4

)

= 0 ,

c + 3

4
+ λ2 + αµ − µ2 = 0

such that −
√

c + 3/2 < λ < 0, 0 < α ≤ (λ2 − (c + 3)/4)/λ, α ≥ δ ≥ 0, α > 2µ

and λ2 �= (c + 3)/12 ;
or

(2) M3 is locally isometric to a product γ × M̄2 between a curve and a C-parallel

surface of N , and either

(a) c = 5/9, γ is a helix in N7(5/9) with curvatures κ1 = 1/
√

2 and κ2 = 1,

and M̄2 is locally isometric to the 2-dimensional Euclidean sphere with radius√
3/2, or

(b) c ∈ [(−7 + 8
√

3)/13,+∞) \ {1}, γ is a helix in N7(c) with curvatures

κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1, and M̄2 is locally isometric to the

2-dimensional Euclidean sphere with radius 2/
√

4λ2 + c + 3, where

(4.8) λ < 0 and λ2 =















4c + 4 ±
√

13c2 + 14c − 11

12
if c < 1 ,

4c + 4 −
√

13c2 + 14c − 11

12
if c > 1 .

PROOF. Let M3 be a proper-biharmonic integral C-parallel submanifold of a Sasakian

space form N7(c). From Proposition 4.1 we see that c > −1/3.
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Next, we easily get that the equation (4.6) is equivalent to the system

(4.9)



















































































(

3
∑

i=1

λi

)

( 3
∑

i=1

λ2
i −

3c + 1

2

)

+ (α + µ)(αλ2 + µλ3)

+(β + δ)(βλ2 + δλ3) = 0 ,

(

3
∑

i=1

λi

)

(αλ2 + µλ3) + (α + µ)

(

2λ2
2 + α2 + 3β2 + µ2 + βδ − 3c + 1

2

)

+µ(β + δ)2 = 0 ,

(

3
∑

i=1

λi

)

(βλ2 + δλ3) + β(α + µ)2

+(β + δ)

(

2λ2
3 + δ2 + 3µ2 + β2 + αµ − 3c + 1

2

)

= 0 .

In the following, we shall split the study of this system, as M3 is given by Case I or Case

II of the classification.

Case I. The system (4.9) is equivalent to the system given by the first three equations

of (4.7). Now, M is not minimal if and only if at least one of the components of the mean

curvature vector field H does not vanish and, from the first equation of (4.7), it follows that λ2

must be different from (c + 3)/12. Thus, again using [6] for the expressions of the curvatures

of the three curves, we obtain the first case of the theorem.

Case II. (1) In this case, the second equation of (4.9) is identically satisfied and the

other two are equivalent to c = 5/9. Thus, from the classification of the integral C-parallel

submanifolds, we get the first part of the second case of the theorem.

(2) The second and the third equation of (4.9) are satisfied, in this case, and the first

equation is equivalent to

3λ4 − 2(c + 1)λ2 + (c + 3)2

16
= 0 .

This equation has solutions if and only if

c ∈
(

− ∞,
−7 − 8

√
3

13

]

∪
[−7 + 8

√
3

13
,+∞

)

,

and these solutions are given by

λ2 = 4c + 4 ±
√

13c2 + 14c − 11

12
.

Since c > −1/3 it follows that c ∈ [(−7 + 8
√

3)/13,+∞). Moreover, if c = 1, from the

above relation, it follows that λ2 must be equal to 1 or 1/3, which is a contradiction, and

therefore c ∈ [(−7 + 8
√

3)/13,+∞) \ {1}. Further, it is easy to check that λ2 = (4c +
4 +

√
13c2 + 14c − 11)/12 < (c + 3)/4 if and only if c ∈ [(−7 + 8

√
3)/13, 1) and λ2 =

(4c + 4 −
√

13c2 + 14c − 11)/12 < (c + 3)/4 if and only if c ∈ [(−7 + 8
√

3)/13,+∞) \
{1}. ✷
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5. Proper-biharmonic submanifolds in the 7-sphere. In this section we shall work

with the standard model for simply connected Sasakian space forms N7(c) with c + 3 > 0,

which is the sphere S
7 endowed with its canonical Sasakian structure or with the deformed

Sasakian structure introduced by Tanno.

In [6] the authors obtained the explicit equation of the 3-dimensional integral C-parallel

flat submanifolds in S
7(1), whilst in [22] we gave the explicit equation of such submanifolds

in S
7(c), c + 3 > 0.

Using these results and Theorem 4.2 we easily get the following theorem.

THEOREM 5.1. A 3-dimensional integral C-parallel submanifold M3 of S
7(c), c =

4/a − 3 > −3, is proper-biharmonic if and only if either:
(1) c > −1/3 and M3 is flat, it is locally a product of three curves and its position

vector in C
4 is

x(u, v,w) = λ
√

λ2 + 1/a
exp

(

i

(

1

aλ
u

))

E1

+
1

√
a(µ − α)(2µ − α)

exp(−i(λu − (µ − α)v))E2

+ 1√
aρ1(ρ1 + ρ2)

exp(−i(λu + µv + ρ1w))E3

+ 1
√

aρ2(ρ1 + ρ2)
exp(−i(λu + µv − ρ2w))E4 ,

where ρ1,2 = (
√

4µ(2µ − α) + δ2 ± δ)/2 and λ, α,µ, δ are real constants given

by (4.7) such that −1/
√

a < λ < 0, 0 < α ≤ (λ2 − 1/a)/λ, α ≥ δ ≥ 0, α > 2µ,

λ2 �= 1/(3a) and {Ei}4
i=1 is an orthonormal basis of C

4 with respect to the usual

Hermitian inner product;
or

(2) M3 is locally isometric to a product γ × M̄2 between a curve and a C-parallel

surface of N , and either

(a) c = 5/9, γ is a helix in S
7(5/9) with curvatures κ1 = 1/

√
2 and κ2 = 1, and

M̄2 is locally isometric to the 2-dimensional Euclidean sphere with radius√
3/2, or

(b) c ∈ [(−7 + 8
√

3)/13,+∞) \ {1}, γ is a helix in S
7(c) with curvatures

κ1 = (λ2 − (c + 3)/4)/λ and κ2 = 1, and M̄2 is locally isometric to the

2-dimensional Euclidean sphere with radius 2/
√

4λ2 + c + 3, where

λ < 0 and λ2 =















4c + 4 ±
√

13c2 + 14c − 11

12
if c < 1 ,

4c + 4 −
√

13c2 + 14c − 11

12
if c > 1 .
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Now, applying this theorem in the case of the 7-sphere endowed with its canonical

Sasakian structure we get the following corollary, which also shows that, for c = 1, the

system (4.7) can be completely solved.

COROLLARY 5.2. A 3-dimensional integral C-parallel submanifold M3 of S
7(1) is

proper-biharmonic if and only if it is flat, it is locally a product of three curves and its position

vector in C
4 is

x(u, v,w) = − 1
√

6
exp(−i

√
5u)E1 + 1

√
6

exp

(

i

(

1
√

5
u − 4

√
3

√
10

v

))

E2

+ 1
√

6
exp

(

i

(

1
√

5
u +

√
3

√
10

v − 3
√

2

2
w

))

E3

+ 1
√

2
exp

(

i

(

1
√

5
u +

√
3

√
10

v +
√

2

2
w

))

E4 ,

where {Ei}4
i=1 is an orthonormal basis of C

4 with respect to the usual Hermitian inner product.

Moreover, the xu-curve is a helix with curvatures κ1 = 4
√

5/5 and κ2 = 1, the xv-curve is

a helix of order 4 with curvatures κ1 =
√

29/
√

10, κ2 = 9
√

2/
√

145 and κ3 = 2
√

3/
√

145

and the xw-curve is a helix of order 4 with curvatures κ1 =
√

5/
√

2, κ2 = 2
√

3/
√

10 and

κ3 =
√

3/
√

10.

PROOF. Since c = 1 the system (4.7) becomes

(5.1)























(3λ2 − 1)2(λ2 − 1) + λ4((α + µ)2 + δ2) = 0 ,

(α + µ)(5λ2 + α2 + µ2 − 3) + µδ2 = 0 ,

δ(5λ2 + δ2 + 3µ2 + αµ − 3) = 0 ,

λ2 + αµ − µ2 + 1 = 0

with the supplementary conditions

(5.2) −1 < λ < 0 , 0 < α ≤ λ2 − 1

λ
, α ≥ δ ≥ 0 , α > 2µ and λ2 �= 1

3
.

We note that, since α > 2µ, from the fourth equation of (5.1) it results that µ < 0.

The third equation of system (5.1) suggests that, in order to solve this system, we need

to split our study in two cases as δ is equal to 0 or not.

Case 1: δ = 0. In this case the third equation holds whatever the values of λ, α and µ

are, and so does the condition α ≥ δ. We also note that α �= −µ, since otherwise, from the

first equation, it results λ2 = 1 or λ2 = 1/3, which are both contradictions.

In the following, we shall look for α of the form α = ωµ, where ω ∈ (−∞, 0) \ {−1},
since α > 0, µ < 0 and α �= −µ. From the second and the fourth equations of the system

we have λ2 = −(ω2 + 3ω − 2)/((ω − 2)(ω − 3)), µ2 = 8/((ω − 2)(ω − 3)) and then α2 =
8ω2/((ω − 2)(ω − 3)). Replacing in the first equation, after a straightforward computation, it

can be written as
8(ω + 1)3(1 − 3ω)

(ω − 3)3(ω − 2)
= 0
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and its solutions are −1 and 1/3. But ω ∈ (−∞, 0) \ {−1} and therefore we conclude that

there are no solutions of the system that verify all conditions (5.2) when δ = 0.

Case 2: δ > 0. In this case the third equation of (5.1) becomes

5λ2 + δ2 + 3µ2 + αµ − 3 = 0 .

Now, since α > 0 and µ < 0, we can take again α = ωµ, with ω ∈ (−∞, 0), and then, from

the last three equations of the system, we easily get λ2 = −(ω2 + 5ω + 2)/((ω − 1)(ω − 2)),

α2 = 8ω3/((ω − 1)2(ω − 2)), µ2 = 8ω/((ω − 1)2(ω − 2)) and δ2 = 8(ω + 1)2/(ω − 1)2.

Next, from the first equation of (5.1), after a straightforward computation, one obtains

16(ω + 1)3(ω + 3)

(ω − 2)(ω − 1)3
= 0 ,

whose solutions are −3 and −1. If ω = −1 it follows that λ2 = 1/3, which is a contradiction,

and therefore we obtain that ω = −3. Hence

λ2 = 1

5
, α2 = 27

10
, µ2 = 3

10
and δ2 = 2 .

As λ < 0, α > 0, µ < 0 and δ > 0 it results that λ = −1/
√

5, α = 3
√

3/
√

10, µ =
−

√
3/

√
10 and δ =

√
2. It can be easily seen that also the conditions (5.2) are verified by

these values, and then, by the meaning of the first statement of Theorem 5.1, we come to the

conclusion. ✷

REMARK 5.3. A proper-biharmonic compact submanifold M of S
n of constant mean

curvature |H | ∈ (0, 1) is of 2-type and mass-symmetric (see [8, 9]). In our case, the Rie-

mannian immersion x can be written as x = x1 + x2, where

x1(u, v,w) = 1√
2

exp

(

i

(

1√
5
u +

√
3√

10
v +

√
2

2
w

))

E4 ,

x2(u, v,w) = − 1
√

6
exp(−i

√
5u)E1 + 1

√
6

exp

(

i

(

1
√

5
u − 4

√
3

√
10

v

))

E2

+ 1√
6

exp

(

i

(

1√
5
u +

√
3√

10
v − 3

√
2

2
w

))

E3 ,

and �x1 = 3(1 − |H |)x1 = x1, �x2 = 3(1 + |H |)x2 = 5x2, |H | = 2/3. Now, Corollary 5.2

could also be proved by using the main result in [5] and [11, Proposition 4.1].

REMARK 5.4. By a straightforward computation we can deduce that the map x fac-

torizes to a map from the torus T 3 = R
3/Λ into R

8, where Λ is the lattice generated by

the vectors a1 = (6π/
√

5,
√

3π/
√

10, π/
√

2), a2 = (0,−3
√

5π/
√

6,−π/
√

2) and a3 =
(0, 0,−4π/

√
2), and the quotient map is a Riemannian immersion.

By the meaning of Theorem 2.6 we know that the cylinder over x, given by

y(t, u, v,w) = φt (x(u, v,w)) ,

is a proper-biharmonic map into S
7(1). Moreover, we have the following proposition.
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PROPOSITION 5.5. The cylinder over x determines a proper-biharmonic Riemannian

embedding from the torus T 4 = R
4/Λ into S

7, where the lattice Λ is generated by a1 =
(2π/

√
6, 0, 0, 0), a2 = (0, 2π/

√
6, 0, 0), a3 = (0, 0, 2π/

√
6, 0) and a4 = (0, 0, 0, 2π/

√
2).

The image of this embedding is the Riemannian product between a Euclidean circle of radius

1/
√

2 and three other Euclidean circles, each of radius 1/
√

6.

PROOF. As the flow of the characteristic vector field ξ is given by φt (z) = exp(−it)z

we get

y(t, u, v,w) = − 1
√

6
exp(−i(t +

√
5u))E1 + 1

√
6

exp
(

i
(

− t + 1
√

5
u − 4

√
3

√
10

v
))

E2

+ 1√
6

exp
(

i
(

− t + 1√
5
u +

√
3√

10
v − 3

√
2

2
w

))

E3

+ 1√
2

exp
(

i
(

− t + 1√
5
u +

√
3√

10
v +

√
2

2
w

))

E4 ,

where {Ei}4
i=1 is an orthonormal basis of C

4 with respect to the usual Hermitian inner product.

Now, we consider the following two orthogonal transformations of R
4:



















































































1
√

2
t + 1

√
10

u +
√

3

2
√

5
v + 1

2
w = t ′,

2
√

5
u −

√
6

4
√

5
v −

√
2

4
w = u′,

√
5

2
√

2
v −

√
3

2
√

2
w = v′,

1√
2
t − 1√

10
u −

√
3

2
√

5
v − 1

2
w = w′ ,

and










































































√
2

√
6
t ′ + 2

√
6
u′ = t̃ ,

−
√

2
√

6
t ′ + 1

√
6
u′ −

√
3

√
6
v′ = ũ ,

−
√

2
√

6
t ′ +

1
√

6
u′ +

√
3

√
6
v′ = ṽ ,

w′ = w̃ .

Then we obtain

ỹ(t̃ , ũ, ṽ, w̃) = − 1√
6

exp(−i(
√

6t̃ ))E1 + 1√
6

exp(i(
√

6ũ))E2 + 1√
6

exp(i(
√

6ṽ))E3

+ 1√
2

exp(i(
√

2w̃))E4 ,
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which ends the proof. ✷

REMARK 5.6. We see that y can be written as y = y1 + y2, where y1(t, u, v,w) =
exp(−it)x1, y2(t, u, v,w) = exp(−it)x2, and �y1 = 2y1, �y2 = 6y2, the mean curvature of

y being equal to 1/2.

REMARK 5.7. It is known that the parallel flat (n + 1)-dimensional compact anti-

invariant submanifolds in S
2n+1(1) are Riemannian products of circles of radii ri , i = 1, . . . ,

n + 1, where
∑n+1

i=1 r2
i = 1 (see [32]). The biharmonicity of such submanifolds was solved in

[33].

6. Proper-biharmonic parallel Lagrangian submanifolds of CP 3. We consider the

Hopf fibration π : S
2n+1(1) → CP n(4), and M a Lagrangian submanifold of CP n. Then

M̃ = π−1(M) is an (n + 1)-dimensional anti-invariant submanifold of S
2n+1 invariant under

the flow-action of the characteristic vector field ξ0 and, locally, M̃ is isometric to S
1×Mn. The

submanifold M is a parallel Lagrangian submanifold if and only if M is an integral C-parallel

submanifold (see [27]), and it was proved in [18] that a parallel Lagrangian submanifold M

is biharmonic if and only if M is (−4)-biharmonic.

We recall here that a map ψ : (M, g) → (N, h) is (−4)-biharmonic if it is a critical

point of the (−4)-bienergy E2(ψ) − 4E(ψ), i.e., ψ verifies τ2(ψ) + 4τ (ψ) = 0. Also, a real

submanifold M of CP n is called Lagrangian if it has dimension n and the complex structure

J of CP n maps the tangent space to M onto the normal one.

Thus, in order to determine all proper-biharmonic parallel Lagrangian submanifolds of

CP 3, we shall determine the (−4)-biharmonic integral C-parallel submanifolds of S
7(1).

Just as in the case of Theorem 3.1 we obtain the following theorem.

THEOREM 6.1. The integral submanifold i : M3 → S
7(1) is (−4)-biharmonic if and

only if










�⊥H + trace B(·, AH ·) − 7H = 0

4 trace A∇⊥
(·)H

(·) + 3 grad(|H |2) = 0 .

Therefore it follows the next proposition.

PROPOSITION 6.2. A non-minimal integral C-parallel submanifold M3 of S
7(1) is

(−4)-biharmonic if and only if

(6.1) trace B(·, AH ·) = 6H .

Now, we can state the theorem.

THEOREM 6.3. A 3-dimensional integral C-parallel submanifold M3 of S
7(1) is (−4)-

biharmonic if and only if either:
(1) M3 is flat and it is locally a product of three curves:

• a helix with curvatures κ1 = (λ2 − 1)/λ and κ2 = 1,

• a helix of order 4 with curvatures κ1 =
√

λ2 + α2, κ2 = (α/κ1)
√

λ2 + 1 and

κ3 = −(λ/κ1)
√

λ2 + 1,
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• a helix of order 4 with curvatures κ1 =
√

λ2 + µ2 + δ2, κ2 = (δ/κ1)
√

λ2 + µ2 + 1 and κ3 = (κ2/δ)
√

λ2 + µ2, if δ �= 0, or a circle with curva-

ture κ1 =
√

λ2 + µ2, if δ = 0,

where λ, α,µ, δ are constants given by

(6.2)























(3λ2 − 1)(3λ4 − 8λ2 + 1) + λ4((α + µ)2 + δ2) = 0 ,

(α + µ)(5λ2 + α2 + µ2 − 7) + µδ2 = 0 ,

δ(5λ2 + δ2 + 3µ2 + αµ − 7) = 0 ,

1 + λ2 + αµ − µ2 = 0

such that −1 < λ < 0, 0 < α ≤ (λ2 − 1)/λ, α ≥ δ ≥ 0, α > 2µ and λ2 �= 1/3;
or

(2) M3 is locally isometric to a product γ × M̄2 between a helix with curvatures κ1 =
(
√

13−1)/
√

12 − 3
√

13 and κ2 = 1, and a C-parallel surface of S
7(1) which is lo-

cally isometric to the 2-dimensional Euclidean sphere with radius
√

3/(7 −
√

13).

PROOF. It is easy to see that the equation (6.1) is equivalent to the system

(6.3)



































































(

3
∑

i=1

λi

)(

3
∑

i=1

λ2
i − 6

)

+ (α + µ)(αλ2 + µλ3) + (β + δ)(βλ2 + δλ3) = 0 ,

(

3
∑

i=1

λi

)

(αλ2 + µλ3) + (α + µ)(2λ2
2 + α2 + 3β2 + µ2 + βδ − 6)

+µ(β + δ)2 = 0 ,

(

3
∑

i=1

λi

)

(βλ2 + δλ3) + β(α + µ)2 + (β + δ)(2λ2
3 + δ2 + 3µ2 + β2 + αµ − 6)

= 0 .

In the same way as for the study of biharmonicity, we shall split the study of this system,

as M3 is given by Case I or Case II of the classification.

Case I. The system (6.3) is equivalent to the system given by the first three equations of

(6.2) and, just like in the proof of Theorem 4.2, we conclude the result.

Case II. (1) It is easy to verify that this case cannot occur in this setting.

(2) The second and the third equation of system (6.3) are satisfied and the first equation

is equivalent to 3λ4 − 8λ2 + 1 = 0, whose solutions are λ2 = (4 ±
√

13)/3. Since λ2 < 1

it follows that λ2 = (4 −
√

13)/3 and this, together with the classification of the integral

C-submanifolds, leads to the conclusion. ✷

Using the explicit equation of the 3-dimensional integral C-parallel flat submanifolds in

S
7(1) (see [6]), we obtain the following corollary.
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COROLLARY 6.4. Any 3-dimensional flat (−4)-biharmonic integral C-parallel sub-

manifold M3 of S
7(1) is given locally by

x(u, v,w) = λ
√

λ2 + 1
exp

(

i
(1

λ
u
))

E1 + 1
√

(µ − α)(2µ − α)
exp(−i(λu − (µ − α)v))E2

+
1

√
ρ1(ρ1 + ρ2)

exp(−i(λu + µv + ρ1w))E3

+ 1√
ρ2(ρ1 + ρ2)

exp(−i(λu + µv − ρ2w))E4 ,

where ρ1,2 = (
√

4µ(2µ − α) + δ2 ± δ)/2, −1 < λ < 0, 0 < α ≤ (λ2 − 1)/λ, α ≥ δ ≥ 0,

α > 2µ, λ2 �= 1/3, the tuple (λ, α,µ, δ) being one of the following

(

−

√

4 −
√

13

3
,

√

7 −
√

13

6
, −

√

7 −
√

13

6
, 0

)

,

(

−

√

1

5 + 2
√

3
,

√

45 + 21
√

3

13
, −

√

6

21 + 11
√

3
, 0

)

,

or
(

−

√

1

6 +
√

13
,

√

523 + 139
√

13

138
, −

√

79 − 17
√

13

138
,

√

14 + 2
√

13

3

)

,

and {Ei}4
i=1 is an orthonormal basis of C

4 with respect to the usual Hermitian inner product.

PROOF. In order to solve the system (6.2), we first note that, since α > 2µ, from the

fourth equation it results µ < 0.

The third equation suggests that we need to split our study in two cases as δ is equal to 0

or not.

Case 1: δ = 0. In this case the third equation holds whatever the values of λ, α and µ

are, and so does the condition α ≥ δ.

If α = −µ we easily obtain that the solution of the system is

λ = −

√

4 −
√

13

3
, α =

√

7 −
√

13

6
, µ = −

√

7 −
√

13

6
.

In the following, we shall look for α of the form α = ωµ, where ω ∈ (−∞, 0) \ {−1},
since α > 0 and µ < 0. From the second and the fourth equations of the system we have

λ2 = −(ω2 + 7ω − 6)/((ω − 2)(ω − 3)), µ2 = 12/((ω − 2)(ω − 3)) and then α2 =
12ω2/((ω − 2)(ω − 3)). Replacing in the first equation, after a straightforward computation,

it can be written as

3ω6 + 16ω5 − 58ω4 − 140ω3 + 531ω2 − 444ω + 108 = 0 ,

which is equivalent to

(ω − 2)2(3ω4 + 28ω3 + 42ω2 − 84ω + 27) = 0 ,
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whose solutions are 2, −3 ± 2
√

3 and (−5 ± 2
√

13)/3. From these solutions the only one to

verify the supplementary conditions is ω = −3 − 2
√

3, for which we have

λ = −

√

1

5 + 2
√

3
, α =

√

45 + 21
√

3

13
, µ = −

√

6

21 + 11
√

3
.

Case 2: δ > 0. In this case the third equation of (6.2) becomes

5λ2 + δ2 + 3µ2 + αµ − 7 = 0 .

Now, again taking α = ωµ, this time with ω ∈ (−∞, 0), from the last three equations of the

system, we easily get

λ2 = −
ω2 + 9ω + 2

(ω − 1)(ω − 2)
, α2 =

12ω3

(ω − 1)2(ω − 2)
,

µ2 =
12ω

(ω − 1)2(ω − 2)
, δ2 =

12(ω + 1)2

(ω − 1)2
.

Replacing in the first equation of the system we obtain the solutions −2 ±
√

3 and −4 ±
√

13,

from which only ω = −4 −
√

13 verifies the supplementary conditions. Therefore, we obtain

λ = −

√

1

6 +
√

13
, α =

√

523 + 139
√

13

138
,

µ = −

√

79 − 17
√

13

138
, δ =

√

14 + 2
√

13

3
,

and we are done. ✷

REMARK 6.5. By some straightforward computations we can check that the images of

the cylinders over the above x are, respectively: the Riemannian product of a circle of radius
√

(5 −
√

13)/12 and three circles, each of radius
√

(7 +
√

13)/36; the Riemannian product

of two circles each of radius
√

(3 +
√

3)/12 and two circles each of radius
√

(3 −
√

3)/12;

the Riemannian product of a circle of radius
√

(5 +
√

13)/12 and three circles each of radius
√

(7 −
√

13)/36.
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