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BIHARMONIC LEGENDRE CURVES
IN SASAKIAN SPACE FORMS

DoreL FETCU

ABSTRACT. Biharmonic Legendre curves in a Sasakian space form are
studied. A non-existence result in a 7-dimensional 3-Sasakian manifold is
obtained. Explicit formulas for some biharmonic Legendre curves in the
7-sphere are given.

1. Introduction

Especially in the last two decades, since the paper of G. Y. Jiang, [10],
many mathematicians obtained important results related to biharmonic maps
(see [12]). However, biharmonic submanifolds in a Sasakian space form have
been studied only in the last few years and results were obtained in dimensions
3 and 5 (see for example [5], [7], [9], [14], [15]).

As in the general theory of contact manifolds, in the cited papers an impor-
tant role is played by Legendre curves, which are one dimensional integral sub-
manifolds. The aim of our work is to study such curves in (2n + 1)-dimensional
Sasakian space forms.

2. Preliminaries

2.1. Biharmonic maps

First we should recall some notions and results related to the harmonic and
the biharmonic maps between Riemannian manifolds, as they are presented in
[6], [10], [12] and in [18].

Let f : M — N be a smooth map between two Riemannian manifolds
(M, g) and (N, h). Then the connection V on the induced bundle f~}(TN) =
UpemTy(p)N is defined as follows. For X € x(M),V € T(f~}(TN)), define
VxV eT(f~YTN)) by VxV = VﬁXV.

The section 7(f) = traceVdf is called the tension field of f. A map f is said
to be harmonic if 7(f) vanishes identically.
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The bienergy of f is defined by Ex(f) = 5 [, [[7(f)I|* * 1. We say that f is
a biharmonic map if it is a critical point of the bienergy, E2(f). It is proved in
[10] that a map f: M — N is a biharmonic map if and only if it satisfies the
equation

(1) a(f) = —A7(f) — traceRY (df (), (1) df (-) = 0,

where RV denote the curvature tensor field on (N,h) and A is the rough
Laplacian, defined by

A = —tracey(VV — Vgm).

Note that any harmonic map is a biharmonic map and, moreover, an absolute
minimum of the bienergy functional.

2.2. Sasakian manifolds

Concerning the Sasakian manifolds and the Legendre curves let us recall
some notions and results as they are presented in [3].

Let M be an odd dimensional differentiable manifold and let (,&,n) be a
tensor field of type (1, 1), a vector field on M and an 1-form M, respectively. If
©? = —I+n®¢ and n(¢) = 1, then (p, €, 7) is called an almost contact structure
on M. On such a manifold, one obtains, by some algebraic computations,
9§ =0,m00 =0, >+ ¢ = 0. If the tensor field S, of type (1,2), defined by
S = No+2dn®¢, where N, (X,Y) = [pX, Y] p[pX, Y]~¢[X, oY |+¢?[X,Y],
is the Nijenhuis tensor field of ¢, vanishes, then the almost contact structure
is said to be normal (for more details see [3]). Let g be a (semi-)Riemannian
metric on M. Then g is called an associated metric to the almost contact
structure if g(pX,9Y) = g(X,Y) — n(X)n(Y), for any vector fields X,Y on
M. Let Q be the fundamental 2-form of the almost contact metric manifold
(M, p,€,n,9), defined by Q(X,Y) = g(X,¢Y). If Q = dn then M is called a
contact metric manifold. A normal contact metric manifold is called a Sasaki
manifold. In [3] it is proved that an almost contact metric structure (g, €,7,9)
is Sasakian if and only if

(Vxp)Y =g(X,Y){ - n(Y)X,

where V is the Levi-Civita connection of g. From this equation it can be easily
obtained that Vx& = —pX.

If D is the contact distribution in a contact manifold (M, p,£,n), defined
by the subspaces D, = {X € T,,M|n(X) = 0}, then a one-dimensional inte-
gral submanifold of D will be called a Legendre curve. A curve v : I — M,
parametrized by its arc length is a Legendre curve if and only if n(y') = 0.

A plane section in T,, M is called a ¢-section if there exists a vector X €
TmM orthogonal to ¢ such that {X,oX} span the section. The sectional
curvature, K(X,¢X), is called p-sectional curvature. A Sasakian manifold
of constant ¢-sectional curvature ¢ will be called a Sasakian space form and



BIHARMONIC LEGENDRE CURVES IN SASAKIAN SPACE FORMS 395

denoted by M (c). For such a manifold the curvature tensor is given by

R(X,Y)Z
@ =< Z 3[9(Y, Z)X - g(X, Z)Y]
+ XD (W)X + g(X, Zn(Y)E - oY, Dn(X)¢

+QZ,Y)pX - QZ X)pY +20(X,Y)pZ].

2.3. 3-Sasakian manifolds

If a manifold M admits three almost contact structures (¢u,&.,7.), & =
1,2, 3, satisfying

Pe = PaPb — M @ & = ~PpPa + Na ® &,

Ee=0alp = —€a, N =Na O = —Mp © Ya

for any even permutation {a,b,c} of {1,2,3}, then the manifold is said to have
an almost contact 3-structure. The dimension of such a manifold is of the form
4n + 3. It is proved {[11]) that there exists an associated metric to each of this
three structures. If all structures are Sasakian then we call the manifold M a
3-Sasakian manifold. It is proved that every 3-contact structure is 3-Sasakian,
(see [3]). It is easy to see that if one of the ,-sectional curvatures, c,, is
constant then ¢, = 1.

Concerning the Legendre curves, note that in case of a (4n + 3)-dimensional
3-Sasakian manifold the maximum dimension of an integral submanifold with
respect to all three structures is n. Thus in dimension 7 these would be Legendre
curves.

3. Biharmonic curves in a Sasakian space form

Let v : I — M(c) be a curve defined on an open interval I and parametrized
by its arc length, in a Sasakian space form M (c), with dimension 2n + 1 and
structure tensors (¢, &, 7, g). Let {T', N1,..., N2, } be the Frenet frame in M (c),
defined along v, where 7' = +' is the unit tangent vector field of y, Ny is the
unit normal vector field of v, with the same direction as V7T and the vectors

Nj, ..., Ny, are the unit vectors obtained from the Frenet equations for -,
(VT = xidVi,
VrN = —xaT + x2No,
1 : : :
Y VN, = —xeNe—1+ Xet1Nks1, k=2,...,2n -1,
L VT Na, = —x2nNon—1,
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where x1 = ||V2T||, and x2 = x2(8), ..., X2n = X2r(8), are real valued func-
tions, where s is the arc length of v. If x, € R, kK =1,...,2n, then « is said
to be a helix.

The biharmonic equation of + is

(2) m(y) = V3T — R(T,VrT)T = 0.

Using the Frenet equations one obtains

(3) VET = (=3x1x)T+ (X —x3 —x1x3) M1 +(2xi X2 + X1.X2) N2+ X1 X2 X3 V3.
From (2) we get

R aN)T = = 250N + S pa (D) Ny - xan(Tn ()T
() + x1n(N1)€ = 3x19(N1, ¢T)T]
2n
= x1a1 Ny + ZXMka,
k=2
where
- { ar = =2 + < [((T))* + (n(N1))? - 3(g(MN1,¢T))?),
ar = < [n(N)n(Ni) — 3g(N1, ¢T)g(N, oT)], k> 2.

Taking account of (3) and (4) in (2) we obtain the biharmonic equation of
the curve

72(7) = (=3x1x)T + (X! — X3 — x1x3 — xaa1) My
+ (2x1x2 + X1X3 — X102) N2 + (x1x2X3 — X103) N3
(6) o
- Z X10szk =0.
k=4
Now, we can state

Theorem 3.1. A curve, v : I — M(c), parametrized by its arc length, is
biharmonic and is not o geodesic if and only if

X1 € R\ {0}

Xi+x3=-—a
(7) X = Q2

X2X3 = Q3

ap = 0’ k 2 45
where ax, k 2 1, are given by (5).

From now on until the end we assume that v is a Legendre curve in the
Sasakian space form M(c). Thus n(y') = n(T) = 0. Differentiating along ~
one obtains g(VrT,&) + g(T, V7€) = 0. Since V& = —¢T, it follows that
g(N1,€) =0, if v is not a geodesic in M (c).

First, from Theorem 3.1 it follows immediately.



BIHARMONIC LEGENDRE CURVES IN SASAKIAN SPACE FORMS 397

Theorem 3.2. A Legendre curve, v : I — M(1), parametrized by its arc
length, is biharmonic and is not a geodesic if and only if

X% € R2\ {0}

X7+x: =1
®) x2 €R

X2x3 = 0.

Theorem 3.1 and Theorem 3.2 suggest that it can be interesting to study
Legendre curves in a Sasakian space form M (¢), with a3 = 0, where a3 is given

by (5).
We can state

Proposition 3.3. If v is a non-geodesic biharmonic Legendre curve in the
Sasakian space form M(c), with ¢ # 1, then g(Vy 7', ¢7') = a, where a is a
constant and X2 18 also a constant. Moreover, if az = 0, then %g(vw', oY) €
{—1,0,1}, that means N; is either orthogonal to oT or Ny = +¢T.

Proof. Suppose that g(Ny,¢T) = a ¢ {-1,0,1}. Then we can consider the
vector field E, defined by

LN -
Vi—e Vel
It is easy to see that g(E,E) =1, g(E,T) =0, g(E,£) = 0 and g(T,pE) = 0.
Thus the vector fields T, E, ©T and @F can be viewed as taking part of an
orthonormal -basis in M(c). Note that in this basis Ny is given by N; =
V1 —a?E + ayT.

Differentiating g(N1, ¢T) = a along v one obtains

9(Vr N1, ¢T) + g(N1, VreT) = o',

But, since VT = £+ oV 7T, the second term in the left side vanishes. Hence
XQQ(NQ,(,OT) = a’. )

Suppose that x2 # 0. Then g(Ns, T) = %+ Since v is biharmonic, from
the third equation of {7), one obtains

c—1 o
Ll —ap = —3— a2,
X2 2 4 "y
It follows that x3 = —3°2a” + p, where 1 € R is a constant. From the second
equation of (7) we have
c—1 c+3 c—1
X3 =i -3 a hp= = = 3’

Thus +3 1
C Cc— 2
p=— +6——a’ =,
and, since y and x; are constants, a is a real constant too. Hence x2 is a
constant. If g(N1,¢T) =€ {—1,1} it is easy to see, from Frenet equations
and since M is a Sasakian space form, that Vo Ny = £VreT = ££ £ V7T
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Thus Ny = £€ and x2 = 1. If g(N1,T) = 0, from Theorem 3.1 we have
X4 = as = 0, 50 X2 is a constant.
Now, assume again g(N1,¢T) =a ¢ {-1,0,1}, x2xs = 0 and x2 # 0. We

have

al

X2

That means N; is orthogonal to T and, moreover, N; is orthogonal to E. On
the other hand, g(Ny,»T) # 0 and ~ is biharmonic, imply that g(Ny,¢T) =0
and g(Ng, E) =0 for any k =4,...,2n. We just proved that

{N2, N4,...,Non} C (span{T, T, E})*.
Since every vector field in first set is orthogonal to each other, it follows that
span{Nz, N4,..., Nan} = (span{T, ¢T, ENt.

Taking account of the fact that N3 is orthogonal to T and to Nj for any
k=2,...,2n, k # 3, one obtains N3 € span{E, ¢T'} and, since N3 is a unitary
vector field, from the expression of Ny, we have N3 = aE — v1 — a?¢T or
N3 = —aE + V1 —a?¢T. But, since a3 = 0 and g(N1,9T) = a # 0 it follows
g9(N3,¢T) = 0 and, then £+/1 — a2 = 0. Thus a = 41 which is a contradiction.

Finally, suppose that x2 = 0. Then, from the second Frenet equation,
we have VN, = —x3T. Thus g(VrN1,€) = 0 and, since g(VrN1,§) =
9(N1,¢T) = a, we conclude that a = 0, which, again, contradicts a ¢ {—1,0,1}.

Hence, we proved that a € {-1,0,1}. O

Using Theorem 3.1 and Proposition 3.3 we can state

Theorem 3.4. Let v : I — M(c) be a Legendre curve, parametrized by its arc
length, in Sasakian space form M(c), ¢ # 1, with structure tensors (p,€,1,9).
Then

(i) For ¢ < =38, v is biharmonic if and only if is a geodesic;

(i) For =3 < ¢ < 1 andn = 1, 7 is biharmonic if and only if it is a geodesic;

(iii) For —3<c< 1 andn > 1, v with xaxs = 0, is biharmonic and if and
only if

® 7 is a geodesic, or

x1 € R\ {0}
. g(V,Y/'y’,QD’y') =0and ¢ x2 €R
xi+xs =g

(iv) For ¢ > 1, v with x2x3 = 0, is biharmonic if and only if
(1) v is a geodesic, or
(2) g(Vyv'0v)=%x1 and x1 =+Vc—1, or
x1 € R\ {0}
(3) 9(Vyy',9y) =0and{ x2€R
Xi+xd =<
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Proof. (i) It is easy to see that a; > 0 and, then, from Theorem 3.1, it follows
< is biharmonic if and only if is a geodesic.

(ii) If n = 1 then x» = 1 and g(Ny1, ¢T) = £1, (see [3]). Thus a; > 0 and, if
7 is biharmonic and non-geodesic, x7 = —a; — 1 < 0. Hence, in this case, only
Legendre geodesics are biharmonic curves.

(i) If n > 1 and g(N;,¢T) = =1, then —a; < 0. Thus biharmonic
Legendre curves are geodesics. Finally, the statement follows directly from
Proposition 3.3 and Theorem 3.1.

(iv) Assume that ¢ > 1. Let v be a biharmonic non-geodesic Legendre curve
with x2x3 = 0. First, suppose that g(N;, ¢T) = £1. That means N; = +¢T.
From Frenet equations one obtains V7T = +x1¢T and V7 Ny = £+ V7T
Hence x3 = 1 and N3 = +£. From Theorem 3.1, it follows y; = v/c — 1.

If g(N1,¢T) = 0 then, from Theorem 3.1, it follows x1 € R\ {0}, X2 +x3 =
c+3

7 X2 € R

Conversely, suppose that + is a Legendre curve, which is not a geodesic. If

(iv)(2) holds one obtains easily, from the Frenet equations, that ys = 1, az = 0,

k=2,...,2n,and x3 = 0. Moreover, x?+x2 = ¢ = —ay. Thus v is biharmonic
by mean of Theorem 3.1. If (iv)(3) holds then oy = 0 for any k = 1,...,2n.
Since x2x3 = 0, from Theorem 3.1 it follows ~ is biharmonic. a

Remark 3.5. From the proof of the Theorem 3.4 it is easy to see that in the
case (iv)(2) the initial condition y2x3 = 0 it is not necessary.

4. Biharmonic Legendre curves in a 7-dimensional 3-Sasakian
manifold

In this section we assume that M is a 7-dimensional 3-Sasakian manifold,
with structure tensors (@q,&a,74,9), @ = 1,2,3, and one of its three ¢,-
sectional curvatures, let’s say the third, being a constant, which we denote
by c3. Then c3 = 1. As we shall see, choosing another curvature to be constant
does not change the meaning of the main result.

Let v : I — M(1) be a Legendre curve, with respect to all three Sasakian
structures on M(1), parametrized by its arc length. Moreover, assume that
7 is not a geodesic. Since M (1) is a 7-dimensional 3-Sasakian manifold it is
easy to see that {1, 1T, 2T, 3T, &1, &2, &3} is an orthonormal basis in M (1),
where we kept the notations from the previous section.

Differentiating g(7',£,) = 0, for any a = 1,2,3, one obtains, using Frenet
equations, g(N1,&) = 0, a = 1,2,3. Assume that g(Ny,p3T) = 0. Then
VT = )\1(,01T + Ao, Thus X1 = )\% + /\g and N; = %[/\1@17‘ + )\QQ,OQT].
Taking account of the fact that structures on M (c3) are Sasakian, one obtains,
after a straightforward computation

1
VN = X—[(——/\% — )\%)T + XlgolT + )\,2<p2T + /\151 + )\252].
1
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From the second Frenet equation we have
)\12 + /\I2
(1) X% == 3 2
X1

and Ny = Xl—z()\l& + A& + M1 T + MypoT). A straightforward computation
and the third Frenet equation give

+1

1
VrNy = ——[(=A A1 = 2 2)T + (A = M)or T + (A5 — A)ooT
(2) X1X2
+ (A h2 — AA)@sT + 2016 + 2056] = —x2 N1 + x3Ns.

Assume that - is biharmonic. If x; = 0 then follows easily that y; = 0 and
7 is a geodesic. If x2 # 0, from Theorem 3.2 one obtains xs3 = 0 and, in the
same way as above, X2 = 1. Thus v is biharmonic if and only if x; = 0, by
the mean of Theorem 3.2. We can conclude that, in this case, only Legendre
geodesics are biharmonic Legendre curves.

Obviously, we can take any of @,-sectional curvature instead of c3 to be
constant. In the same way it is easy to see that the previous result remains
valid if g(N1,&,) #0, a = 1,2,3 (see also [1]).

One obtains

Theorem 4.1. Let M be a 7-dimensional 3-Sasakian manifold with constant
o -sectional curvature, for an a = 1,2,3, and let v : I — M(1) be a Legendre
curve, with respect to all three Sasakian structures on M (1), parametrized by
its arc length. Then vy is a biharmonic curve if and only if it is a geodesic.

One of the most important example of a 3-Sasakian manifold is the unit
sphere S7 endowed with a structure obtained as follows (see [1]).
Consider the Euclidean space E® with three complex structures,

0 0 0 I

_ 0 —I4 _ 0 0 _I2 0 —
I—<I4 0 )’ J = 0 L 0 O » k=-17,
- 0 0 O

where I, denotes the n x n identity matrix. Let x denote the position vector
of the unit sphere in E® and define three vector fields on S7 by

& = —1Ix, & = —-Ix, & = —-Kx.

The dual 1-forms n; are three independent contact structures on S7. The
standard metric on S7, g, of constant curvature 1, is an associated metric for all
three considered structures (see [1], [2]). Then S7 is an example of a 3-Sasakian
manifold with ¢, -sectional curvature 1, where (@q, &4, 74,9), @ = 1,2, 3, are the
structure tensors (see [2]).

Using Theorem 4.1 we conclude that

Proposition 4.2. 4 biharmonic Legendre curve with respect to all three Sasa-
kian structures on S7 is a geodesic.
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5. A class of biharmonic Legendre curves in S7

In order to find examples of biharmonic Legendre curves which are not
geodesics, let us consider again the Sasakian structure (¢1,&1,71,9) on the
7-sphere, defined in the previous paragraph, and let us rename it simply by
(¢,€,m,9). Now consider the deformed structure

_ -1 _ _
7= an, éz;f, p=¢, g=ag+ala—-1)non,

where a is a positive constant. Such a deformation is called a D-homothetic
deformation, since the metrics restricted to the contact subbundle D are homo-
thetic, and it was introduced in [16]. The deformed structure (,£,7, g) is still
a Sasakian structure and (57, @, &, 7, ) is a Sasakian space form with constant

@-sectional curvature ¢ = £ — 3, (see [2]). From now on we assume that a < 1
and then ¢ > 1.

Theorem 5.1. Let v : I = (S57,5,£,7,5) be a biharmonic Legendre curve
parametrized by its arc length such that V..y' = /c — 157, where V is the
Levi-Civita connection on (S7,3). Then the equation of v in the Euclidean
space E® = (R®,(,)),

cos(As)er + sm (As)e

v(s) =
(1)

;,>bd

+

cos(Bs)es +

118 sm (Bs)eq,

where {e;} are constant unit orthogonal vectors in E® such that ey = Te;,
eq = —Tes and

A= \/3—2(1—2\/(11—1)((1—2)
(2)

B \/3—2a+2\/fla~1)(a—2).

Proof. Let us denote by V and by V the Levi-Civita connections on (87, 9)
and (R®, (,)), respectively.

Let T =4/, g(T,T) = 1, be the unitary tangent vector field. Since g(T,¢) =
0 it is easy to see that g(VrT,€&) = 0. According to Theorem 3.1 we have
VT = e — 1¢T. Using the definition of the Levi-Civita connection, one
obtains g(VxX,Z) = ag(Vx X, Z) for any Z € x(S7) and X € (span{¢})*.
Taking T instead of X we have §(VrT, Z) = ag(V+T, Z) for any Z € x(S7).
Now, it is easy to see that V7T = v/c — 1¢T.

From the equation of Gauss we get

=~ 1
VT =VrT — (T, TYyy = vec— 1¢T — put
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Thus, using again the equation of Gauss and the fact that (S7, g) is a Sasakian
space form, it follows

VeVrT = Ve =1Vl — %T
= c—1(1§—\/c—1T) _lpl _(
a a

In the same manner, one obtains
5

5

a

4)T+ ‘/i_—lg.

Vve—1

§T§T§TT = - (— - 4) Y~7TT+ 6TE
a a
Y P Y = S , 1, 1
= —(5—4)VTT— - cpT——(a—él)’y — ="+ 7).
Hence
(3) a?yV + a6 - 4a)y" +v =0,

which general solution is
v(s) = cos(As)cy + sin(As)cy + cos(Bs)cs + sin(Bs)cy,

where A, B are given by (2) and {¢;} are constant vectors in ES.

In s = 0 we have vy = ¢; + ¢3, 7' = Acy + Bey, ¥ = —A%¢; — B¢,
4" = —A3cy — B3¢y and the following equations,
1 5—4a
=107 == (1,7 =0, (77" =0, (Y",9") = ~——,
1 5 —4a
") == (") = =, (") =0, (1,7") =0,
16a2 — 44a + 29

<'.Y”I’ ’Y”I> —_ a3 ,
becomes
(4) c11+2ci3+c33 =1

1
(5) A2022 + 2ABCQ4 + 32644 = E
(6) Acyo + Acaz + Bejy + Bezs =0
(7) A3(212 + ABQC23 + A23614 + 33034 =0
5—4
(8) A*ciy + 24%B% 3 + Blcgs = o 2
1
(9) A2011 + (A2 + B2)013 + B2033 = 5
5—14

(10) A'cag + (AB® + A®B)cos + Blcas = 2 a

(11) A5612 + A332623 + A233614 + 35634 =0
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(12) A3(312 + A3623 + B3014 + B3C34 =0

16a% — 44a + 29

(13) A6022 + 2A3B3024 + BGC44 = 3
a

where ¢;; = (c;, ¢j).
Since the determinant of the system given by (6), (7), (11) and (12) is
—A?B?(A? — B?)* # 0 it follows that
C12 = C23 = C14 = ¢34 = 0.
The equations (4), (8) and (9) gives

=TT c13 =0, C33ZAfB7
and, from (5), (10) and (13),
B A
¢2 = TR c24 =0, Cu= T g
We obtained that {c;} are orthogonal vectors in E® with ||c1]| = |le2|| =

V izs and llesll = lleall = /25

Finally, using the facts that v is a Legendre curve and V.v' = Ve — 1¢v'
one obtains easily the expression of ~. O
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