
M. MARKELLOS AND V. J. PAPANTONIOU
KODAI MATH. J.
34 (2011), 144–167

BIHARMONIC SUBMANIFOLDS IN NON-SASAKIAN CONTACT

METRIC 3-MANIFOLDS

Michael Markellos and Vassilis J. Papantoniou

Abstract

In this paper, we characterize biharmonic Legendre curves in 3-dimensional ðk; m; nÞ-
contact metric manifolds. Moreover, we give examples of Legendre geodesics in these

spaces. We also give a geometric interpretation of 3-dimensional generalized ðk; mÞ-
contact metric manifolds in terms of its Legendre curves. Furthermore, we study

biharmonic anti-invariant surfaces of 3-dimensional generalized ðk; mÞ-contact metric

manifolds with constant norm of the mean curvature vector field. Finally, we give

examples of anti-invariant surfaces with constant norm of the mean curvature vector

field immersed in these spaces.

1. Introduction

During the last decade important progress has been made in the study of
both the geometry and the analytic properties of biharmonic maps. In di¤er-
ential geometry, special attention has been payed to the study of biharmonic
submanifolds, i.e. submanifolds the inclusion map of which is a biharmonic map.

In [7], Caddeo et al. classified biharmonic curves and surfaces of the unit
3-sphere S3. In fact, they found that these are circles, helices which are
geodesics in the Cli¤ord minimal torus, and small hyperspheres. The same
authors in [8] constructed examples of nonharmonic biharmonic submanifolds of
Sn, n > 3. In this case, the family of such submanifolds is much larger. In fact,
any minimal submanifold of a certain parallel hypersphere of Sn is a non-
harmonic biharmonic submanifold of Sn.

On the other hand, the odd dimensional spheres are typical examples of
contact metric manifolds. More precisely, these are Sasakian space forms of
constant f-sectional curvature 1. In [11] J. Inoguchi classified biharmonic
Legendre curves and Hopf cylinders in 3-dimensional Sasakian space forms.
In particular, he proved that in Sasakian space forms of constant f-sectional
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curvature ca 1 there are neither nonharmonic biharmonic Legendre curves nor
nonharmonic biharmonic Hopf cylinders. On the contrary, for c > 1, there exist
such submanifolds.

An extension of the Sasakian manifolds are the ðk; mÞ-contact metric mani-
folds ([6]). We remind that a contact metric manifold Mðh; x; f; gÞ is called
ðk; mÞ-contact metric manifold if and only if the characteristic vector field x
satisfies the curvature condition

RðX ;Y Þx ¼ kðhðYÞX � hðX ÞYÞ þ mðhðYÞhX � hðX ÞhY Þ

for every vector fields X , Y of M. Here k, m are constants and h ¼ 1
2Lxf. If

k, m are non-constant smooth functions on M; the manifold M is called
generalized ðk; mÞ-contact metric manifold [13]. In [14], the authors classified,
at least locally, 3-dimensional generalized ðk; mÞ-contact metric manifolds assum-
ing additionally that the norm of the field grad k is a constant. In [18], Perrone
studied the harmonicity of the vector field x and introduced the notion of the
H-contact metric manifolds (contact metric manifolds whose characteristic vector
field is an harmonic vector field). In [15], the authors characterized the 3-
dimensional H-contact metric manifolds in terms of ðk; m; nÞ-contact metric
manifolds, which are defined by the following curvature condition:

RðX ;Y Þx ¼ kðhðYÞX � hðX ÞYÞ þ mðhðYÞhX � hðX ÞhY Þ
þ nðhðY ÞfhX � hðX ÞfhYÞ;

where k, m, n are smooth functions. Moreover, it is shown that if dim M > 3,
then ðk; m; nÞ-contact metric manifolds are reduced to ðk; mÞ-contact metric
manifolds i.e. k, m are constants and n is the zero function on M.

In [1], Arslan et al. classified biharmonic Legendre curves and biharmonic
anti-invariant surfaces in 3-dimensional ðk; mÞ-contact metric manifolds. Espe-
cially, they proved that biharmonic Legendre curves immersed in 3-dimensional
ðk; mÞ-contact metric manifolds are their geodesics or helices (curves with constant
geodesic curvature and geodesic torsion). Later, Sasahara ([19]) pointed out
that this characterization is true under the condition that ‘g 0g

0 k fg 0, where g 0 is
the unit tangent vector field of Legendre curve. In fact, if k0 1, ‘g 0g

0 is not
generally parallel to fg 0. On the other hand, a non-minimal anti-invariant
surface of a 3-dimensional ðk; mÞ-contact metric manifold is biharmonic if and
only if it is of constant mean curvature vector field and k ¼ 1; i.e. the ambient
space is a Sasakian manifold.

The main part of this paper is referred to the study of nonharmonic
biharmonic curves and surfaces immersed in 3-dimensional ðk; m; nÞ-contact metric
manifolds which are not Sasakian.

More explicitly, in Section 2 are contained some basic notions about contact
metric manifolds and biharmonic maps.

In Section 3, we improve Proposition 4.1 of [1] omitting the assumption that
‘g 0g

0 k fg 0. More precisely, we prove the following Theorem:
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Theorem 1.1. Let g be a non-geodesic Legendre curve in a 3-dimensional
ðk; mÞ-contact metric manifold Mðh; x; f; gÞ with k < 1. Then g is biharmonic if
and only if either ‘g 0g

0 k fg 0 and in this case g is a helix satisfying k2
g þ t2g ¼

�ðkþ mÞ or ‘g 0g
0 k x and g is a helix satisfying k2

g þ t2g ¼ kþ dm, where the
function d ¼ gðhg 0; g 0Þ is a constant.

In the following, we classify biharmonic Legendre curves in 3-dimensional
ðk; m; nÞ-contact metric manifolds. Especially, we prove the following Theorem:

Theorem 1.2. Let g be a Legendre curve in a 3-dimensional ðk; m; nÞ-contact
metric manifold Mðh; x; f; gÞ with k a non-constant smooth function on M and
‘g 0g

0 k fg 0. Assuming that k < 1 everywhere on M, then g is biharmonic if and
only if g is a Legendre geodesic.

Next we give examples of biharmonic Legendre curves of suitable ðk; m; nÞ-
contact metric manifolds which are, indeed, their geodesics. Finally, by using
the notion of Legendre curves, we characterize geometrically 3-dimensional gen-
eralized ðk; mÞ-contact metric manifolds. In particular, we prove the following
Theorem:

Theorem 1.3. Let Mðh; x; f; gÞ be a 3-dimensional ðk; m; nÞ-contact metric
manifold with k < 1 everywhere on M. If the f-sectional curvature H of M is
constant along every Legendre curve, then the characteristic vector field x defines an
harmonic map (x : ðM; gÞ 7! ðT1M; gSÞ) where T1M, is the unit tangent sphere
bundle equipped with the Sasaki metric gS. If it is assumed additionally that the
function m is constant on M and M is supposed to be complete, then M is locally
isometric to one of the following Lie groups with a left invariant metric: SUð2Þ
(or SOð3Þ), SLð2;RÞ (or Oð1; 2Þ), Eð2Þ, Eð1; 1Þ.

In Section 4, are studied biharmonic anti-invariant surfaces of 3-dimensional
ðk; m; nÞ-contact metric manifolds. We exhibit the system of partial di¤erential
equations which describes these surfaces. Finally, we investigate biharmonic
anti-invariant surfaces of 3-dimensional generalized ðk; mÞ-contact metric mani-
folds with constant norm of the mean curvature vector field. The main result of
this section is the following Theorem:

Theorem 1.4. Let Mðh; x; f; gÞ be a 3-dimensional generalized ðk; mÞ-contact
metric manifold with k < 1. Let M 2 be an anti-invariant surface of M with
constant norm of the mean curvature vector field equal to c. If M 2 is biharmonic,
then M 2 is either minimal or it is locally flat and the functions k and m are
constants on M 2. In the second case, there exists a coordinate system ðu; vÞ
defined in a neighborhood U1 of any p A M 2, such that the metric tensor g and the
second fundamental form of M 2 are given on U1 by

g ¼ ðduÞ2 þ ðdvÞ2;
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Moreover, we give examples of anti-invariant surfaces with constant norm of
the mean curvature vector field in these spaces.

2. Preliminaries

2.1. Contact metric manifolds. We start with some fundamental notions
about contact Riemannian geometry. We refer to [5] for further details. All
manifolds in the present paper are assumed to be connected and of class Cy.

A di¤erentiable ð2nþ 1Þ-dimensional manifold is called a contact manifold if
it admits a global 1-form h such that h5ðdhÞn 0 0 everywhere on M. It is
known that a contact manifold admits an almost contact metric structure
ðh; x; f; gÞ; i.e. a global vector field x, which is called the characteristic vector
field or the Reeb vector field, a tensor field f of type ð1; 1Þ and a Riemannian
metric g (associated metric) such that

hðxÞ ¼ 1; f2 ¼ �Id þ hn x; gðfX ; fYÞ ¼ gðX ;YÞ � hðXÞhðYÞð2:1Þ
for all vector fields X , Y on M. Moreover, the quadruple ðh; x; f; gÞ can be
chosen so that dhðX ;Y Þ ¼ gðX ; fYÞ: The manifold M together with the struc-
ture tensors ðh; x; f; gÞ is called a contact metric manifold and is denoted by
Mðh; x; f; gÞ. Equations (2.1) imply

fðxÞ ¼ 0; h � f ¼ 0:ð2:2Þ
Given a contact Riemannian manifold M, we define an operator h by h ¼
1
2 ðLxfÞ, where L denotes Lie di¤erentiation. The operator h is self-adjoint and
satisfies

hx ¼ 0; hf ¼ �fhð2:3Þ
and

‘Xx ¼ �fX � fhX :ð2:4Þ
A contact structure on M gives rise to an almost complex structure on the

product M � R: If this structure is integrable, then the contact metric manifold
is said to be Sasakian. Equivalently, a contact metric manifold is Sasakian if
and only if

RðX ;YÞx ¼ hðY ÞX � hðXÞY
for every vector fields X , Y on M.
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A plane section at a point p of a contact metric manifold M is called a f-
section if there exists a vector X A TpM orthogonal to x such that fX ; fXg span
the section. The sectional curvature KðX ; fX Þ, denoted by HðXÞ, is called f-
sectional curvature.

We remind now the notion of ðk; m; nÞ-contact metric manifolds.

Definition 2.1. A ð2nþ 1Þ-dimensional contact metric manifold Mðh; x;
f; gÞ is called ðk; m; nÞ-contact metric manifold if the curvature tensor satisfies the
condition

RðX ;Y Þx ¼ kðhðYÞX � hðX ÞYÞ þ mðhðYÞhX � hðX ÞhY Þ
þ nðhðY ÞfhX � hðX ÞfhYÞ

for every vector fields X , Y tangent to M and k, m, n are smooth functions on M.

Moreover, on every 3-dimensional ðk; m; nÞ-contact metric manifold Mðh; x;
f; gÞ the following relations are valid

h2 ¼ ðk� 1Þf2;ð2:5Þ
xðkÞ ¼ 2nðk� 1Þ;ð2:6Þ
r ¼ 4kþ 2H;ð2:7Þ

xðHÞ ¼ 2nð1� kÞ; k < 1ð2:8Þ
xðrÞ ¼ 4ðk� 1Þn; k < 1ð2:9Þ

Rðx;XÞY ¼ kðgðX ;Y Þx� hðY ÞXÞ þ mðgðhX ;Y Þx� hðY ÞhX Þð2:10Þ
þ nðgðfhY ;X Þx� hðY ÞfhXÞ

RðX ;YÞZ ¼ m½gðhY ;ZÞX � gðhX ;ZÞY þ gðY ;ZÞhX � gðX ;ZÞhY �ð2:11Þ
þ n½gðfhY ;ZÞX � gðfhX ;ZÞY þ gðY ;ZÞfhX � gðX ;ZÞfhY �

þ 3k� r

2

� �
½gðY ;ZÞhðXÞ � gðX ;ZÞhðYÞ�x

þ 3k� r

2

� �
½hðY ÞhðZÞX � hðXÞhðZÞY �

þ r

2
� 2k

� �
½gðY ;ZÞX � gðX ;ZÞY �; k < 1

ð1� kÞð‘XhÞY ¼ � 1

2
gðhX ;YÞ grad k� 1

2
gðhX ; fY Þfðgrad kÞð2:12Þ

þ ð1� kÞ½ð1� kÞgðX ; fY Þ þ gðhX ; fYÞ � ngðhX ;Y Þ�x
þ ð1� kÞfhðYÞ½ðk� 1ÞfX þ hfX �
þ hðXÞ½mhfY þ nhY �g;
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for every vector fields X , Y , Z tangent to M, where r denotes the scalar
curvature of M. Formulas (2.5) and (2.6) occur in [15]. The proof of relations
(2.7)–(2.12) is mainly based on the following Lemmas (see also [21] for the case
n ¼ 0):

Lemma 2.2 [13]. Let Mðh; x; f; gÞ be a 3-dimensional ðk; m; nÞ-contact metric
manifold. For every p A M with kðpÞ < 1 there exists an open neighborhood W of
p and orthonormal local vector fields fe; fe; xg defined on W , such that

he ¼ le; hfe ¼ �lfe; hx ¼ 0;ð2:13Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
.

Lemma 2.3 ([9], [21]). Let Mðh; x; f; gÞ be a 3-dimensional ðk; m; nÞ-contact
metric manifold with k < 1 everywhere on M. Then

‘ex ¼ �ðlþ 1Þfe; ‘fex ¼ ð1� lÞe;ð2:14Þ

‘xe ¼ � m

2
fe; ‘xfe ¼

m

2
e; ‘ee ¼

B

2l
fe; ‘fefe ¼

A

2l
e;ð2:15Þ

‘fee ¼ � A

2l
feþ ðl� 1Þx; ‘efe ¼ � B

2l
eþ ðlþ 1Þx;ð2:16Þ

where A ¼ eðlÞ and B ¼ feðlÞ and fe; fe; xg the orthonormal basis of eigenvectors
of h described on Lemma 2.2.

2.2. Biharmonic maps. Let ðMm; gÞ, ðNn; hÞ be Riemannian manifolds and
let j : ðMm; gÞ 7! ðNn; hÞ be a smooth map between them. We denote by ‘j the
connection of the vector bundle j�1TN induced from the Levi-Civita connection
‘ of ðN; hÞ and ‘ the Levi-Civita connection of ðM; gÞ. Let W be a compact
domain of M. The energy (integral) of f over W is defined by

E1ðjÞ ¼
1

2

ð
W

kdjk2vg;

where vg is the volume element of Mm.
A smooth map j : Mm 7! Nn is said to be harmonic if it is a critical point of

the energy functional for any compact subset WHM. It is well known ([3]) that
the map j : Mm 7! Nn is harmonic if and only if

t1ðjÞ ¼ trð‘j djÞ ¼
Xm
i¼1

f‘j
ei
djðeiÞ � djð‘ei eiÞg ¼ 0;

where feig is a local orthonormal frame field of Mm. The equation t1ðjÞ ¼ 0 is
called the harmonic equation.
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A smooth map j : Mm 7! Nn is said to be biharmonic if it is a critical point
of the bienergy functional:

E2ðjÞ ¼
1

2

ð
W

kt1ðjÞk2vg;

over every compact subset W of M. The Euler-Lagrange equation associated to
the bienergy becomes more complicated and, it involves the Riemann curvature
tensor of N. More precisely, a smooth map j : Mm 7! Nn is biharmonic if and
only if it satisfies the following biharmonic equation ([12]):

t2ðjÞ ¼ �Jjðt1ðjÞÞ ¼ 0:

The operator Jj is the Jacobi operator of j and is defined by

JjðVÞ :¼ �DDjV �RjðVÞ; V A Gðj�1TNÞ;

�DDj :¼ �
Xm
i¼1

f‘j
ei
‘j
ei
� ‘

j
‘ei

ei
g;

RjðVÞ :¼
Xm
i¼1

RNðV ; djðeiÞÞ djðeiÞ;

where feig is a local orthonormal frame field of Mm and RN is the curvature
tensor of N. The section t2ðjÞ of j�1TN is called the bitension field of j.
From the expression of the bitension field t2 it is clear that an harmonic map
(t1 ¼ 0) is automatically a biharmonic map, in fact it is a minimum of the
bienergy. However, the converse is not true in general. In fact, many examples
of nonharmonic biharmonic maps have been obtained in [4], [7], [8] and
[16]. Nonharmonic biharmonic maps are called proper biharmonic maps.

3. Biharmonic Legendre curves in 3-dimensional (k, m, n)-contact metric
manifolds

Let Mðh; x; f; gÞ be a 3-dimensional ðk; m; nÞ-contact metric manifold with
k < 1 everywhere on M. A curve g : I HR 7! M parametrized by arclength is
said to be a Legendre curve if and only if hðg 0Þ ¼ 0 where g 0 is the tangential
vector field on g. In this section, we attempt to classify proper biharmonic
Legendre curves on 3-dimensional ðk; m; nÞ-contact metric manifolds with k < 1.
Moreover, we characterize 3-dimensional generalized ðk; mÞ-contact metric mani-
folds in terms of the biharmonicity of Legendre curves.

Let g be a Legendre curve in M. Then, the Frenet-Sherret formulas for g
are given explicitly by

T 0

N 0

B 0

2
64

3
75¼

0 kg 0

�kg 0 tg

0 �tg 0

2
64

3
75 T

N

B

2
64

3
75;ð3:1Þ
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where kg (res. tg) denotes the geodesic curvature (res. the geodesic torsion) of g.
We mention that every Legendre curve in Sasakian 3-manifolds has constant
geodesic torsion equal to 1([2]).

A helix is a curve with constant geodesic curvature and geodesic torsion.
Geodesics are curves with zero geodesic curvature.

Di¤erentiating gðg 0; xÞ ¼ 0 along g and using (2.4) we see that gð‘g 0g
0; xÞþ

gðg 0;�fhg 0Þ ¼ 0 and hence

‘g 0g
0 ¼ axþ bfg 0; a ¼ gðg 0; fhg 0Þ:ð3:2Þ

Thus the principal normal N is given by

N ¼ 1

kg
ðaxþ bfg 0Þ:ð3:3Þ

On the other hand, decomposing the vector field hg 0 in terms of the orthonormal
frame field fg 0; fg 0; xg, we get

hg 0 ¼ dg 0 � afg 0:ð3:4Þ
Di¤erentiating N along g and using the relations (3.1), we have ([5, page 135])

tgB ¼ �
k 0
g

k2
g

aþ a 0

kg
þ b

kg
ð1þ dÞ

( )
xþ �

k 0
g

k2
g

bþ b 0

kg
� a

kg
ð1þ dÞ

( )
fg 0:ð3:5Þ

From this and k2
g ¼ a2 þ b2, we obtain

tg ¼
a 0b� ab 0

k2
g

þ ð1þ dÞ
�����

�����:
Now, we prove the following Theorem:

Theorem 3.1. Let g be a non-geodesic Legendre curve in a 3-dimensional
ðk; mÞ-contact metric manifold Mðh; x; f; gÞ with k < 1. Then g is biharmonic if
and only if either ‘g 0g

0 k fg 0 and in this case g is a helix satisfying k2
g þ t2g ¼

�ðkþ mÞ or ‘g 0g
0 k x and g is a helix satisfying k2

g þ t2g ¼ kþ dm, where the
function d ¼ gðhg 0; g 0Þ is a constant.

Proof. We assume that g is a Legendre curve but not a geodesic with non-
vanishing geodesic torsion. Furthermore, we can assume, without loss of gen-
erality, that the geodesic torsion is given by

tg ¼
a 0b� ab 0

k2
g

þ 1þ d:ð3:6Þ

Setting n ¼ 0 in (2.12) and using the fact that the functions k and m are constants
with k < 1, we compute the derivative of d

d 0 ¼ gð‘g 0hg
0; g 0Þ þ gðhg 0;‘g 0g

0Þ ¼ gðð‘g 0hÞg 0; g 0Þ þ 2gðhg 0;‘g 0g
0Þð3:7Þ

¼ gðhg 0; fg 0Þhðg 0Þ þ 2bgðhg 0; fg 0Þ ¼ �2ab:
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Using the Frenet-Serret formulas, we compute the tension field of g is given by

t1ðgÞ ¼ ‘TT ¼ kgN:

By direct computations, we deduce ([11])

��DDgðt1ðgÞÞ ¼ �3kgk
0
gT þ ðk 00

g � k3
g � kgt

2
gÞN þ ð2k 0

gtg þ kgt
0
gÞB:

Since the ambient space Mðh; x; f; gÞ is a ðk; mÞ-contact metric manifold, relations
(2.2), (2.3), (2.10), (2.11), (3.3) and (3.4) give

Rgðt1ðgÞÞ ¼ kgRðN; g 0Þg 0 ¼ aRðx; g 0Þg 0 þ bRðfg 0; g 0Þg 0

¼ aðkþ dmÞxþ r

2
� 2k

� �
fg 0

where r denotes the restriction of the scalar curvature of M to the curve g. On
the other hand, the scalar curvature of a 3-dimensional ðk; mÞ-contact metric
manifold is given by ([6])

r ¼ 2ðk� mÞ:
As a consequence, we get

Rgðt1ðgÞÞ ¼ aðkþ dmÞxþ bð�k� mÞfg 0:

Thus, the bitension field t2ðgÞ of g is given by

t2ðgÞ ¼ ��DDgðt1ðgÞÞ þRgðt1ðgÞÞ ¼ �3kgk
0
gT þ ðk 00

g � k3
g � kgt

2
gÞNð3:8Þ

þ ð2k 0
gtg þ kgt

0
gÞBþ aðkþ dmÞxþ bð�k� mÞfg 0:

Since g is biharmonic, t2ðgÞ ¼ 0 or, equivalently,

gðt2ðgÞ; g 0Þ ¼ 0;ð3:9Þ
gðt2ðgÞ; fg 0Þ ¼ 0;ð3:10Þ
gðt2ðgÞ; xÞ ¼ 0:ð3:11Þ

Combining (3.8), (3.9) and using the fact that g is not a geodesic, we easily
conclude that kg ¼ c1 ¼ const:0 0. Additionally, relations (3.3), (3.5), (3.8),
(3.10) and (3.11) give

ð�c21 � t2gÞaþ
t 0g
tg

ða 0 þ bð1þ dÞÞ þ aðkþ dmÞ ¼ 0;ð3:12Þ

ð�c21 � t2gÞbþ
t 0g
tg

ðb 0 � að1þ dÞÞ þ bð�k� mÞ ¼ 0:ð3:13Þ

Moreover, di¤erentiating the relation a2 þ b2 ¼ c21 along g, we get

aa 0 þ bb 0 ¼ 0:ð3:14Þ
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On the other hand, on any 3-dimensional contact metric manifold Mðh; x; f; gÞ
the following relation holds:

ð‘XfÞY ¼ gðX þ hX ;Y Þx� hðY ÞðX þ hXÞ;ð3:15Þ

for every X ;Y A XðMÞ. Di¤erentiating (3.5) along g and using relations (2.1),
(2.4), (3.1), (3.2), (3.3), (3.4), (3.14) and (3.15), we have

c1t
0
gBþ c1tgB

0 ¼ c1t
0
gB� c1t

2
gN ¼ ða 00 þ b 0ð1þ dÞ þ bd 0Þxþ ða 0 þ bð1þ dÞÞ‘g 0x

þ ðb 00 � a 0ð1þ dÞ � ad 0Þfg 0 þ ðb 0 � að1þ dÞÞ‘g 0fg
0

¼ fa 00 þ b 0ð1þ dÞ þ bd 0 þ ðb 0 � að1þ dÞÞð1þ dÞgx
þ fb 00 � a 0ð1þ dÞ � ad 0 � ða 0 þ bð1þ dÞÞð1þ dÞgfg 0

þ f�aa 0 � bb 0gg 0;

or, equivalently,

t 0g
tg

ða 0 þ bð1þ dÞÞ � at2g ¼ a 00 þ b 0ð1þ dÞ þ bd 0 þ ðb 0 � að1þ dÞÞð1þ dÞ

and

t 0g
tg

ðb 0 � að1þ dÞÞ � bt2g ¼ b 00 � a 0ð1þ dÞ � ad 0 � ða 0 þ bð1þ dÞÞð1þ dÞ:

Using relations (3.12) and (3.13), the last two relations are transformed to

a 00 þ b 0ð1þ dÞ þ bd 0 þ ðb 0 � að1þ dÞÞð1þ dÞ ¼ ac21 � aðkþ dmÞ;ð3:16Þ
and

b 00 � a 0ð1þ dÞ � ad 0 � ða 0 þ bð1þ dÞÞð1þ dÞ ¼ bc21 þ bðkþ mÞ:ð3:17Þ

In the sequel, we separately examine the cases for which the functions a or b are
vanishing on g. More precisely, the case for which a ¼ 0 gives ‘g 0g

0 k fg 0. In
this case, the function b is not vanishing on g, since a2 þ b2 ¼ c21 > 0. Moreover,
using relations (3.6), (3.7) and (3.13), we easily deduce that the functions d and tg
are constants on g and, therefore, g is a helix satisfying additionally the relation
k2
g þ t2g ¼ �ðkþ mÞ ([1], [19]). Similarly, the case for which b ¼ 0 gives ‘g 0g

0 k x.
Moreover, using relations (3.6), (3.7) and (3.12), we easily deduce that the
functions d and tg are constants on g and, therefore, g is a helix satisfying
additionally the relation k2

g þ t2g ¼ kþ dm. In the following, we assume that the

functions a and b are not vanishing on g simultaneously. Multiplying relation
(3.16) with b and relation (3.17) with a and substracting, we deduce

a 00b� ab 00

c21
þ d 0 ¼ t 0g ¼ � ab

c21
ð2kþ mð1þ dÞÞ:ð3:18Þ
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Substituting (3.18) in (3.12) and (3.13), we obtain

a �c21 � t2g �
b

tgc
2
1

ð2kþ mð1þ dÞÞða 0 þ bð1þ dÞÞ þ kþ dm

� �
¼ 0;

b �c21 � t2g �
a

tgc
2
1

ð2kþ mð1þ dÞÞðb 0 � að1þ dÞÞ � k� m

� �
¼ 0:

Using (3.6), we easily observe that �c21 � t2g �
b

tgc
2
1

ð2kþ mð1þ dÞÞða 0 þ bð1þ dÞÞ

þ kþ dm ¼ �c21 � t2g �
a

tgc
2
1

ð2kþ mð1þ dÞÞðb 0 � að1þ dÞÞ � k� m. Since a; b0 0,
we obtain

�c21 � t2g �
a

tgc
2
1

ð2kþ mð1þ dÞÞðb 0 � að1þ dÞÞ � k� m ¼ 0:ð3:19Þ

On the other hand, using (3.14), multiplying relation (3.12) with a and (3.13) with
b and summing, we get

�c21 � t2g ¼ 1

c21
fb2ðkþ mÞ � a2ðkþ dmÞg:ð3:20Þ

Combining (3.19), (3.20) and using the fact that a2 þ b2 ¼ c21 , we have

að2kþ mð1þ dÞÞ aþ b 0 � að1þ dÞ
tg

� �
¼ 0:

We assume that the function 2kþ mð1þ dÞ is vanishing on g. Di¤erentiating the
last relation along g and using (3.7), we get mab ¼ 0 i.e. m ¼ 0. Then, k ¼ 0 and
t 0g ¼ 0 (from (3.18)). In this case, relation (3.12) gives að�c21 � t2gÞ ¼ 0, which is
a contradiction. As a consequence, we get

b 0 ¼ að1þ d� tgÞ:ð3:21Þ

Substituting (3.21) in (3.19), we get

c41 þ c21t
2
g � a2ð2kþ mð1þ dÞÞ þ ðkþ mÞc21 ¼ 0:ð3:22Þ

Di¤erentiating (3.22) along g and using relations (3.7), (3.14), (3.18) and (3.21),
we have

ð1þ d� 2tgÞð2kþ mð1þ dÞÞ þ a2m ¼ 0:ð3:23Þ

Di¤erentiating (3.23) along g and using relations (3.7), (3.14), (3.18) and (3.21),
we get

�ð2kþ mð1þ dÞÞ þ ð2kþ mð1þ dÞÞ2

c21
� mð2ð1þ dÞ � 3tgÞ ¼ 0:ð3:24Þ
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Di¤erentiating (3.24) along g and using relations (3.7) and (3.18), we obtain

m 6� 7
2kþ mð1þ dÞ

c21

� �
¼ 0:

We distinguish two cases:
� m ¼ 0. In this case, relations (3.23) and (3.24) give

c21 ¼ 2k; 1þ d ¼ 2tg:ð3:25Þ
Furthermore, relation (3.22) give

c21 þ t2g � a2 þ k ¼ 0:ð3:26Þ
On the other hand, using relations (2.5) and (3.4), we straightforward
compute

a2 þ d2 ¼ gðh2g 0; g 0Þ ¼ 1� k:ð3:27Þ
Combining relations (3.25), (3.26) and (3.27), we easily deduce that the
function d is a constant or, equivalently, ab ¼ 0 which is a contradiction.

� 2kþ mð1þ dÞ ¼ 6c21
7

. Di¤erentiating this relation along g, we get md 0 ¼ 0

or mab ¼ 0 which is a contradiction.
Conversely, we assume that ‘g 0g

0 k fg 0 i.e. a ¼ 0 and g is a helix satisfying
k2
g þ t2g ¼ �ðkþ mÞ. Then, we easily observe that relations (3.12) and (3.13) are

satisfied. Hence, g is a biharmonic Legendre curve. Similarly, we treat the case
‘g 0g

0 k x and g is a helix satisfying k2
g þ t2g ¼ kþ dm. r

Remark 3.1. If tg ¼ 0, then g is a Riemannian circle, since kg ¼ c1. In this
case, using relations (3.5), (3.12) and (3.13) we easily get that d ¼ �1.

Considering k and m as functions on M, we get the following Theorem:

Theorem 3.2. Let g be a Legendre curve in a 3-dimensional ðk; m; nÞ-contact
metric manifold Mðh; x; f; gÞ with k non-constant smooth function on M and
‘g 0g

0 k fg 0. Assuming that k < 1 everywhere on M, then g is biharmonic if and
only if g is a Legendre geodesic.

Proof. Since ‘g 0g
0 k fg 0, we can choose a Frenet frame field such that

T ¼ g 0, N ¼ fg 0 and B ¼ x. In the sequel, using (2.1), (2.2), (2.3), (2.7) and
(2.11), we easily get

Rgðt1ðgÞÞ ¼ RðkgN;TÞT ¼ kgRðfT ;TÞT ¼ kg
r

2
� 2k

� �
fT ¼ kgHN;

where r denotes the restriction of the scalar curvature of M to the curve g. As a
consequence, the Jacobi operator of g is given by

Jgðt1ðgÞÞ ¼ 3kgk
0
gT � ðk 00

g � k3
g � kgt

2
g þ kgHÞN � ð2k 0

gtg þ kgt
0
gÞB:ð3:28Þ
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Since g is biharmonic, Jgðt1ðgÞÞ ¼ 0. Therefore, relation (3.28) gives

kgk
0
g ¼ 0;

2k 0
gtg þ kgt

0
g ¼ 0;

k 00
g � k3

g � kgt
2
g þ kgH ¼ 0:

By the hypothesis g is not a geodesic, therefore the first two relations give that
kg and tg are constants i.e. g is an helix. Moreover, the third relation gives

k2
g þ t2g ¼ H which implies that the f-sectional curvature H is constant along

g. Combining now (2.1), (2.4), the Frenet-Serret formulas and the fact that g is
an helix, we have

B 0 ¼ ‘Tx ¼ �fT � fhT

¼ �fT � f½gðhT ;TÞT þ gðhT ; fTÞfT �
¼ �ð1þ gðhT ;TÞÞfT þ gðhT ; fTÞT ¼ �tgfT ;

from which we conclude that gðhT ; fTÞ ¼ 0 and the expression 1þ gðhT ;TÞ is
constant along g. Next, we consider an arbitrary point p of g. Since kðpÞ < 1,
according to Lemma 4.1 there exists an open neighborhood W of p and
orthonormal local vector fields fe; fe; xg defined on W , such that the relations
(2.13) are satisfied. In the sequel, we consider the arc Q of the curve g involving
p which lies in the open set W . Then, we decompose T in terms of the basis
fe; fe; xg as follows

T ¼ aeþ bfe;ð3:29Þ

where a; b are smooth functions on Q. Relations (2.13) and the above decom-
position, give

hT ¼ ale� blfe; fT ¼ afe� be:

Using the last relations and (2.1), we obtain

0 ¼ gðhT ; fTÞ ¼ �2lab

from which we conclude that either a ¼ 0 or b ¼ 0 on Q. Assume that the first
case is valid. Since g is a unit speed curve, we obtain that b ¼G1 on Q. For
the sake of simplicity, we assume that b ¼ 1 on Q i.e. g is an eigencurve of h.
Using relations (2.16) and (3.1), we have

‘TfT ¼ �‘fee

¼ A

2l
fe� ðl� 1Þx ¼ �kgT þ tgx:
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Since the terms kg and tg are constants along g, we derive that the function l is a
constant on Q which implies that A ¼ 0. Then, relation (2.15) gives

‘TT ¼ ‘fefe ¼
A

2l
e ¼ 0;

which means that the curve g is a geodesic. As a consequence, the initial
assertion leads to a contradiction. The case b ¼ 0 works analogously. The
converse is obvious. r

In the next Theorem, the harmonicity of the characteristic vector field x and
geometrical properties of Legendre curves are connected. Specifically, we have

Theorem 3.3. Let Mðh; x; f; gÞ be a 3-dimensional ðk; m; nÞ-contact metric
manifold with k < 1 everywhere on M. If the f-sectional curvature H of M is
constant along every Legendre curve, then the characteristic vector field x defines an
harmonic map (x : ðM; gÞ 7! ðT1M; gSÞ) where T1M, is the unit tangent sphere
bundle equipped with the Sasaki metric gS. If it is assumed additionally that the
function m is constant on M and M is supposed to be complete, then M is locally
isometric to one of the following Lie groups with a left invariant metric: SUð2Þ
(or SOð3Þ), SLð2;RÞ (or Oð1; 2Þ), Eð2Þ, Eð1; 1Þ.

Proof. Let p A M. Then, given a vector X on p orthogonal to x there
exists a Legendre curve g through p with X tangent to g ([20]). By assumption,
the f-sectional curvature H of M is constant along g. Hence by using (2.8) and
k < 1, we get that the function n vanishes along g. As a consequence, the
function n vanishes at the arbitrary point p i.e. Mðh; x; f; gÞ is a generalized
ðk; mÞ-contact metric manifold. On the other hand, Theorem 3.1 of [15] indicates
that the vector field x defines an harmonic vector field. According to the
Theorem 1.1 of [17], we deduce that the characteristic vector field x defines an
harmonic map. If we assume additionally that the function m is a constant, then
Theorem 3.6 of [13] implies that the function k is also a constant on M i.e. M is
a ðk; mÞ-contact metric manifold. The remaining part of the Theorem follows
immediately from the classification of 3-dimensional ðk; mÞ-contact metric mani-
folds in [6]. r

Remark 3.2. If we assume that the scalar curvature r is constant along
every Legendre curve of Mðh; x; f; gÞ, Theorem 3.3 is also valid (see (2.9)).

In the sequel, we construct some examples of 3-dimensional ðk; m; nÞ-contact
metric manifolds. In these examples, we give the ordinary di¤erential equations
which satisfy their geodesics which additionally suppose to be Legendre curves.

Example 3.1. Let M ¼ R3 with the cartesian coordinates ðx; y; zÞ. We
define the following vector fields on R3:

e1 ¼
q

qx
; e2 ¼

q

qy
; e3 ¼ 2y

q

qx
þ 1

4
e2x � y2

� �
q

qy
þ q

qz
:
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The vector fields e1, e2, e3 are linearly independent at each point of M. We
define a Riemannian metric g on M such that gðei; ejÞ ¼ dij , i; j ¼ 1; 2; 3. We
easily get that

½e1; e2� ¼ 0; ½e1; e3� ¼
e2x

2
e2; ½e2; e3� ¼ �2ye2 þ 2e1:ð3:30Þ

Let h be the 1-form defined by hðWÞ ¼ gðW ; e1Þ for every W A XðMÞ. Then
h is a contact form since h5dh0 0 everywhere on M. Let f be the tensor field
of type ð1; 1Þ, defined by fe1 ¼ 0; fe2 ¼ e3, fe3 ¼ �e2: Using the linearity of
f, dh and g, we easily obtain that hðe1Þ ¼ 1, f2Z ¼ �Z þ hðZÞe1, dhðZ;WÞ ¼
gðfZ;WÞ and gðfZ; fWÞ ¼ gðZ;WÞ � hðZÞhðWÞ for every vector fields Z, W on
M. Hence Mðh; e1; f; gÞ is a contact metric manifold. Let ‘ be the Levi-Civita
connection corresponding to g and R the Riemann curvature tensor of g.

Setting x ¼ e1, X ¼ e2, fX ¼ e3, using the Koszul’s formula

2gð‘YZ;WÞ ¼ YgðZ;WÞ þ ZgðW ;Y Þ �WgðY ;ZÞ � gðY ; ½Z;W �Þ
� gðZ; ½Y ;W �Þ þ gðW ; ½Y ;Z�Þ;

and (3.30), we find

‘Xx ¼ � e2x

4
� 1

� �
fX ; ‘fXx ¼ 1� e2x

4

� �
X ; ‘xx ¼ 0;ð3:31Þ

‘xX ¼ � e2x

4
� 1

� �
fX ; ‘xfX ¼ 1þ e2x

4

� �
X ; ‘XX ¼ 2yfX ;

‘XfX ¼ �2yX þ e2x

4
þ 1

� �
x; ‘fXX ¼ e2x

4
� 1

� �
x; ‘fXfX ¼ 0:

From the definition of the tensor field h and relations (3.31), we get that hx ¼ 0
and

hX ¼ 1

2
ðLxfÞX ¼ 1

2
f½x; fX � � f½x;X �gð3:32Þ

¼ e2x

4
X :

Similarly, we easily obtain that

hfX ¼ � e2x

4
fX :ð3:33Þ

Setting now, k ¼ 1� e4x

16
, m ¼ 2 1þ e2x

4

� �
, n ¼ 2 and using the relations (3.31),

(3.32) and (3.33), we easily deduce that
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RðX ; xÞx ¼ e2x

2
fX þ e2x

4
þ 1

� �2
X

¼ kðhðxÞX � hðXÞxÞ þ mðhðxÞhX � hðXÞhxÞ þ nðhðxÞfhX � hðX ÞfhxÞ;

RðfX ; xÞx ¼ e2x

2
X þ 1þ e2x

4

� �
1� 3e2x

4

� �
fX

¼ kðhðxÞfX � hðfX ÞxÞ þ mðhðxÞhfX � hðfXÞhxÞ
þ nðhðxÞfhfX � hðfXÞfhxÞ;

and

RðX ; fXÞx ¼ 0

¼ kðhðfX ÞX � hðXÞfX Þ þ mðhðfXÞhX � hðX ÞhfXÞ
þ nðhðfXÞfhX � hðX ÞfhfX Þ:

Since fX ; fX ; xg is a basis of R3, we easily obtain

RðZ;WÞx ¼ k½hðWÞZ � hðZÞW � þ m½hðWÞhZ � hðZÞhW �
þ n½hðWÞfhZ � hðZÞfhW �;

for all vector fields Z, W on R3. Hence, R3 is a ðk; m; nÞ-contact metric
manifold. Let gðsÞ ¼ ðxðsÞ; yðsÞ; zðsÞÞ A R3 a Legendre geodesic curve parame-
trized by its arc length. Then

T ¼ g 0 ¼ x 0 q

qx
þ y 0 q

qy
þ z 0

q

qz

¼ ½x 0 � 2yz 0�xþ y 0 � e2x

4
� y2

� �
z 0

� �
X þ z 0fX

where ‘‘ 0’’ denotes derivative with respect to s. Since g is a Legendre curve, we
have x 0 � 2yz 0 ¼ 0 and therefore,

g 0 ¼ aX þ bfX

where a ¼ y 0 � e2x

4
� y2

� �
z 0 and b ¼ z 0 with a2 þ b2 ¼ 1. We set a ¼ cos y,

b ¼ sin y for some function y ¼ yðsÞ. On the other hand, using relations (3.31),
we straightforward calculate

‘g 0g
0 ¼ ‘g 0 ½aX þ bfX � ¼ a 0X þ b 0fX þ a2‘XX

þ ab‘fXX þ ab‘XfX þ b2‘fXfX

¼ ða 0 � 2yabÞX þ ðb 0 þ 2a2yÞfX þ ab
e2x

2
x:
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Since g is a geodesic, ‘g 0g
0 ¼ 0 and therefore

a 0 ¼ 2yab; b 0 þ 2a2y ¼ 0; ab ¼ 0:

The equation ab ¼ 0 is equivalent to sinð2yÞ ¼ 0. Di¤erentiating the last rela-

tion, we easily get that the function y is constant along g and equals to
rp

2
where

r A Z. Hence, the functions a, b are also constants along g. Taking r to be
even or odd, we have that the constants a and b take the values 0, 1 or �1. We
consider first the case for which a ¼G1 and b ¼ 0. Then, we have z 0 ¼ 0, y ¼ 0
and a ¼ 0, which is a contradiction. On the other hand, if a ¼ 0 and b ¼ 1,
the definition of the functions a and b gives the following system of ordinary
di¤erential equations:

z 0 ¼ 1; y 0 � e2x

4
� y2

� �
z 0 ¼ 0; x 0 ¼ 2yz 0

or, equivalently,

z ¼ sþ c1; y 0 þ y2 � e2x

4
¼ 0; x 0 ¼ 2y;

where c1 is a constant. The last two relations of this system are reduced to the
following second order ordinary di¤erential equation:

2x 00 þ ðx 0Þ2 ¼ e2x:ð3:34Þ

Partial solutions of equation (3.34) are the functions xðsÞ ¼ ln

ffiffiffi
3

p

sþ c
where c is a

real constant. As a consequence, the corresponding Legendre geodesics are given

by gðsÞ ¼ ln

ffiffiffi
3

p

sþ c
;� 1

2ðsþ cÞ ; sþ c1

 !
.

Example 3.2. Let M ¼ fðx; y; zÞ A R3 j z0 0g, where ðx; y; zÞ are the stan-
dard coordinates in R3. The vector fields

e1 ¼
q

qx
; e2 ¼ �2yz

q

qx
þ 2x

z3
q

qy
� 1

z2
q

qz
; e3 ¼

1

z

q

qy

are linearly independent at each point of M. Let g be the Riemannian metric
defined by gðei; ejÞ ¼ dij, i; j ¼ 1; 2; 3 and h the dual 1-form to the vector field e1.
We define the tensor field f of type ð1; 1Þ by fe1 ¼ 0, fe2 ¼ e3, fe3 ¼ �e2.
Following [13], we have that Mðh; e1; f; gÞ is a generalized ðk; mÞ-contact

metric manifold with k ¼ z4 � 1

z4
and m ¼ 2 1� 1

z2

� �
. We set x ¼ e1, X ¼ e2 and

fX ¼ e3. Furthermore, we have that hX ¼ 1

z2
X and hfX ¼ � 1

z2
fX i.e. the
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vector fields X , fX are eigenvectors of the operator h. Let gðsÞ ¼ ðxðsÞ; yðsÞ;
zðsÞÞ A R3 a Legendre geodesic curve parametrized by its arc length. Then

g 0 ¼ ½x 0 � 2yz 0z3�x� z 0z2X þ ðy 0zþ 2xz 0ÞfX :

Since g is a Legendre curve, we have x 0 � 2yz 0z3 ¼ 0 and therefore,

g 0 ¼ aX þ bfX

where a ¼ �z 0z2 and b ¼ y 0zþ 2xz 0 with a2 þ b2 ¼ 1. On the other hand, by
using the relations (2.14)–(2.16), we get

‘g 0g
0 ¼ a 0 þ b2

z3

 !
X þ b 0 � ab

z3

� �
fX þ 2ab

z2
x:

Since g is a geodesic, we obtain

ab ¼ 0; a 0 þ b2

z3
¼ 0; b 0 � ab

z3
¼ 0:

We easily observe that the case in which a ¼ 0 leads to a contradiction. So,
setting a ¼ 1 and b ¼ 0, we get the following system of ordinary di¤erential
equations:

z 0z2 ¼ �1; y 0zþ 2xz 0 ¼ 0; x 0 ¼ 2yz 0z3;

or, equivalently,

z 0z2 ¼ �1; y 0zþ 2xz 0 ¼ 0; x 0 ¼ �2yz:

The first equation gives z3 ¼ �3sþ c1, hence z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3sþ c1

3
p

. The remainder
two equations give the following second order di¤erential equation:

x 00 þ x 0

�3sþ c1
þ 4x

ð�3sþ c1Þ2=3
¼ 0:

Setting now t ¼ �3sþ c1, the above equation is transformed to

€xx� 1

3t
_xxþ 4

9t2=3
x ¼ 0ð3:35Þ

where _xx denotes
dx

dt
. We mention that the general solution of (3.35) is given by

the expression

xðtÞ ¼ t2=3½J1ðt2=3Þc2 þ Y1ðt2=3Þc3�

where J1 is the first kind Bessel’s function, Y1 is the first kind spherical Bessel’s
function and c2, c3 are real constants.
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4. Biharmonic anti-invariant surfaces

Let Mðh; x; f; gÞ be a ð2nþ 1Þ-dimensional contact metric manifold and Mm

(me nþ 1) be an isometrically immersed submanifold of M tangent to x. If
fðTMmÞHT?Mm, then Mm is called an anti-invariant submanifold of M
whereas if fðTMmÞHTMm, then Mm is said to be an invariant submanifold
of M (see [22]). Invariant submanifolds of M are minimal submanifolds (see
[5]) and hence critical points of the bienergy functional. On the contrary,
anti-invariant submanifolds are not critical points of the bienergy functional,
generally. As a consequence, it is natural to study the class of non-minimal
biharmonic anti-invariant submanifolds in contact metric manifolds. First, we
summarize some basic notions from the geometry of submanifolds (see [10]).

Let Mðh; x; f; gÞ be a 3-dimensional ðk; m; nÞ-contact metric manifold with
k < 1 everywhere on M and M 2 be a non-minimal anti-invariant surface isomet-
rically immersed in M by x : M 2 7! M. Denote the Levi-Civita connection of
M (res. M 2) by ~‘‘ (res. ‘). The Gauss and Weingarten formulas are given,
respectively, by

~‘‘XY ¼ ‘XY þ sðX ;Y Þ; ~‘‘XV ¼ �AVX þDXV ;ð4:1Þ

where X ;Y A TM 2, V A T?M 2. Here s, A and D are the second fundamental
form, the shape operator and the normal connection, respectively. The mean
curvature vector H is given by 2H ¼ tr s.

Since x is tangent to M 2, we consider the pair fe1; xg of orthonormal frame
fields of M 2, where e1 is a unit vector field tangent to M 2. Then, the triple
fe1; x; fe1g constitutes an orthonormal frame field of M. Furthermore, we
assume that H ¼ afe1, where a is a strictly positive smooth function of M 2.
Then, we have

he1 ¼ gðhe1; e1Þe1 þ gðhe1; fe1Þfe1:

Set b ¼ 1þ gðhe1; e1Þ and g ¼ gðhe1; fe1Þ. Using (2.4) and the relations (4.1), we
obtain

sðe1; e1Þ ¼ 2afe1; sðx; xÞ ¼ 0; sðe1; xÞ ¼ �bfe1;ð4:2Þ
‘e1e1 ¼ �gx; ‘e1x ¼ ge1; ‘xe1 ¼ ‘xx ¼ 0:ð4:3Þ

In the sequel, we give an example of a family of anti-invariant surfaces with
constant norm of the mean curvature vector field, immersed in a 3-dimensional
generalized ðk; mÞ-contact metric manifold.

Example 4.1. Consider the 3-dimensional manifold M ¼ fðx; y; zÞ A R3 j
z < 1g, where ðx; y; zÞ are the cartesian coordinates in R3. The vector fields

e1 ¼
q

qx
; e2 ¼

q

qy
; e3 ¼ 2y

q

qx
þ 2x

ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
� y

4ðz� 1Þ

� �
q

qy
þ q

qz
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are linearly independent at each point of M. Let g be the Riemannian metric
defined by gðei; ejÞ ¼ dij, i; j ¼ 1; 2; 3 and h the dual 1-form to the vector field e1.
We define the tensor field f of type ð1; 1Þ by fe1 ¼ 0, fe2 ¼ e3, fe3 ¼ �e2.
Following [14], we have that Mðh; e1; f; gÞ is a generalized ðk; mÞ-contact metric

manifold with k ¼ z and m ¼ 2ð1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
Þ. We set x ¼ e1, X ¼ e2 and Y ¼

fX ¼ e3. Furthermore, we have

grad k ¼ xðkÞxþ XðkÞX þ ðfXÞðkÞfX ¼ fX ¼ Y ;

and, as a consequence, kgrad kk ¼ 1. Moreover, we have that hX ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
X

i.e. the vector field X is an eigenvector of the operator h. For every real
constant c < 1, we consider the planes

Mc ¼ fðx; y; zÞ A R3 j z ¼ cg

which are orthogonal to the z-axis at the points ð0; 0; cÞ. The vector field grad k
is the unit normal to the surfaces Mc. Since xðkÞ ¼ 0, the pair fX ; xg constitutes
an orthonormal frame field of Mc. We easily observe that Mc are anti-invariant
surfaces. We denote by ~‘‘ (res. ‘) the Levi-Civita connection of M (res. Mc).
Then, relation (2.15) gives

~‘‘XX ¼ fXðlÞ
2l

fX ¼ 1

4ðz� 1Þ fX ;

where l ¼ lðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� z

p
, z < 1. On the other hand, the Gauss formula (4.1)

and the last relation give

~‘‘XX ¼ ‘XX þ sðX ;XÞ

¼ 1

4ðc� 1Þ grad k

which implies that ‘XX ¼ 0 and sðX ;XÞ ¼ 1

4ðc� 1Þ grad k. Then, the first two

of the relations (4.2) give a ¼ 1

8ð1� cÞ , where it is supposed that X ¼ e1. It

means that the planes Mc are surfaces with constant norm of the mean curvature
vector field.

In the following, we give two basic lemmas for later use. Their proofs are
mainly based on the equations of Gauss and Codazzi, formulas (2.11) and (2.12)
and are similar to those given in [1].

Lemma 4.1. For every non-minimal anti-invariant surface of a 3-dimensional
ðk; m; nÞ-contact metric manifold Mðh; x; f; gÞ with k < 1, the following relations are
valid:
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2xðaÞ ¼ �e1ðbÞ � 2ag;ð4:4Þ
xðbÞ ¼ gðm� 2bÞ þ nðb � 1Þ;ð4:5Þ
xðgÞ ¼ ð2b � mÞðb � 1Þ þ ng;ð4:6Þ

e1ðbÞ ¼ 4agþ 1

2ðk� 1Þ ðb � 1Þe1ðkÞ �
1

2ðk� 1Þ gfe1ðkÞ;ð4:7Þ

ðb � 1Þ2 þ g2 ¼ 1� kð4:8Þ

Lemma 4.2.

��DDxH ¼ ½�6ae1ðaÞ þ 2abgþ 2xðaÞb þ axðbÞ�e1
þ ½2be1ðaÞ þ ae1ðbÞ þ 2a2g�x

þ ½e1e1ðaÞ þ xxðaÞ þ gxðaÞ � að4a2 þ 2b2Þ�fe1
RxðHÞ ¼ ½amgþ anðb � 1Þ�e1

þ �amðb � 1Þ þ angþ a
r

2
� k

� �� �
fe1

where x is the inclusion map x : M 2 7! M.

We remind that an anti-invariant surface M 2 is biharmonic if and only if
t2ðHÞ ¼ ��DDxHþRxðHÞ ¼ 0. Using Lemma 4.2, we have

Proposition 4.1. The surface M 2 is biharmonic if and only if the following
system of partial di¤erential equations holds:

e1e1ðaÞ þ xxðaÞ þ gxðaÞ � að4a2 þ 2b2Þ þ a
r

2
� k

� �
� amðb � 1Þ þ ang ¼ 0;ð4:9Þ

6ae1ðaÞ � 2abg� 2xðaÞb � axðbÞ � amg� anðb � 1Þ ¼ 0;ð4:10Þ
2be1ðaÞ þ ae1ðbÞ þ 2a2g ¼ 0:ð4:11Þ

where a ¼ kHk, b ¼ 1þ gðhe1; e1Þ and g ¼ gðhe1; fe1Þ.

In general, the problem of classifying biharmonic surfaces of 3-dimensional
ðk; m; nÞ-contact metric manifolds is di‰cult because the above system of three
partial di¤erential equations involves six unknown functions (a; b; g; k; m; n) and
the scalar curvature r. To this direction, we give the following Theorem:

Theorem 4.3. Let Mðh; x; f; gÞ be a 3-dimensional generalized ðk; mÞ-contact
metric manifold with k < 1. Let M 2 be an anti-invariant surface of M with
constant norm of the mean curvature vector field equal to c. If M 2 is biharmonic,
then M 2 is either minimal or it is locally flat and the functions k and m are
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constants on M 2. In the second case, there exists a coordinate system ðu; vÞ
defined in a neighborhood U1 of any p A M 2, such that the metric tensor g and the
second fundamental form of M 2 are given on U1 by

g ¼ ðduÞ2 þ ðdvÞ2;ð4:12Þ

s
q

qu
;
q

qu

� �
¼ 0;ð4:13Þ

s
q

qu
;
q

qv

� �
¼ � m

2
f

q

qv

� �
;

s
q

qv
;
q

qv

� �
¼ 2cf

q

qv

� �
:

Proof. We assume that M 2 is a biharmonic non-minimal surface with
constant norm of the mean curvature vector field a ¼ c ¼ const:0 0. Then,
relation (4.11) gives

e1ðbÞ ¼ �2cg:ð4:14Þ

Furthermore, combining (4.5) and (4.10), we get

0 ¼ �2cbg� cxðbÞ � cmg

¼ �2cbg� c½gðm� 2bÞ� � cmg

¼ �2cmg;

or, equivalently,

mg ¼ 0:ð4:15Þ

First we assume that the function g vanishes on M 2. In this case, by using (4.5),
(4.8), (4.14) and the fact that k < 1 we conclude that the function b is a constant
on M 2 not equal to 1. Combining (2.6) and (4.7), we get e1ðkÞ ¼ xðkÞ ¼ 0 i.e.
the function k is a constant on M 2. Furthermore, (4.6) gives m� 2b ¼ 0, i.e. the
function m is a constant on M 2. On the other hand, by using relations (4.3), we
easily deduce that

½x; e1� ¼ 0:

As a consequence, for any p A M 2 there exists an open neighborhood U1 of p
and a coordinate system ðu; vÞ such that

x ¼ q

qu
; e1 ¼

q

qv
:

By now using the relations (4.2), we obtain that on U1 the metric g and the
second fundamental form s of M 2 take the form (4.12) and (4.13), respectively.
Furthermore, by using the relations (4.3), we get
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Rðx; e1Þe1 ¼ ‘x‘e1e1 � ‘e1‘xe1 � ‘½x; e1�e1

¼ ‘x½�gx� � ‘‘xe1�‘e1
xe1

¼ ð�xðgÞ � g2Þx:
Since g ¼ 0, we deduce from the last relation that the Gauss curvature of M 2 is
zero and so, M 2 is locally flat. Consider now the set U2 ¼ fp A M 2 j gðpÞ0 0g
which is an open subset of M 2. On U2, we have that m ¼ 0. In this case, (4.9)
gives

r

2
� k� 4c2 � 2b2 ¼ 0:

Di¤erentiating the last relation with respect to x and using the relations (2.6) and
(2.9) with n ¼ 0, we get

bxðbÞ ¼ 0:ð4:16Þ
If we suppose that b ¼ 0 on U2, then (4.14) gives cg ¼ 0, which is a contra-
diction. Consider now the open subset U3 ¼ fp A U2 j bðpÞ0 0g of U2. Then,
(4.16) gives xðbÞ ¼ 0 on U3. In this case, (4.5) gives

xðbÞ ¼ 0 ¼ gðm� 2bÞ ¼ �2bg

on U3, which is also a contradiction and the proof of the Theorem has been
completed. r

If k ¼ const: < 1, then the 3-dimensional ðk; m; nÞ-contact metric manifolds
are reduced to ðk; mÞ-contact metric manifolds ([15]). Hence, we have the fol-
lowing corollary:

Corollary 4.4. Let M 2 be an anti-invariant surface of a 3-dimensional
ðk; m; nÞ-contact metric manifold M with k ¼ const: < 1. Then M 2 is biharmonic
if and only if M 2 is minimal.
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