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Abstract

In this paper, we characterize biharmonic Legendre curves in 3-dimensional (rc, , v)-
contact metric manifolds. Moreover, we give examples of Legendre geodesics in these
spaces. We also give a geometric interpretation of 3-dimensional generalized (x, u)-
contact metric manifolds in terms of its Legendre curves. Furthermore, we study
biharmonic anti-invariant surfaces of 3-dimensional generalized (x,u)-contact metric
manifolds with constant norm of the mean curvature vector field. Finally, we give
examples of anti-invariant surfaces with constant norm of the mean curvature vector
field immersed in these spaces.

1. Introduction

During the last decade important progress has been made in the study of
both the geometry and the analytic properties of biharmonic maps. In differ-
ential geometry, special attention has been payed to the study of biharmonic
submanifolds, i.e. submanifolds the inclusion map of which is a biharmonic map.

In [7], Caddeo et al. classified biharmonic curves and surfaces of the unit
3-sphere S°. In fact, they found that these are circles, helices which are
geodesics in the Clifford minimal torus, and small hyperspheres. The same
authors in [8] constructed examples of nonharmonic biharmonic submanifolds of
S”" n> 3. In this case, the family of such submanifolds is much larger. In fact,
any minimal submanifold of a certain parallel hypersphere of S” is a non-
harmonic biharmonic submanifold of S”.

On the other hand, the odd dimensional spheres are typical examples of
contact metric manifolds. More precisely, these are Sasakian space forms of
constant ¢-sectional curvature 1. In [11] J. Inoguchi classified biharmonic
Legendre curves and Hopf cylinders in 3-dimensional Sasakian space forms.
In particular, he proved that in Sasakian space forms of constant ¢-sectional
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curvature ¢ < 1 there are neither nonharmonic biharmonic Legendre curves nor
nonharmonic biharmonic Hopf cylinders. On the contrary, for ¢ > 1, there exist
such submanifolds.

An extension of the Sasakian manifolds are the (x,u)-contact metric mani-
folds ([6]). We remind that a contact metric manifold M(n, &, ¢,g) is called
(rc, u)-contact metric manifold if and only if the characteristic vector field ¢
satisfies the curvature condition

RX, Y)¢ = (V)X =n(X)Y) 4+ u(n(Y)hX —n(X)hY)

for every vector fields X, Y of M. Here k, u are constants and s = %ggqﬁ. If
K, pu are non-constant smooth functions on M, the manifold M is called
generalized (i, n)-contact metric manifold [13]. In [14], the authors classified,
at least locally, 3-dimensional generalized (x,u)-contact metric manifolds assum-
ing additionally that the norm of the field grad x is a constant. In [18], Perrone
studied the harmonicity of the vector field ¢ and introduced the notion of the
H-contact metric manifolds (contact metric manifolds whose characteristic vector
field is an harmonic vector field). In [15], the authors characterized the 3-
dimensional H-contact metric manifolds in terms of (i,u,v)-contact metric
manifolds, which are defined by the following curvature condition:

RX,Y)E=xm(Y)X —n(X)Y) + u(n(Y)hX —n(X)hY)
+v(n(Y)ghX —n(X)phY),

where x, u, v are smooth functions. Moreover, it is shown that if dim M > 3,
then (x,u,v)-contact metric manifolds are reduced to (x,u)-contact metric
manifolds i.e. x, u are constants and v is the zero function on M.

In [1], Arslan et al. classified biharmonic Legendre curves and biharmonic
anti-invariant surfaces in 3-dimensional (x,u)-contact metric manifolds. Espe-
cially, they proved that biharmonic Legendre curves immersed in 3-dimensional
(rc, u)-contact metric manifolds are their geodesics or helices (curves with constant
geodesic curvature and geodesic torsion). Later, Sasahara ([19]) pointed out
that this characterization is true under the condition that V,y’| ¢y’, where y’ is
the unit tangent vector field of Legendre curve. In fact, if ¥ # 1, V.’ is not
generally parallel to ¢y’. On the other hand, a non-minimal anti-invariant
surface of a 3-dimensional (x,u)-contact metric manifold is biharmonic if and
only if it is of constant mean curvature vector field and x = 1, i.e. the ambient
space is a Sasakian manifold.

The main part of this paper is referred to the study of nonharmonic
biharmonic curves and surfaces immersed in 3-dimensional (x, i, v)-contact metric
manifolds which are not Sasakian.

More explicitly, in Section 2 are contained some basic notions about contact
metric manifolds and biharmonic maps.

In Section 3, we improve Proposition 4.1 of [1] omitting the assumption that
V,.»" || ¢y’. More precisely, we prove the following Theorem:
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THEOREM 1.1. Let y be a non-geodesic Legendre curve in a 3-dimensional
(rc, u)-contact metric manifold M(n,& ¢,g) with k < 1. Then y is biharmonic if
and only if either V,y' || ¢y' and in this case y is a helix satisfying k; +‘[5 =
—(k+p) or Vyy'| & and y is a helix satisfying k; 4+ 1) = Kk +0u, where the
Sunction 6 = g(hy’,y") is a constant.

In the following, we classify biharmonic Legendre curves in 3-dimensional
(rc, u, v)-contact metric manifolds. Especially, we prove the following Theorem:

THEOREM 1.2. Let y be a Legendre curve in a 3-dimensional (k, u,v)-contact
metric manifold M(n,¢,¢,g) with i a non-constant smooth function on M and
V' || @y’ Assuming that k <1 everywhere on M, then y is biharmonic if and
only if v is a Legendre geodesic.

Next we give examples of biharmonic Legendre curves of suitable (x, u, v)-
contact metric manifolds which are, indeed, their geodesics. Finally, by using
the notion of Legendre curves, we characterize geometrically 3-dimensional gen-
eralized (x,u)-contact metric manifolds. In particular, we prove the following
Theorem:

THEOREM 1.3. Let M(n, &, ¢,g9) be a 3-dimensional (x,u,v)-contact metric
manifold with k <1 everywhere on M. If the ¢-sectional curvature H of M is
constant along every Legendre curve, then the characteristic vector field & defines an
harmonic map (&:(M,g) — (T'\M,gs)) where Ti\M, is the unit tangent sphere
bundle equipped with the Sasaki metric gs. If it is assumed additionally that the
function u is constant on M and M is supposed to be complete, then M is locally
isometric to one of the following Lie groups with a left invariant metric: SU(2)
(or SO(3)), SL(2,R) (or O(1,2)), E(2), E(1,1).

In Section 4, are studied biharmonic anti-invariant surfaces of 3-dimensional
(rc, u, v)-contact metric manifolds. We exhibit the system of partial differential
equations which describes these surfaces. Finally, we investigate biharmonic
anti-invariant surfaces of 3-dimensional generalized (., u)-contact metric mani-
folds with constant norm of the mean curvature vector field. The main result of
this section is the following Theorem:

THEOREM 1.4. Let M(n,&,¢,9) be a 3-dimensional generalized (i, u)-contact
metric manifold with i < 1. Let M? be an anti-invariant surface of M with
constant norm of the mean curvature vector field equal to c. If M? is biharmonic,
then M? is either minimal or it is locally flat and the functions x and u are
constants on M?. In the second case, there exists a coordinate system (u,v)
defined in a neighborhood U, of any p € M?, such that the metric tensor g and the
second fundamental form of M? are given on U, by

g = (du)® + (dv)?,
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(o) = 30(5)
()-(3)

Moreover, we give examples of anti-invariant surfaces with constant norm of
the mean curvature vector field in these spaces.

2. Preliminaries

2.1. Contact metric manifolds. We start with some fundamental notions
about contact Riemannian geometry. We refer to [5] for further details. All
manifolds in the present paper are assumed to be connected and of class C*.

A differentiable (2n + 1)-dimensional manifold is called a contact manifold if
it admits a global 1-form 5 such that # A (dn)" # 0 everywhere on M. Tt is
known that a contact manifold admits an almost contact metric structure
(n,&,¢,9), i.e. a global vector field &, which is called the characteristic vector
field or the Reeb vector field, a tensor field ¢ of type (1,1) and a Riemannian
metric g (associated metric) such that

Q1) nE) =1, ¢=-Id+n®¢& g(X,8Y)=g(X,Y)—nX)n(Y)

for all vector fields X, ¥ on M. Moreover, the quadruple (7,&,¢,g) can be
chosen so that dn(X,Y) =¢g(X,4Y). The manifold M together with the struc-
ture tensors (7,&,¢,¢g) is called a contact metric manifold and is denoted by
M(n, &, ¢,9). Equations (2.1) imply

(2.2) #E =0, nog=0.

Given a contact Riemannian manifold M, we define an operator 4 by h =
%(.,%(/ﬁ), where . denotes Lie differentiation. The operator % is self-adjoint and
satisfies

(2.3) hé =0, hé=—¢h
and
(2.4) Vxé=—¢X — phX.

A contact structure on M gives rise to an almost complex structure on the
product M x R. If this structure is integrable, then the contact metric manifold
is said to be Sasakian. Equivalently, a contact metric manifold is Sasakian if
and only if

RX, Y)S=n(Y)X —n(X)Y
for every vector fields X, Y on M.
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A plane section at a point p of a contact metric manifold M is called a ¢-
section if there exists a vector X € T,M orthogonal to & such that {X,¢X} span
the section. The sectional curvature K(X,¢X), denoted by H(X), is called ¢-
sectional curvature.

We remind now the notion of (,u, v)-contact metric manifolds.

DEFINITION 2.1. A (2n+ 1)-dimensional contact metric manifold M (7, ¢,
¢, 9g) is called (k,u,v)-contact metric manifold if the curvature tensor satisfies the
condition

RX,Y)¢ =x(n(Y)X =n(X)Y) +pu(n(Y)hX —n(X)hY)
+v(n(Y)phX —n(X)phY)

for every vector fields X, Y tangent to M and «, y, v are smooth functions on M.

Moreover, on every 3-dimensional (, u, v)-contact metric manifold M (y, ¢,

¢,g) the following relations are valid
(2.5) B = (e = )¢,
(2.6) £0) = 20— 1),
(2.7) r=4Kx+2H,
(2.8) EH)=2(1 —x), K<l
(2.9) () =4k -1y, k<l
(210) R X)Y =x(g(X, Y)S —n(Y)X) + u(g(hX, Y)E —n(Y)hX)

+v(g(phY, X )& —n(Y)phX)
(2.11) R(X,Y)Z =plg(hY,Z)X — g(hX,Z)Y + g(Y,Z)hX — g(X,Z)hY]
+vig(@hY,Z)X — g(¢phX,2)Y +g(Y, Z)phX — g(X,Z)phY]

(-3
(-3
<

%—21{) 9(Y.2)X —g(X,2)Y], x<]l

+ Z)n(X) —g(X, Z)n(Y))¢

+
N =

lg(Y
(Y )n(Z)X —n(X)n(Z)Y]
l9(

+

(2.12) (1 —x)(Vxh)Y = —%g(hX, Y) grad k — %g(hX, #Y)g(grad k)

+ (1 - K)[(l - K)g(X7¢Y) +g(hX’¢Y) - Vg(hX’ Y)]é
+ (1 =) {n(Y)[(x - 1)gX + hpX]
+n(X)[Whd Y + vh Y]},
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for every vector fields X, Y, Z tangent to M, where r denotes the scalar
curvature of M. Formulas (2.5) and (2.6) occur in [15]. The proof of relations
(2.7)—(2.12) is mainly based on the following Lemmas (see also [21] for the case
v=20):

Lemma 2.2 [13]. Let M(n,&,¢,9) be a 3-dimensional (ic,u,v)-contact metric
manifold.  For every p € M with k(p) < 1 there exists an open neighborhood W of
p and orthonormal local vector fields {e,pe,C} defined on W, such that
(2.13) he = de, hge = —Ape, hE =0,

where 1 =+1 — k.

Lemma 2.3 (9], [21]). Let M(n, ¢, ¢,9) be a 3-dimensional (x,u,v)-contact
metric manifold with k <1 everywhere on M. Then

(2.14) Vel =—(A+1)ge, Vgi=(1-Ae,
__H _K _B _4
(2.15) Vee = 2¢e, Vege = 76 Ve.e = 2/1(/56, Vyepe = 276
(2.16) \% ——iqﬁ +(A-1)¢, V.o __z + (A+1)¢
. pe¢ = =5 e » Vepe=—e ,

where A = e(A) and B = ¢e(1) and {e, pe, L} the orthonormal basis of eigenvectors
of h described on Lemma 2.2.

2.2. Biharmonic maps. Let (M™, g), (N",h) be Riemannian manifolds and
let p: (M™, g) — (N", h) be a smooth map between them. We denote by V? the
connection of the vector bundle ¢p~! TN induced from the Levi-Civita connection
V of (N,h) and V the Levi-Civita connection of (M,g). Let Q be a compact
domain of M. The energy (integral) of ¢ over Q is defined by

1 2
=3 | lavl’e,

where v, is the volume element of M.

A smooth map ¢ : M™ — N" is said to be harmonic if it is a critical point of
the energy functional for any compact subset Q < M. It is well known ([3]) that
the map ¢ : M — N”" is harmonic if and only if

Ei(p)

t(p) = t(V* dp) = > (VY dples) — dp(Vee)} =0,
=1

where {e;} is a local orthonormal frame field of M™. The equation 7;(p) =0 is
called the harmonic equation.
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A smooth map ¢ : M — N”" is said to be biharmonic if it is a critical point
of the bienergy functional:

E) =3 [ Im@Is,

over every compact subset Q of M. The Euler-Lagrange equation associated to
the bienergy becomes more complicated and, it involves the Riemann curvature
tensor of N. More precisely, a smooth map ¢ : M — N" is biharmonic if and
only if it satisfies the following biharmonic equation ([12]):

0(p) = —4,(t1(p)) = 0.
The operator #, is the Jacobi operator of ¢ and is defined by
Iy(V) =DV =R, (V), Vel(p'TN),

qu == Z{VZVZ' - Vg@i"’}’
=1

Ry (V) =D RY(V,dp(e)) dol(e;),
i1
where {¢;} is a local orthonormal frame field of M™ and RY is the curvature
tensor of N. The section 72(p) of ¢ 'TN is called the bitension field of ¢.
From the expression of the bitension field 7, it is clear that an harmonic map
(r1 = 0) is automatically a biharmonic map, in fact it is a minimum of the
bienergy. However, the converse is not true in general. In fact, many examples
of nonharmonic biharmonic maps have been obtained in [4], [7], [8] and
[16]. Nonharmonic biharmonic maps are called proper biharmonic maps.

3. Biharmonic Legendre curves in 3-dimensional (x, x, v)-contact metric
manifolds

Let M(n,¢,¢4,g9) be a 3-dimensional (k, u,v)-contact metric manifold with
Kk < 1 everywhere on M. A curve y:[I < R— M parametrized by arclength is
said to be a Legendre curve if and only if #(y") =0 where y’ is the tangential
vector field on p. In this section, we attempt to classify proper biharmonic
Legendre curves on 3-dimensional (x,u,v)-contact metric manifolds with x < 1.
Moreover, we characterize 3-dimensional generalized (, u)-contact metric mani-
folds in terms of the biharmonicity of Legendre curves.

Let y be a Legendre curve in M. Then, the Frenet-Sherret formulas for y
are given explicitly by

T’ 0 k, Of|T
(3.1) N |=|-ky 0 14||NJ,
B’ 0 -7, OB
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where k, (res. 7,) denotes the geodesic curvature (res. the geodesic torsion) of y.
We mention that every Legendre curve in Sasakian 3-manifolds has constant
geodesic torsion equal to 1([2]).

A helix is a curve with constant geodesic curvature and geodesic torsion.
Geodesics are curves with zero geodesic curvature.

Differentiating g(y’,£) =0 along y and using (2.4) we see that g(V,y’, &)+
g(y',—¢hy") = 0 and hence

(32) Vyy' =al+bgy', a=g(y, ¢hy').
Thus the principal normal N is given by

(3.3) N :ki(af+b¢y').
g

On the other hand, decomposing the vector field /2y’ in terms of the orthonormal
frame field {y’, ¢y’, &}, we get

(3.4) hy' =6y — agy’.
Differentiating N along y and using the relations (3.1), we have (|5, page 135])
/ / /
(3.5) t,B= {%’a+2—;+kﬁg(l +5)}é+{£§b+i—gkﬁg(l +5)}¢y’.
From this and k; = a* + b*, we obtain
a'b —ab’
kg

Now, we prove the following Theorem:

Tg:

+(1+5)‘.

THEOREM 3.1. Let y be a non-geodesic Legendre curve in a 3-dimensional
(rc, u)-contact metric manifold M(n, & ¢,g) with ik < 1. Then y is biharmonic if
and only if either V,y' || ¢y' and in this case y is a helix satisfying k; +‘55 =
—(k+p) or Vyy'| & and y is a helix satisfying k; + 1) = K +0u, where the
Sunction 6 = g(hy’,y") is a constant.

Proof. We assume that y is a Legendre curve but not a geodesic with non-
vanishing geodesic torsion. Furthermore, we can assume, without loss of gen-
erality, that the geodesic torsion is given by

a'b — ab’
(36) Tg = T
g

Setting v =0 in (2.12) and using the fact that the functions x and u are constants
with x© < 1, we compute the derivative of J

(3.7) 0" =g(Vhy' Y + gy, V') = g(Vyrh)y',y') + 2g(hy', V)"
=g(hy', ¢y n(y") + 2bg(hy’, ¢y') = —2ab.

+1+44.
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Using the Frenet-Serret formulas, we compute the tension field of y is given by
71(y) = VoT = kyN.
By direct computations, we deduce ([11])
—A,(t1(y)) = =3kgk, T + (k) — k; — kyT})N + (2k; 7y + ky7,)B.

Since the ambient space M (#,¢, ¢, g) is a (i, u)-contact metric manifold, relations
(2.2), (2.3), (2.10), (2.11), (3.3) and (3.4) give

Ry (11(y)) = kgR(N,y")y" = aR(&,9")y" + bR($Y', y")y'

= alk + op)& + (% -~ 2K) '

where r denotes the restriction of the scalar curvature of M to the curve y. On
the other hand, the scalar curvature of a 3-dimensional (x,u)-contact metric
manifold is given by ([6])

r=2(x— u.
As a consequence, we get
Py (11()) = ali + )& + b(—x — p)gy".
Thus, the bitension field 7,(y) of y is given by
(38)  60) = A@mO) + A0G) = ~3kkT + (k) k3 — kN
!

+ (2k, 7y + kyt)) B+ a(xc 4 0p)& 4 b(—r — )y’

Since y is biharmonic, 1,(y) =0 or, equivalently,

(3.9) g(2(7),7") = 0,
(3.10) g(ta(y), ¢7") = 0,
(3.11) g(na(p), &) = 0.

Combining (3.8), (3.9) and using the fact that y is not a geodesic, we easily
conclude that k, = c¢; =const. # 0. Additionally, relations (3.3), (3.5), (3.8),
(3.10) and (3.11) give

!

(3.12) (= — @w%(a' 4 b(1+6)) + alic +6u) = 0,
(3.13) (—c? —rj)b—i—i—“”(b/—a(l +0)) +b(—x—p) =0.

g

Moreover, differentiating the relation a + b = ¢} along 7, we get

(3.14) aa' +bb' = 0.
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On the other hand, on any 3-dimensional contact metric manifold M (5, &, ¢, g)
the following relation holds:

(3.15) (Vx@)Y = g(X +hX,Y)é —n(Y)(X + hX),

for every X,Y € Z(M). Differentiating (3.5) along y and using relations (2.1),
(2.4), (3.1), (3.2), (3.3), (3.4), (3.14) and (3.15), we have

at,B+cityB' = cj1,B — CITZN = (a" +b'(140) +b3")¢ + (@' +b(1 +0))Vy&
+(b" —a'(1+0) —ad)gy' + (b — a(1+0))V, gy’
={a" +b'(1+0) + b5 + (b —a(l +9)(1 +6)}¢&
+{b" —d'(1+0) —ad' — (a' +b(1+9))(1 +0)}¢)’
+ {—aa’ — bb'}y’,

or, equivalently,

,L_l
T—"(a’+b( +0)) —ar; =a" +b'(1+6) + b6 + (b' — a(1+6))(1 + )
g

and

!

5 (b — a1 +0)) — b2 = b" — a'(1+0) — a8’ — (a' + b(1 +6))(1 +0).

Ty
Using relations (3.12) and (3.13), the last two relations are transformed to

(3.16)  a”" +b'(1+6) + b8 + (b —a(1 +9))(1 +9) = ac? — a(k +ou),
and

(3.17) b —d (1+6) —ad — (a' +b(1+8))(1+6) = be? + b(x + w).

In the sequel, we separately examine the cases for which the functions « or b are
vanishing on y. More precisely, the case for which a=0 gives V,»'||¢y’. In
this case, the function b is not vanishing on y, since a> + b*> = ¢? > 0. Moreover,
using relations (3.6), (3.7) and (3.13), we easily deduce that the functions ¢ and t,
are constants on y and, therefore, y is a helix satisfying add1t1onally the relation
k2 + r —(r+ ) ([1], [19]). Slmllarly, the case for which b = 0 gives V)’ || &.
Moreover, using relations (3.6), (3.7) and (3.12), we easily deduce that the
functions ¢ and 7, are constants on y and, therefore, y is a helix satisfying
additionally the relation k2 + ‘L' =Kk +0u. In the following, we assume that the
functions a and b are not vanlshlng on y simultaneously. Multiplying relation
(3.16) with b and relation (3.17) with a and substracting, we deduce
a//b _ ab//

ab
(3.18) T-ﬁ-&/:f/ =——2(2K+,u(1+5)).
1 1
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Substituting (3.18) in (3.12) and (3.13), we obtain

b
of == a1+ )+ b1 +0) w0 =0,
g*1

b{cf — 7 fé(bwrﬂ(l FO) (b —a(l +96)) Kﬂ} —0.

. . b
Using (3.6), we easily observe that —ci — rj ——— (2K + pu(1+9))(a" + b(1 +0))

g-1
+ K40 == =72 — = (2 + u(1 +6)) (b —a(1 +6)) —x —p. Since a,b # 0,
h TyC

we obtain 941
(319) 2 -2 == 2+ u(1 +8)(b' —a(l +6)) —x— u=0.

g
Tg€1

On the other hand, using (3.14), multiplying relation (3.12) with ¢ and (3.13) with
b and summing, we get

1
(3.20) —cf -1 :C—z{bz(x—i-u) —a*(k + )}
1

Combining (3.19), (3.20) and using the fact that a® + b* = ¢}, we have

b —al +5)) o

Tg

a2 + pu(1 +9)) (a—i—

We assume that the function 2k + x(1 + ) is vanishing on y. Differentiating the
last relation along y and using (3.7), we get uab =0 i.e. u=0. Then, x =0 and
7/ =0 (from (3.18)). In this case, relation (3.12) gives a(—cf —7;) = 0, which is
a contradiction. As a consequence, we get

(3.21) b' =a(l+d—1,).
Substituting (3.21) in (3.19), we get
(3.22) cf + clzrgz —a*(2k + u(1 +6)) + (x + et = 0.

Differentiating (3.22) along y and using relations (3.7), (3.14), (3.18) and (3.21),
we have

(3.23) (146 —27,) (26 + p(1 +6)) + a*u = 0.

Differentiating (3.23) along y and using relations (3.7), (3.14), (3.18) and (3.21),
we get

Qe +0)° oy 45— 3e,) — o0,

(3.24) —(2x + u(14+9)) + .
1
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Differentiating (3.24) along y and using relations (3.7) and (3.18), we obtain

2Kk + u(1 +9)
y(6—772 —0.

aq
We distinguish two cases:
+ #£=0. In this case, relations (3.23) and (3.24) give

(3.25) ¢t =2, 1+4+6=2z,
Furthermore, relation (3.22) give

(3.26) A+t —a +r=0.
On the other hand, using relations (2.5) and (3.4), we straightforward
compute

(3.27) a+0*=gh*y,y)=1-x

Combining relations (3.25), (3.26) and (3.27), we easily deduce that the

function ¢ is a constant or, equivalently, ab = 0 which is a contradiction.
6¢? . o . .
* 2+ p(l+0) = % Differentiating this relation along y, we get ué’' =0
or uab =0 which is a contradiction.
Conversely, we assume that V,)'| ¢y’ i.e. a=0 and y is a helix satisfying
kg2 + rj = —(k+u). Then, we easily observe that relations (3.12) and (3.13) are
satisfied. Hence, y is a biharmonic Legendre curve. Similarly, we treat the case

V' |[€ and y is a helix satisfying k; + 77 = K + . O

Remark 3.1. If 7, = 0, then y is a Riemannian circle, since k, = ¢;. In this
case, using relations (3.5), (3.12) and (3.13) we easily get that 0 = —1.

Considering x and u as functions on M, we get the following Theorem:

THEOREM 3.2. Let y be a Legendre curve in a 3-dimensional (k,u,v)-contact
metric manifold M(n,&,$,g) with k non-constant smooth function on M and
V,y' | ¢y'.  Assuming that k <1 everywhere on M, then y is biharmonic if and
only if v is a Legendre geodesic.

Proof. Since V,p'| ¢y’, we can choose a Frenet frame field such that
T=y', N=¢y and B=¢. In the sequel, using (2.1), (2.2), (2.3), (2.7) and
(2.11), we easily get

R,(t1(y)) = R(k,N, T)T = k,R($T, T)T =k, (; - 2K>¢T = k,HN,

where r denotes the restriction of the scalar curvature of M to the curve y. As a
consequence, the Jacobi operator of y is given by

(3.28)  7,(11(7)) = 3kgk,T — (k) — k; — kg7, + kyH)N — (2k)7y + k7)) B.
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Since y is biharmonic, #,(71(y)) =0. Therefore, relation (3.28) gives
kgky, =0,
2kyty 4 kyt, =0,
ki —ky — kgtg + kyH = 0.
By the hypothesis y is not a geodesic, therefore the first two relations give that

k, and 1, are constants i.e. p is an helix. Moreover, the third relation gives

k§+‘[§ = H which implies that the ¢-sectional curvature H is constant along

7. Combining now (2.1), (2.4), the Frenet-Serret formulas and the fact that y is
an helix, we have

B' =V = —¢T — ¢hT
=—(14+g(T,T)¢T +g(hT,¢T)T = —14¢T,
from which we conclude that g(hT,¢T) =0 and the expression 1+ g(hT,T) is
constant along y. Next, we consider an arbitrary point p of y. Since x(p) < 1,
according to Lemma 4.1 there exists an open neighborhood W of p and
orthonormal local vector fields {e, ge, &} defined on W, such that the relations
(2.13) are satisfied. In the sequel, we consider the arc Q of the curve y involving

p which lies in the open set . Then, we decompose 7' in terms of the basis
{e, ge, &} as follows

(3.29) T = ae + foe,

where o, f are smooth functions on Q. Relations (2.13) and the above decom-
position, give

hT = ale — fAge, ¢T = agpe — fe.
Using the last relations and (2.1), we obtain
0=g(hT,¢T) = 270

from which we conclude that either « =0 or f =0 on Q. Assume that the first
case is valid. Since y is a unit speed curve, we obtain that f = +1 on Q. For
the sake of simplicity, we assume that f =1 on Q i.e. y is an eigencurve of /.
Using relations (2.16) and (3.1), we have

VT¢T = —V¢e€

= Do (e =k, T 47,8
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Since the terms k, and 7, are constants along y, we derive that the function 4 is a
constant on @ which implies that 4 =0. Then, relation (2.15) gives

A
VTT = V¢e¢€ = 2— = 0,

e
A
which means that the curve y is a geodesic. As a consequence, the initial
assertion leads to a contradiction. The case f =0 works analogously. The
converse is obvious. O

In the next Theorem, the harmonicity of the characteristic vector field ¢ and
geometrical properties of Legendre curves are connected. Specifically, we have

THEOREM 3.3. Let M(n, & ¢,g9) be a 3-dimensional (i, u,v)-contact metric
manifold with k < 1 everywhere on M. If the ¢-sectional curvature H of M is
constant along every Legendre curve, then the characteristic vector field & defines an
harmonic map (&:(M,g) — (T'M,gs)) where Ti\M, is the unit tangent sphere
bundle equipped with the Sasaki metric gs. 1If it is assumed additionally that the
function u is constant on M and M is supposed to be complete, then M is locally
isometric to one of the following Lie groups with a left invariant metric: SU(2)
(or SO(3)), SL(2,R) (or O(1,2)), E(2), E(1,1).

Proof. Let pe M. Then, given a vector X on p orthogonal to ¢ there
exists a Legendre curve y through p with X tangent to y ([20]). By assumption,
the ¢-sectional curvature H of M is constant along y. Hence by using (2.8) and
k<1, we get that the function v vanishes along y. As a consequence, the
function v vanishes at the arbitrary point p ie. M(y, ¢ ¢,g) is a generalized
(rc, u)-contact metric manifold. On the other hand, Theorem 3.1 of [15] indicates
that the vector field £ defines an harmonic vector field. According to the
Theorem 1.1 of [17], we deduce that the characteristic vector field ¢ defines an
harmonic map. If we assume additionally that the function y is a constant, then
Theorem 3.6 of [13] implies that the function « is also a constant on M ie. M is
a (k,u)-contact metric manifold. The remaining part of the Theorem follows
immediately from the classification of 3-dimensional (x, x)-contact metric mani-
folds in [6]. O

Remark 3.2. 1If we assume that the scalar curvature r is constant along
every Legendre curve of M(n,&, ¢,g), Theorem 3.3 is also valid (see (2.9)).

In the sequel, we construct some examples of 3-dimensional (i, u, v)-contact
metric manifolds. In these examples, we give the ordinary differential equations
which satisfy their geodesics which additionally suppose to be Legendre curves.

Example 3.1. Let M =R? with the cartesian coordinates (x,y,z). We
define the following vector fields on R*:

0 0

el = e = e—2a+1ezx 264—6
T TP oy 3TN T\a y oy oz’
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The vector fields e, e;, e3 are linearly independent at each point of M. We
define a Riemannian metric g on M such that g(e;,e;) =9, i,j=1,2,3. We
easily get that

€2x

5 e [e2, €3] = —2yer + 2ey.

(330) [81762] = 0, [81, 83] =
Let # be the l-form defined by #(W) = g(W,e;) for every W e Z(M). Then
n is a contact form since 7 A dn # 0 everywhere on M. Let ¢ be the tensor field
of type (1,1), defined by ¢ge; =0, gey = e3, ges = —ey.  Using the linearity of
¢, dy and g, we easily obtain that y(e)) = 1, ¢*°Z = —Z +y(Z)ey, dy(Z, W) =
g(@Z, W) and g(¢Z,¢pW) = g(Z, W) — 5(Z)n(W) for every vector fields Z, W on
M. Hence M(n,e;,d,g) is a contact metric manifold. Let V be the Levi-Civita
connection corresponding to g and R the Riemann curvature tensor of g.
Setting & =¢), X = e, ¢X = e3, using the Koszul’s formula

2g(VyZ, W) = Yg(Z, W) +Zg(W, Y) - Wg(Y,Z) - g(Y, [27 W])
79(Za[Ya W})+Q(W7[Y7Z})ﬂ

and (3.30), we find

2x 2x
er er
VgX:(—T—1>¢X, V5¢X:(1+T>X7 VX =2y¢X,
e2x er
VyoX = -2yX + <+ 1>f7 Vox X = <4 l)f, VyxoX = 0.
From the definition of the tensor field / and relations (3.31), we get that Al =0

and

1 1
(3:32) WX =5 (Z)X = {[&.0X] — &, X]}
e2x
=" x.
4
Similarly, we easily obtain that
er
(3.33) hpX = _T¢X'
e4x er
Setting now, k =1 BT u= 2(1 +T , v=2 and using the relations (3.31),

(3.32) and (3.33), we easily deduce that
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6’2

X 2x 2
R(X,E)E = - 9X + <%+ 1) X

= k(&)X —n(X)E) +un(EhX —n(X)hS) + v(n(S)ghX — n(X)ghl),
e2x er er
R(YX.OE=—5 X + (1 +4) <1 - 34 >¢X

= k(&)X — n(pX)S) + un(&)hgX —n(¢pX)he)
+v(n(E)phpX — n(pX)phl),

and
R(X,$X)E =0
— K(n($X) X = n(X)$X) + u(n($X)hX — n(X)hdX)
+v(n(pX)PhX — n(X)phdX).
Since {X,¢X,¢} is a basis of R, we easily obtain
R(Z,W)¢ = rln(W)Z = n(Z)W] + uln(W)hZ — n(Z)h W]
+vin(W)ghzZ — n(Z)phW],

for all vector fields Z, W on R®. Hence, R® is a (x,u,v)-contact metric
manifold. Let y(s) = (x(s), ¥(s),z(s)) e R® a Legendre geodesic curve parame-
trized by its arc length. Then

0 0 0
T = =y r v r Y
A R T =
er
=[x —2yz'|E+ {y’ - (T — y2>z’}X +z'¢pX
where “’” denotes derivative with respect to s. Since y is a Legendre curve, we
have x’ —2yz’ =0 and therefore,
Y =oX + X
2x
where o« =y’ — %—yz z/ and =z with > +p>=1. We set o= cos0,

f = sin 0 for some function 6§ = 0(s). On the other hand, using relations (3.31),
we straightforward calculate

V' = VylaX + ppX] = o' X + f'¢X + o’ Vy X

+ afVyx X + ofVydX + f2VyxdX

e2

= (4 = DX + (B 2NN+ o
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Since y is a geodesic, V,p’ =0 and therefore
o =2yof, B +24%y=0, of=0.

The equation off = 0 is equivalent to sin(26) = 0. Differentiating the last rela-
tion, we easily get that the function @ is constant along y and equals to ;%n where
p€Z. Hence, the functions o, f are also constants along y. Taking p to be
even or odd, we have that the constants o and f take the values 0, 1 or —1. We
consider first the case for which « = 41 and f=0. Then, we have z/ =0, y =0
and « =0, which is a contradiction. On the other hand, if =0 and f =1,

the definition of the functions « and f gives the following system of ordinary
differential equations:

er
=1, y'<4 2)2'0, x' =2y

or, equivalently,

er

Z:S—i—C‘], y,+y2_T:Oa x/:2y7

where ¢; is a constant. The last two relations of this system are reduced to the
following second order ordinary differential equation:

(3.34) 2x" + (x)? = e,
. , . . V3 .
Partial solutions of equation (3.34) are the functions x(s) = In Tre where ¢ is a
S C
real constant. As a consequence, the corresponding Legendre geodesics are given

by y(s) = (1 v3 1

n—s—|—c’7—2(s+c)’s+cl .

Example 32. Let M = {(x,y,z) e R®|z # 0}, where (x, y,z) are the stan-
dard coordinates in R*. The vector fields

p_ 0 22 10 1@
1 =ox @7 7Y 2oy 2oz P zay

are linearly independent at each point of M. Let g be the Riemannian metric
defined by g(e;,e;) =9y, i,j =1,2,3 and y the dual 1-form to the vector field e;.
We define the tensor field ¢ of type (1,1) by ¢e1 =0, der =e3, ez = —en.
Following [13], we have that M(y,e1,¢,g9) is a generalized (i,u)-contact

41 1
and u=2 1—Z— . Weseté=¢, X =¢ and

metric manifold with x = 7 5
z

1 1 .
¢X = e;. Furthermore, we have that hX = = X and hgX = ——¢X ie. the
zZ z
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vector fields X, ¢X are eigenvectors of the operator Ah. Let y(s) = (x(s), y(s),
z(s)) e R® a Legendre geodesic curve parametrized by its arc length. Then

Y =[x = 2p2'2%E — 222X + (V24 2x2)pX.
Since y is a Legendre curve, we have x’' —2yz’z3 =0 and therefore,
' =oX + ppX

where o = —z'z2 and f = y'z+ 2xz’ with >+ > =1. On the other hand, by
using the relations (2.14)—(2.16), we get

2
Vo' = (a’+f—3>X+ (ﬁ’_z_/j>¢X+ZZL2ﬁ .

Since y is a geodesic, we obtain

52

o
B=0, o +5=0, ,8’—2—5:0.

We casily observe that the case in which « =0 leads to a contradiction. So,
setting « =1 and f =0, we get the following system of ordinary differential
equations:

z'z2 = —1

. YVz42xz' =0, x =2yz'Z3,
or, equivalently,
222 =1, yz4+2xz'=0, x' =-2yz.

The first equation gives z3 = —3s+ ¢y, hence z= /—3s+c¢;. The remainder
two equations give the following second order differential equation:

x' 4x —0
—3s+c¢ Tz 23
1 (=3s+¢)

n

Setting now ¢ = —3s+ ¢;, the above equation is transformed to
335 N _0
( . ) X — 5)&' + WX =

d . . L
where x denotes ?x We mention that the general solution of (3.35) is given by
the expression !

x(1) = 12/3[J1(12/3)Cz + Y1(l2/3)63]

where J; is the first kind Bessel’s function, Y7 is the first kind spherical Bessel’s
function and c¢,, ¢3 are real constants.
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4. Biharmonic anti-invariant surfaces

Let M(n,&,¢,9) be a (2n + 1)-dimensional contact metric manifold and M™
(m =n+1) be an isometrically immersed submanifold of M tangent to & If
HTM™) = T*M™, then M™ is called an anti-invariant submanifold of M
whereas if §(TM"™) < TM™, then M™ is said to be an invariant submanifold
of M (see [22]). Invariant submanifolds of M are minimal submanifolds (see
[5]) and hence critical points of the bienergy functional. On the contrary,
anti-invariant submanifolds are not critical points of the bienergy functional,
generally. As a consequence, it is natural to study the class of non-minimal
biharmonic anti-invariant submanifolds in contact metric manifolds. First, we
summarize some basic notions from the geometry of submanifolds (see [10]).

Let M(n,&,¢4,g9) be a 3-dimensional (k, u, v)-contact metric manifold with
x < 1 everywhere on M and M? be a non-minimal anti-invariant surface isomet-
rically immersed in M by x: M?+— M. Denote the Levi-Civita connection of
M (res. M?) by V (res. V). The Gauss and Weingarten formulas are given,
respectively, by

(4.1) VyY =VyY+a(X,Y), VxV=—AyX +DyV,

where X, Y € TM?, Ve T"M? Here g, A and D are the second fundamental
form, the shape operator and the normal connection, respectively. The mean
curvature vector H is given by 2H = tr a.

Since ¢ is tangent to M2, we consider the pair {e,¢} of orthonormal frame
fields of M?, where e; is a unit vector field tangent to M?2. Then, the triple
{e1,&,de1} constitutes an orthonormal frame field of M. Furthermore, we
assume that H = age;, where o is a strictly positive smooth function of M?2.
Then, we have

hey = g(hey, ey)e; + g(hey, gey)dey.

Set f =1+ g(hey,er) and y = g(hey, ¢e;). Using (2.4) and the relations (4.1), we
obtain

(4.2) aler,e1) =2age;, o(&,E) =0, (e, &) =—Poe,

(4.3) Veer =—y¢, Vel =yper, Veer=VL=0.

In the sequel, we give an example of a family of anti-invariant surfaces with

constant norm of the mean curvature vector field, immersed in a 3-dimensional
generalized (i, u)-contact metric manifold.

Example 4.1. Consider the 3-dimensional manifold M = {(x,y,z) e R?|
z < 1}, where (x,y,z) are the cartesian coordinates in R®. The vector fields

9 ? 0 y o o
= — = — :2 —_— 2 \/1— —_—_— | — -_—
‘T @ oy’ “ y5x+( o : 4(z — l)) 6y+6z
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are linearly independent at each point of M. Let g be the Riemannian metric
defined by g(e;,e;) =9y, i,j =1,2,3 and # the dual 1-form to the vector field e;.
We define the tensor field ¢ of type (1,1) by ¢de; =0, der =e3, des = —e.
Following [14], we have that M(#,e;,¢,g) is a generalized (i, u)-contact metric
manifold with x =z and pu=2(14++v1—-z). We set {=¢;, X =¢; and ¥ =
¢X = e3. Furthermore, we have

grad K = E(K)E + X ()X + ($X)(k)pX = ¢X = Y,

and, as a consequence, ||grad k|| = 1. Moreover, we have that hX =1 —zX
i.e. the vector field X is an eigenvector of the operator h. For every real
constant ¢ < 1, we consider the planes

M. = {(X,y,Z) ER3 |Z: C}

which are orthogonal to the z-axis at the points (0,0,¢). The vector field grad x
is the unit normal to the surfaces M,. Since &(x) = 0, the pair {X, &} constitutes
an orthonormal frame field of M.. We easily observe that M, are anti-invariant
surfaces. We denote by V (res. V) the Levi-Civita connection of M (res. M,).
Then, relation (2.15) gives

pX(4) 1

VX = 4z—1)

where A =A(z) = V1 —z z<1. On the other hand, the Gauss formula (4.1)
and the last relation give

VX =VyX 4 a(X,X)

1
= m grad K

which implies that VyX = 0 and o(X, X) = grad x. Then, the first two

1
4(c—=1)

of the relations (4.2) give o = , where it is supposed that X =e;. It

8(1 —c¢)
means that the planes M, are surfaces with constant norm of the mean curvature
vector field.

In the following, we give two basic lemmas for later use. Their proofs are
mainly based on the equations of Gauss and Codazzi, formulas (2.11) and (2.12)
and are similar to those given in [1].

Lemma 4.1.  For every non-minimal anti-invariant surface of a 3-dimensional
(rc, 1, v)-contact metric manifold M (n, &, ¢, g) with i« < 1, the following relations are
valid:
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(4.4) 26(o) = —ei () — 207,

S(B) = y(u=2p)+v(f—1),
) = OB~ (B~ 1)+,
@) () = -+ 50 (= Der (1) = gy (),

48)  (B-1)’+y'=1-x
Lemma 4.2.
—AH = [~6ae;(2) + 2ufy + 2E(a)f + a&(B)]er
+ [2Ber (o) + aer () + 20°)¢
+[erer (o) + EE(@) + pE(@) — (40> + 267)per
A(F) = [ogey + v — ey
r
+|—ou(f—1)+avy + oc(z — K>]¢€1
where x is the inclusion map x: M* — M.

We remind that an anti-invariant surface M? is biharmonic if and only if
7(H) = —AyH+ %#,(H) = 0. Using Lemma 4.2, we have

PROPOSITION 4.1.  The surface M? is biharmonic if and only if the following
system of partial differential equations holds:

2
(4.10) 6oey () — 20y — 2&E(a)f — al(f) — oy — av(f— 1) =0,
(4.11) 2fe;(2) + aer () 4 202y = 0.
where o= |H||, f =1+ g(hei,e1) and y = g(hey, pe).

(4.9)  erer (o) + EE(a) + yE(a) — (4o + 28%) + oc(r - zc) —au(f—1)+oavy =0,

In general, the problem of classifying biharmonic surfaces of 3-dimensional
(rc, u, v)-contact metric manifolds is difficult because the above system of three
partial differential equations involves six unknown functions («,f,y,x, u, v) and
the scalar curvature r. To this direction, we give the following Theorem:

THEOREM 4.3. Let M(n,&,¢,9) be a 3-dimensional generalized (i, u)-contact
metric manifold with x < 1. Let M? be an anti-invariant surface of M with
constant norm of the mean curvature vector field equal to c. If M? is biharmonic,
then M? is either minimal or it is locally flat and the functions x and u are
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constants on M?>. In the second case, there exists a coordinate system (u,v)
defined in a neighborhood U, of any p € M?, such that the metric tensor g and the
second fundamental form of M? are given on U, by

(4.12) g = (du)* + (dv)?,
(4.13) a<%0—au) =0,

@ oN_ (0
Nowaw)~  2%\a)
0 0 0
—,=— | =2co|=).
a(ﬁv ’ 617) e (61})
Proof. We assume that M? is a biharmonic non-minimal surface with

constant norm of the mean curvature vector field o = ¢ = const. #0. Then,
relation (4.11) gives

(4.14) e1(f) = —2cy.

Furthermore, combining (4.5) and (4.10), we get

0=—2cfy — c&(B) — cuy
= =2cfy — c[y(p—2B)] — ey
= —2cuy,
or, equivalently,

(4.15) wy =0.

First we assume that the function y vanishes on M2. In this case, by using (4.5),
(4.8), (4.14) and the fact that x < 1 we conclude that the function f is a constant
on M? not equal to 1. Combining (2.6) and (4.7), we get e (x) = &(x) =0 i.e.
the function x is a constant on M?. Furthermore, (4.6) gives u — 28 = 0, i.e. the
function u is a constant on M?2. On the other hand, by using relations (4.3), we
easily deduce that

[f,é’]] = 0

As a consequence, for any p e M? there exists an open neighborhood U; of p

and a coordinate system (u,v) such that
0
v’

0
ézav er =

By now using the relations (4.2), we obtain that on U; the metric g and the
second fundamental form o of M? take the form (4.12) and (4.13), respectively.
Furthermore, by using the relations (4.3), we get
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R(f, el)el = vaglel - VelV5e1 - V[é‘el]el
= Ve[=7¢] = Ve -v, cen
= (=€) —»)E
Since y = 0, we deduce from the last relation that the Gauss curvature of M? is
zero and so, M? is locally flat. Consider now the set U, = {p e M?|y(p) # 0}

which is an open subset of M2. On U,, we have that = 0. In this case, (4.9)
gives

%—K—4c2—252:0.

Differentiating the last relation with respect to ¢ and using the relations (2.6) and
(2.9) with v=0, we get

(4.16) BE(B) = 0.

If we suppose that f =0 on U,, then (4.14) gives ¢y =0, which is a contra-
diction. Consider now the open subset Us = {p e U, |f(p) # 0} of U,. Then,
(4.16) gives &(f) =0 on U;. In this case, (4.5) gives

E(B) =0=yp(u—28)=-2py

on Uj, which is also a contradiction and the proof of the Theorem has been
completed. O

If x = const. < 1, then the 3-dimensional (x,x,v)-contact metric manifolds
are reduced to (i, u)-contact metric manifolds ([15]). Hence, we have the fol-
lowing corollary:

COROLLARY 4.4. Let M? be an anti-invariant surface of a 3-dimensional
(1, u, v)-contact metric manifold M with x = const. < 1. Then M? is biharmonic
if and only if M?* is minimal.

Acknowledgment. The authors wish to thank the referee for useful com-
ments on the manuscript.
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