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Abstract

This paper solves an open question of Mortimer and Prellberg asking for an
explicit bijection between two families of walks. The first family is formed by what
we name triangular walks, which are two-dimensional walks moving in six directions
(0◦, 60◦, 120◦, 180◦, 240◦, 300◦) and confined within a triangle. The other fam-
ily is comprised of two-colored Motzkin paths with bounded height, in which the
horizontal steps may be forbidden at maximal height.

We provide several new bijections. The first one is derived from a simple induc-
tive proof, taking advantage of a 2n-to-one function from generic triangular walks
to triangular walks only using directions 0◦, 120◦, 240◦. The second is based on an
extension of Mortimer and Prellberg’s results to triangular walks starting not only
at a corner of the triangle, but at any point inside it. It has a linear-time complexity
and is in fact adjustable: by changing some set of parameters called a scaffolding,
we obtain a wide range of different bijections.

Finally, we extend our results to higher dimensions. In particular, by adapting
the previous proofs, we discover an unexpected bijection between three-dimensional
walks in a pyramid and two-dimensional simple walks confined in a bounded domain
shaped like a waffle.
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1 Introduction

In part due to the ubiquity of random walks in probability theory, lattice walks are ex-
tensively studied in enumerative combinatorics [14, 12, 2]. In this context, it is frequently
discovered that two families of walks, which seem to be very different, are in fact counted
by the same numbers. The initial proof is often not combinatorial, and finding an explicit
bijection between such families can prove to be a difficult task (see for example [6, 1]).

In this spirit, this paper answers a 5 year old open question from Mortimer and Prell-
berg [15, Section 4.3]. By solving a functional equation satisfied by the generating func-
tion, the two authors realized that the number of walks in a triangular domain starting
from a corner of this domain is equal to the number of Motkzin paths of bounded height
– we will give precise definitions of these families in the following subsections. Their proof
was purely analytic and, consequently, it raised the issue of finding an explanatory bijec-
tion. This gave rise to an open question, which became rather famous in the community,
since Prellberg, one of the authors of [15], regularly asked for a bijection in open prob-
lems sessions during combinatorics conferences. The current paper solves this question,
in several manners.

In the rest of this section, we introduce the notions of triangular paths, Motzkin paths
and Motzkin meanders, which will be our objects of study, and we present more formally
Mortimer and Prellberg’s problem. Then, in the last subsection, we give a detailed outline
of the present paper.

1.1 Triangular paths

Let (e1, e2, e3) denote the standard basis of R3. For some L ∈ N, we define the subset TL
of N3 as the triangular section of side length L of the integer lattice:

TL = {x1 e1 + x2 e2 + x3 e3 : x1, x2, x3 ∈ N, x1 + x2 + x3 = L}.

An example of such lattice is shown by Figure 1 (left).
We also introduce the notation

s1 = e1 − e3, s2 = e2 − e1, s3 = e3 − e2,

and for i ∈ {1, 2, 3}, we set si = −si. We will interpret the vectors si as forward steps and
the vectors si as backward steps. We denote by F = {s1, s2, s3} and B = {s1, s2, s3} the
set of forward and backward steps, respectively.

For convenience, we define the indices modulo 3, thus s0 = s3 and s4 = s1.
The triangular lattice TL can be naturally drawn in the plane, as an equilateral triangle

of side length L, subdivided in smaller equilateral triangles of side length 1 (see Figure 1
right). We will use this planar representation for the remainder of the document.

We define O as the bottom left corner of TL, that is to say O = Le3. In some sense,
it denotes an origin for the lattice TL.
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Figure 1: Left. The triangular lattice T3. Right. The planar representation of the same
lattice, with F and B.

Figure 2: All triangular paths of T3 with length 2 starting at O.

Definition 1 (Forward paths, triangular paths). Given an integer L ∈ N, and a point
z ∈ TL, a forward (triangular) path of length n starting from z is a sequence (σ1, . . . , σn) ∈
Fn satisfying

∀k ∈ {0, . . . , n}, z +
k∑

i=1

σi ∈ TL.

A (generic) (triangular) path of length n starting from z is a sequence (ω1, . . . , ωn) ∈
(F ∪ B)n satisfying

∀k ∈ {0, . . . , n}, z +
k∑

i=1

ωi ∈ TL.

If L > 2, there are 2 forward paths of length 2 and 8 generic paths of length 2 starting
from O, as shown by Figure 2.

the electronic journal of combinatorics 28(2) (2021), #P2.6 3



1 2

3 4

5

6

7

≤

Figure 3: Equivalent definitions of the same object: forward paths of T3 (left); tandem
walks in the positive quarter of plane and below the antidiagonal x + y = 3 (middle);
standard Young tableaux with three rows or less such that the label of the ith cell of the
bottom row must be less than the label of (i + 3)th cell of the top row (right).

For those who are familiar with the enumeration of walks in the quarter of plane,
forward paths can be seen as a subfamily of tandem walks [9, Section 4.7]. Tandem walks
are walks on N2 using steps (1, 0), (−1, 1), (0,−1) (East, North-West, South steps). Their
name comes from the fact that in queuing theory, they model the behavior of two queues
in series.

To be precise, forward paths of TL are equivalent to tandem walks confined in the
part of the positive quarter plane below the anti-diagonal x + y = L. In terms of queues,
forward paths can be represented by two queues in series where the total number of jobs
(or customers) in both queues is never greater than L.

Since tandem walks are also described by standard Young tableaux [18] with three rows
or less, forward paths on TL form a particular subfamily of standard Young tableaux: they
must have 3 rows or less, and for every k > L, if there is a kth cell in the top row of the
tableau, then its label must be greater than the label of the (k − L)th cell of the third
row (which must exist). The three equivalent definitions of forward paths are illustrated
by Figure 3.

As for generic triangular paths, they are naturally encoded by double-tandem walks,
which are walks on N2 using steps (1, 0), (−1, 1), (0,−1), (−1, 0), (1−, 1), (0, 1) (we add
to the base step set of the tandem walks the opposite steps).

1.2 Motzkin paths and meanders

A Motzkin path is a path using up, horizontal and down steps, respectively denoted ր,
→ and ց, such that:

• it starts at height 0;

• it remains at height > 0 (i.e. inside any prefix of a Motzkin path, the number of ր
steps is greater or equal to the number of ց steps);

• it ends at height 0 (i.e. in total, there are as many ր steps as ց steps).

The following definition refines the notion of maximum height for a Motzkin path.
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Figure 4: Motzkin paths of length 4 sorted with respect to their amplitude (from 1 to 4)

Definition 2 (Amplitude). Let M be a Motzkin path and H its maximum height (i.e
the maximal difference between the number of ր steps and the number of ց steps in a
prefix of M).

The amplitude of M is defined as

{
2H + 1 if a horizontal step → is performed at height H,

2H otherwise.

For example, all the Motzkin paths of length 4 are listed by Figure 4: there is one
such path with amplitude 1, four with amplitude 2, three with amplitude 3 and one with
amplitude 4. A Motzkin meander is a suffix1 of a Motzkin path. A Motzkin meander can
thus start at any height, but must end at height 0.

1.3 Mortimer and Prellberg’s open question

We now state Mortimer and Prellberg’s enumerative result (reformulated in terms of
amplitude), for which we are going to give explanatory bijections.

Theorem 3 (Corollary 4 [15]). Given any L > 0, there are as many triangular paths in
TL starting at O with p forward steps and q backward steps as bicolored Motzkin paths of
length p + q with an amplitude less than or equal to L where p steps are colored in black
and q are colored in white.

Setting p = n and q = 0, we obtain the following corollary about forward paths.

Corollary 4. Given any L > 0, there are as many forward paths in TL of length n starting
at O as Motzkin paths of length n with an amplitude less than or equal to L.
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Figure 5: Equinumeracy between forward paths of T3 with length 4 starting at O and
Motzkin paths with amplitude bounded by 3.

An illustration of this corollary for n = 4 is shown by Figure 5.
Connections between Motzkin paths and tandem walks (the natural superset of for-

ward paths) are not new. Regev [16] was the first to notice via an algebraic method that
standard Young tableaux with 3 rows or less and Motzkin paths are counted by the same
numbers. Gouyou-Beauchamps [11] then found an explanation for this equinumeracy,
thanks to the Robinson-Schensted correspondence. Since then, several authors [7, 8, 4, 3]
have given new bijections between tandem walks and Motzkin paths, which each have
their own ways to be generalized. It should be noted that none of these bijections restrict
to a bijection between forward paths in TL and Motzkin paths with amplitude bounded
by L.

By comparing Theorem 3 and its corollary, one can remark that there is a factor 2n

between forward paths in TL of length n and generic triangular paths in TL of length n.
This fact was known before Mortimer and Prellberg’s article for tandem walks and double-

1Usually a meander is defined as a prefix, but up to a vertical symmetry, it is equivalent.
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tandem walks (in other words, whenever L is infinite). Bousquet-Mélou and Mishna [2]
were the first to notice it and wondered whether there is a combinatorial explanation for
this phenomenon. This was solved by Yeats via a convoluted bijection [17]. This bijection
was subsequently improved by Chyzak and Yeats [4] by using the formalism of automata.
Again, their bijection does not restrict to the triangular lattice TL.

1.4 Outline of the paper

This paper presents bijections that explain Theorem 3. More precisely, we demonstrate
on one hand why the ratio between forward paths and generic paths of length n is 2n,
and on the other hand, we find several bijections for Corollary 4. Combining both results
will give different combinatorial proofs of Theorem 3.

First, Section 2 concentrates around a symmetry property for the triangular paths: the
number of paths starting from a point in TL with a fixed sequence of forward and backward
steps does not depend on the sequence of forward and backward steps. This property,
stated by Theorem 6, infers the above-mentioned 1-to-2n function between forward paths
and triangular paths of length n. The proof is based on a convergent rewriting system.

Section 3 provides a simple inductive proof of the equinumeracy between triangular
paths in TL and Motzkin paths with amplitude bounded by L (Proposition 17). Fur-
thermore, we manage to tweak this proof into a bijection which explains Corollary 4
(see Figure 13). However, this bijection is highly complex in the sense it is based on an
inclusion-exclusion argument and can take an exponential time to be computed.

Almost independently from the previous sections, we describe in Section 4 a method
to build numerous bijections between triangular paths and Motzkin paths of bounded
amplitude. To do so, we relate the number of triangular paths starting at any z ∈ TL and
the numbers of Motzkin meanders of amplitude bounded by L starting at height i, for
i ∈ {0, . . . , ⌊L/2⌋} (Theorem 24). This proves the existence of an object which we name
scaffolding, which works in much the same way as a finite-state transducer. This enables
us to find several parameterized bijections between forward paths and Motzkin paths
(Algorithm 2), which can be extended into bijections between generic triangular paths and
bicolored Motzkin paths (Subsection 4.3). In Subsection 4.4 we give an explicit scaffolding,
with simple, albeit numerous transition rules, which has the additional property that it
is independent of the size L.

Finally, in Section 5 we generalize our results to higher dimensions. The triangular
lattice naturally extends to a simplicial lattice, in which the ratio property between for-
ward paths and generic paths (Theorem 34) still holds. More surprisingly, we find a new
bijection specifically in dimension 3. It matches walks using 4 steps confined within a
pyramid with walks using the 4 cardinal steps returning to the x-axis confined in a do-
main which is the upper half of a square that have been rotated 45◦ (Theorem 35). The
second family of walks being easier to count than the first one, we find a formula for the
generating function of the pyramidal walks, which was part of an open question from [15].

The bijections between forward paths and Motzkin paths have been implemented in
python and are available at:
http://courtiel.users.greyc.fr/programmes/TriangularAndMotzkinPaths.zip.
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2 From forward paths to generic triangular paths

This section describes a one-to-2n function from the set of forward paths of length n
in TL to the set of generic paths of length n in TL. This is a crucial step in finding a
combinatorial proof of Theorem 3.

More precisely, we are going to describe a bijection between different sets of paths
where in each set, all paths have the same sequence of forward and backward steps, which
we call the direction vector.

Definition 5. The direction vector of a generic path (ω1, . . . , ωn) is the finite sequence
(D1, . . . , Dn) where Di = F if ωi is a forward step and Di = B if ωi is a backward step.

A forward path is then a generic path with direction vector (F, . . . , F ). Many examples
of paths along with their direction vectors are shown in Figure 7.

Theorem 6. Given z ∈ TL and two sequences W and W ′ of {F,B}n, the set of triangular
paths starting from z with direction vector W is in bijection with the set of triangular paths
starting from z with direction vector W ′.

This theorem will be proved in Section 2.2.

2.1 Forward and backward paths

This subsection shows by induction, without a bijection, a particular case of Theorem 6
between two direction vectors: W = (F, . . . , F ) and W ′ = (B, . . . , B). This provides an
elementary proof of a weaker result, which enables us to understand why the more general
theorem works.

Definition 7. A backward (triangular) path is a triangular path with direction vec-
tor (B,B, . . . , B). In other words, a backward path starting at z ∈ TL is a sequence
(σ1, . . . , σn) ∈ Bn satisfying:

∀k ∈ {1, . . . , n}, z +
k∑

i=1

σi ∈ TL.

Theorem 8. Let z be any point of TL and n > 0. Inside TL, there are as many forward
paths of length n starting from z as backward paths of length n starting from z.

The proof will use the following lemma, which concerns paths with one forward step
and one backward step:

Lemma 9. Given a starting point z and an ending point z′, there are as many paths of
length 2 from z to z′ made of a forward step then a backward step, as paths of length 2
from z to z′ made of a backward step then a forward step.

Proof. This lemma is obvious whenever the two steps can be permuted.
Let us first show that given a forward step σ and a backward step τ such that σ 6= −τ ,

the path (σ, τ) stays in TL from z to z′ if and only if the path (τ , σ) stays in TL from z to
z′. For such steps σ and τ , there are two possibilities:
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Figure 6: All paths of length 2 returning to their starting point.

1. σ is a step si and τ is si+1. By cyclic permutation, we can assume that
σ = s1 = e1−e3 and τ = s2 = e1−e2. If z+σ ∈ TL and z+σ+ τ ∈ TL, then z must
have a positive e2-coordinate and a positive e3-coordinate. The same property holds
if we replace the condition z + σ ∈ TL by z + τ ∈ TL. Therefore, we can permute
the forward step and the backward step in that case.

2. τ is a step si and σ is a step si+1. Again, we can assume that τ = s1 = e3− e1
and σ = s2 = e2− e1. Under the assumption that z +σ + τ ∈ TL, we need z to have
an e1-coordinate at least equal to 2. In this case, both paths (σ, τ) and (τ , σ) are
valid.

It remains to deal with paths satisfying σ = −τ . It is equivalent to treat the case
z = z′. It is then easy to check that for each possible position of z, there are as many
paths of length 2 beginning with a forward step as paths of length 2 beginning with a
backward step, as summarized by Figure 6.

Proof of Theorem 8. Let fn(z) be the number of forward paths of length n and starting at
z ∈ TL, and bn(z) be the analogue for backward paths. We wish to prove that fn(z) = bn(z)
for every z ∈ TL by strong induction on n > 0.

For n = 0 and n = 1, the property is straightforward.
Let us assume that the assumption is true for some n > 1 and n − 1. For z ∈ TL we

have:
fn+1(z) =

∑

σ∈F
z+σ∈TL

fn(z + σ).
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By the induction assumption,

fn+1(z) =
∑

σ∈F
z+σ∈TL

bn(z + σ)

=
∑

path of length 2
from z to z′

with direction vector (F,B)

bn−1(z
′).

We use the induction assumption now for n− 1, and Lemma 9:

fn+1(z) =
∑

path of length 2
from z to z′

with direction vector (B,F )

fn−1(z
′)

=
∑

τ∈B
z+τ∈TL

fn(z + τ).

=
∑

τ∈B
z+τ∈TL

bn(z + τ). (by induction)

= bn+1(z),

which concludes the induction, and hence the proof.

2.2 Bijection between sets of different direction vectors

In this subsection, we describe a bijection that proves Theorem 6.
This bijection consists in combining the elementary operations below, in any possible

order, until reaching a path with the desired direction sequences.

Definition 10 (Flips). We define here elementary reversible operations on a generic path
(ω1, . . . , ωn).
A swap flip changes a pair (ωi, ωi+1) of two consecutive steps with respect to the rules:

(sj, sk)←→ (sk, sj) if (ωi, ωi+1) = (sj, sk) or (ωi, ωi+1) = (sk, sj), with j 6= k,

(sk, sk)←→ (sk−1, sk−1) if (ωi, ωi+1) = (sk, sk) or (ωi, ωi+1) = (sk−1, sk−1) for some k.

(Recall that by convention, s0 = s3.) This has the effect of doing a flip (F,B) ←→
(B,F ) in the direction vector.

A last-step flip changes the direction of the last step ωn according to the rule:

si ←→ si−1

For example, if we wish to bijectively transform the path (s3, s3, s2) into a path with
direction vector (F,B,B), we use the following flips (cf. Figure 7):

(s3, s3, s2) ←→
s2→s3

(s3, s3, s3) ←→
(s3,s3)→(s1,s1)

(s3, s1, s1)
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(B,F, F )(F,B, F )

(B,F,B)

(B,B,B)

(F,B,B) (B,B, F )

(F, F,B)

(F, F, F )

Figure 7: The bijections between all direction vectors (arranged as a Boolean lattice)
applied to the forward path (s1, s2, s1).

←→
s1→s2

(s3, s1, s2) ←→
(s3,s1)→(s1,s3)

(s1, s3, s1).

Note that swap flips give a constructive proof to Lemma 9.

Proof of Theorem 6. We want to prove that successive flips induce a well-defined bijection
between sets of triangular paths with different direction vectors. To do so, we have to
establish the following points.

1. The flips are well defined.

In other words, we want to show that a flip does not make a path of TL go outside
TL.

For flips swapping steps si and sj such that si 6= −sj, we showed in the proof of
Lemma 9 that a forward step and a backward step can commute under the condition
that the two steps are not opposite.
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The swap flip (s1, s1) ←→ (s3, s3) is also well-defined because s1 and s3 have both
a negative e3-coordinate. Therefore, the position of the point just before the flip
must have a positive e3-coordinate. One can safely apply s1 or s3.

Similar arguments hold for the other swap flips, and for last-step flips.

2. Each flip is bijective.

This is clear from the definition of the flips.

3. Given two sequences W and W ′ of {F,B}n, one can transform any path
with direction vector W into a path with direction vector W ′ by succes-
sive flips.

If W and W ′ have the same number of B’s, then we can use swap flips to transform
a walk with direction vector W into one with direction vector W ′.

Otherwise, we can increment (resp. decrement) the number of B’s of the direction
vector by putting a forward step (resp. a backward step) at the end of the walk
using successive swap flips, then changing the direction of this last step using a
last-step flip. We rinse and repeat until obtaining the desired number of B’s, then
use swap flips as above.

4. If two different sequences of flips lead to triangular paths p and p′ that
share a same direction vector, then p = p′.

The proof of the last point is postponed until the next subsection (Proposition 14).

In particular, Theorem 6 gives a bijective proof of Theorem 8. If we wish to make it
explicit, we can write an algorithm that chooses a specific sequence of flips that transforms
an (F, . . . , F ) direction vector into a (B, . . . , B) vector.

Corollary 11. Given z ∈ TL and an integer n, Algorithm 1 describes a bijection between
forward paths of length n starting at z and backward paths of length n starting at z. This
bijection depends neither on the length L of the triangular lattice, nor on the position of
the starting point z.

Algorithm 1: Bijection between forward paths and backward paths (for flips, see Defini-
tion 10).

input : a forward path p
output : a backward path p
n ← l ength o f p ;
for i from 1 to n
do make a l a s t −s tep f l i p on p [ i ] ;

for j decreasing from n−1 to i
do make a swap f l i p between p [ j ] and p [ j +1] ;
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Remark 12. Algorithm 1 also transforms (in a bijective manner) a backward path into a
forward path. Thus, if we apply twice Algorithm 1 to a forward path, we also obtain at
the end a forward path. Therefore, by the uniqueness claimed in Item (4) in the proof of
Theorem 6 (page 12), the two forward paths must be the same: Algorithm 1 is in fact an
involution.

2.3 Description of the bijection in terms of folded paths

This section presents the bijection of Theorem 6 in a more symmetric fashion. The last-
step flip, which we defined in Definition 10, can be actually seen as a disguised swap flip,
under the condition that the path is extended to what we call a folded path.

Definition 13 (Folded paths). Given a generic path ω = (ω1, . . . , ωn) ∈ (F ∪ B)n, we
define the folding of ω as the path

−→←−ω = (ω1, . . . , ωn,−ωn, . . . ,−ω1).

Such paths are said to be folded.

Let us denote by Sn the tilted square lattice

Sn = {(i, j) ∈ Z× Z : |i|+ |j| 6 n}.

We will geometrically represent folded paths of length 2n as labeled walks on Sn starting
at (−n, 0). To construct the walk on Sn, we replace every forward step by a North-East
step (+1,+1), and every backward step by a South-East step (+1,−1). Moreover, these
North-East and South-East steps will carry labels, which are the steps of F ∪ B from
which they originate. For example, the folding of the path (s1, s3, s1) is represented on
the left of Figure 8.

Now, we are going to emulate the effect of swap flips (see Definition 10) on these walks.
More precisely, we view Sn as a square of size n × n which can be filled out with 1 × 1
square tiles of 9 types (see Figure 9). The four sides of the 9 allowed tiles are labeled with
elements of F ∪ B such that the pairs formed by the two top labels and the two bottom
labels correspond to a commutation rule described in Definition 10.

The tiling of Sn proceeds as follows. We begin with the labels given by a folded path.
Then, we place copies of the tiles of Figure 9 in such a way that the two top labels or the
two bottom labels match (like a domino) with labels which were already in Sn. Eventually,
we obtain an alternative description of the bijection of Theorem 8, and thus the required
uniqueness:

Proposition 14. Let
−→←−ω be the folding of a triangular path ω of length n, which we embed

in the tilted square lattice Sn as described above.
There is a unique way to tile Sn with the 9 tiles of Figure 9 while preserving the labels

of
−→←−ω .
Furthermore, let us fix a sequence W = (W1, . . . ,Wn) of {F,B}n. The path with

direction vector W which corresponds to ω under the bijection of Theorem 6 is defined by
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Figure 9: The 9 possible tiles

the sequence of labels obtained by following the walk in Sn whose k-th step is North-East
if Wk = F or South-East if Wk = B.

Example 15. Let us consider the path (s1, s3, s1), represented in Figure 8 (left). The
unique corresponding tiling is displayed on the right of the figure.

If we want the path with direction vector (B,F, F ) corresponding to (s1, s3, s1), then
we have to read labels from the walk going SE, NE, NE (in this order). We find (s3, s1, s2).

Proof of Proposition 14. The existence and the uniqueness of the tiling are proved by
induction. We just have to notice that every pair (σ, τ) with σ ∈ F and τ ∈ B appears
once among the top labels of the 9 tiles, and every pair (τ , σ) appears also once among
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the bottom labels. We have no choice in how to place new tiles: the tiling is automatic
and unambiguous.

To connect the tiling with the bijection of Theorem 8, note that:

• A swap flip at positions k and k + 1 can be emulated by positioning a tile along the
k-th and the (k + 1)-th step and by symmetrically placing a second tile along the
(2n− k + 1)-th and the (2n− k)-th step.

• A last-step flip can be emulated by positioning a tile on the vertical axis of Sn.

One thus recovers what we described in previous subsection.

As a consequence, in view of the vertical symmetry of the tiling, one can describe the
bijection of Theorem 8 uniquely in terms of swap flips – as claimed at the beginning of
this subsection.

Corollary 16. The folded paths with direction vector (F, . . . , F, B, . . . , B) are in bijection
with the folded paths with direction vector (B, . . . , B, F, . . . , F ) via successive uses of swap
flips.

3 A first bijection between forward paths and Motzkin mean-
ders

In this section, we provide two proofs of Corollary 4: the first one uses induction and is
elementary, the second one is based on a recursive bijection which is derived from the first
proof.

3.1 Recursive proof of the equinumeracy

The following proposition links Motzkin meanders and forward paths starting from the
border of TL.

Proposition 17. For any n > 0 and L > 0, let fn(z) be the number of forward paths
in TL of length n starting at z, and mn(ℓ) the number of Motzkin meanders of length
n starting at height ℓ and with an amplitude bounded by L (see Subsection 1.2 for the
definitions).

Then, we have the formula

fn(O + ℓs1) =
ℓ∑

i=0

mn(i),

for ℓ ∈ {0, . . . , ⌊L/2⌋}.

As a particular case ℓ = 0 of the result above, we recover the statement of Corollary 4.
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Figure 10: Left. 8 forward paths of length 3 starting from O+ s1 in T3. Right. 8 Motzkin
meanders of length 3 and amplitude bounded by L = 3: four of them begin at height 0,
the remaining four begin at height 1.

Example 18. Figure 10 corroborates Proposition 17 with n = 3, L = 3, and ℓ = 1:
numbers agree (8 on each side). Remark that if L is larger (L > 4), the forward path
s1s1s1 will be added on the left, and the Motzkin meander ր,ց,ց on the right.

Proof of Proposition 17. Let us introduce the notation gn(ℓ) = fn(O + ℓs1), with the
convention that gn(ℓ) = 0 for ℓ < 0. Let us also write ∆gn(ℓ) = gn(ℓ) − gn(ℓ − 1), and
H = ⌊L/2⌋.

Note that the number of Motzkin meanders mn(ℓ) satisfies the obvious recurrences

mn(ℓ) = mn−1(ℓ− 1) + mn−1(ℓ) + mn−1(ℓ + 1) for ℓ ∈ {1, . . . , H − 1},

mn(0) = mn−1(0) + mn−1(1),

mn−1(H) =

{
mn−1(H − 1) + mn(H) if L is odd
mn−1(H − 1) if L is even

,

for n > 1. The proof will be completed once we show that ∆gn(i) satisfies the same
recurrences. The reader can refer to Figure 11 as a visual support for what follows.

For any ℓ ∈ {1, . . . , L− 1}, starting from O + ℓs1, the only possible forward steps are
s1 and s2, so that

gn(ℓ) = fn−1(O + ℓs1 + s1) + fn−1(O + ℓs1 + s2)

= gn−1(ℓ + 1) + fn−1(O + ℓs1 + s2). (1)

We now count backward paths starting from O + (ℓ − 1)s1. By Theorem 8, if bn(z) is
the number of backward paths of length n starting at z, we have fn(z) = bn(z) for every
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n n−1 n−1
= +

n n−1 n−1
= +

Figure 11: Explanation of Equations (1) and (2) in the generic case. A dot with a
subscript n represents the number of forward paths of length n starting from this point
(which is, by Theorem 2, also the number of backward paths).

z ∈ TL. In particular, gn(ℓ− 1) = bn(O + (ℓ− 1)s1). Since only possible backward steps
from O + (ℓ− 1)s1 are s1 and s3, we have for any ℓ ∈ {1, . . . , L− 1},

gn(ℓ− 1) = bn−1(O + (ℓ− 1)s1 + s1) + bn−1(O + (ℓ− 1)s1 + s3)

= fn−1(O + (ℓ− 1)s1 + s1) + fn−1(O + (ℓ− 1)s1 + s3)

= gn−1(ℓ− 2) + fn−1(O + ℓs1 + (s3 − s1))

= gn−1(ℓ− 2) + fn−1(O + ℓs1 + s2). (2)

(Note that the case ℓ = 1 is correctly handled since by convention, gn−1(−1) = 0.)
Combining (1) and (2), we deduce that for ℓ ∈ {1, . . . , L− 1},

gn(ℓ)− gn(ℓ− 1) = gn−1(ℓ + 1)− gn−1(ℓ− 2),

and hence
∆gn(ℓ) = ∆gn−1(ℓ− 1) + ∆gn−1(ℓ) + ∆gn−1(ℓ + 1). (3)

As for ℓ = 0, we straightforwardly have

∆gn(0) = gn(0) = gn−1(1)

= ∆gn−1(0) + ∆gn−1(1).

We now consider successively the two cases: (i) L odd, and (ii) L even.
(i) Let us first assume that L = 2H+1 is odd. Then, using a symmetry through

the plane of equation x1 = x3 (x1 being the coordinate in e1 and x3 the one in e3), we
have fn−1(O + Hs1) = bn−1(O + (H + 1)s1) (see Figure 12). By Theorem 8, it translates
gn−1(H) = gn−1(H + 1). Thus, ∆gn−1(H + 1) = 0, and, by Equation (3),

∆gn(H) = ∆gn−1(H − 1) + ∆gn−1(H).
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x1 = x3

Figure 12: The symmetry through the plane of equation x1 = x3

It follows that (∆gn(ℓ))06ℓ6H satisfies the following recursion
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∆gn−1(H)













which is the same recursion that we saw for (mn(ℓ))06ℓ6H . Since the base cases agree
(∆g0(ℓ) = m0(ℓ) = 0 for ℓ > 1, and ∆g0(0) = m0(0) = 1), we have the equality mn(ℓ) =
∆gn(ℓ), and the result directly follows.

(ii) Let us now assume that L = 2H is even. Due to the symmetry with respect
to the plane x1 = x3, we have gn−1(H − 1) = gn−1(H + 1), so that ∆gn−1(H + 1) +
∆gn−1(H) = 0, and, by Equation (3),

∆gn(H) = ∆gn−1(H − 1).

It follows that (∆gn(ℓ))06ℓ6H satisfies the following recursion
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.
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We thus recover the recursion of (m′
n(ℓ))06ℓ6H , and we conclude like above.

3.2 Exponential bijection

We now convert the argument of Subsection 3.1 to a bijection, albeit one which is defined
recursively and takes non-linear time to apply.

We fix in this section the length L of the triangular lattice TL, and thus the semi-
length H defined by H = ⌊L/2⌋.

Let Gn(k) be the set of forward paths of length n starting at O + ks1 and let Mn(k)
be the set of Motzkin meanders of length n starting at height k and having amplitude
bounded by L.

It follows from Proposition 17 that |Mn(k)| = |Gn(k)| − |Gn(k − 1)|.
To show this bijectively, we will recursively define a sequence of bijective functions

Ωn,k : Gn(k) → Mn(k) ∪ Gn(k − 1) for n ∈ N and k ∈ [0, H]. This will use the bijection
of Theorem 6 between triangular paths with different direction vectors. In particular, we
will use this in the special cases sending paths with some direction vector W of length n
to paths with direction vector (F, . . . , F ). We denote this function by Wn – this forms a
bijection when the domain is restricted to those paths with some explicit direction vector.

Theorem 19. Let k and n be two integers with k 6 H. The function Ωn,k, defined by
Figure 13, is a bijection from Gn(k) to Mn(k) ∪ Gn(k − 1), where Gn(k) is the set of
forward paths of length n starting at O + ks1, and Mn(k) is the set of Motzkin meanders
of length n starting at height k and having amplitude bounded by L.

Proof. 1. Let us show that the map is well-defined, i.e. its image is included
in Mn(k) ∪ Gn(k − 1). It suffices to show that each case ending in a blue block of
Figure 13 (block 3, 8, 10 or 12) yields a Motzkin path in Mn(k), while each case ending
in a red block (block 4, 13 or 14) yields a forward path in Gn(k − 1).

We first discuss the transformation of block 15. By replacing s1, s2, s3 steps with
s1, s3, s2, path ω′ undergoes a vertical reflection about the vertical midline of TL. Thus,
ω′ is transformed into a backward path starting at O+Hs1 (if L is odd) or at O+(H−1)s1
(if L is even). Applying Wn−1 makes it a forward path, which is ρ, that belongs to Gn−1(H)
(when L is odd) or Gn−1(H − 1) (when L is even).

We can now easily check that, for j = k − 1, k, k + 1, each ̟[j] appearing lies in
Gn−1(j − 1) except in the cases leading directly to blocks 8, 10 and 12, where the final
̟[j] lies in Mn−1(j). It is therefore clear that the output from each block is a Motzkin
meander of length n starting at height k, or a forward path in Gn(k − 1), as claimed in
Figure 13. The only remaining thing to check is that blocks 8, 10 and 12 yield Motzkin
paths with amplitude at most L. By the induction we assume that this bound applies to
each ̟[j], noting that if blocks 7 and/or 8 are reached then k + 1 6 H, so the amplitude
is bounded by 2H + 1. Moreover, when L is even and k = H, the returned meanders
cannot begin by a horizontal step, which explains why they have amplitude bounded by
L = 2H.
2. Let us show by induction on n that Ωn,k is a bijection for every k > 0.
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Output Ωn,k(ω)

A Motzkin meander of length n starting at height k

A forward path of length n starting at O + (k − 1)s1
or

Decompose ω = ω1ω
′ where ω1 is the first step

n = 0 n > 0

ω1 = s1 ω1 = s2

Return Wn(s3ω
′)Compare k with H

In ω′, replace each s1, s2, s3 step
with s1, s3, s2 respectively.

Then apply Wn−1.
Call ρ the obtained path.

Check the parity of L

Check if k is null

Return the
only Motzkin

path of
length 0

Return the only
triangular path of
length 0 starting
at O + (k − 1)s1

Compute ̟[k+1] := Ωn−1,k+1(ω
′)

Compute ̟[k] := Ωn−1,k(̟
[k+1])

Compute ̟[k−1] := Ωn−1,k−1(̟
[k])

Return ր ̟
[k+1]

Return → ̟
[k]

Return ց ̟
[k−1] Return Wn(s1̟

[k−1])

Set ̟[k+1] := ρ

Set ̟[k] := ρ

k = 0 k > 0

k = H

k < H

̟[k+1] is a
forward path

̟[k+1] is a
Motzkin meander

̟[k] is a
forward path

̟[k] is a Motzkin
meander

L odd

L even

̟[k−1] is a
forward path

̟[k−1] is a
Motzkin meander

2

3 4

5

6

7

8

10

12

9

11

13

14

15

16

18

17

Input ω

A forward path ω of length n starting at O + ks1
1

Wn transforms any generic triangular path into a forward path.

Figure 13: Algorithm computing Ωn,k(ω) where ω is a path of length n starting at O+ks1

The case n = 0 is clear.
Let n be a positive integer. If the image is a Motzkin meander beginning with ր

(resp. →, ց), then the algorithm must end at block 8 (resp. 10, resp. 12). This covers
all Motzkin paths of Mn(k) (or M ′

n(k)). Then we can bijectively recover the original path
ω by following the arrows backwards up to block 1. In fact, all the arrows are reversible,
in part due to the induction hypothesis. There is no ambiguity from blocks 9 and 11
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(where there are a priori two possible ingoing arrows) because the precise sequence of
blocks that one must take to get to one of these is determined only by the values of k, H
and L.

If the image is in Gn(k− 1), then the algorithm ends either at block 13 or at block 14.
Since Wn is a bijection from paths with direction vector (B,F, F, . . . , F ) to forward paths
in Gn(k − 1), we can recover the preimage under Wn. If this preimage begins with s1,
then the algorithm actually ended at block 13; if it begins with s3, the algorithm ended
at block 14. At this point, we can use the above reasoning to go backwards to the root of
the decision tree and find ω. Thus, we prove that Ωn,k is a bijection.

When k = 0, Theorem 19 provides a bijection between forward paths and Motzkin
paths of bounded amplitude. Go back to Figure 5 for examples: each forward path is put
next to its image under Ω3,0.

Thus, at this point, we have answered Mortimer and Prellberg’s open question (Theo-
rem 3). Indeed, starting from a bicolored Motzkin path m (let us say in black and white)
of length n and of amplitude bounded by L, we can construct a direction vector W from
it: write F for each black step; B for each white step. Then, we compute Ωn,0(m), which
is a forward path. Finally, we use the bijection from Theorem 6 to transform the forward
path into a triangular path with direction vector W .

Lastly, let us discuss the complexity of the algorithm. If c(n, k) denotes the worst-case
complexity of Ωn,k, then we can derive from Figure 13 the (rough) upper bound

c(n, k) 6 c(n− 1, k + 1) + c(n− 1, k) + c(n− 1, k − 1) + n2.

(The n2 term reflects the complexity of the function Wn−1 appearing in block 15.) Then,
by a simple induction, one can see that c(n, k) 6 mn(k)+O(n3) where mn(k) is the number
of Motzkin meanders of length n starting at height k and having amplitude bounded by L.
Since mn(0) is O(3n), we deduce that the complexity of Ωn,0 is bounded by an exponential
in n. However, we do not know if this bound is tight. Experimentally, we have observed
that the complexity of the algorithm has a large standard deviation when the input is
randomly chosen: in most cases, the complexity is linear in n (in terms of running time
and the number of recursive calls) but sometimes the complexity seems to be quadratic
in n.

4 Many other bijections

In the previous section, we described a bijection between forward paths and Motzkin
paths of bounded amplitude. However, the definition being recursive, the computation of
an image takes a priori a long time, and its description lacks some clarity.

This section proposes a new way to define bijections between forward paths and
Motzkin paths. Such bijections will have two advantages. First, they only require lin-
ear time to compute. Second, these bijections are parameterized: each one comes with
specific metadata (which we call its scaffolding), making the bijections all different.
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Figure 14: A cell representation of T5. The highlighted zone corresponds to point e1 +
e2 + 3e3.

4.1 Profile

We begin by defining an integer vector for each point of TL:

Definition 20 (Profile). Let z = ie1 + je2 + ke3 be any point of TL. The profile of z is
the vector (p0(z), . . . , pH(z)) where H =

⌊
L
2

⌋
and p0(z), . . . , pH(z) is the first half of the

coefficients of the polynomial

(1− xi+1)(1− xj+1)(1− xk+1)

(1− x)2
= p0(z) + p1(z)x + · · ·+ pH(z)xH + · · ·+ pL+1(z)xL+1.

Example 21. Fix L = 5. The profile of any corner of T5 (that is 5e1, 5e2 or 5e3) is (1, 0, 0)
since the corresponding polynomial is (1 − x6) (regardless of the corner). The profile of
the point e1 + e2 + 3e3 is (1, 2, 1), which can be found by expanding the polynomial
(1− x2)2(1− x4)/(1− x)2 = 1 + 2x + x2 − x4 − 2x5 − x6.

Note that one can also extend the definition of profile for points ie1 + je2 + ke3 where
i = −1 or j = −1 or k = −1. Even if they are not in TL, we can see that the polynomial
(1−xi+1)(1−xj+1)(1−xk+1)

(1−x)2
is null for such points, so by convention, we can define the profile

as the null vector (0, . . . , 0). This will be useful for dealing with border cases.
It is convenient to represent the profiles as sets of square cells.

Definition 22 (Cell representation). A cell representation of a point z is a finite subset
C(z) of Z2 satisfying |{ℓ : (f, ℓ) ∈ C(z)}| = pf (z) for every f ∈ {0, . . . , H}. A cell
representation of TL is a family C = (C(z))z∈TL of cell representations of points of TL. The
height of a cell c = (f, ℓ) is defined as h(c) = f .
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The profile of every point z is then illustrated by a cell representation C(z): for every
(f, ℓ) ∈ C(z), a square is placed at coordinates (ℓ, f).2 For example, as shown by Figure 14,
a cell representation of e1 + e2 + 3e3 in T5 (whose profile is (1, 2, 1), as mentioned above)
can be represented as three rows of squares: the first (bottom) and the third (top) rows
have 1 square each while the central row has 2 squares.

It is not obvious from Definition 20 that we always have pf (z) > 0, and hence that a
cell representation of TL exists for every L ∈ N. However a cell representation of TL will
be explicitly given by Proposition 32, proving the non-negativity of the components of a
profile.

The next lemma establishes some identities about the profile.

Lemma 23. Let z be in TL. Then for i ∈ {1, . . . , H − 1}, the identities

pi(z + s1) + pi(z + s2) + pi(z + s3) = pi−1(z) + pi(z) + pi+1(z), (4)

p0(z + s1) + p0(z + s2) + p0(z + s3) = p0(z) + p1(z), (5)

pH(z + s1) + pH(z + s2) + pH(z + s3) =

{
pH(z) + pH−1(z) if L is odd
pH−1(z) if L is even

, (6)

hold.

Proof. For z = ie1 + je2 + ke3 ∈ TL, let Polz(x) be the polynomial of Definition 20, that
is

Polz(x) =
(1− xi+1)(1− xj+1)(1− xk+1)

(1− x)2
.

We also extend for any integer i the definition of pi(z) as the coefficient of xi in Polz(x).
By an inelegant but simple expansion, one can check the identity

Polz+s1(x) + Polz+s2(x) + Polz+s3(x) =

(

x + 1 +
1

x

)

Polz(x) + xL+2 −
1

x
.

Extracting the coefficient of xi in the above equality for i ∈ {0, . . . , H} straightforwardly
gives

pi(z + s1) + pi(z + s2) + pi(z + s3) = pi−1(z) + pi(z) + pi+1(z),

which proves (4). The equality (5) comes from the fact that p−1(z) = 0.
Concerning i = H, we remark that

xL+1Polz(1/x) = −Polz(x),

and hence pL+1−j(z) = −pj(z) for every integer j. In particular, if L = 2H + 1, then
for j = H + 1, we have pH+1(z) = −pH+1(z) and so pH+1(z) = 0. Equality (6) is then
obtained by substituting i = H and pi+1 = 0 in (4). As for L = 2H even, set j = H, and
get pH+1(z) = −pH(z), which implies that only the term pH−1(z) does not disappear in
the right-hand side of the equality.

2We swap the two coordinates so that f (which stands for floor) corresponds to the height of a cell,
consistent with the fact that f represents the height in a Motzkin path.
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Thus, Proposition 17 is naturally extended to any point of TL (not only the ones on
the border).

Theorem 24. Let z be any point of TL and (p0(z), . . . , pH(z)) be the profile of z. Let us
denote by fn(z) the number of forward paths of length n in TL, starting from z. We have

fn(z) =
H∑

i=0

pi(z)mn(i),

where mn(i) is the number of Motzkin meanders of length n starting at height i and having
an amplitude bounded by L.

Proof. We only do the proof for the odd case, since the even case is very similar. We
proceed by induction on n.

For n = 0, we have p0(z) = 1 since it is the constant term in the polynomial
(1−xi+1)(1−xj+1)(1−xk+1)

(1−x)2
. Moreover, m0(i) is equal to 0 if i > 0, and m0(0) = 1. We

consistently find f0(z) = 1.
Let us assume that the equality holds for a given n and for every z′ ∈ TL. We have

fn+1(z) = fn(z + s1) + fn(z + s2) + fn(z + s3)

=
H∑

i=0

(pi(z + s1) + pi(z + s2) + pi(z + s3))mn(i) by induction,

=
H−1∑

i=1

(pi−1(z) + pi(z) + pi+1(z))mn(i)

+ (p0(z) + p1(z))mn(0) + (pH−1(z) + pH(z))mn(H) by Lemma 23.

Collecting terms with respect to pi(z), we get

fn+1(z) = p0(z) (mn(0) + mn(1))

+
H−1∑

j=1

pj(z) (mn(j − 1) + mn(j) + mn(j + 1))

+ pH(z) (mn(H − 1) + mn(H)) ,

which reads fn+1(z) =
∑H

j=0 pj(H)mn+1(j).

Let us explain why Proposition 17 is a special case of the previous theorem. Given
a point of the border O + ℓs1 = ℓe1 + (L − ℓ)e3 with ℓ 6 H = ⌊L/2⌋, the associated
polynomial is

(1− xℓ+1)(1− xL−ℓ+1)

1− x
=
(
1 + x + · · ·+ xℓ

)
(1− xL−ℓ+1).
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ր

ց

→

Figure 15: A zoom on a scaffolding – more specifically it depicts the function s 7→
δe1+e2+3e3((1, 2), s).

But since ℓ 6 H, we have L− ℓ + 1 > H. So the profile of O + ℓs1 follows the expansion
of 1 + x + · · ·+ xℓ. In other words,

pi(O + ℓs1) =

{
1 if i 6 ℓ
0 otherwise

.

We thus recover the formula fn(O + ℓs1) =
∑ℓ

i=0 mn(i).

4.2 Scaffoldings and new bijections

In order to illustrate the following definition, we begin this subsection by explaining the
idea behind the bijection we are going to present next.

By Theorem 24, we know that for any z ∈ TL and any cell representation C(z) there
must be a bijection between the set of triangular paths starting at z and the set of pairs
(m, c) where m is a Motzkin meander of bounded amplitude and c ∈ C(z) is a cell such that
h(c) is the starting height of m. For the sake of example, consider the cell representation
C(z) = {(f, ℓ) : 0 6 f 6 H, 1 6 ℓ 6 pf (z)} and let us choose L = 5, z = e1 + e2 + 3e3,
c = (f, ℓ) = (1, 2). This corresponds to a specific cell of the cell representation of z, which
is highlighted in Figure 15.

We now consider a Motzkin path m which we wish to transform into a triangular path
starting at z, in a recursive manner. This transformation will depend on the cell we have
chosen (here (1, 2)). At this point there are naturally three possibilities: m begins with
ր,→, orց. The idea is then to map these three possibilities to three other cells located
in the profiles of the neighbors of z. The f -coordinates of these cells must be respectively
2, 1 and 0. We then use a recursion, which now depends on the new cell, to find the
desired triangular path.

Of course there are several choices for these new cells. For example, if m begins with
ր, we have 3 choices: there are 2 cells in floor 2 (the top floor) of the cell representation
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of z + s1, 1 cell in floor 2 for z + s2, and 0 cells in floor 2 for z + s3. Following Figure 15,
we choose the cell (2, 2) from the cell representation of z + s1. The triangular path we
would like to output will begin by s1 (because the chosen cell is in the profile of z + s1),
and the rest will be computed by recursion.

A scaffolding is precisely the data which dictates the choice of the new cells for the
whole lattice. More precisely, it indicates in which cell we have to go when we consider a
specific cell in some profile, and a particular step in {ր,→,ց}.

Definition 25 (Scaffolding). Let us fix the size L of the triangular lattice, and let H be
⌊L/2⌋.

For a height f ∈ {0, . . . , H}, we say that a step s ∈ {ր,→,ց} is an allowed step
from height f if it is a possible step from height f in a Motzkin meander. Precisely, the
only restrictions are that (f, s) cannot be equal to (0,ց) nor (H,ր), and furthermore,
if L is even, (f, s) cannot be equal to (H,→).

For z ∈ TL, let C(z) be a cell representation of z (see Definition 22), and define the set

A(z) := {(c, s) ∈ C(z)× {ր,→,ց} : s is an allowed step from h(c)},

For i ∈ {1, 2, 3}, we also introduce the notation

Ci(z) := {(si, c) : c ∈ C(z)}.

The set Ci(z) is thus a subset of F × C(z), having same cardinality as C(z), since all the
elements of Ci(z) have the same first coordinate si.

A scaffolding is a collection of functions (δz)z∈TL , such that for each z ∈ TL, the
function

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3)

is a bijection. Furthermore, for every (c, s) ∈ A(z) with (σ, c′) = δz(c, s), we have the
restriction

h(c′) =







h(c) + 1 if s =ր
h(c) if s =→

h(c)− 1 if s =ց
.

An entire scaffolding is shown by Figure 16.

Proposition 26. For any L > 0, there exists a scaffolding.

Proof. Let us consider any point z of TL, and let f ′ be an integer in {0, . . . , H}.
Consider the sets

Uf ′(z) := {(c,ր) ∈ A(z) : h(c) = f ′ − 1},

Ff ′(z) := {(c,→) ∈ A(z) : h(c) = f ′},

Df ′(z) := {(c,ց) ∈ A(z) : h(c) = f ′ + 1},

Ci,f ′(z) := {(si, c
′) ∈ Ci(z) : h(c′) = f ′} for i ∈ {1, 2, 3}.
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if s =ր

if s =→

if s =ց

Figure 16: An example of a scaffolding for T3, taken uniformly at random.

By Lemma 23, we have

|Uf ′(z) ∪ Ff ′(z) ∪ Df ′(z)| = |C1,f ′(z + s1) ∪ C2,f ′(z + s2) ∪ C3,f ′(z + s3)| .

We can then choose any bijection bf ′ between these two sets and define δz(c, s) for every
(c, s) ∈ Uf ′(z) ∪ Ff ′(z) ∪ Df ′(z) as bf ′(c, s).

Doing so for every f ′ ∈ {0, . . . , H} enables us to cover every pair (c, s) ∈ A(z), and
thus successfully define δz on the set of such triplets.

The required bijectivity of δz is straightforward (because bf ′ is also bijective).

Once we fix a scaffolding for our triangular lattice, one can describe a bijection between
triangular paths and Motzkin paths. The bijection is given by Algorithms 2 and 3.

Algorithm 2: Bijection from Motzkin paths to triangular paths, given a scaffolding (δz)z∈TL
(for scaffolding, see Definition 25).

metadata : a s c a f f o l d i n g δz
input : a Motzkin path m
output : a t r i a n g u l a r path p s t a r t i n g at O
n ← l ength o f m;
p ← empty path ;
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Figure 17: The Motzkin paths and the triangular paths of length 3 in correspondence
under Algorithms 2 and 3, given the scaffolding of Figure 16.

z ← O ;
c ← unique c e l l o f he ight 0 in the c e l l r e p r e s e n t a t i o n o f z ;
for i from 1 to n
do (σ , c ) ← δz ( c , m[ i ] ) ;

add σ to the end o f p ;
z ← z + σ ;

return p ;

Algorithm 3: Bijection from triangular paths to Motzkin paths, given a scaffolding (δz)z∈TL
(for scaffolding, see Definition 25).

metadata : a s c a f f o l d i n g δz
input : a t r i a n g u l a r path p s t a r t i n g at O
output : a Motzkin path m
n ← l ength o f p ;
m ← empty path ;

the electronic journal of combinatorics 28(2) (2021), #P2.6 28



z ← O +
∑n

i=1 p [ i ] ;
c ← unique c e l l o f he ight 0 in the c e l l r e p r e s e n t a t i o n o f z ;
for i decreasing from n to 1
do ( c , s ) ← δ−1

z (p [ i ] , c ) ;
add s to the beg inn ing o f m;
z ← z − p [ i ] ;

return m;

Theorem 27. Let (δz)z∈TL be a scaffolding. Algorithms 2 and 3 give two inverse bijections
between the set of Motzkin paths of length n with bounded amplitude L and the set of
triangular paths of TL of length n starting at O.

Proof. At the end of Algorithm 2, note that the height of the ending cell is 0, since variable
f keeps track of the height of the input Motzkin path (because of the last restriction
of Definition 25) and a Motzkin path always ends at height 0. Moreover, because the
polynomial (1 − xi+1)(1 − xj+1)(1 − xk+1)/(1 − x)2 always has a constant term equal to
1, by Definition 20, we have p0(z) = 1 for every z ∈ TL. But ℓ is always between 1 and
pf (z), so at the end of Algorithm 2, ℓ must be 1.

Thus, the values of z and c are the same at the end of Algorithm 2 and at the beginning
of Algorithm 3. From this point, it is easy to see that the loop of Algorithm 3 reverses
what the loop of Algorithm 2 did. Therefore the two algorithms are mutual inverse
bijections.

Remark 28. If we omit the cost of a precalculation (which is the construction of a scaf-
folding which can be made in O(L4) time), both algorithms have a linear-time complexity.

The scaffolding bijection of Subsection 4.4 does not require any precalculation (which
can be costly if L is large) and it still has a linear-time complexity.

Remark 29. If two Motzkin paths m and m′ share a common prefix of length j, then the
two corresponding triangular paths under Algorithm 2 will also share a common prefix of
length j. The converse is not true.

This property is not shared by the exponential bijection of Figure 13. This is why this
bijection is not a particular case of the scaffolding bijections.

Remark 30. If we use a sequence of scaffoldings (δn,z)n∈N, we still get a bijection from
Algorithm 2 if we use scaffolding δn,z at the nth step.

Remark 31. If we wish to sample a random forward path under the uniform distribution,
given a uniform random Motzkin path of bounded amplitude, it is not necessary to have
a single fixed scaffolding. Indeed, since any scaffolding – or sequence of scaffoldings – is
suitable to have a bijection, one can pick the cell transition at random, on the fly. To do
so, at each step of the loop in Algorithm 2, we choose δz(c,m[i]) as one of the cells with
height h′ belonging to C(z + s1) ∪ C(z + s2) ∪ C(z + s3), where h′ = h(c) + 1 if m[i] =ր,
h′ = h(c) if m[i] =→, or h′ = h(c) − 1 if m[i] =ց. This choice must be uniform among
all cells of height h′.
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4.3 Two bijective proofs of Mortimer and Prellberg’s theorem

We mention two ways to extend this to a bijection between bounded Motzkin paths with
bicolored (black and white) edges and triangular paths (potentially including forward and
backward steps), which provides a direct combinatorial interpretation of Theorem 3.

The first method is as mentioned at the end of Section 3: Starting with a bicolored
Motzkin path, use the scaffolding bijection above to send the Motzkin path to a forward
path, and map the colors to a direction vector based on the order in which they appear
(black → F and white → B). Then, using the bijection of Theorem 6, send the forward
path to a path with that direction vector.

For the second method we start by defining a reverse scaffolding

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3),

where each Ci(z) is defined by

Ci(z) := {(si, c) : c ∈ C(z)}.

We define δz symmetrically to δz reflected about the midline of TL passing though O =
x3e3. To be precise, if z = x1e1+x2e2+x3e3, let z′ = x2e1+x1e2+x3e3 and δz′(a) = (sj, c).
Then we define δz(a) := (s4−j, c). This is possible because the cell representation of z′

is necessarily the same as that of z. The bijection then runs as follows: starting with a
bicolored Motzkin path, we apply the scaffolding δz when there is a black step, and we
apply the reverse scaffolding δz when there is a white step. An advantage of that second
version is that it takes linear time to apply.

4.4 A canonical scaffolding in terms of colored pentagons

In this section we provide an explicit scaffolding which yields a bijection between bounded
Motzkin paths and triangular paths which takes linear time to compute. Moreover, it
does not depend on L and does not require any precalculation. First we define a new cell
representation for TL.

Proposition 32. For every z = x1e1 + x2e2 + x3e3 ∈ TL, the set

C(z) :=
{

(f, ℓ) ∈ Z2 | max(0, f − x3) 6 ℓ 6 min(f, x1, x2, x1 + x2 − f)
}

is a cell representation of z (see Definition 22).

We will refer to this as the canonical cell representation.

Proof. Recall that

pf (z) = [yf ](1 + · · ·+ yx1)(1 + · · ·+ yx2)(1− yx3+1),

for 2f 6 L. For x3 > x1+x2, an expansion of the two first factors shows that the numbers
pf (z) are

1, 2, . . . ,min(x1, x2) + 1,min(x1, x2) + 1, . . . ,min(x1, x2) + 1
︸ ︷︷ ︸

repeated max(x1,x2)−min(x1,x2)+1 times

,min(x1, x2), . . . , 2, 1,
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f + ℓ = x1 + x2

f = ℓ

ℓ = min{x1, x2}

ℓ = 0

f = ℓ+ x3

ℓ

f

Figure 18: Left. The shape of the cell representation from Proposition 32 of a point
x1e1 + x2e2 + x3e3. Right. The associated cell representation of T5.

for f = 0, 1, . . . , x1 + x2. So, if we simply define C(z) := {(f, ℓ) | 0 6 ℓ 6 pf (z)− 1} with
h((f, ℓ)) = f , then C(z) can alternatively be written as

C(z) =
{

(f, ℓ) ∈ Z2 | 0 6 ℓ 6 min(f, x1, x2, x1 + x2 − f)
}
.

For x3 < x1 +x2, it suffices to remove from C(z) any points (f, ℓ) for which (f, ℓ−x3− 1)
belongs to C(z), as this corresponds to multiplying the polynomial by (1 − yx3+1). This
yields the above general formula for C(z), which concludes the proof.

Examples of canonical cell representations (see Proposition 32) are shown in Figure 18.
Finally it remains to define a scaffolding

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3),

where we recall that A(z) and Ci(z) are defined by

A(z) := {(c, s) ∈ C(z)× {ր,→,ց} : s is an allowed step from h(c)}.

Ci(z) := {(si, c) : c ∈ C(z)}.

We define δz by the procedure shown in Figure 19. Under this procedure there are 12
different cases, shown by the colored boxes labeled from 1 to 12.

In the following theorem we show that this is indeed a bijection. We give a geometric
interpretation of this bijection in two specific cases in Figures 20 and 21.

Theorem 33. For each z ∈ TL, the function δz defined by the procedure in Figure 19 is
a bijection from A(z) to C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3).
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Input: a pair ((f, ℓ), s) ∈ A(z).

Compare ℓ with x1 + x2 − f

s =→
s =ց

Compare ℓ with f

s =ր

Return (s2, (f − 1, ℓ − 1)) Return (s1, (f − 1, ℓ))

Compare ℓ with x1 + x2 − f

ℓ = f ℓ < f

Compare f with x1 + x2

Return (s1, (f + 1, ℓ + 1))

Return (s1, (f + 1, ℓ)) Return (s2, (f + 1, ℓ − 1))

ℓ = x1 + x2 − f

ℓ = x1 + x2 − f − 1

f = x1 + x2 f < x1 + x2

Compare ℓ with x2

Return (s2, (f + 1, ℓ + 1)) Return (s3, (f + 1, ℓ))

ℓ = x2 ℓ < x2

Compare ℓ with fReturn (s1, (f, ℓ))

ℓ < x1 + x2 − fℓ = x1 + x2 − f

Return (s3, (f, ℓ))

Compare ℓ with x1

ℓ = fℓ < f

Return (s1, (f, ℓ + 1))

Return (s2, (f, ℓ))

ℓ = x1 ℓ < x1

Compare f with x1

Return (s2, (f + 1, ℓ))

f = x1 − 1 f ≥ x1

x2 = f

Compare x2 with f

x2 > f

1 2

3 4

5 6

7 8

9

10

11 12

ℓ < x1 + x2 − f − 1

Figure 19: A diagram defining the scaffolding δz.

Proof. To see that this is a bijection, it suffices to show that each element of C1(z + s1)∪
C2(z + s2) ∪ C3(z + s3) is covered exactly once by δz.

First, we claim that C1(z + s1) is covered by cases 2, 3, 8, 9 and 11. Note that
C(z + s1) = {(f ′, ℓ′) ∈ Z2 | max(0, f ′−x3 + 1) 6 ℓ′ 6 min(f ′, 1 +x1, x2, 1 +x1 +x2− f ′)}.
In particular, the pairs (f ′, ℓ′) ∈ C(z + s1) covered by each of the five cases are those
satisfying the following:

• Case 2: ℓ′ = 1 + x1 + x2 − f ′ 6= 0.

• Case 3: ℓ′ = 0 = 1 + x1 + x2 − f ′ (this case only occurs if x1 + x2 6 x3 i.e.,
2(x1 + x2) 6 L ).

• Case 8: ℓ′ 6 x1 and ℓ′ < x1 + x2 − f ′.

• Case 9: ℓ′ 6 x1 and ℓ′ = x1 + x2 − f ′.

• Case 11: ℓ′ = x1 + 1 6 x1 + x2 − f ′ (this case only occurs for x1 < x2).

Next, we show that the set C2(z + s2) is covered by cases 1, 4, 5, 7 and 10. We have

C(z + s2) = {(f ′, ℓ′) ∈ Z2 | max(0, f ′ − x3) 6 ℓ′ 6 min(f ′, x1 − 1, x2 + 1, x1 + x2 − f ′)}.
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f

ℓ

f

11

ℓ

f

s1

s2

s3

ℓ

δz

ր

→

ց

4

ℓ

f

2

6

ℓ

f

9

11

12

10

8

7

ℓ

f

10

2

8

9

4

7

12

6

C(z)

C(z)

C(z)

C(z + s3)

C(z + s2)

C(z + s1)

Figure 20: A geometric depiction of the bijection δz in the case x1 = 8, x2 = 13, x3 = 16,
L = 37. On the left, there are three copies of of C(z) while on the right we have C(s1 + z),
C(s2 + z) or C(s3 + z). Each case in Figure 19 is represented by a colored zone with labels
matching the numbers shown in Figure 19. Cells for which the given step is not allowed
are colored in red. The grey polygon on each of the canonical cell representations is the
outline of C(z) (equivalently, the pentagon delimited by the lines ℓ = 0, f = ℓ, ℓ = 8,
f + ℓ = 21 and f = ℓ + 16).

In particular, the pairs (ℓ′, f ′) ∈ C(z + s2) covered by each of the five cases are those
satisfying the following:

• Case 1: f ′ = x1 and ℓ′ = x2 (this case only occurs if x2 6 x1 − 1).

• Case 4: ℓ′ = x1 + x2 − f ′ 6 x2 − 1.

• Case 5: ℓ′ = x2 + 1 (this case only occurs if x2 + 1 6 x1 − 1).
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ℓ

f

ℓ

f

s1

s2

s3

ℓ

δz

ր

→

ց

4

ℓ

f

2

6

ℓ

f

9

12
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8

7

ℓ

f

10

2

8

9

4

7

12

6

C(z)

C(z)

C(z)

C(z + s3)

C(z + s2)

C(z + s1)

1

5

5

1

Figure 21: The bijection δz in the case x1 = 13, x2 = 7, x3 = 16, L = 36. In com-
parison with Figure 20, this decomposition features the case where L is even, but most
importantly, the case where x1 > x2 + 1.

• Case 7: ℓ′ = f ′ 6 x2 − 1.

• Case 10: ℓ′ 6 x1 + x2 − f ′ − 1, x2, f
′ − 1 or ℓ′ = f = x2 (the latter case only occurs

for x2 6 x1 − 1).

Finally, we show that the set C3(z + s3) is covered by cases 6 and 12. Note that

C(z + s3) = {(f ′, ℓ′) ∈ Z2|max(0, f ′ − x3 − 1) 6 ℓ′ 6 min(f ′, x1, x2 − 1, x1 + x2 − 1− f ′).

In particular, the pairs (f ′, ℓ′) ∈ C(z + s3) covered by each of the five cases are those
satisfying the following:

• Case 6: ℓ′ 6 f ′ − 1.
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• Case 12: ℓ′ = f ′.

We thus have dealt with every element of C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3).

Note that the rules in the definition of δz only depend on x1, x2, f and ℓ, but not L.
As a consequence, this bijection can be applied to any Motzkin path to yield a path in
the 1/6-plane, and if L is the minimum sidelength of a triangle containing the resulting
path then L is the amplitude of the Motzkin path.

5 Extension to higher dimensions

This section explains to what extent the results of the previous sections can be generalized.
In fact, there is a natural extension of triangular paths to higher dimension (already intro-
duced by [15]) for which there still exists a bijective correspondence between forward and
backward paths. More surprisingly, we can find in dimension 3 a new bijection between
two families of lattice walks, which is an analogue of the bijection between triangular
paths and Motzkin paths of bounded amplitude.

5.1 What can be extended in any dimension

5.1.1 Definition

For dimension d, let (e1, e2, e3, . . . , ed+1) denote the standard basis of Rd+1. For some
L ∈ N, we define the subset Sd,L of Nd+1 as the simplicial section of side length L of the
integer lattice:

Sd,L = {x1 e1 + · · ·+ xd+1 ed+1 : x1, . . . , xd+1 ∈ N, x1 + · · ·+ xd+1 = L}.

We will consider walks in this simplex using forward steps sj = ej−ej−1 for 1 6 j 6 d+1
(with the convention that s0 = sd+1) and backward steps −sj. Paths of Sd,L only using
forward steps are again called forward paths. The origin of Sd,L, denoted O, is defined
as Led+1. The triangular lattice TL can be recovered by setting d = 2 – in other words
TL = S2,L.

As in the triangle case, forward paths of Sd,L starting from O form a subfamily of
standard Young tableaux. Precisely, they are in bijection with standard Young tableaux
with d rows or less with an extra restriction: for i > L, if there is a cell with label ℓ at
position i in the top row of the Young tableau, then there is a cell at position i − L in
the bottom row of the Young tableau with a label less than ℓ. To define the bijection,
starting with such a Young tableau, for each n, if n is the kth row, then the n-th step
of the forward path is sk. The enumeration of standard Young tableaux with a bounded
number of rows is a very active area of research – see [13] for a survey.

5.1.2 Equinumeracy of forward and backward paths

Defining direction vector as in Definition 5, the equivalent of Theorem 6 still holds:
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walks must end

on this line

L

Figure 22: Left. The Pyramid S3,3. Right. The waffle W12.

Theorem 34. Given two sequences W and W ′ of {F ,B}n, the set of paths in Sd,L with
direction vector W is in bijection with the set of pyramid paths with direction vector W ′.

We can use the same proof almost verbatim. In fact, the bijection uses swap flips,
defined exactly as in Definition 10:

(sj, sk)←→ (sk, sj) if j 6= k,

(sk, sk)←→ (sk−1, sk−1) otherwise.

where, by convention, s0 = sd+1.

5.2 Dimension 3

It turns out that forward paths in dimension 3 are equinumerous with another family of
paths, as in the two dimensional case. We will show this inductively, then give a bijection
analogous to those in Section 4.

In dimension 3, the set

S3,L = {x1 e1 + x2 e2 + x3 e3 + x4 e4 : x1, x2, x3, x4 ∈ N, x1 + x2 + x3 + x4 = L}

is a pyramidal lattice, as shown by Figure 22 (left). We denote by F the set of forward
steps, i.e., F = {e1− e4, e2− e1, e3− e2, e4− e3}, and we denote by B the set of backward
steps, i.e., B = −F . A pyramidal walk is a walk in S3,L using steps in F ∪ B.

By reducing the dimension of the recurrence using the bijection between forward and
backward paths, we find a family of paths in bijection with pyramidal walks:

Theorem 35. Define the waffle WL of size L by

WL = {(i, j) ∈ N : j 6 i 6 L− j}
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(see Figure 22 (right) for a picture). For (i, j) ∈ WL, the number wn,i,j of square lattice
walks in WL, starting at (i, j) and ending on the x-axis is given by

wn,i,j = pn,i,j − pn,i−1,j−1,

where pn,i,j is the number of forward (or equally backward) pyramid paths of length n
starting at the point (i− j)e1 + je2 + (L− i)e4.

Proof. We prove this using an inductive approach. We define qn,i,j to be the number of
such paths starting at the point (i− j)e1 + je2 + e3 + (L− i− 1)e4 (this is 0 if the starting
point is outside the region).

Considering the first step in a forwards path of length n + 1 starting at (i − j)e1 +
je2 + (L− i)e4 yields the following equation for n, i, j > 0 satisfying i 6 j 6 L:

pn+1,i,j = pn,i+1,j + pn,i,j+1 + qn,i−1,j−1.

Using the same method for backward paths yields

pn+1,i,j = pn,i−1,j + pn,i,j−1 + qn,i,j.

Canceling the q terms, we obtain the following equation as long as 1 6 j 6 i 6 L:

pn+1,i,j − pn+1,i−1,j−1 = pn,i+1,j + pn,i,j+1 − pn,i−2,j−1 − pn,i−1,j−2.

Finally, writing wn,i,j := pn,i,j − pn,i−1,j−1, we have the following recurrence for w:

wn+1,i,j = wn,i+1,j + wn,i,j−1 + wn,i,j+1 + wn,i−1,j,

which has only positive coefficients. By analysing this equation on the boundary, we
deduce that it holds for 0 6 j 6 i 6 L + 1, if we define wn,i,j = 0 for i, j outside this
region. Finally the initial condition for w0,i,j follows from p0,i,j = 1 for 0 6 j 6 i 6 L:

w0,i,j = 0, for 1 6 j 6 i 6 L,

w0,i,0 = 1, for 0 6 i 6 L,

w0,L+1,j = −1, for 1 6 j 6 L + 1,

w0,L+1,0 = 0.

These initial conditions along with the recurrence uniquely define the terms wn,i,j. Now,
by symmetry, wn,i,j = −wn,L+1−j,L+1−i, and in particular, wn,i,L+1−i = 0, so we only need
to consider the region i + j 6 L. Within this region, all terms are positive, so wn,i,j

can be understood combinatorially. The combinatorial interpretation of the recurrence is
precisely the statement of the theorem: wn,i,j is the number of square lattice walks starting
at (i, j) and ending on the x-axis, which are confined to the region WL = {(i, j) ∈ N : i 6
j 6 L− i}.

In particular, the number pn,0,0 of pyramid paths starting at O is equal to the number
wn,0,0 of waffle walks starting at (0, 0) and ending on the x-axis.
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Figure 23: The sets C(z) and W (z) for z = 4e1 + e2 + 3e3 + 4e4.

Remark 36. If we apply the transformation (x, y) 7→ (x− y, y) to waffle walks, we remark
that pyramidal walks starting at O are in bijection with Gouyou-Beauchamps walks, i.e.
walks with North-West, West, East, South-East steps, going from (0, 0) to a point on the
x-axis and confined in the part of the positive quarter of plane below the line x+ 2y = L.
This is consistent with the fact that standard Young tableaux with 4 rows or less are in
bijection with Gouyou-Beauchamps walks returning to the x-axis confined in the quarter
of plane [11].

More generally, the following proposition relates the enumeration of pyramid walks
starting at any point to waffle walks.

Proposition 37. The number pn(z) of length n pyramid walks starting at a point z =
x1e1 +x2e2 +x3e3 +x4e4 is equal to the number of length n waffle walks starting at a point
in the set W (z), defined by

W (z) := {(x1 + x3 + p− q, p + q) : p, q ∈ N, p 6 min(x2, x4), q 6 min(x1, x3)}.

Now, we will give a bijective proof of this. The proof is via a scaffolding, analogous to
Definition 25. Again, before we define scaffolding we define the profile of a point.

Definition 38 (Profile). For a point z = x1e1 + x2e2 + x3e3 + x4e4, we define the profile
C(z) of z by

C(z) := {(p, q) ∈ N2 : p 6 min(x2, x4), q 6 min(x1, x3)}.

We have a natural bijection hz : C(z)→ W (z) defined by hz(p, q) := (x1+x3+p−q, p+q).

For z ∈ S3,L, we define the set

A(z) := {(c, s) ∈ C(z)× {↑,→, ↓,←} : s is an allowed step from hz(c)}.

For i ∈ {1, 2, 3, 4}, we also introduce the notation

Ci(z) := {(si, c) : c ∈ C(z)}.
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Input: a pair ((p, q), s) ∈ A(z).

Compare p with x2

s =↓
s =→

Compare p with x2

s =↑

Compare p with 0

Return (s1, (p − 1, q))

Return (s4, (p, q − 1))

p > 0
p = 0

Compare q with 0

Return (s1, (p, q))

p = x2

p < x2

q > 0 q = 0

Return (s3, (p, q))

Return (s4, (p + 1, q − 1))

Compare q with x1

Return (s3, (p, q + 1))

Return (s4, (p + 1, q))

q < x1q = x1

p < x2p = x2

Compare q with x1

Return (s2, (p + 1, q))

Return (s1, (p, q + 1))

q < x1q = x1

Compare q with x1

Return (s2, (p, q))

s =←

q < x1
q = x1

Compare p with 0

Return (s4, (p, q)) Return (s1, (p − 1, q + 1))

p = 0 p > 0

12113

4

10

5

61

2
9

7

8

Figure 24: A diagram defining the scaffolding δz.

The set Ci(z) is thus a subset of F × C(z), having same cardinality as C(z), since all the
elements of Ci(z) have the same first coordinate si.

Definition 39 (Scaffolding). Let us fix the size L of the pyramid. A scaffolding is a
collection of functions (δz)z∈S3,L

, such that for each z ∈ S3,L, the function

δz : A(z)→ C1(z + s1) ∪ C2(z + s2) ∪ C3(z + s3) ∪ C4(z + s4)

is a bijection and whenever δz(c, s) = (sj, cj), we have hz(c) + s = hz+sj(cj).

Figure 23 shows an example of the sets W (z) and C(z).
An explicit scaffolding δz is defined by Figure 24 which works for any size of the

pyramid. The proof of the bijectivity of δz is omitted (because of its tediousness — it is a
case-by-case proof, similar to the one of Theorem 33), but some particular configuration
is illustrated by Figure 25. Similarly to the pentagon scaffolding in the triangle case, the
scaffolding of Figure 24 does not depend on the size L of the pyramid, nor the x3- and
the x4-coordinates.

Given such a scaffolding, a bijection for each point zc ∈ S3,L from the set of waffle
walks starting at a point in the set W (zc) to the set of pyramid walks starting at zc is
given by Algorithm 4.

Algorithm 4: Bijection from waffle paths to pyramid paths, given a scaffolding (δz)z∈S3,L

(for scaffolding, see Definition 39).
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δz

Figure 25: A geometric representation of δz for x1 = 8, x2 = 4, x3 = 6 and x4 = 7. The
numbers of the colored zones match with cases of the diagram of Figure 24.

metadata : a s c a f f o l d i n g δz
input : A po int (pc, qc) ∈ C(zc) , a w a f f l e path w s t a r t i n g at hzc(pc, qc)
output : a pyramid path y s t a r t i n g at zc .
n ← l ength o f w ;
y ← empty path ;
z ← zc ;
p ← pc ;
q ← qc ;
for i from 1 to n
do (σ , p , q ) ← δz ( f , q , w[ i ] ) ;

add σ to the end o f y ;
z ← z + σ ;

return y ;

In the following corollary of Theorem 35, we enumerate pyramidal walks starting at O
using the relation pn,0,0 = wn,0,0, which relates their enumeration to that of waffle walks.
This partially answers another open question of Mortimer and Prellberg [15, Section 4.1].
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Corollary 40. The generating function

P (t) =
∞∑

t=0

pn,0,0t
n

for pyramid walks starting in a corner is given by

P (t) =
1

(L + 4)2

L+4∑

16j<k6L+3
2∤j,k

(αk + α−k − αj − α−j)2(2 + αj + α−j)(2 + α−k + αk)

1− (αj + α−j + αk + α−k)t
,

where α = e
iπ

L+4 .

Proof. To prove this, we relate walks confined to the waffle to unconfined walks using the
reflection principle [10], which is possible because the waffle WL forms a Weyl chamber of
some reflection group.

Let (x, y) be a point inside the waffle, let Ω be the set of unconstrained square lattice
walks starting at (x, y) and let Ω′ be the set of walks in the waffle starting at (x, y). Let
ℓ1, ℓ2 and ℓ3 be the lines just outside the boundary of WL, defined by y = −1, y−x = −1
and x + y = L + 1 respectively. We consider the involution f : Ω \ Ω′ → Ω \ Ω′ defined
by reflecting the section of the walk after its first intersection with one of the lines ℓ1, ℓ2
and ℓ3.

Now, define

TL := ((2L + 8)Z)× ((2L + 8)Z) ∪ (L + 4 + (2L + 8)Z)× (L + 4 + (2L + 8)Z)

AL := TL ∪ ((−1,−3) + TL) ∪ ((−4,−2) + TL) ∪ ((−3, 1) + TL)

BL := ((−1, 1) + TL) ∪ ((0,−2) + TL) ∪ ((−3,−3) + TL) ∪ ((−4, 0) + TL) .

Then the involution f sends walks in Ω \ Ω′ ending at a point in AL to walks ending at
a point in BL and vice-versa. The only walks in Ω′ ending at a point in AL (or BL) are
those ending at (0, 0). Hence the number of waffle walks of a given length from (x, y) to
(0, 0) is equal to the number of (uncontrained) walks of the same length from (x, y) to a
point in AL minus the number of such walks from (x, y) to a point in BL. By shifting
the starting point, this is the number of walks from a point in {(x, y), (x + 1, y + 3), (x +
4, y + 2), (x + 3, y − 1)} to a point in TL minus the number of walks from a point in
{(x + 1, y − 1), (x, y + 2), (x + 3, y + 3), (x + 4, y)} to a point in TL. These numbers can
easily be computed using the generating function for unconstrained walks, and doing so
yields the formula in the statement of the theorem. As an example, we show how to
compute the generating function for walks from (x, y) to a point in TL counted by length.

Let F (t, a, b) be the generating function for walks starting at (x, y) with walks of
length n ending at (x1, y1) contributing ax1by1tn. We want to sum the coefficients where
the powers x1 and y1 of a and b are both multiples of 2L + 8 or both L + 4 more than
multiples of 2L + 8. For those where both x1 and y1 are multiples of 2L + 8, This is
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achieved by setting α = e
iπ

L+4 , and writing the sum

1

(2L + 8)2

∑

16j,k62L+7

F (t, αj, αk),

as the contribution to this sum from a monomial ax1by1tn is

tn

(

1

2L + 8

∑

16j62L+7

αx1j

)(

1

2L + 8

∑

16k62L+7

αy1k

)

,

which is 0 unless x1 and y1 are both multiples of 2L + 8, in which case it is tn. Similarly,
the generating function for the cases where x1 − L − 4 and y1 − L − 4 are multiples of
2L + 8 is

1

(2L + 8)2

∑

16j,k62L+7

(−1)j+kF (t, αj, αk).

Similarly, one can write expressions for the generating function of walks from any given
point to a point in TL. Adding and subtracting these as appropriate yields the desired
result.

6 Conclusion

To sum up, we have found several bijections between forward triangular walks and
Motzkin path with bounded amplitude, answering thus Mortimer and Prellberg’s open
question [15].

There were some interesting consequences from this discovery. First, by looking for a
bijection, we discovered an unexpected symmetry property between forward and backward
paths (Theorem 6). Second, we refined Mortimer and Prellberg’s results by considering
triangular walks starting not only at the origin, but at any point in the triangle (Theo-
rem 24). Finally, by mimicking the proof of the first sections, we managed to extend some
of our results to larger dimensions. In particular, we discovered a new bijective correspon-
dence in dimension 3 (Theorem 35), enabling in the process to find an expression for the
generating function of pyramid walks (Corollary 40), which was also an open question in
Mortimer and Prellberg’s paper.

However, we still do not know if there exists a bijection between triangular walks in
dimension d > 4 and some class of walks in dimension d − 1. It seems like our two- and
three-dimensional argument (more precisely, the one in the proofs of Proposition 17 and
Theorem 35) does not work anymore. We leave the question of Mortimer and Prellberg
about the enumeration of triangular walks in higher dimension as an open question.

There is another conjecture from a different paper that may relate to this current
work: the three authors of [3] conjecture that there exists a length-preserving involution
on double-tandem walks that exchanges xstart − xmin and yend − ymin, while preserving
ystart − ymin and xend − xmin (point (xstart, ystart) denotes the starting point, and xmin
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and ymin are respectively the minimal x- and y-coordinates during the walk). It may be
interesting to see if techniques of Section 2 facilitate the discovery of this involution.

Finally, this paper shows two examples of bijections where there is a trade-off between
domain and endpoint constraints:

• The one between triangular paths and Motzkin paths transform two-dimensional
walks with no constraint on the endpoint into one-dimensional walks which must
finish at the origin;

• the one between pyramid paths and waffle walks transform three-dimensional walks
with no constraint on the endpoint into two-dimensional walks which must end on
one of the axis.

This is somehow reminiscent of [6, 5]. We wonder whether there are some other examples
of this phenomenon, or even a generic framework for such bijections.
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