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david.orden@uah.es

Abstract

The Baxter number Bn can be written as Bn =
∑n

k=0
Θk,n−k−1 with
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These numbers have first appeared in the enumeration of so-called Baxter permutations; Bn is the
number of Baxter permutations of size n, and Θk,ℓ is the number of Baxter permutations with k
descents and ℓ rises. With a series of bijections we identify several families of combinatorial objects
counted by the numbers Θk,ℓ. Apart from Baxter permutations, these include plane bipolar orienta-
tions with k + 2 vertices and ℓ + 2 faces, 2-orientations of planar quadrangulations with k + 2 white
and ℓ + 2 black vertices, certain pairs of binary trees with k + 1 left and ℓ + 1 right leaves, and a
family of triples of non-intersecting lattice paths. This last family allows us to determine the value
of Θk,ℓ as an application of the Lemma of Lindström Gessel-Viennot. The approach also allows us to
count certain other subfamilies, e.g., alternating Baxter permutations, objects with symmetries and,
via a bijection with a class of plane bipolar orientations, also Schnyder woods of triangulations. Most
of the enumerative results and some of the bijections are not new. Our contribution is mainly in the
simplified and unifying presentation of this beautiful piece of combinatorics.

Mathematics Subject Classifications (2000). 05A15, 05A16, 05C10, 05C78

1 Introduction

This paper deals with combinatorial families enumerated by either the Baxter numbers or
the summands Θk,ℓ of the usual expression of Baxter numbers. Many of the enumeration
results have been known, even with bijective proofs. Our contribution to these cases lies in
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†Partially supported by the European Grant ERC StG 208471 – ExploreMaps
‡Research partially supported by grants MTM2008-04699-C03-02, and HP2008-0060.
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the integration into a larger context and in simplified bijections. We use specializations of the
general bijections to count certain subfamilies, e.g., alternating Baxter permutations, objects
with symmetries and Schnyder woods of triangulations.

This introduction will not include definitions of the objects we deal with, nor bibliographic
citations, which are gathered in notes throughout the article. Therefore, we restrict it to a
kind of commented table of contents.

2 Maps, Quadrangulations, and Orientations . . . . . . . . . . . . . . . . . . 3

Planar maps are defined, as well as subfamilies such as 2-connected maps and quadran-
gulations. Some combinatorial structures are also defined: plane bipolar orientations for 2-
connected maps, and separating decompositions (edge-partitions into 2 non-crossing spanning
trees) for quadrangulations. A well-known bijection between 2-connected maps and simple
quadrangulations is recalled, which extends to a bijection between plane bipolar orientations
and separating decompositions.

3 From Separating Decompositions to Twin Pairs of Binary Trees . . . . . . 6

Separating decompositions induce book embeddings on two pages of the underlying quad-
rangulation. These special book embeddings decompose into pairs of plane trees. These trees
come with a special embedding with the nodes aligned, which we call an alternating layout.
The alternating layout is used to define the fingerprint of the tree as a specific binary word.
We characterize the pairs of plane trees associated with separating decompositions as those
with reversed fingerprints. Such pairs are called twin pairs of plane trees.

4 Bijections for Catalan Families: The Combinatorics of Fingerprints . . . 10

Using a specific embedding of binary trees with the leaves aligned, we define fingerprint
and bodyprint for a binary tree. Twin pairs of binary trees are defined as those with reversed
fingerprints. The geometric embeddings of plane trees and binary trees are set in correspon-
dence, yielding a bijection between plane trees and binary trees that preserves the fingerprint.
This also ensures that twin pairs of plane trees are in bijection with twin pairs of binary trees.

Fingerprint and bodyprint yield a bijection between binary trees with k “left” leaves and
ℓ “right” leaves and certain pairs of non-intersecting lattice paths. The Lemma of Lindström
Gessel-Viennot allows us to identify their number as the Narayana number N(k + ℓ − 1, k).

5 Four Incarnations of Twin Pairs of Trees . . . . . . . . . . . . . . . . . . . 14

Twin pairs of binary trees are shown to be in bijection to certain rectangulations and to
triples of non-intersecting lattice paths. Via the Lemma of Lindström Gessel-Viennot this
implies that there are

Θk,ℓ =
2
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twin pairs of binary trees with k + 1 left and ℓ + 1 right leaves. The bijections of previous
sections yield a list of families enumerated by the number Θk,ℓ, including plane bipolar orien-
tations, separating decompositions, 2-orientations of quadrangulations, and rectangulations.

6 Baxter permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

We prove bijectively that Θk,ℓ counts Baxter permutations with k descents and ℓ rises.
The bijections involve the Min- and Max-tree of a permutation and the rectangulations from
the previous section. Some remarks on the enumeration of alternating Baxter permutations
are added.
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7 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

The bijections between families counted by Θk,ℓ have the nice property that they commute
with a half-turn rotation. This is exploited to count symmetric structures.

8 Schnyder Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Schnyder woods and 3-orientations of triangulations are known to be in bijection. We add
a bijection between Schnyder woods and bipolar orientations with a special property. Tracing
this special property through the bijections, we are able to find the number of Schnyder
woods on n vertices via Lindström Gessel-Viennot. This reproves a formula first obtained by
Bonichon.

2 Maps, Quadrangulations, and Orientations

A planar map, shortly called a map, is a connected graph (possibly with loops and multiple
edges) embedded in the plane with no edge-crossing. Two maps are considered the same if
the embeddings are isotopic. A map M has more structure than a graph, in particular M has
faces, which are the connected components of the plane split by the embedding. The unique
unbounded face is called the outer face (also called the infinite face) of M . The edges and
vertices are called outer or inner according to whether they are incident to the outer face or
not. An angle of M is a triple a = (v, e, e′) made of one vertex v and two edges incident to
v and consecutive around v. The face in the corresponding sector is the incident face of a.
A rooted map is a map with a distinguished edge, called the root, directed so as to have the
outer face on its left. The origin of the root is called the root-origin and the end of the root
is called the root-end. A plane graph is a rooted map without loops or multiple edges, and a
plane tree is a plane graph with a unique face.

Definition 2.1. A plane bipolar orientation is a pair O = (M, X), where M is a rooted plane

bipolar

orientation

map and X is an acyclic orientation of M , such that the unique source (a vertex with only
outgoing edges) is the root-origin s, and the unique sink (a vertex with only incoming edges)
is the root-end t.

A map is called 2-connected if it is loopless and has no separating vertex. It is well-known
that, if (M, X) is a plane bipolar orientation, then M is 2-connected. Conversely any rooted
2-connected map admits at least one bipolar orientation (this statement holds more generally
with “graphs” instead of “maps”).

Note.
Plane bipolar orientations yield geometric representations of graphs in various flavors (visi-
bility [43], floor planning [37, 30], straight-line drawing [44, 23]). The thesis of Ossona de
Mendez is devoted to studying their beautiful properties and applications [17]; see also [16]
for a detailed survey.

A map is bipartite if its vertices can be partitioned into black and white vertices such that
every edge connects a black vertex with a white vertex. Bipartite plane graphs are always
assumed to be endowed with their unique vertex bipartition such that the root-origin is
black. Quadrangulations are plane graphs with all faces of degree four. It is well-known that
quadrangulations are the maximal plane bipartite graphs, that is, any edge-addition either maximal

plane

bipartite

graphs

breaks bipartiteness or planarity.
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Definition 2.2. A separating decomposition is a pair D = (Q, Y ) where Q is a quadrangu-

separating

decomposi-

tion

lation and Y is an orientation and coloring of the edges of Q with colors red and blue such
that:

(1) All edges incident to s are ingoing red and all edges incident to t are ingoing blue.

(2) Every vertex v 6= s, t is incident to a non-empty interval of red edges and a non-empty
interval of blue edges. If v is white, then, in clockwise order, the first edge in the interval
of a color is outgoing and all the other edges of the interval are incoming. If v is black,
the outgoing edge is the clockwise last in its color (see Figure 1).

Figure 1: Edge orientations and colors at white and black vertices.

Let M be a rooted 2-connected planar map; the quadrangulation of M is the following rooted quadrangulation

map Q: The set of vertices of Q is VM ∪ FM , the union of the sets of vertices and faces of
M . The edges of Q correspond to incidences between a vertex and a face of M . Note that Q
naturally inherits a planar embedding from M ; see Figure 2 (ignore the edge orientations and
colors here). The faces of Q are in bijection to the edges of M , each face of Q is a quadrangle,
hence, Q is a quadrangulation. The 2-connectivity of M implies that Q is a simple graph.

Fix a two-coloring of Q so that the black vertices of Q correspond to the vertices of M
and the white vertices of Q correspond to the faces of M . As root-origin of Q choose the
root-origin s of M . The root-end of M , which is denoted t, is the vertex opposite to s in
the outer face of Q. The two extremities s and t of the root of M are also called the special
vertices of Q.

s

t

s

t

s

t

Figure 2: From a plane bipolar orientation to a separating decomposition.

This classical construction can be enriched in order to transfer a plane bipolar orientation
O = (M, X) into a separating decomposition of Q. The construction, based on two facts
about plane bipolar orientations is illustrated in Figure 2.

Fact V. Every vertex v 6= s, t of G has exactly two angles where the orientation of the edges
differ.

4



Fact F. Every face f of G has exactly two angles where the orientation of the edges coincide.

For every vertex of the quadrangulation Q different from those corresponding to special
vertices of M , the facts V and F specify two distinguished edges: On one case, at a vertex
v 6= s, t in M we can distinguish the left and the right of the two special angles. The edge
incident to v in Q that corresponds to the left special angle is the outgoing blue edge, the
edge that corresponds to the right special angle is the outgoing red edge. On the other case,
at a face f of M we have the source and the sink vertices. The edge in Q between f and the
source is the red outgoing edge of the vertex f in Q, and the edge between f and the sink is
the blue outgoing edge of f . The rules are illustrated in Figure 3. It is easily verified that
they yield a separating decomposition of Q.

Conversely, starting from a given separating decomposition on Q we obtain the unique
bipolar orientation on G inducing Q by using the rules backwards: At a vertex v the two
outgoing edges of Q split the edges of M into two blocks: the block where Q may have blue
edges is the block of incoming edges in the bipolar orientation, the edges of the other block
are the outgoing edges in the bipolar orientation. We skip the proof that this indeed yields a
bipolar orientation and summarize:

Figure 3: The transformation for a vertex and a face of a rooted map.

Proposition 2.3 (de Fraysseix, de Mendez and Rosenstiehl [16]). Plane bipolar orientations
with ℓ + 2 vertices and k + 2 faces are in bijection with separating decompositions with ℓ + 2
black vertices and k + 2 white vertices.

Note.
The two facts V and F have been rediscovered frequently, they can be found, e.g., in [16, 37,
43]. Actually, plane bipolar orientations can be defined via properties V and F. The bijection
of Proposition 2.3 is a direct extension of [16, Theorem 5.3].

We end this section with a digression. We show that separating decompositions are just
a colorful version of a simpler structure, 2-orientations.

Let Q be a quadrangulation with n faces. Since all faces of Q have degree four, the number
of edges of Q is twice the number of faces. Hence, from Euler’s relation |V | − |E| + |F | = 2,
the number of vertices of Q is n + 2.

Definition 2.4. An orientation of the edges of a quadrangulation Q is a 2-orientation if every 2-

orientationvertex, except s and t, has outdegree two.

Double-counting the edges of Q ensures that s and t are sinks in every 2-orientation.
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Theorem 2.5 (de Fraysseix and de Mendez [14]). Separating decompositions and 2-orienta-
tions of a quadrangulation Q are in bijection.

From the proof we obtain an additional property of a separating decomposition:

(3) The red edges form a tree directed towards s, and the blue edges form a tree directed
towards t.

The trees span all of V \ {s, t} and the respective sinks are s and t.

Note.
De Fraysseix and Ossona de Mendez [14] defined a separating decomposition via properties
(1), (2) and (3), i.e., they included the tree-property into the definition. In [14] it is also
shown that every quadrangulation admits a 2-orientation.

Proof. Forgetting the coloring, a separating decomposition clearly yields a 2-orientation. For
the converse we need to find the color of an edge. Define the left-right path of an edge (v, w) as left-right

paththe directed path starting with (v, w) and taking a left-turn in black vertices and a right-turn
in white vertices.

Claim A. Every left-right path ends in one of the special vertices s or t.

Proof of the claim. Suppose a left-right path closes a cycle. Let C be a simple cycle of a
left-right path. Since Q is bipartite the length of C is an even number 2k. The cycle C has
an interior and an exterior. Consider the submap RC of Q in the interior of C, including C.
If r is the number of vertices in the interior of C, then RC has r + 2k vertices and Euler’s
formula implies that RC has 2r + 3k − 2 edges. However, when we sum up the outdegrees
of the vertices we find that k vertices on C contribute 1 while all other vertices contribute 2,
which gives a total of 2r + 3k. This is a contradiction. △

Color an edge red if its left-right path ends is s and color it blue if the path ends in t. We
show that this coloring obeys the conditions of a separating decomposition.

Claim B. The two left-right paths starting at a vertex do not meet again.

Proof of the claim. Suppose that the two paths emanating from v meet again at w. The two
paths form a cycle C of even length 2k with r inner vertices. By Euler’s formula the inner
quadrangulation RC of C has 2r +3k− 2 edges. Split C into the two directed left-right paths
B and B′ from v to w. From the left-right rule it follows that if all black vertices on B have
an edge pointing into the interior of C, then all white vertices on B′ have this property. From
this it follows that there are at least k − 1 edges pointing from C into its interior. Hence,
there are at least 2r + 3k − 1 edges. This is a contradiction. △

Consequently, the two outgoing edges of a vertex v receive different colors. It follows that
the orientation and coloring of edges is a separating decomposition.

In Section 8 we use this and some previous bijections to give an independent proof for a
beautiful formula of Bonichon [6] for the number of Schnyder woods on triangulations with
n vertices.

3 From Separating Decompositions to Twin Pairs of Binary

Trees

An embedding of a graph is called a 2-book embedding if the vertices are arranged on a single 2-book

embedding
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line so that all edges are either below or above the line. As we show next, a separating
decomposition S easily yields a 2-book embedding of the underlying quadrangulation Q.

Define a bicolored angle of S as an angle of Q delimited by two edges of different colors
(one red and one blue). With a little case analysis (working with the rules given in Definition
2.2) one easily shows that each inner face f of Q has exactly two bicolored angles. Define the
separating curve for f as a simple curve inside f connecting the two vertices incident to the
bicolored angles of f . Define the equatorial line L of S as the union of all separating curves equatorial

lineof inner faces. The definition of a separating decomposition implies that each inner vertex
of Q has degree two in the equatorial line, while s and t have degree zero and the two white
vertices of the outer face have degree one (see Figure 4). This implies that the equatorial
line is the vertex-disjoint union of a path and possibly a collection of cycles spanning all the
vertices in V \ {s, t}.

Lemma 3.1. Given a quadrangulation Q endowed with a separating decomposition S, the
equatorial line of S consists of a single path that traverses every inner vertex and every inner
face of Q exactly once. In addition, L separates the blue and the red edges.

Proof. Assume that the equatorial line L has a cycle C. Consider a plane drawing of Q ∪ C.
The cycle C splits the drawing into an inner and an outer part, both special vertices s and
t being in the outer part. The red edges of all vertices of C emanate to one side of C while
the blue edges go to the other side. Therefore, it is impossible to have a monochromatic path
from a vertex v ∈ C to both special vertices. With property (3) of separating decompositions,
it thus follows that there are no cycles, so the equatorial line is a single path. We have already
noted that L spans all the vertices in V \ {s, t} and traverses every inner face. The result
follows.

To produce a 2-book embedding, stretch the equatorial line as a straight horizontal line
such that the lower halfplane contains all red edges and the upper one contains all blue edges
of S. This can be done with a homeomorphism of the plane, so that the drawing remains
crossing-free. Finally use another homeomorphism to move s and t onto the equatorial line
so that s is the leftmost vertex and t is the rightmost one on the line; see Figure 4, where the
equatorial line is represented by the crooked curve in the left picture.

t

s

t

s

Figure 4: A quadrangulation Q with a separating decomposition S, and the 2-book embedding
induced by the equatorial line of S.
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Definition 3.2. An alternating layout of a plane tree T with n + 1 vertices is a non-crossing alternating

layoutdrawing of T such that its vertices are placed at different points of the x-axis and all edges
are embedded in the halfplane above the x-axis (or all below). Moreover, for every vertex v
it holds that all its neighbors are on one side, either they are all left of v or all right of v. In
these cases we call the vertex v respectively a right or a left vertex of the alternating layout. right

left vertexFinally, the root-origin and the root-end have to be the two extremal points on the axis.

An alternating layout of a plane tree is uniquely determined by the placement of the
root-origin (left/right) and the choice of a halfplane for the edges (above/below). We denote
the four choices with symbols, e.g., ւ denotes that the root-origin is left and the halfplane
below; the symbols տ, ր and ց represent the other three possibilities. By induction on the
height, one easily shows that if the root-origin is at the left extremity then all vertices at even
height (colored black) are left and all vertices at odd height (colored white) are right. And
similarly if the root-origin is at the right extremity then the vertices at even height are right
and the vertices at odd height are left.

By convention, if the four outer vertices of a quadrangulation in clockwise order are
(s, v, t, v′), then the blue tree has root-origin t and root-end v, and the red tree has root-
origin s and root-end v′.

Proposition 3.3. The 2-book embedding induced by a separating decomposition yields si-
multaneous alternating layouts of the red tree and the blue tree, that are respectively ւ and
ր.

Proof. This follows directly by induction on the height of each tree, using the local rules in
Definition 2.2. See also Figure 4 for an example.

Note.
A proof of Proposition 3.3 was given by Felsner, Huemer, Kappes and Orden [20]. These
authors study what they call strong binary labelings of the angles of a quadrangulation.
They show that these labelings are in bijection with 2-orientations and separating decomposi-
tions. In this context they find the 2-book embedding; their method consists in ranking each
vertex v on the spine of the 2-book embedding according to the number of faces in a specific
region R(v). The original source for a 2-book embedding of a quadrangulation is [15], by de
Fraysseix, Ossona de Mendez and Pach. General planar graphs may require as many as four
pages for a book embedding, Yannakakis [45].

Alternating layouts of plane trees in our sense were studied by Rote, Streinu and Santos [38]
as non-crossing alternating trees. Gelfand et al. [26] call this class of trees standard trees;
they show that these trees are a Catalan family. In [38] connections with rigidity theory and
the geometry of the associahedron are established.

As we have seen a separating decomposition yields a pair of plane trees, but, which pairs of
trees arise this way? To answer this question we introduce the notion of fingerprints. The
full answer to this question is given below in Theorem 3.6. As far as we know this theorem is
new. It has the merit of translating problems on 2-orientations into problems on two not too
dependent trees.

The unique ւ-alternating layout of T , is obtained by starting at the root and walking
clockwise around T , thereby numbering the vertices with consecutive integers according to
the following rules: The root is numbered 0 and all vertices in the color class of the root

8



receive a number at the first visit while the vertices in the other color class receive a number
at the last visit. Figure 5 shows an example. Rules for the other types of alternating layouts
are:

տ-layout: walk counterclockwise, root class at first visit, other at last visit.

ր-layout: walk counterclockwise, root class at last visit, other at first visit.

ց-layout: walk clockwise, root class at last visit, other at first visit.

10 2 3 4 5 6 7 8 9 10 1514131211
0

1

2

34

5

6

7

8

91011

12

1314

15

Figure 5: A tree, the numbering and the ւ-alternating layout.

The ւ-fingerprint, denoted αւ(T ), of a rooted plane tree T , is a 0, 1 string which has ւ-

fingerprinta 1 at position i (αi = 1) if the ith vertex in the ւ-alternating layout of T is a left
vertex; otherwise, if the vertex is a right vertex then αi = 0. The ւ-fingerprint of the
tree T from Figure 5 is αւ(T ) = 1010001010000110. Other types of fingerprints are de-
fined by the same rule. For example the ր-fingerprint of the tree in Figure 5 is αր(T ) =
1001111010111010. With the numbering from Figure 5 this corresponds to the vertex order
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.

In any of the four layouts, the first vertex is a left vertex and the last one a right ver-
tex. Therefore, a fingerprint has always a 1 as first entry and a 0 as last entry. A reduced
fingerprint α̂ւ(T ) of a tree T is obtained by omitting the first and the last entry from the reduced

fingerprintcorresponding fingerprint. For a 0, 1 string s we define ρ(s) to be the reverse string and s to
be the complemented string. For example: if s = 11010, then ρ(s) = 01011, s = 00101, and
ρ(s) = ρ(s) = 10100.

Lemma 3.4. For every tree T one has αւ(T ) = ρ(αր(T )) (and αտ(T ) = ρ(αց(T ))).

Proof. Take the ր-alternating layout of T and rotate it by 180◦. This results in the ւ-
alternating layout. Observe what happens to the fingerprint.

Definition 3.5. A pair (S, T ) of rooted, plane trees whose reduced fingerprints satisfy
α̂ւ(S) = α̂ր(T ), or equivalently α̂ր(S) = ρ(α̂ր(T )), is called a twin pair of plane trees. twin pair of

plane trees
Theorem 3.6. There is a bijection between twin pairs of plane trees (S, T ) on n vertices and
separating decompositions of quadrangulations on n + 2 vertices.

Proof. The mapping from separating decompositions on n + 2 vertices to twin pairs of plane
trees was already indicated. To recapitulate: a separating decomposition yields a 2-book
embedding (Proposition 3.3). The 2-book embedding induces a simultaneous alternating

9



layout of the red tree S+ and the blue tree T+. Every non-special vertex v 6= s, t is a left
vertex in one of the trees S+ and T+ and right vertex in the other one (Proposition 3.3). In
terms of fingerprints this reads αւ(S+) + 0 = 1 + αր(T+). Trees S and T are obtained by
deleting the left child of the root in S+ and the right child of the root in T+; they are both
leaves and correspond to the two non-special outer vertices of Q. Since trees S and T satisfy
α̂ւ(S) = α̂ր(T ), (S, T ) is a twin pair of plane trees.

The inverse map is illustrated with an example in Figure 6. Let (S, T ) be a twin pair of
plane trees. Augment both plane trees S and T by a new vertex, which is made the rightmost
child of the root. Let S+ and T+ be the augmented trees, whose vertices at even height are
colored black and vertices at odd height are colored weight. Note that α̂ւ(S+) = 0 + α̂ւ(S)
and α̂ր(T+) = α̂ր(T ) + 1. Since the first entry of a non-reduced fingerprint is always 1 and
the last one is always 0 it follows that αւ(S+) + 0 = 1 + αր(T+).

Consider the ւ-alternating layout of S+ and move the vertices in this layout to the
integers 0, .., n. Similarly, the ր-alternating layout of T+ is placed such that the vertices
correspond to the integers 1, .., n + 1. At every integer 0 < i < n + 1, a vertex of S+ and a
vertex of T+ meet. We identify them. As a consequence of the complemented fitting of the
fingerprints, a pair of identified vertices are of the same color, hence the graph Q = S+∪T+ is
bipartite. Note that every non-special vertex is a left vertex in one of the layouts and a right
vertex in the other. Hence, a pair uv can be an edge in at most one of S and T , otherwise u
would have a neighbor on its right in both S and T . Thus Q is simple, bipartite and planar.
Since Q has 2n edges and n+2 vertices, it follows from the Euler formula that it has n faces.
The count of edge-face incidences implies that Q is a quadrangulation. Finally, the edges of
T+ are colored blue and oriented to the root-origin t of T+, and the edges of S+ are colored
red and oriented to the root-origin s of S+. This yields a separating decomposition on Q,
with T+ as blue tree and S+ as red tree.

0 1 0 01

10 0 0 01 1
S

0 0 1 1 0α̂ր(S)

rT

T

rS

α̂ր(T ) 0 1 0 011 1

T+

rT

S+

rS

Figure 6: A twin pair of plane trees (S, T ). The ր-alternating layout of T+ and the ւ-
alternating layout of S+ properly adjusted. The induced separating decomposition of a quad-
rangulation.

4 Bijections for Catalan Families: The Combinatorics of Fin-

gerprints

Vertices of plane trees are partitioned into leaves and inner nodes, depending on whether the
degree is one or greater than one. Let r be the root-origin of a plane tree. In our context
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a binary tree is a plane tree such that each inner node v 6= r has degree 3 and r has degree binary tree

2. In other words, when drawing the tree in a top-to-bottom manner with r at the top, each
inner node has two children. The fingerprint of a binary tree T is a 0, 1 string which has a 1 fingerprint

at position i if the ith leaf of T is a left child, otherwise, if the leaf is a right child the entry
is 0. In Figure 7 the tree T on the right side has α(T ) = 1011101011110010. The reduced
fingerprint α̂(T ) is obtained by omitting the first and the last entry from α(T ). Note that reduced

fingerprintthe first entry is always 1 and the last one is always 0.

Proposition 4.1. There is a bijection T → B which takes a plane tree T with n vertices to
a binary tree B with n leaves such that α̂ր(T ) = α̂(B).

Proof. The bijection makes a correspondence between edges of the plane tree and inner nodes
of the binary tree; see Figure 7. Embed T with vertices on the integers from 0 to n. With
an edge i, j of T associate an inner node xij for B, which is to be placed at ( i+j

2 , j−i
2 ). Draw

line segments from the vertex (i, 0) to xij and from (j, 0) to xij . Doing this for every edge of
T results in a drawing of the binary tree B.

0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1

Figure 7: An ր- alternating tree T and the binary tree B.

The converse is even simpler. Every inner node x of the binary tree gives rise to an edge
connecting the leftmost leaf below x to the rightmost leaf below x.

Note.
Binary trees with n + 1 leaves, as well as plane trees with n + 1 vertices, are counted by the
Catalan number Cn = 1

n+1

(

2n
n

)

. Catalan numbers are found in The On-Line Encyclopedia of Catalan

numberInteger Sequences [41] as sequence A000108. Stanley [42, Exercise 6.19] collected 66 Catalan
families.

Although the subject is well-studied, we include a particular proof showing that binary trees
are a Catalan family. Actually, we prove a more refined count related to Narayana numbers.
The proof is used later in the context of Baxter numbers.

To start with, we associate another 0, 1 string with a binary tree T . The bodyprint β(T ) bodyprint

is obtained from a visit to the inner nodes of T in in-order; that is β(T ) = (β(TL), βx, β(TR))
when TL and TR are the left and right subtrees of the inner node x. The entry of βx is a 1
if node x is a right-child or it is the root. If the node is a left-child, then βx = 0. Note that
if the tree T is drawn such that all leaves are on a horizontal line, then there is a one-to-one
correspondence between inner nodes and the gaps between adjacent leaves: the gap between
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leaves vi and vi+1 corresponds to the least common ancestor of vi and vi+1. Conversely, an
inner node x corresponds to the gap between the rightmost leaf in the left subtree of x and
the leftmost leaf in the right subtree of x. This correspondence maps the left-to-right order
of gaps between leaves to the in-order of inner nodes. Since the root contributes a 1, the last
entry of the bodyprint of a tree is always 1. Therefore, it makes sense to define the reduced
bodyprint β̂(T ) as β(T ) minus the last entry. Figure 8 shows an example. reduced

bodyprint

0 1 1 1 0 1 0 1 1 1 1 0 0α̂ :
1 1111 10 0 0 00 11β̂ :

Figure 8: A binary tree with reduced bodyprint β̂ and reduced fingerprint α̂.

Lemma 4.2. Let T be a binary tree with with k left leaves and n − k + 1 right leaves. The
reduced fingerprint α̂(T ) and the reduced bodyprint β̂(T ) both have length n − 1. Moreover:

(1)
n−1
∑

i=1

α̂i =
n−1
∑

i=1

β̂i = k − 1 (2)

j
∑

i=1

α̂i ≥

j
∑

i=1

β̂i for all j = 1, . . . , n − 1.

Proof. Consider a drawing of T where every edge has slope 1 or −1, as in Figure 8. The
maximal segments of slope 1 in this drawing define a matching M between the k left leaves,
i.e., 1-entries of α(T ), and inner nodes which are right-children including the root, i.e., 1-
entries of β(T ). The left part of Figure 9 indicates the correspondence. The reduction α̂
(resp. β̂) has exactly one 1-entry less than α (resp. β). This proves (1).

111

r

1

xj

vi
111

1

Figure 9: Illustrations for the proof of Lemma 4.2. The pair (vi, xj) is in M .

For (2), let v0, v1, . . . , vn be the set of leaves in left-to-right order and let x1, . . . , xn be the
in-order of inner nodes. Note that vi determines αi and xi determines βi. Let (vi, xj) be a
pair from the matching M defined above; hence, αi = 1 and βj = 1. Since vi is the leftmost
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leaf below xj and the gap corresponding to xj starts at the rightmost vertex vj−1 of the left
subtree of xj , we find that i ≤ j − 1. This gives a matching between the 1-entries of α and
the 1-entries of β, with the property that the index of the 1-entry of α is always less that the
index of the mate in β.

To conclude the inequality for the reduced strings we have to address another detail:
the mate of the root in M is the leaf v0, which is not represented in α̂, and there is a leaf
whose mate in M is the last inner node xn, which is not represented in β̂. Consider the
ordered sequence xj0 , xj1 , . . . , xjs

of all vertices on the rightmost branch of T , such that xj0

is the root r and xjs
= xn. The right part of Figure 9 may help to see that in M we have

the pairs (v0, xj0), (vj0 , xj1), . . . (vjs−1
, xn); in particular α0 = αj0 = . . . = αjs−1

= 1 and
βj0 = βj1 = . . . = βn = 1. Hence, we can define a matching M ′ which is as M except that
v0 and xn remain unmatched and the pairs (vji

, xji
) with 0 ≤ i ≤ s − 1 are matched. This

matching M ′ between the 1-entries of α̂ and the 1-entries of β̂ has the property that the index
of the 1-entry of α̂ is always at most the index of the mate in β̂. This proves (2).

Definition 4.3. Let
〈

n
k

〉

be the set of cardinality
(

n
k

)

consisting of all 0,1-strings of length n

with exactly k entries 1. For σ, τ ∈
〈

k+ℓ
k

〉

we say that τ dominates σ, denoted τ ≥dom σ, if dominates
∑j

i=1 τi ≥
∑j

i=1 σi for all j = 1, . . . , n.

Theorem 4.4. The mapping T ↔ (β̂, α̂) is a bijection between full binary trees with k + 1
left leaves and ℓ + 1 right leaves and pairs (β̂, α̂) of 0, 1 strings in

〈

k+ℓ
k

〉

with α̂ ≥dom β̂.

Proof. From Lemma 4.2 we know that reduced body- and fingerprint have the required prop-
erties. To show that the mapping T ↔ (β̂, α̂) is a bijection we use induction.

First note that α̂ = 0ℓ1k implies β̂ = α̂, and that there are unique trees with these reduced
finger- and bodyprints.

If α̂ has a different structure, then there is an i such that α̂i−1α̂i = 10. Decompose
α̂(T ) = α̂′ α̂i−1 α̂i α̂′′ and β̂(T ) = β̂′ β̂i β̂′′ and define α̂∗ = α̂′ δ α̂′′ and β̂∗ = β̂′ β̂′′, where

δ = 1 if β̂i = 0 and δ = 0 if β̂i = 1. Depending on the value of δ = β̂i, this can be interpreted
as either having removed the two entries β̂i = 1 and α̂i−1 = 1 or the two entries β̂i = 0 and
α̂i = 0 from α̂ and β̂. It is easy to check that α̂∗ ≥dom β̂∗. By induction there is a unique
tree T ∗ with n leaves such that (β̂(T ∗), α̂(T ∗)) = (β̂∗, α̂∗). Making the ith leaf of T ∗ an inner
node with two leaf children yields a tree T with (β̂(T ), α̂(T )) = (β̂, α̂).

It remains to show that T is the unique tree with (β̂(T ), α̂(T )) = (β̂, α̂). To see this note
that in such a tree the leaves vi−1, vi are a left leaf followed by a right leaf. The leaves vi−1

and vi are children of the inner node xi, the value β̂i = 1 or β̂i = 0 depends on whether xi is
itself a left or a right child. Hence pruning the two leaves vi−1 and vi we obtain the tree T ∗

considered above.

An up-right lattice path from (0, 0) to (ℓ, k), is a path in the square lattice using only steps up-right

lattice pathto the right, (addition of (1, 0) to the current position) and steps up (addition of (0, 1) to
the current position). There is a natural correspondence between 0, 1 strings σ ∈

〈

k+ℓ
k

〉

and
up-right lattice paths from (0, 0) to (ℓ, k): it takes an entry 1 into a step to the right and an
entry 0 to a step up.

This correspondence yields of a correspondence between pairs (σ, τ) ∈
〈

k+ℓ
k

〉

with τ ≥dom

σ, and pairs (Pσ, Pτ ) of non-intersecting, i.e., vertex disjoint, lattice paths, where Pσ is from
(0, 1) to (k, ℓ + 1) and Pτ is from (1, 0) to (k + 1, ℓ). This yields a new formulation for
Theorem 4.4:

13



Theorem 4.5. There is a bijection between binary trees with k + 1 left leaves and ℓ + 1 right
leaves and pairs (Pβ , Pα) of non-intersecting up-right lattice paths, where Pβ is from (0, 1) to
(ℓ, k + 1) and Pα is from (1, 0) to (ℓ + 1, k).

The advantage of working with non-intersecting lattice paths is that now we can apply
the Lemma of Lindström Gessel-Viennot [27].

Theorem 4.6. The number of binary trees with k + 1 left leaves and ℓ + 1 right leaves is

det

(
(

k+ℓ
k

) (

k+ℓ
k−1

)

(

k+ℓ
k+1

) (

k+ℓ
k

)

)

=
1

k + ℓ + 1

(

k + ℓ + 1

k

)(

k + ℓ + 1

k + 1

)

This is the Narayana number N(k + ℓ + 1, k + 1). Our bijections imply
∑n−1

k=1 N(n, k) = Narayana

number1
n

(

2n
n−1

)

= Cn; this well-known formula can also be derived as an easy application of Van-
dermond’s convolution. The following proposition summarizes our findings about Narayana
families.

Proposition 4.7. The Narayana number N(k + ℓ + 1, k + 1) counts

• plane trees with k + 1 left vertices and ℓ + 1 right vertices in the alternating layout,

• binary trees with k + 1 left leaves and ℓ + 1 right leaves,

• pairs (σ, τ) of 0, 1 strings in
〈

k+ℓ
k

〉

with τ ≥dom σ,

• pairs (P1, P2) of non-intersecting up-right lattice paths, where P1 is from (0, 1) to (k, ℓ+1)
and P2 is from (1, 0) to (k + 1, ℓ).

Note.
Narayana numbers can be found in The On-Line Encyclopedia of Integer Sequences [41] as
sequence A001263. The Narayana numbers (actually, a q-analogue of them) were first studied
by MacMahon [33] and were later rediscovered by Narayana [35]. Stanley [42, Exercise 6.36]
recommends to look for decompositions into subsets counted by Narayana numbers in Catalan
families. The notion of fingerprints is implicit in Dulucq and Guibert [18]. The combination
with the bodyprint and the related bijections are new, according to our knowledge.

5 Four Incarnations of Twin Pairs of Trees

After the Catalan and Narayana digression we now come back to twin pairs of trees. We use
the bijections encountered during the digression to give some other interpretations of twin
pairs of plane trees.

Definition 5.1. A pair (A, B) of binary trees whose fingerprints satisfy α̂(A) = ρ(α̂(B)) is
called a twin pair of binary trees. twin pair of

binary trees
Theorem 5.2. There is a bijection between twin pairs of plane trees on n vertices and twin
pairs of binary trees with n leaves.

Proof. Let (A, B) be a twin pair of binary trees. Apply the correspondence from Proposi-
tion 4.1 to both. This yields trees S and T such that α̂ր(S) = α̂(A) and α̂ր(T ) = α̂(B).
From α̂(A) = ρ(α̂(B)) we conclude α̂ր(S) = ρ(α̂ր(T )) which is the defining property for twin
pairs of plane trees.

The next incarnation of twin pairs of plane trees is in terms of dissections of a square.
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Figure 10: A twin pair of binary trees and the associated rectangulation.

Definition 5.3. Let X be a set of points in the plane and let R be an axis-aligned rectangle
which contains X in its open interior. A rectangulation of X is a subdivision of R into rectangulation

of Xrectangles by non-crossing axis-parallel segments, such that every segment contains a point
of X and every point lies on a unique segment.

We are mainly interested in rectangulations of diagonal sets, i.e., of the sets Xn−1 =
{(i, n − i) : 1 ≤ i ≤ n − 1}. In this case the enclosing rectangle R can be chosen to be the
square [0, n] × [0, n].

From a twin pair of binary trees on n vertices we can construct a rectangulation of Xn−2:
Let (S, T ) be a twin pair of binary trees such that both trees are drawn with the same scale,
±45◦ degree slopes, and leaves on the x-axis. Rotate tree T by 180◦ and adjust them such
that the leaves match accordingly. This yields a tilted rectangulation of Xn−2. Figure 10
shows an example. Conversely, cutting a rectangulation along the diagonal yields a twin pair
of binary trees.

The following theorem follows from the above discussion.

Theorem 5.4. There is a bijection between twin pairs of binary trees with n leaves and
rectangulations of Xn−2.

Note.
Hartman et al. [29] and later independently de Fraysseix et al. [15] prove that it is possible
to assign a set of internally disjoint vertical and horizontal segments to the vertices of any
bipartite map G such that two segments touch if, and only if, there is an edge between the
corresponding vertices. A proof of this result can be given along the following lines. From G
we obtain a quadrangulation Q by adding edges and vertices. Augment Q with a 2-orientation
and trace the mappings from 2-orientations via twin pairs of plane trees to a rectangulation of
a diagonal point set. The horizontal and vertical segments through the points are a touching
segment representation for Q. Deleting some and retracting the ends of some other segments
yields a representation for G. A similar observation was made by Ackerman, Barequet and
Pinter [1].

Next, we map twin pairs of binary trees to triples of non-intersecting lattice paths. The map
is based on the fingerprint and bodyprint of a binary tree, and the lattice paths associated to
them.
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Recall that the bijection from Theorem 4.5 maps a binary tree T with k +1 left and ℓ+1
right leaves to a pair (Pβ(T ), Pα(T )) of non-intersecting up-right lattice paths, where Pβ(T )
is from (0, 1) to (ℓ, k + 1) and Pα(T ) is from (1, 0) to (ℓ + 1, k).

A point reflection at (0, 0) followed by a translation by (ℓ + 2, k) maps (Pβ(T ), Pα(T )) to
the pair (P ∗

α(T ), P ∗
β (T )) of non-intersecting up-right lattice paths, where P ∗

α(T ) is from (1, 0)
to (ℓ + 1, k) and P ∗

β (T ) is from (2,−1) to (ℓ + 2, k − 1).
Let (S, T ) be a twin pair of binary trees with k+1 left and ℓ+1 right leaves. Consider the

triple (Pβ(S), Pα(S), P ∗
β (T )). We know that Pβ(S) and Pα(S) are non-intersecting. Since by

definition α̂(S) = ρ(α̂(T )), it is easy to see that P ∗
α(T ) = Pα(S). Therefore, we also know that

Pα(S) and P ∗
β (T )) are non-intersecting. Since the first two of these paths uniquely determine

S and the last two uniquely determine T we obtain, via a translation of the three paths by
one unit up, the following theorem.

0 1 1 1 1 1 1 1 10 0 0 0
0 0 00 1 1 1 1 1 1 10 1

1 1 1 1 1 1 1 0 1 000 0

Figure 11: A twin pair of trees binary and its triple of non-intersecting lattice paths. The
fingerprint and its path are emphasized.

Theorem 5.5. There is a bijection between twin pairs of binary trees with k + 1 left leaves
and ℓ + 1 right leaves and triples (P1, P2, P3) of non-intersecting up-right lattice paths, where
P1 is from (0, 2) to (k, ℓ + 2), P2 is from (1, 1) to (k + 1, ℓ + 1), and P3 is from (2, 0) to
(k + 2, ℓ).

Again we can apply the Lemma of Lindström Gessel-Viennot.

Theorem 5.6. The number of twin pairs of binary trees with k +1 left leaves and ℓ+1 right
leaves is

det







(

k+ℓ
k

) (

k+ℓ
k−1

) (

k+ℓ
k−2

)

(

k+ℓ
k+1

) (

k+ℓ
k

) (

k+ℓ
k−1

)

(

k+ℓ
k+2

) (

k+ℓ
k+1

) (

k+ℓ
k

)






= 2

(k + ℓ)! (k + ℓ + 1)! (k + ℓ + 2)!

k! (k + 1)! (k + 2)! ℓ! (ℓ + 1)! (ℓ + 2)!
= Θk,ℓ

The number Θk,ℓ has some quite nice expressions in terms of binomial coefficients, e.g.,

Θk,ℓ = 2
(k+1)2 (k+2)

(

k+ℓ
k

)(

k+ℓ+1
k

)(

k+ℓ+2
k

)

or Θk,ℓ = 2
(n+1) (n+2)2

(

k+ℓ+2
k

)(

k+ℓ+2
k+1

)(

k+ℓ+2
k+2

)

. The total

number of twin binary trees with n + 2 leaves is given by the Baxter number Baxter

number
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Bn+1 =
n

∑

k=0

Θk,n−k,

whose initial values are 1, 2, 6, 22, 92, 422, 2074, 10754. The next proposition collects families
that are, due to our bijections, enumerated by Θ-numbers.

Proposition 5.7. The number Θk,ℓ counts

• triples (P1, P2, P3) of non-intersecting up-right lattice paths, where P1 is from (0, 2) to
(ℓ, k + 2) and P2 is from (1, 1) to (ℓ + 1, k + 1) and P3 is from (2, 0) to (ℓ + 2, k) .

• twin pairs of binary trees with k + 1 left leaves and ℓ + 1 right leaves,

• rectangulations of Xk+ℓ with k horizontal and ℓ vertical segments,

• twin pairs of plane trees with k + 1 left vertices and ℓ + 1 right vertices in the alternating
layout,

• separating decompositions of quadrangulations with k + 2 white and ℓ + 2 black vertices,

• 2-orientations of quadrangulations with k + 2 white and ℓ + 2 black vertices.

• plane bipolar orientations with k + 2 faces and ℓ + 2 vertices.

Note.
In 2001 R. Baxter guessed and checked [4, Eq 5.3] that plane bipolar orientations are counted
by the Θ-numbers. His verification is based on algebraic manipulations on generating functions
of 2-connected planar maps weighted by their Tutte polynomials.

The concept of twin pairs of binary trees is due to Dulucq and Guibert [18]. They also give a
bijection between twin pairs of binary trees and triples of non-intersecting lattice paths. The
bijection also uses the fingerprint as the middle path, the other two are defined differently.
In [19] they extend their work to include some more refined counts. A very good entrance
point for more information about Baxter numbers is The On-Line Encyclopedia of Integer
Sequences [41, A001181].

Fusy, Schaeffer and Poulalhon [25] gave a direct bijection from separating decompositions to
triples of non-intersecting paths in a grid. Similarly as in this article, they obtain the triple of
paths from a triple of words encoding the blue tree and the red tree. However, as opposed
to ours, their encoding breaks the symmetry between the blue and the red tree, since they
associate two words with the blue tree and one word with the red tree.

Ackerman, Barequet and Pinter [1] also have the result that the number of rectangulations
of Xn is the Baxter number Bn+1. Their proof is via a recurrence formula obtained by Chung
et al. [12]. They also show that for a point set Xπ = {(i, π(i)) : 1 ≤ i ≤ n} to have exactly
Bn+1 rectangulations it is sufficient that π is a Schröder permutation, i.e., a permutation
avoiding the patterns 3− 1− 4− 2 and 2− 4− 1− 3. They conjecture that whenever π is a
permutation that is not Schröder, the number of rectangulations of Xπ is strictly larger than
the Baxter number.

In contrast to the nice formulas for the number of 2-orientations of quadrangulations on n
vertices, very little is known about the number of 2-orientations of a fixed quadrangulation Q.
In [22] it is shown that the maximal number of 2-orientations a quadrangulation on n vertices
can have is asymptotically between 1, 47n and 1, 91n. To our knowledge, the computational
complexity of the counting problem is open.
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6 Baxter Permutations

Definition 6.1. The max-tree Max(π) of a permutation π is recursively defined. The basis max-tree

is the unlabeled one-node tree Max(∅). Otherwise write π as π = πleft, z, πright, where z is
the maximum entry of π. Then Max(π) has root labeled z, left subtree Max(πleft) and right
subtree Max(πright). Figure 12 shows an example.

The min-tree Min(π) is defined similarly but with z being the minimum entry of π.

The max-tree of a permutation is a binary tree. The ith leaf vi of Max(π) from the left
corresponds to the adjacent pair (πi−1, πi) in the permutation π. Leaf vi is a left leaf if, and
only if, (πi−1, πi) is a descent, i.e., if πi−1 > πi. A dual characterization holds for Min(π):
The ith leaf yi of Min(π) from the left is a left leaf if, and only if, (πi−1, πi) is a rise, i.e., if
πi−1 < πi.

With these definitions and observations and recalling that ρ(π) denotes the reverse per-
mutation of π we obtain:

Proposition 6.2. For a permutation π of [n − 1] the pair (Max(π), Min(ρ(π))) is a pair of
twin binary trees.

5 2 3 6 4 7 1

3

1

6 3 5271 4

Max(π) Min(ρ(π)) 2

5 71 4

5
3

2

6

7

4

6

Figure 12: The trees Max(π) and Min(ρ(π)) associated with π = 1, 7, 4, 6, 3, 2, 5.

Identifying a twin pair of binary trees (S, T ) with a rectangulation R, it is easy to char-
acterize all permutations π such that (Max(π), Min(ρ(π))) = (S, T ). Consider two orders on
the rectangles of R: the left-to-right order is the total ordering of the rectangles according to left-to-right

ordertheir intersections with the x-axis. The bottom-to-top order, is the partial order obtained as
bottom-to-

top

order

transitive closure of the relation → on rectangles, where r → r′ iff r and r′ are adjacent and
r′ is either top-right or top-left of r along the adjacency-segment. The bottom-to-top order
is denoted (R,≤). A ranking for R is a labeling of the n rectangles of R with distinct labels

rankingin [1..n]. The rectangle labeled k is denoted R(k). With each ranking one associates the
permutation π such that, for i ∈ [1..n], π(i) is the label of the ith rectangle in the left-to-right
order. A ranking is called admissible for R if it is a linear extension of the bottom-to-top admissible

for Rorder. Accordingly, permutations associated with admissible rankings are called admissible
permutations for R, see Figure 13. The permutations that are mapped to R are exactly the
admissible permutations for R.

The generic procedure to generate admissible rankings for R, i.e., linear extensions of the
bottom-to-top order (R,≤), is as follows: “At each step i, for i from n to 1, calling L the set
of rectangles already labeled and U the set of rectangles not labeled, pick a rectangle that is
maximal in (U ,≤) and assign label i to it”.

18



2

1

3

5
4 5 23 1

3

4
5

4

2

1

234 1

5

7

6 7
6

7

6

6
7

Figure 13: The bottom-to-top relation of a rectangulation R, an admissible ranking of R and
the associated admissible permutation with max- and min-trees.

Definition 6.3. A Baxter permutation is a permutation which avoids the pattern 2–41–3 and Baxter

permutation3–14–2. That is, π is Baxter if there are no indices i < j, j + 1 < k with πj+1 < πi < πk < πj

nor with πj+1 > πi > πk > πj .

Theorem 6.4 (Dulucq and Guibert [18]). There is a bijection between twin binary trees with
n leaves and Baxter permutations of [n − 1].

The proof of this theorem actually just requires the proof of one property. Indeed, from
the above discussion characterizing the pre-images of a twin pair of binary trees, we just have
to show that every rectangulation R has exactly one admissible permutation that is Baxter.
We will show that to generate an admissible Baxter permutation for R there is a unique choice
for the maximal element of (U ,≤) in each step of the above mentioned generic procedure.
This implies that the admissible Baxter permutation for R is unique.

Definition 6.5. For each step i from n to 1 of the generic procedure generating admissi-
ble rankings, the good rectangle r is the unique maximal rectangle in (U ,≤) satisfying the
following conditions.

• If i = n then r is the unique maximal rectangle of (R,≤).

• If i < n and the south-corner of R(i + 1) is a (a left child in tree T ), then r is the
next maximal element of U to the left of R(i + 1).

• If i < n and the south-corner of R(i + 1) is a (a right child in tree T ), then r is the
next maximal element of U to the right of R(i + 1).

An example for the execution of the procedure with the choice of the good rectangle at
each step is shown in Figure 14. In the figure the arrows are placed at the south-corner of
the rectangle that was numbered last and point to the direction where the next number is to
be placed.

Note that at each step, the boundary between the set L of already labeled rectangles and
the set U of still unlabeled rectangles is a sequence s1, . . . , sk of segments of slopes alternatively
+1 or −1, and such that the interior of each segment si, 1 ≤ i ≤ k, intersects the horizontal
axis of the rectangulation R (calling horizontal axis of R the line passing by all points of R).
This property (easy to show by induction) has to be kept in mind when reading the proofs
of the next two lemmas.
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Figure 14: Generating a Baxter permutation from a rectangulation. The final state shows
the permutation with its min- and max-trees.

Lemma 6.6. The choice of the good rectangle at each step yields a Baxter permutation.

Proof. Let us show that the algorithm does not produce the pattern 2–41–3 (one proves
similarly that it does not produce 3–14–2). Let 1 ≤ a < b < c < d ≤ n. Going for
a contradiction we assume that there are rectangles R(b), R(d), R(a), R(c) in this order
from left-to-right, with R(d) immediately to the left of R(a) on the horizontal axis. Choose c
minimal with this property and consider the moment at which R(c) gets labeled, see Figure 15
(where p is the south tip of R(c)).

R(a)
U

L

p

r

R(c)

R(d)

Figure 15: A situation as discussed in the proof of Lemma 6.6.

At that step let L be the set of already labeled rectangles (rectangles R(i) with i ≥ c)
and U the set of not yet labeled rectangles (rectangles R(i) with i < c). In the sequence
s1, . . . , sk of segments forming the boundary between L and U , let si be the one that has
R(d) on its left and R(a) on its right when meeting the horizontal axis of R. Since R(d) ∈ L
and R(a) ∈ U , si has slope +1. Let r be the rectangle whose north-tip is the top extremity
of si. Then r is a maximal element of U (for the bottom-to-top order) that is weakly to the
right of R(a). Since r is left of R(c), the good rectangle R(c−1) at step c−1 is weakly to the
right of r. Hence R(c − 1) is weakly to the right of R(a). But a < b < c, so R(c − 1) 6= R(a)
so R(c − 1) is (strictly) to the right of R(a). We conclude that b, d, a, c − 1 form a forbidden
pattern 2–41–3, which is impossible by minimality of c. This is the contradiction.

A symmetric argument shows that there is no pattern 3–14–2. Hence the permutation is
Baxter.
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Lemma 6.7. If at some step of the labeling procedure, the chosen maximal element of U is
not the good rectangle, then the output permutation σ is not Baxter.

Proof. Consider a labeling scenario (as usual call R(i) the rectangle labeled at step i for each
n ≥ i ≥ 1) where at some step k the chosen rectangle R(k) is not the good one, and let
r = R(b) be the good rectangle at that step; note that b < k since R(b) will be treated after
R(k). Clearly k < n since there is only one choice for R(n) at the first step. Call L the set
of rectangles labeled before step k (rectangles R(i) with i > k) and U the set of rectangles
labeled from step k (rectangles R(i) with i ≤ k). We treat the case where the south tip p of
R(k + 1) is a (the case can be treated similarly).

R(d)

U

R(a)

R(k)r

w

p

R(a)

R(k + 1)

L

Figure 16: The situation when R(k) is to the right of R(k + 1).

First assume that R(k) is to the right of R(k + 1), see Figure 16. Call S the longest
segment of slope +1 in R that contains p. At the intersection of S with the horizontal axis of
R, let R(a) be the rectangle to the right of S and R(d) the rectangle to the left of S on the
horizontal axis. An important observation is that the west-tip w of R(a) is at the bottom end
of S (otherwise there would be a rectangle with w as north tip, and this rectangle would be
strictly below the horizontal axis of R, which is impossible). Hence, as shown in Figure 16,
R(a) is strictly smaller than r = R(b) in the bottom-to-top order, which implies that a < b.
Hence we have a < b < k < k + 1 ≤ d (where k + 1 ≤ d because R(k + 1) is the most recently
treated element in L); and the left-to-right order of the rectangles is R(b), R(d), R(a), R(k)
(see Figure 16), which implies that b, d, a, k form a forbidden pattern 2–41–3.

Now assume that R(k) is to the left of R(k + 1), see Figure 17. In the sequence s1, . . . , sk

of segments forming the boundary between U and L, let S be the one of slope +1 and with
top extremity the north-tip of r. At the intersection between S and the horizontal axis of R,
let R(d) be the rectangle to the left of S on the horizontal axis, and R(a) the rectangle to the
right of S on the horizontal axis. Note that R(a) 6= R(k) since they have different north-tips.
Also R(k +1) 6= R(d) since they have different south-tips. Since R(k +1) is the most recently
treated element in L we have d > k+1. Since the first treated element from U will be R(k) we
have a < k. Moreover the left-to-right order of these rectangles is R(k), R(d), R(a), R(k + 1)
(see Figure 17). Hence k, d, a, k + 1 from the forbidden pattern 2–41–3.

Symmetrically one shows that if the south-tip p of R(k + 1) is a it yields a forbidden
pattern 3–14–2 (again distinguishing whether R(k) is left or right of R(k + 1)).
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rR(k)

p

R(k + 1)
R(a)

R(d)

Figure 17: The situation when R(k) is to the left of R(k + 1).

Lemmas 6.6 and 6.7 ensure that exactly one admissible permutation is Baxter for every
given rectangulation, which concludes the proof of Theorem 6.4. We obtain:

Proposition 6.8. The number Θk,ℓ counts

• twin pairs of binary trees with k + 1 left leaves and ℓ + 1 right leaves,

• Baxter permutations of k + ℓ + 1 with k descents and ℓ rises.

Note.
Baxter numbers first appeared in the context of counting Baxter permutations. Chung, Gra-
ham, Hoggatt and Kleiman [12] found some interesting recurrences and gave a proof based
on generating functions. Mallows [34] found the refined count of Baxter permutations by
rises (Proposition 6.8). The bijection of Theorem 6.4 is essentially due to Dulucq and Guib-
ert [18, 19]. Their description and proof, however, does not use geometry. They also prove
Proposition 6.8 and some even more refined counts, e.g., the number of Baxter permutations
of [n] with ℓ rises and s left-to-right maxima and t right-to-left maxima.

A permutation (a1, a2, . . . , an) is alternating if a1 < a2 > a3 < a4 > . . ., i.e., each consecutive alternating

pair a2i−1, a2i is a rise and each pair a2i, a2i+1 a descent. Alternating permutations are
characterized by the property that the reduced fingerprints of their min- and max-trees are
alternating, i.e., of the form . . . 0, 1, 0, 1, 0, 1, . . . and in addition, to ensure that the first pair
is a rise, the first entry of the reduced fingerprints of the max-tree is a 0. Due to this
characterization we obtain the following specialization of Theorem 6.4:

Lemma 6.9. Twin pairs of binary trees with an alternating reduced fingerprint starting with
a 0 and alternating Baxter permutations are in bijection.

Let T be a binary tree with n leaves and with an alternating reduced fingerprint starting
with a 0. Note that a 10 subsequence in a fingerprint corresponds to a pair of leaves attached
to the same inner node. Thus, the leaves of T (except the last one if n odd) come as pairs of
children of inner nodes. Pruning these paired leaves we obtain a tree T ′ with n− ⌊n

2 ⌋ leaves.
From T ′ we come back to T by attaching a new pair of leaves to each of the first ⌊n

2 ⌋ leaves
of T ′. Using this kind of correspondence we obtain two bijections (see Figure 18):

• a bijection between alternating Baxter permutations of [2k − 1] and pairs of binary trees
with k leaves, and
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• a bijection between alternating Baxter permutations of [2k] and pairs of binary trees with
k and k + 1 leaves.

Theorem 6.10. The number of alternating Baxter permutations on [n − 1] is Ck−1Ck if
n = 2k, and Ck−1Ck−1 if n = 2k − 1.

tree with k leaves

tree with k leaves
tree with k leaves

tree with k + 1 leaves

The odd case n = 2k − 1 The even case n = 2k

Figure 18: Alternating Baxter permutations and pairs of trees.

Note.
Theorem 6.10 was obtained by Cori et al. [13]. They gave a nice bijection between alternating
Baxter permutations and shuffle of parenthesis systems. The theorem was reproved by Dulucq
and Guibert [18] as a specialization of their bijection between Baxter permutations and twin
pairs of binary trees. In [28] it is shown that alternating Baxter permutations with the property
that their inverse is again alternating Baxter are counted by the Catalan numbers.

In recent work of Bonichon, Bousquet-Mélou and Fusy [8] a direct bijection between Baxter
permutations and plane bipolar orientations was given. Their procedure consists in draw-
ing segments in the diagrammatic representation of a Baxter permutation so as to form an
embedded plane bipolar orientation.

7 Symmetries

The bijections we have presented have the nice property that they commute with the half-
turn rotation, which makes possible to count symmetric combinatorial structures. The first
structures we have encountered are 2-orientations. Given a 2-orientation O, exchanging the
two special vertices {s, t} of O clearly yields another 2-orientation, which we call the pole-
inverted 2-orientation of O and denote by ι(O). A 2-orientation is called pole-symmetric if O pole-

inverted
pole-

symmetric

and ι(O) are isomorphic.
Considering the associated separating decomposition, the blue tree of O is the red tree of

ι(O) and vice versa. Accordingly, a 2-orientation is pole-symmetric if, and only if, the blue
tree and the red tree are isomorphic as rooted trees, in which case the separating decom-
position is called pole-symmetric as well. Such a symmetry translates to half-turn rotation
symmetries on the associated embeddings. Indeed, as the two trees composing the separating
decomposition are isomorphic, so are their alternating embeddings and so are the two binary
trees that compose the associated twin pair of binary trees, in which case the twin pair is
called symmetric. To integrate the main observations:

Lemma 7.1. A 2-orientation, resp. a separating decomposition, is pole-symmetric if, and
only if, the associated twin pair of binary trees is symmetric.

23



Clearly, a 2-book embedding and a rectangulation are stable under the half-turn rotation
that exchanges the two special vertices, if and only if the corresponding separating decompo-
sition is pole-symmetric.

Considering bipolar orientations, the effect of the half-turn symmetry of a separating
decomposition on the associated plane bipolar orientation is clearly that the orientation is
unchanged when the poles are exchanged, the directions of all edges are reversed, and the
root-edge is flipped to the other side of the outer face (in fact, it is more convenient to forget
about the root-edge here). Such bipolar orientations are called pole-symmetric.

Lemma 7.2. A bipolar orientation is pole-symmetric if, and only if, the associated 2-orientation,
resp. separating decomposition, is pole-symmetric.

We next turn to Baxter permutations. Given a permutation π of 1, 2, .., n let π be the
permutation obtained by exchanging i with n− i+1 in the one-line representation. A permu-
tation with π = ρ(π) is called symmetric. Another way to state this is that a permutation π is
symmetric if its 0-1 matrix is invariant under half-turn rotation. Consider the rectangulation
R(π) associated to π as in Section 6. The rectangulation corresponding to π is obtained from
R(π) by a reflection along the x-axis. The rectangulation corresponding to ρ(π) is obtained
from R(π) by a reflection along the y-axis. Hence, the rectangulation corresponding to ρ(π)
is obtained from R(π) by a half-turn rotation. From the bijection between rectangulations
and Baxter permutations we thus obtain:

Lemma 7.3. A Baxter permutation is symmetric if, and only if, the associated rectangulation
is invariant under half-turn rotation if, and only if, the associated twin pair of binary trees is
symmetric.

0 01 1 1

1 1 10 0
01110

s

t

σ = 4, 6, 5, 2, 1, 3

s

t

t

s

Figure 19: A pole-symmetric separating decomposition and the corresponding symmetric
combinatorial structures: 2-book embedding, twin pair of binary trees, plane bipolar orienta-
tion, Baxter permutation, triple of paths.
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Next we turn to the encoding by a triple of paths. Recall that, in a twin pair (T, T ′)
of binary trees, the reduced fingerprints satisfy the relation α̂(T ) = ρ(α̂(T ′)). Hence, a
symmetric twin pair (T, T ) has the property that the reduced fingerprint of T satisfies α̂(T ) =
ρ(α̂(T )), i.e., α̂ is a palindrome. Equivalently, if T has k + 1 left leaves and ℓ + 1 right leaves,
the up-right lattice path P2 = Pα(T ) from (1, 1) to (k + 1, ℓ + 1), as defined in Section 5, is
stable under the point-reflection πS at S := (k/2 + 1, ℓ/2 + 1). The other two paths in the
triple (P1, P2, P3) of non-intersecting lattice paths correspond to two copies of the bodyprint
of T read respectively from (0, 2) to (k, ℓ + 2) for P1 and from (ℓ + 2, k) to (2, 0) for P3.
Therefore the whole triple (P1, P2, P3) is stable under the point reflection πS . Such a triple
of paths is called symmetric. We have:

Lemma 7.4. A triple (P1, P2, P3) of paths is symmetric if, and only if, the associated twin
pair of binary trees is symmetric.

Proposition 7.5. Let Θª

k,ℓ be the number of symmetric non-intersecting triples of up-right
lattice paths (P1, P2, P3) going respectively from (0, 2), (1, 1), (2, 0) to (k, ℓ+2), (k +1, ℓ+1),
(k + 2, ℓ).

(i) If k and ℓ are odd, then Θª

k,ℓ = 0.
(ii) If k and ℓ are even, k = 2κ, ℓ = 2λ, then

Θª

k,ℓ =
∑

r≥1

2r3

(κ + λ + 1)(κ + λ + 2)2

(

κ + λ + 2

κ + 1

)(

κ + λ + 2

κ − r + 1

)(

κ + λ + 2

κ + r + 1

)

.

(iii) If k is odd and ℓ is even, k = 2κ + 1, ℓ = 2λ, then

Θª

k,ℓ =
∑

r≥1

2r3+(λ−r+1)r(r+1)(2r+1)

(κ + λ + 1)(κ + λ + 2)2

(

κ + λ + 2

κ + 1

)(

κ + λ + 2

κ − r + 1

)(

κ + λ + 2

κ + r + 1

)

.

(iv) If k is even and ℓ is odd, k = 2κ, ℓ = 2λ + 1, then

Θª

k,ℓ =
∑

r≥1

2r3+(κ−r+1)r(r+1)(2r+1)

(κ + λ + 1)(κ + λ + 2)2

(

κ + λ + 2

κ + 1

)(

κ + λ + 2

κ − r + 1

)(

κ + λ + 2

κ + r + 1

)

.

Proof. By definition, (P1, P2, P3) is stable under the point-reflection πS at S := (ℓ/2+1, k/2+
1). In particular, P2 is stable under πS , so that P2 has to pass by S. This can only occur if
S is on an axis-coordinate, i.e., k/2 or ℓ/2 are integers. Therefore Θª

k,ℓ = 0 if both k and ℓ
are odd.

If k and ℓ are even, k = 2κ and ℓ = 2λ, the half-turn symmetry ensures that (P1, P2, P3)
is completely encoded upon keeping the part P ′

1, P
′
2, P

′
3 of the paths that lie in the half-plane

{x + y ≤ xS + yS}, i.e., the half-plane {x + y ≤ κ + λ + 2}. The conditions on (P1, P2, P3)
translate to the following conditions on the reduced triple: (P ′

1, P
′
2, P

′
3) is non-intersecting,

has same starting points as (P1, P2, P3), the endpoint of P ′
2 is S, and the endpoints of P ′

1

and P ′
3 are equidistant from S, i.e., there exists an integer r ≥ 1 such that P ′

1 ends at
(κ+1−r, λ+1+r) and P ′

3 ends at (κ+1+r, λ+1−r). Hence, up to fixing r ≥ 1, (P ′
1, P

′
2, P

′
3)

form a non-intersecting triple with explicit fixed endpoints, so that the number of such triples
can be expressed using Lindström Gessel-Viennot determinant formula. The expression for
Θª

k,ℓ follows.
If k is odd and ℓ is even, k = 2κ+1 and ℓ = 2λ, the triple (P1, P2, P3) is again completely

encoded by keeping the part (P ′
1, P

′
2, P

′
3) of the paths that lie in {x + y ≤ xS + yS}, i.e., the
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half-plane {x + y ≤ κ + λ + 5/2}. The difference with the case where k and ℓ are even is that
P ′

1, P
′
2, P

′
3 are not standard lattice paths, as they end with a step of length 1/2. Similarly

as before, the conditions on (P1, P2, P3) are equivalent to the properties that (P ′
1, P

′
2, P

′
3) are

non-intersecting, have the same starting points as (P1, P2, P3), P ′
2 ends at S, and P ′

1, P
′
3 end

at points that are equidistant from S on the line {x + y = xS + yS} and have one integer
coordinate, i.e., there exists an integer m ≥ 2 such that P ′

1 ends at (xS − m/2, yS + m/2)
and P ′

3 ends at (xS + m/2, yS −m/2). Notice that, upon discarding the last step, the system
(P ′

1, P
′
2, P

′
3) is equivalent to a triple of non-intersecting up-right lattice paths (P ′

1, P
′
2, P

′
3) with

starting points (0, 2), (1, 1), (2, 0), and endpoints that are either of the form (κ+1−r, λ+1+r),
(κ+1, λ+1), (κ+1+r, λ+1−r) if m is even, m = 2r, or are of the form (κ+1−r, λ+1+r),
(κ + 1, λ + 1), (κ + 2 + r, λ − r) if m is odd, m = 2r + 1. In each case, the number of
triples has an explicit form from the formula of Lindström Gessel-Viennot. The expression
of Θª

k,ℓ follows. Finally, notice that the set of symmetric non-intersecting triples is stable

under swapping x-coordinates and y-coordinates, yielding the relation Θª

k,ℓ = Θª

ℓ,k. Thus the

formula for Θª

k,ℓ when k is even and ℓ is odd simply follows from the formula obtained when
k is odd and ℓ is even.

The whole discussion on symmetric structures is summarized in the following proposition
and illustrated in Figure 19.

Theorem 7.6. The number Θª

k,ℓ counts

• pole-symmetric 2-orientations with k + 1 white vertices and ℓ + 1 black vertices,

• pole-symmetric separating decompositions and 2-book embeddings with k + 1 white ver-
tices and ℓ + 1 black vertices,

• symmetric twin pairs of binary trees with k + 1 left leaves and ℓ + 1 right leaves,

• rectangulations of Xn with k horizontal and ℓ vertical segments, which are invariant
under half-turn rotation,

• symmetric Baxter permutations of k + ℓ + 1 with k descents and ℓ rises,

• pole-symmetric plane bipolar orientations with k inner faces and ℓ non-pole vertices.

8 Schnyder Families

As we have shown in previous sections, Baxter numbers count 2-orientations on quadrangu-
lations and several other structures. We now turn to a family of structures, Schnyder woods,
which are equinumerous with 3-orientations of plane triangulations. Actually, the relation of
Schnyder woods and 3-orientations is very similar to the relation of separating decompositions
and 2-orientations. In both cases the coloring of an edge in the richer structure can be re-
covered by following a unique path that leads to one of the special vertices, see Theorems 8.3
and 2.5.

Consider a plane triangulation T , i.e., a maximal plane graph, with n vertices and three
special vertices a1, a2, a3 in clockwise order around the outer face.
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Definition 8.1. An orientation and coloring of the inner edges of T with colors red, green
and blue is a Schnyder wood if: Schnyder

wood(1) All edges incident to a1 are ingoing red, all edges incident to a2 are ingoing green and all
edges incident to a3 are ingoing blue.

(2) Every inner vertex v has three outgoing edges colored red, green and blue in clockwise
order. All the incoming edges in an interval between two outgoing edges are colored with
the third color; see Figure 20.

Figure 20: Schnyder’s edge coloring rule.

Definition 8.2. An orientation of the inner edges of T is a 3-orientation if every inner vertex 3-

orientationhas outdegree three.

From the count of edges it follows that the special vertices ai are sinks in every 3-
orientation. Clearly, forgetting the colors of edges in a Schnyder wood yields a 3-orientation.
In the next theorem it is shown that the two structures are actually equivalent. This re-
sembles the equivalence between separating decompositions and 2-orientations described in
Theorem 2.5.

Theorem 8.3 (de Fraysseix and de Mendez [14]). Let T be a plane triangulation with outer
vertices a1, a2, a3. Schnyder woods and 3-orientations of T are in bijection.

Given an edge e which is incoming at v, we can classify the outgoing edges at v as left,
straight and right. Define the straight-path of an edge as the path which always takes the
straight outgoing edge. A count and Euler’s formula shows that every straight-path ends in a
special vertex. The special vertex where a straight-path ends determines the color of all the
edges along the path. It can also be shown that two straight-paths starting at a vertex do
not meet again. This implies that the coloring of the orientation is a Schnyder wood.

From this proof it follows that the local properties (1) and (2) of Schnyder woods imply:

(3) The edges of each color form a tree rooted at a special vertex and spanning all the inner
vertices.

Recall that in the case of separating decompositions we also found the tree decomposition
being implied by local conditions (see item (3) after Theorem 2.5).

Note.
Schnyder woods were introduced by Schnyder in [39] and [40]. They have numerous appli-
cations in the context of graph drawing, e.g., [3, 7, 32], dimension theory for orders, graphs
and polytopes, e.g., [39, 9, 21], enumeration and encoding of planar structures, e.g., [36, 24].
The connection with 3-orientations was found by de Fraysseix and Ossona de Mendez [14].

The aim of this section is to prove the following theorem of Bonichon.
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Theorem 8.4 (Bonichon [6]). The total number of Schnyder woods on triangulations with
n + 3 vertices is

Vn = Cn+2 Cn − C2
n+1 =

6 (2n)! (2n + 2)!

n! (n + 1)! (n + 2)! (n + 3)!

where Cn = 1
n+1

(

2n
n

)

is the Catalan number.

Before going into details we outline the proof. We first show a bijection between Schnyder
woods and a special class of bipolar orientations of plane maps. We trace these bipolar
orientations through the bijection with separating decompositions, twin pairs of trees and
triples of non-intersecting paths. Two of the three paths turn out to be equal and the
remaining pair is a non-crossing pair of Dyck paths. This implies the formula.

Note.
The original proof, Bonichon [6], and a more recent simplified version, Bernardi and Boni-
chon [5], are also based on a bijection between Schnyder woods and pairs of non-crossing
Dyck paths. In [5] the authors also enumerate special classes of Schnyder woods. Fusy, Scha-
effer and Poulalhon have a bijection from Schnyder woods to a special class of separating
decompositions and a bijection from these separating decompositions to pairs of non-crossing
Dyck paths. They show that their bijection equals the bijection from [5]. Our proof yields a
different bijection.

Little is known about the number of Schnyder woods of a fixed triangulation. In [22] it
is shown that the maximal number of Schnyder woods a triangulation on n vertices can
have is asymptotically between 2, 37n and 3, 56n. As with 2-orientations, the computational
complexity of the counting problem is unknown.

Recall that by Fact F, after Definition 2.2, the boundary of every inner face of a planar
bipolar orientation consists of two directed paths starting at the face-source and joining at
the face-sink. The right side of the face is the right of the two paths when looking from the
face-source to the interior of the face.

Proposition 8.5. There is a bijection between Schnyder woods on triangulations with n + 3
vertices and plane bipolar orientations with n + 2 vertices having the special property:

(⋆) The right side of every bounded face is of length two.

Proof. Let T be a triangulation with a Schnyder wood S. With (T, S) we associate a pair
(M, B), where M is a subgraph of T and B a bipolar orientation on M . The construction is
in two steps. First, we delete from the graph the edges of the green tree in S and the special
vertex of that tree, i.e., a2, as well as the two outer edges incident to a2. The resulting map
is M . Then we revert the orientation of all blue edges and orient the edge {a3, a1} from a3

to a1, this is the orientation B. Figure 21 shows an example.
The orientation B has a3 as unique source and a1 as unique sink. To show that it is bipolar

it is enough to verify properties V and F (c.f. the note after Proposition 2.3). Property V
requires that at a vertex v 6= s, t the edges partition into nonempty intervals of incoming and
outgoing edges, this is immediate from the edge coloring rule (2) in Definition 8.1 and the
construction of B.

For Property F, consider a bounded face f of M . Suppose that f is of degree > 3, then
there had been some green edges triangulating the interior of f . The coloring rule for the
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a1

a3 a2

t

s

Figure 21: A Schnyder wood and the corresponding bipolar orientation.

vertices on the boundary of f implies that these green edges form a fan, as indicated in
Figure 22. Otherwise there would be a vertex with two outgoing green edges or a vertex with
adjacent incoming and outgoing green edges; both are impossible. Starting from the green
edges, we conclude that each edge on the left side of f is red and upward pointing or blue
and downward pointing. Hence, in B these edges form a directed path and the neighbors of
the tip vertex of the green edges are the unique source and sink of f . This also implies that
the right side of f is of length two, i.e., property (⋆).

If f is a triangle, then two of its edges are of the same color, say red. The coloring rule
implies that these two edges point to their common vertex, whence the triangle has unique
source and sink. Since the transitive vertex of f has a green outgoing edge in S, it is on the
right side and (⋆) also holds for f .

Figure 22: From a generic face in S to B and back.

For the converse mapping, consider a pair (M, B) such that (⋆) holds. From Property V
it follows that every vertex v 6= s, t has a unique face where it belongs to the right side. This
allows us to identify the red and the blue outgoing edges of v. Since every edge except the
(s, t) edge is on the right side of some face, the procedure determines a color for all these
edges. Moreover, at v the leftmost incoming edge is blue and all the other incoming edges
are red. The coloring of outgoing edges at v is dual, the leftmost is red and all the others
are blue. Insert the green edges so that they triangulate faces of degree more than three
and connect vertices on the rightmost s-t path to the additional outer vertex a2. The green
edges form a tree rooted at a2. Finally, revert the orientation of the blue edges. This yields a
coloring and orientation of the edges of the triangulation obeying properties (1) and (2) from
Definition 8.1. Hence, we could reconstruct the unique Schnyder wood compatible with the
data given by (M, B). This proves the bijection.

Given a plane bipolar orientation (M, B) with n + 2 vertices and the (⋆) property, we
apply the bijection from Proposition 2.3 to obtain a quadrangulation Q with a separating
decomposition. Property (⋆) in (M, B) is equivalent in Q to
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(⋆′) Every white vertex (except the rightmost one) has a unique incoming edge in the blue
tree.

In particular, it follows that there is a matching between vertices v 6= s, t and bounded faces
of M , hence, in Q there are n + 2 black and n + 1 white vertices.

The separating decomposition of Q yields twin pairs of alternating trees with n + 1 black
and n white vertices (Theorem 3.6). From the twin pair of alternating trees we get to a pair
of twin binary trees with n + 1 black and n white vertices (Theorem 5.2). This pair of trees
yields a triple of non-intersecting paths (Theorem 5.5). Figure 23 shows an example of the
sequence of transformations.

0

0

0

00

0

1 1

1

1 1 1

s

ta1

a3 a2 s

t

1 01 10 0 0
1 1 0 0 01

0 10 1 10

Figure 23: From a Schnyder wood to a pair of non-intersecting Dyck-paths..

From (⋆′) we get some crucial properties of the fingerprint and the bodyprints of the blue
tree T b and the red tree T r.

Fact 1. If we add a leading 1 to the reduced fingerprint α̂, then we obtain a Dyck word; in
symbols (10)n ≤dom 1 + α̂.

Proof. It is better to think of 1 + α̂ as the fingerprint αb of the blue tree after removal of the
last 0. Property (⋆′) implies that there is a matching between all 1’s and all but the last 0’s
in the αb, such that each 1 is matched to a 0 further to the right. △

Fact 2. The fingerprint uniquely determines the bodyprint of the blue tree, precisely βb =
1 + α̂.

Proof. From (⋆′) it follows that αb
i = 1 implies βb

i+1 = 0. Since αb has n entries 1 and βb has
this same number of 0’s, it follows that βb is determined by αb. △

Let α∗ = 1 + α̂ and β∗ = 1 + β̂r; then (10)n ≤dom α∗ ≤dom β∗. We omit the proof that
actually every pair (α∗, β∗) of 0,1 strings from

〈

2n
n

〉

with these properties comes from a unique
Schnyder wood on a triangulation with n+3 vertices. Translating the resulting bijection with
strings into the language of paths we obtain:
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Theorem 8.6. There is a bijection between Schnyder woods on triangulations with n + 3
vertices and pairs (P1, P2) of non-intersecting up-right lattice paths, where P1 is from (0, 0)
to (n, n), P2 is from (1,−1) to (n + 1, n − 1), and the paths stay weakly below the diagonal,
i.e., they avoid all points (x, y) with y > x.

For the actual counting of Schnyder woods we again apply the Lemma of Lindström
Gessel-Viennot. The entry Ai,j in the matrix is the number of paths from the start of Pi to
the end of Pj staying weakly below the diagonal. The reflection principle of D. André allows
us to write these numbers as differences of binomials.

Proposition 8.7. The number of Schnyder woods on triangulations with n + 3 vertices is

det

(
(

2n
n

)

−
(

2n
n−1

) (

2n
n+1

)

−
(

2n
n−2

)

(

2n
n−1

)

−
(

2n
n−2

) (

2n
n

)

−
(

2n
n−3

)

)

=
6 (2n)! (2n + 2)!

n! (n + 1)! (n + 2)! (n + 3)!
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