
REVIEW

Bike sharing usage prediction with deep learning: a survey

Weiwei Jiang1

Received: 4 December 2021 / Accepted: 27 April 2022 / Published online: 10 June 2022
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
As a representative of shared mobility, bike sharing has become a green and convenient way to travel in cities in recent

years. Bike usage prediction becomes more important for supporting efficient operation and management in bike share

systems as the basis of inventory management and bike rebalancing. The essential of usage prediction in bike sharing

systems is to model the spatial interactions of nearby stations, the temporal dependence of demands, and the impacts of

environmental and societal factors. Deep learning has shown a great advantage of making a precise prediction for bike

sharing usage. Recurrent neural networks capture the temporal dependence with the memory cell and gate mechanisms.

Convolutional neural networks and graph neural networks learn spatial interactions of nearby stations with local convo-

lutional operations defined for the grid-format and graph-format inputs respectively. In this survey, the latest studies about

bike sharing usage prediction with deep learning are reviewed, with a classification for the prediction problems and models.

Different applications based on bike usage prediction are discussed, both within and beyond bike share systems. Some

research directions are pointed out to encourage future research. To the best of our knowledge, this paper is the first

comprehensive survey that focuses on bike sharing usage prediction with deep learning techniques.
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1 Introduction

Bike share systems are widely used in many cities as a

green and convenient travel method. Without the burden of

keeping a private vehicle, shared mobility has been widely

accepted, including bike-sharing, ride-sharing, and car-

pooling. Many city governors have supported the estab-

lishment of bike share systems to ease traffic congestion on

roads, e.g., in New York City, Washington D.C., Chicago,

Beijing, Shanghai, Hangzhou, etc. These bike share sys-

tems are operated in docked mode, in which the bikes are

borrowed and returned from physical docking stations.

This mode has several disadvantages. First, stations with

docks inevitably occupy some land resources. Second, it

would be inconvenient for the users if there are no stations

nearby. Third, the available bikes are dynamic, and it

would be disappointing for the user to find that no bikes are

available after arriving at a station.

Powered by a series of IoT and communication tech-

nologies, the dockless (or free-floating) bike share system

is proposed as an improvement over the docked mode,

which is promoted and operated by commercial companies

instead of governments. In a dockless bike share system,

there are no stations, and each bike is equipped with a

smart lock that supports GPS, 5G and Bluetooth. Users can

use their smartphone application to check nearby bike

availability, rent and return a bike, and finish the payment.

This mode has achieved great success in the past five years

and is currently deployed in more than 300 cities in China.

Even though it is successful, there are still many chal-

lenges in the dockless bike share mode. The biggest chal-

lenge is the profit issue. The cost of producing a dockless

bike is much higher than that of a docked bike, and the

battery life is only one or two years. Without efficient

management, it is harder to make a profit for running a

dockless bike share system. The second challenge is the

appropriate number of bikes actually needed in a city. Even

though stations are not built in a dockless bike share sys-

tem, these bikes still occupy the road space to be parked. A
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large number of bikes gathered in some hotspots would

become a new issue of blocking pedestrian lanes and

pavements. It is a common practice in China that the upper

bound of the total number of dockless bikes is regulated by

the government.

Both machine learning and IoT techniques have been

proposed as potential solutions for intelligent management

of bike sharing, to overcome the above challenges [61].

With the GPS location service, it is much easier for the

users to identify the precise location of dockless bikes.

With the 5G connection service, it is easier for the opera-

tion team to monitor the bike state and recycle the damaged

ones. With the Bluetooth connection, dockless bikes can be

used even in a 5G-denied environment. All these IoT

techniques help to improve the efficiency of a bike share

system, which can be further enhanced with precise bike

usage prediction. A smart recommendation system can be

built to guide users to rent a bike in a nearby station or

region. New docking stations can be built in the place with

the largest potential demand. A better bike rebalancing

plan can help to improve the bike utilization rate and

increase the revenue of the operator.

There have been many relevant surveys for traffic

forecasting with deep learning in recent years [36, 59].

However, none of them focus on bike share systems.

Another recent survey [1] is concerned about the machine

learning approaches used in bike share systems, but the

focus is not usage prediction problems. Earlier studies

applying deep learning techniques for bike sharing usage

prediction were based only on docked bike share systems

and did not incorporate dockless bike share systems [39].

To the best of our knowledge, this paper is the first com-

prehensive survey that focuses on bike sharing usage pre-

diction with both docked and dockless bike share systems

covered.

A thorough literature search process is adopted to collect

relevant studies, with keywords including bike usage pre-

diction, bike demand prediction, deep learning, deep neural

networks 1. Only those published between 2018 and 2021

are included. To reflect the latest progress, some preprints

are also included in this survey. In total, 55 papers are

selected and discussed in this survey. The year and type

statistics of the covered studies are shown in Fig. 1.

Compared with conference papers, more journal papers are

published in 2021 for this research topic.

The framework of this survey is shown in Fig. 2. Both

docked and dockless bike share systems are considered and

the trip records are united in the same format. Three levels

of data aggregation are used to build the prediction input

features and targets. Then, three data formats are defined

and categorized, namely time-series format, graph format,

and grid format. Different deep learning models are further

classified with these three types of input features. External

factors used in the studies reviewed are also incorporated.

Furthermore, the applications based on bike usage predic-

tion are summarized, both within and beyond bike share

systems. Some research directions are pointed out to

encourage future research.

The major contributions of this survey are summarized

as follows:

• A classification for bike sharing usage prediction

problems is proposed based on the different data

formats collected and aggregated from both docked

and dockless bike sharing systems.

• A collection of deep learning models for bike sharing

usage prediction is presented, with an emphasis on the

latest progress.

• Prediction-based applications and future research direc-

tions are identified as a reference for relevant studies.

The rest of this survey is organized as follows. Different

types of bike sharing usage prediction problems are cate-

gorized in Sect. 2. The latest deep learning prediction

models used in the studies reviewed are discussed and

summarized in Sect. 3. Prediction-based applications are

introduced in Sect. 4. Several challenges and future

research directions are given in Sect. 5. Section 6 draws

the conclusion.

2 Prediction problems

In this section, we first discuss different data aggregation

types based on the bike sharing datasets described in

‘‘Appendix A’’. The different input and output formats are

given next. Then different prediction problems are cate-

gorized into three types. Different evaluation metrics are

Fig. 1 The year and type statistics of the covered studies in this

survey (updated to October 1, 2021)

1 There is a gap between the potential demand and the actual usage

because only those fulfilled demand are recorded as the trip records.

However, in most studies, historical trip records are used to model

both usage and demand. In this survey, we follow this convention;

thus, usage and demand are used exchangeably.
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listed for bike sharing usage prediction problems, too.

Finally, the core challenges are discussed together with the

potential benefits of deep learning models for addressing

these challenges.

2.1 Data aggregation types

Aggregated statistics with different spatial and temporal

scales are used in the prediction problems, instead of the

raw trip records. As shown in Fig. 2, three data aggregation

methods are used in the reviewed studies, which corre-

spond to three different spatial ranges, namely physical

stations, virtual stations, and regions. Physical stations are

those already used in docked bike share systems. The total

trip number from a single station within a fixed time period

(e.g., every 5 min) is aggregated as a data sample. Virtual

stations logically share the same function as physical sta-

tions without a physical facility. A virtual station can be a
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End time
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Fig. 2 The framework of this

survey
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set of selected physical stations in a docked bike system or

a region in a dockless bike system 2. Based on historical

usage patterns in different stations/locations, clustering-

based algorithms are often used for defining virtual sta-

tions, e.g., the fuzzy c-means clustering algorithm [66] and

the distance-based clustering algorithm [32]. All trips with

a start station/location belonging to the same virtual station

are counted as a data sample.

For dockless bike systems, the bikes can stop anywhere and

it would be easier to aggregate the trips by dividing the map

into non-overlap regions, e.g., grids. Then all the trips with a

start location within the same region are counted as a data

sample. Inmost cases, only the start station/location is used to

aggregate the bike usage (or demand). The end station/loca-

tion can be used to aggregate the trips for destination predic-

tion [27] or origin-destination prediction [38, 48].

2.2 Input and output formats

Based on the different data aggregation methods, three

different data formats can be further defined as the input

features and output target used by the prediction problems,

namely, time series format, graph format, and grid format.

Without considering the spatial dependency, the aggre-

gated bike usage can be represented as a univariate/mul-

tivariate time series, in which each data sample has a

timestamp. The data sample can be a single value for a

station or a vector for multiple physical or virtual stations.

This basic format is named as time series-format.

There are usually two approaches for modeling the spatial

dependency, i.e., grids and graphs. In the grid format, the

map is regularly divided into grids and the data sample in a

time slot is represented as a two-dimensional matrix. The

spatial relationship of neighborhood regions is kept. In the

graph format, the nodes are defined as the stations or regions

and the bike usage is counted for each node. An adjacency

matrix is defined tomodel the spatial relationship of different

nodes in different approaches, i.e., spatial distance matrix or

usage correlationmatrix [41]. Inmost cases, static graphs are

used, which are fixed in the training and inference processes,

while dynamic graphs can also be used [44, 52].

2.3 Prediction problem types

In this survey, three types of prediction problems are

defined according to the input and output data format,

namely time series-input prediction, graph-input prediction

and grid-input prediction. In a deep learning paradigm, the

prediction problem is modeled as a supervised learning

problem by using moving windows along the time axis.

Specifically, the bike usage historical data X ¼
fXt�ðT�1Þ; . . .;Xt�1;Xtg in a lookback window with length

T is used as the model input feature at time slot t. For the

single-step prediction, only the usage in the next time slot,

i.e., time t þ 1, is used as the model output Y ¼ Xtþ1. For

the multi-step prediction, the future usage in the next H

time slots (i.e., the prediction horizon) is used as the model

output Y ¼ fXtþ1;Xtþ2; . . .;XtþHg.
In the time series-input prediction problem, the data

sample Xt in time slot t is an input feature matrix with size

N � F, where N is the number of physical or virtual sta-

tions and F is the number of input features for each station,

e.g., the usage and other features. In the graph-input pre-

diction problem, the data sample Xt in time slot t is an

input feature matrix with size N � F and an adjacency

matrix A with size N � N, where N is the node number of

graph G and F is the number of input features for each

node. In the grid-input prediction problem, the data sample

Xt in time slot t is an input feature matrix with size

M � N � F, where M � N is the number of grids and F is

the number of input features in each grid.

Under this unified representation, the prediction problem

is defined as finding a function f that predicts Y ¼ f ðXÞ,
with the objective of minimizing the error between Y and

Y. When external factors / at time slot t are used, the

function f becomes Y ¼ f ðX /Þ.
While usage prediction is the focus of most studies,

some exceptions exist with other prediction targets. For

example, free dock prediction in the docked bike system is

considered in [53], in which accurate real-time free dock

prediction can help guide users to choose a proper station

to rent or return a bike and spatial proximity may not be the

only criterion. Another example is the travel distance and

OD distribution of shared bicycles in [38].

2.4 Prediction evaluation metrics

Different evaluation metrics can be used to quantify the

prediction error, in which root-mean-square error (RMSE),

mean absolute error (MAE) and mean absolute percentage

error (MAPE) are most often used. These evaluation met-

rics can be defined as follows:

RMSEðY;YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðyi � ŷiÞ2
s

ð1Þ

MAEðY;YÞ ¼ 1

n

X

n

i¼1

kyi � ŷik ð2Þ

MAPEðY;YÞ ¼ 1

n

X

n

i¼1

k yi � ŷi
yi

k � 100 ð3Þ

2 Usually, only the selected irregular regions generated by clustering

would be seen as virtual stations in dockless bike systems.
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where n is the total number of data samples used for

evaluation. Other evaluation metrics that are often used

include the correlation coefficient (R), the determination

coefficient (R2) and symmetric mean absolute percentage

error (SMAPE).

Different prediction models can also be evaluated from

the computational perspective, which would be significant

when deployed in a real-world system. For the model

complexity, the total parameter number is often coun-

ted [35, 85, 86]. Another approach is to measure and

compare the training or inference time, when different

models are running in the same machine [85, 86].

2.5 Prediction challenges

The core challenges of the bike sharing prediction problem

are the modeling of the complex spatial and temporal

dependencies. Firstly, or the complex spatial dependencies,

the bike sharing usage data distribution is highly imbal-

anced with varying demands and supplies in different

locations of a city. For example, those famous spots are

usually accompanied with a much higher demand for var-

ious transportation modes including shared bikes than other

locations. Secondly, for the complex temporal dependen-

cies, the bike sharing usage demand may burst in morning

evening peak hours because of commuters. But such pat-

terns would not appear in weekends or holidays. Other

external factors also make the bike sharing usage patterns

complex, e.g., social events or weather. For example, the

bike sharing usage decreases in a rainy day, which is not

suitable for riding. Thirdly, the complex spatial and tem-

poral dependencies are vulnerable to the changes of bike

share systems or nearby environments, for example, the

addition of a new bike station or a new shopping mall.

Deep learning models have several potential benefits for

addressing these challenges. The first benefit would be the

strong learning ability to capture the nonlinear, irregular

and complex spatial and temporal dependencies, which

may be beyond the abilities of those linear and machine

learning models. The second benefit would be the flexible

input format, which is helpful for incorporating both

numerical and textual external factors, e.g., social events

and weather data. The third benefit would be the continu-

ous update ability of deep learning models when trained in

an online approach with new data, so that the changed

hidden bike sharing usage patterns can be learned

correspondingly.

3 Prediction models

In this section, the prediction models are summarized for

the three types of prediction problems defined in Sect. 2.

While the proposed or adopted models and the baselines of

all the studies reviewed are listed in this section, it is

beyond the scope of this survey to present all the details of

these prediction models. Thus only those important ones

are further introduced in this section. As a reference, the

abbreviations of the prediction models used in this survey

are listed in Table 1.

3.1 Deep learning basics

3.1.1 Feedforward neural networks

Deep learning is a sub-category of machine learning and is

represented by various neural networks. The feedforward

neural network (FFNN) shown in Fig. 3 is the simplest

kind, with a vector as the input feature and a single value

(or another vector) as the output target. In the case of more

complex input features, a flattening operation is required to

transform the input features into a vector format, and both

the temporal and spatial dependencies are lost. Other

similar structures include deep neural networks, artificial

neural networks, and multilayer perceptrons, all of which

are built with the feedforward structure shown in Fig. 3.

This structure is universally seen in deep learning models,

which can be embedded into more complex models as a

dense layer or an output layer. It can also be used to fuse

the external factors discussed in Sect. A.3 with the his-

torical usage input features.

The advantages of FFNNs include its simple structure

and universal representation with input data as vectors.

However, the disadvantages include the potential large

number of parameters, which happens with with high-di-

mensional inputs and requires more computation and

computer memory resources, and the inefficient learning

abilities for structured input data, e.g., images and graphs.

3.1.2 Recurrent neural networks

For time series data, the recurrent neural network (RNN)

shown in Fig. 4 is proposed to capture the temporal

dependency by keeping the temporal information in a cell.

The vanilla RNN uses a tanh activation function to fuse the

hidden state from the previous time slot with the input

feature, which is simple but has computational problems

(i.e., gradient vanishing and gradient explosion). Different

RNN variants have been proposed to solve these problems,

in which long short-term memory (LSTM) [26] and gated

recurrent unit (GRU) [13] are two widely used options.
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Gate mechanisms are introduced in these variants to better

control and update the historical information, while

avoiding computational problems. The attention

Table 1 The abbreviations of different prediction models used in Sect. 3

Abbreviation Full name Abbreviation Full name

AGSTN [46] Attention-adjusted graph spatio-temporal network kNN k-nearest neighbors

AR Auto-regression LASSO Least absolute shrinkage and selection operator

ARIMA Auto-regressive integrated moving average LR Linear regression

ASTCN [23] Attentive spatial temporal convolutional network LSGC-

LSTM [47]

Local spectral graph convolution-LSTM

ATFM [44] Attentive traffic flow machine LSTM [26] Long short-term memory

Bi-LSTM Bidirectional LSTM MA Moving average

CEST [17] Co-evolving spatial temporal neural network MLP Multi-layer perceptron

CGC [80] Coupled layer-wise graph convolution MT-ASTN [71] Multi-task adversarial spatial-temporal network

CNN Convolutional neural network MVGCN [58] Multi-view graph convolutional network

CQRNN [51] Censored quantile regression neural network OLR Ordinary linear regression

CSCNet [20] Convolution based sequential and cross network RF Random forest

DCRNN Diffusion convolutional recurrent neural network RNN Recurrent neural network

DNN Deep neural network SARIMA Seasonal ARIMA

DTCNN [18] Dynamic transition convolutional neural network SCEG [69] Spatial community-informed evolving graphs

DeFlow-

Net [84]

Deformable convolutional residual network ST-CGA [88] Spatial-temporal convolutional graph attention

network

FFNN Feedforward neural networks ST-GDN [89] Spatial-temporal graph diffusion network

FGST [82] Fine-grained graph-based spatiotemporal network STCL [45] Spatial-temporal conv-sequence learning

GAT [64] Graph attention network STFNet [9] Spatial-temporal fusion network

GBRT Gradient boosting regression tree STGCN Spatio-temporal graph convolutional network

GCN [34] Graph convolutional network STMN [37] Spatial-temporal memory network

GCNN-

DDGF [41]

Graph convolutional neural network with data-driven

graph filter

STPWNet [85] Spatiotemporal part-whole convolutional neural

network

GL-TCN [54] Global-local temporal convolutional network STREED-

Net [21]

Spatio temporal residual encoder-decoder

network

GN Graph network SVR Support vector regression

GNN Graph neural network TCN Temporal convolutional network

GP Gaussian process TGNet [35] Temporal-Guided network

GRU [13] Gated Recurrent Unit VAR Vector Autoregression

HA Historical average VP-RNN [22] Variational Poisson recurrent neural network

HW Holts-Winters WADC [92] Wide-attention and deep-composite model

Fig. 3 The feedforward neural network structure

Fig. 4 The recurrent neural network structure
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mechanism [63] can be further applied, which assigns

different weights for the hidden states when generating an

output. These weights are dynamic and learned from the

data.

The advantages of RNNs include the efficient learning

ability of capturing the long-term temporal dependency and

the feasibility of being combined with the attention

mechanism. However, the disadvantages include the gra-

dient vanishing and gradient explosion problems.

3.1.3 Convolutional neural networks

In addition to RNNs, convolutional neural networks

(CNNs) can be used for time series data, e.g., 1D CNN or

temporal convolutional network (TCN) shown in Fig. 5.

The causal convolution operation is used in TCN, which

keeps the causal relationship within time series data and

only the earlier data samples would be used in a causal

convolution operation as shown in Fig. 5, instead of the

whole time sequence. TCNs have been proven to be a

competitive alternative for RNNs in a series of prediction

problems [28, 29].

CNNs are also useful for capturing the spatial depen-

dency for the input features with a grid-input format [31].

A two dimensional CNN structure is shown in Fig. 6, in

which the convolution operation is conducted in a local

receptive field in the convolutional layer and the neigh-

borhood information is extracted and leveraged. Pooling or

batch normalization operations can also be applied after the

convolutional layer. A flattening layer is used to transform

the matrices into a vector, and several dense layers are used

to generate the final output. Alternatively, a global average

pooling layer can be used instead of the fully connected

layers.

The advantages of CNNs include the small number of

parameters and the parallel training ability with graphics

processing units (GPUs). However, the disadvantages

include the requirement for the Euclidean data format and

the potential information loss with the pooling operation.

3.1.4 Graph neural networks

Since graphs are non-Euclidean data, traditional CNNs do

not apply for the graph-input format. Graph neural net-

works (GNNs) shown in Fig. 7 are thus proposed, which

have been proven effective for traffic forecasting [30]. The

local convolutional operation is only conducted among the

connected neighbor nodes in a graph. There are two

approaches of defining the convolution kernel or the filter

for GNNs, namely spectral-based and spatial-based. In the

spectral-based approach, the filter is defined from graph

signal processing, while in the spatial-based approach, the

filter is defined with information propagation. Two repre-

sentatives of GNNs include the graph convolutional net-

work (GCN) [34] and graph attention network (GAT) [64].

GCN introduces an effective first-order approximation of

Chebyshev’s spectral CNN (ChebNet) on graphs [16] and

GAT further adds the attention mechanism in a graph

convolutional network. GCN belongs to the spectral-based

convolutional GNNs, while GAT belongs to the spatial-

based convolutional GNNs.

The advantages of GNNs include the support for non-

Euclidean data and the support for modeling different

spatial relationships with multiple graphs. However, the

disadvantages include the over-smoothing problem in

training deep GNNs and the high computation requirement

for huge graphs.

0x 1x 2x 3x

3y

Fig. 5 The temporal convolutional network

Fig. 6 The two-dimensional convolutional neural network structure

Fig. 7 The graph neural network structure
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3.2 Time series-format models

The deep learning models used in the studies reviewed with

the time series-format input are summarized in Table 2.

The model components are shown in parentheses for a

quick understanding of the model details. The studies

reviewed are ordered by the publication year. The pro-

posed/adopted model(s), baselines, and evaluation metrics

are shown in different columns. RNNs seem to be the most

suitable solution for the time series-format input case. For

the baselines, both time series and machine learning

models are used, including auto-regressive integrated

moving average (ARIMA) and XGBoost. Historical aver-

age (HA) and moving average (MA) are two naive but

competitive (at least in some cases) baselines and should be

considered in relevant studies.

3.3 Graph-format models

The deep learning models used in the studies reviewed with

the graph-format input are summarized in Table 3. GCN

and GAT are both widely used for capturing spatial

dependency. LSTM is more often used than GRU and TCN

for capturing the temporal dependency. The attention

mechanism has been proven to be an effective add-on and

is widely used in the studies reviewed. Self-learned adja-

cency matrix for GNN-based spatiotemporal prediction is

proposed recently [73], which is a promising approach and

has not been fully considered for bike sharing usage pre-

diction yet.

3.4 Grid-format models

Deep learning models used in the studies reviewed with the

grid-format input are summarized in Table 4. It is not

surprising that CNNs are state-of-the-art solutions for

capturing the spatial dependency in a grid format, which is

similar to an image. It is also worth mentioning that

ConvLSTM [56], a variant of LSTM with a two-dimen-

sional input, is also widely used. In addition to

ConvLSTM, other CNN-based structures are also used as

the famous baselines, e.g., ST-ResNet [87] and DMVST-

Net [78]. Besides the various CNN-based models, different

partition sizes are also evaluated in [84].

3.5 Open-source projects

For replication of existing studies, open-source projects

from the studies reviewed are summarized in Table 5. Two

frameworks are widely used for deep learning implemen-

tation, namely TensorFlow 3 and PyTorch 4.

3.6 Auxiliary techniques

Some auxiliary techniques are further used to enhance the

prediction performance of deep learning models, e.g.,

reinforcement learning [52], transfer learning [62], and

meta learning [68]. Reinforcement learning can be used in

the hyper-parameter search process, which is much better

Table 2 Summary of deep learning models used in the studies reviewed with the time series-format input

Study Proposed/adopted model(s) Baselines Evaluation metrics

Year 2019

[50] LSTM DNN RMSE

Year 2020

[91] Memory time-series network AR, LRidge, LSVR, GP, VAR-MLP, GRU, LSTNet RSE, R, RMSE,

MAE

[32] TCN ARIMA, LSTM MAPE

[11] LSTM, GRU RF, FFNN MAE, RMSE,

MAPE, RMSLE

[92] WADC

(CNN?LSTM?Attention)

ARIMA, SVR, Deep Regression, CNN, SAES, LSTM, GRU, LSTM-CNN,

Deep&Cross Net

RMSE, MAE,

MSLE

Year 2021

[22] Multi-Output VP-RNN HA, MA, LR, Poisson-RNN, VP-RNN RMSE, MAE, R2

[55] LSTM HW, kNN MAE, RMSE

[51] CQRNN N/A RMSE, MAE, R2

[72] FFNN N/A MSE, R2

[15] Bi-LSTM RF, XGBoost, DNN, LSTM MSE, RMSE,

MAPE, R2

3 https://www.tensorflow.org/.
4 https://www.pytorch.org/.
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than the traditional grid search process. Transfer learning is

often used in the image processing field, when the model

parameters trained with a larger dataset are kept and further

used in a smaller dataset. The data scarcity problem also

exists in bike share systems, e.g., in cities with a new bike

share system, and transfer learning techniques can be used

to transfer the knowledge learned from multiple cities to

this target city. Meta learning is another approach of

improving the generalizability of deep learning prediction

models, in which multiple meta learners can be trained first

and then combined in various circumstances.

As a final word in this section, while deep learning

models show a lower prediction error in most studies, a few

exceptions exist. For example, a hierarchical prediction

model based on a two-level fuzzy c-means clustering

algorithm and a multi-similarity reference model proposed

in [66] shows a better performance than RNN, LSTM, and

GRU for borrow and return predictions of shared bikes.

Table 3 Summary of deep learning models used in the studies reviewed with the graph-format input

Study Proposed/adopted model(s) Baselines Evaluation metrics

Year 2018

[7] GraphCNN-Bike

(GCN?LSTM)

HA, ARIMA, SARIMA, GBRT, LSTM RMSE

[41] GCNN-DDGF (GCN) XGBoost, LSTM, MLP, SVR, LASSO, HA RMSE, MAE, R2

Year 2019

[24] BikeNet (GCN?GRU) ARIMA, SVR, FFNN, LSTM RMSE, MAE,

MAPE

[35] TGNet (GN?Temporal

Guided Embedding)

ARIMA, XGBoost, ST-ResNet, DMVST-Net, STDN RMSE, MAPE,

Parameter

Number

[2] STG2Seq (GCN?Attention) HA, OLR, XGBoost, DeepST, ResST-Net, DMVST-Net, ConvLSTM, FCL-Net,

FlowFLexDP, DCRNN, STGCN

RMSE, MAE,

MAPE

[40] STG2Vec?LSTM HA, LASSO, kNN, RF, GBRT, RNN, GRU RMSE, MAE

Year 2020

[88] ST-CGA (GAT?CNN) ARIMA, SVR, Fuzzy?NN, RNN, LSTM, DeepST, ST-ResNet, DMVST-Net,

STDN, UrbanFM, ST-MetaNet, ST-GCN, ST-MGCN

RMSE, MAPE

[69] SCEG (GCN) GRU, T-GCN, E-GCN, Multi-graph, CG-GCN MAPE, RMSPE

[18] DTCNN (GCN?GRU) HA, VAR, XGBoost, RNN, LSTM, GRU, DCRNN RMSE, PCC, MAE

[58] MVGCN (GCN) HA, VAR, GBRT, FC-LSTM, GCN, DCRNN, FCCF, ST-MGCN RMSE, MAE

[25] GBikes

(GAT?GCN?Attention)

HA, SHA, ARIMA, ANN, LSTM, RNN, STCNN, GC, MGN RMSE

[46] AGSTN

(GCN?Attention?LSTM)

ARIMA, SVR, FC-LSTM, DCRNN, AST-GCN, ST-MGCN MAE, RMSE, P@5,

NDCG

[77] BikeGAAN

(GCN?Attention?LSTM)

SES, MLP, ARIMA, HA, RNN, GRU, LSTM, CNN, CNN-RNN, CNN-LSTM,

CNN-GRU, GCN

MSE

[53] GCN HA, ARIMA, LSTM, DCRNN, STGCN RMSE

Year 2021

[80] GCN?GRU?Attention XGBoost, FC-LSTM, DCRNN, STGCN, STG2Seq, Graph WaveNet RMSE, MAE, PCC

[89] ST-GDN

(Attention?GAT?GCN)

ARIMA, SVR, Fuzzy NN, ST-RNN, D-LSTM, DeepST, ST-ResNet, DMVST-

Net, STDN, UrbanFM, ST-MetaNet, DCRNN, ST-GCN, ST-MGCN, GMAN

RMSE, MAPE

[52] GCN?LSTM ARIMA, SVR, LSTM, DCRNN, STGCN, T-GCN RMSE, MAE

[82] FGST (GCN?LSTM) FNN, LSTM, GRU, GCN RMSE, MAE

[12] GCN?TCN HA, ARIMA, ETS, RF RMSE, MAE

[47] LSGC-LSTM

(GCN?LSTM)

RNN, LSTM, GRU, GAT-LSTM, AGCRN, DGCNN SMAPE, RMSE,

MAE

[74] STGCN (GCN?TCN) RNN, LSTM, GRU SMAPE, RMSE,

MAE
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4 Application scenarios

In this section, prediction-based application scenarios

within and beyond bike share systems are discussed to

determine the potential benefits of bike usage prediction.

4.1 Applications within bike share systems

The first application is the prediction-based recommenda-

tion system. For docked bike share systems, real-time or

future bike availability information at different stations

may not be provided in the original system. In this case, a

prediction-based smart recommendation system can help

users find an available bike with a high probability [5].

This problem is not as simple as it seems, since the user

needs to make a real-time decision about which station to

go, based on the future bike availability predicted, other

than the current bike availability information.

The second application is choosing the facility location

for new stations. In docked bike share systems, the

potential demand in new stations is an important factor

when choosing the ideal locations, other than the cost and

accessibility considerations. Both potential demand and

accessibility are used to determine where new stations

should be located using a maximum covering location

problem that maximizes the population served in [4] for the

Table 4 Summary of deep learning models used in the studies reviewed with the grid-format input

Study Proposed/Adopted Model(s) Baselines Evaluation Metrics

Year 2020

[44] ATFM (ConvLSTM?Attention) HA, SARIMA, VAR, ARIMA, ST-ANN, DeepST, VPN,

ST-ResNet, PredNet, PredRNN

RMSE, MAE

[20] CSCNet (CNN) ARIMA, ConvLSTM, Peoridic-CRN, ST-ResNet,

DeepSTN?

RMSE, MAE

[54] GL-TCN (CNN?TCN) HA, ARIMA, XGBoost, CNN, ConvLSTM, TCN, ST-

ResNet, STDN

RMSE, MAE

[38] CLTFP (CNN?LSTM) N/A MAPE, MAE

[76] MBH (CNN?GRU?ConvGRU) RNN, LSTM, GRU, ConvLSTM, ConvGRU, XGBoost,

ST-ResNet, DMVST-Net

MAPE, RMSE, MAE

[71] MT-ASTN

(CNN?GCN?LSTM?Attention)

ARIMA, ConvLSTM, ST-ResNet, STDN, GEML, MDL RMSE, MAE

[93] ST-Attn (CNN?Attention) ST-ANN, MNNs, ST-ResNet, ST-UNet, ConvLSTM,

AttConvLSTM, PCRN

RMSE

Year 2021

[70] CNN?GRU HA, LR, GRU, LSTNet, ConvLSTM RMSE, MAPE

[17] CEST (GRU?Attention?CNN) HA, ARIMA, GBRT, ST-ResNet, GeoMAN, CoST-Net,

MiST

MAE, RMSE

[37] STMN (ConvLSTM?CNN) ARIMA, LSTM, ConvLSTM, STDN RMSE, MAPE, MAE

[94] ST-HAttn (Attention?CNN) ARIMA, Ridge, XGBoost, ST-ANN, ST-UNet,

GeoMAN, AttConvLSTM

RMSE

[86] CNN HA, ARIMA, SARIMA, VAR, ST-ANN, DeepST, ST-

ResNet

RMSE, Training Time, Parameter

Number

[67] CNN VAR, ARIMA, ST-ResNet, ResNet, SRCN MAE, MSE, RMSE

[48] ConvLSTM?LSTM ARIMA, ConvLSTM, ST-ResNet, GEML, MDL RMSE, MAE

[62] ConvLSTM N/A MAE, RMSE, MAPE

[85] CNN ST-ResNet Model Parameter, Training Time,

MAE, MAPE, RMSE, R2

[45] STCL (CNN?Attention) HA, ARIMA, VAR, MLP, FC-GRU, ConvLSTM, ST-

ResNet, DMVST-Net, STDN

RMSE, MAE

[21] STREED-Net (CNN?Attention) HA, ST-ResNet, MST3D, 3D-CLoST, PredCNN, ST-

3DNet, STAR

RMSE, MAPE, APE

[84] DeFlow-Net (Deformable

Convolution)

HA, ARIMA, ST-ResNet, ST-3DNet, T-GCN RMSE, MASE

[23] ASTCN (CNN?TCN?Attention) HA, LASSO, GBDT, RF, DeepST, ST-ResNet, LSTN-

PSAM, DCRNN, ST-GDN, STG2Seq

RMSE

[9] STFNet (CNN?LSTM?Attention) HA, ARIMA, SVR, RF, LSTM, CN WMAPE, RMSE, MAE
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city of Glasgow, Scotland. Station-level interactions are

further considered in [69] with GCN to capture new

interactions in time-evolving station networks and the

interaction pattern of new stations would be used as a

reference for choosing the ideal location. The hourly bike

check-ins and check-outs of functional zones, instead of

bike stations, are predicted in [43]. Then the prediction

results with new bike stations are used for bike sharing

system expansions.

The third and last application is inventory management

and bike rebalancing among different stations or regions.

The imbalance of supply and demand is ubiquitous in bike

share systems, especially in peak hours. The bike rebal-

ancing problem is meaningful in both docked and dockless

bike share systems and has been considered in previous

studies [8, 14, 24, 42, 75]. With an effective rebalancing

strategy, both the bike utilization rate and the revenue of

the operator would increase. Predictive rebalancing

strategies have been designed. For example, a dynamic

scheduling model based on short-term check-in prediction

is designed for the Chicago bike share system. A mixed

integer nonlinear programming formulation of the bike

routing problem is built in [42], based on the bike station

pick-up and drop-off demand predictions. The relocation of

damaged bikes, instead of those in a functional state, is also

considered in [8] for dockless bike share systems. By

removing these damaged bikes from the road, the user

complaints for finding an unusable bike would decrease.

4.2 Applications beyond bike share systems

The first application is the combination with other trans-

portation systems, especially public transit systems, e.g.,

bus and metro systems. For example, different manage-

ment strategies for efficient land utilization are proposed in

[83] for a better connection between the dockless bicycle-

sharing system and the metro system in Shanghai. Another

application is land usage planning and management, which

is meaningful for the city planner. Bike trips can be seen as

mobile and social sensors to extract land usage patterns. It

has been proven useful for identifying urban space attrac-

tiveness in [3], which is a good reference for improving

city land planning and management. From another per-

spective, different land usage plans would also affect the

usage of shared bikes (and other transit systems), and the

prediction results should be taken into consideration for

making decisions.

5 Challenges and development directions

In this section, some research challenges and potential

development directions are proposed to inspire the follow-

up studies for usage prediction in bike share systems.

5.1 Challenges

Besides the prediction challenges discussed in Sect. 2.5,

more challenges would arise when prediction models are to

be used in a real-world bike share system.

The first challenge would be the use range of the pre-

diction models proposed in the surveyed studies. Most of

the existing studies evaluate the proposed method with

only one or two datasets, without the guarantee the the

success of an effective method in one bike share system

could be replicated in another one.

The second challenge would be the prediction model

deployment. Most of the surveyed studies evaluate the

proposed prediction methods with historical data in an

offline mode, without a full consideration for being

Table 5 Open-source projects

from the covered studies
Study Year Framework Link

[7] 2018 TensorFlow https://github.com/Di-Chai/GraphCNN-Bike

[93] 2019 TensorFlow https://github.com/zhouyirong09/ST-Attn

[88] 2020 TensorFlow, Keras https://github.com/jillbetty001/ST-CGA

[35] 2020 TensorFlow, Keras https://github.com/LeeDoYup/TGGNet-keras

[69] 2020 TensorFlow https://github.com/RoeyW/Bikes-SCEG

[44] 2020 PyTorch https://github.com/liulingbo918/ATFM

[46] 2020 TensorFlow, Keras https://github.com/l852888/AGSTN

[51] 2020 TensorFlow https://github.com/inon-peled/cqrnn-pub

[92] 2020 TensorFlow, Keras https://github.com/zhoujunhao/wadc

[80] 2021 PyTorch https://github.com/Essaim/CGCDemandPrediction

[89] 2021 TensorFlow, Keras https://github.com/jillbetty001/ST-GDN

[85] 2021 PyTorch https://github.com/zhu-xm1/STPWNet

[22] 2021 PyTorch https://github.com/DanieleGammelli/variational-poisson-rnn

[21] 2021 TensorFlow, Keras https://github.com/UNIMIBInside/Smart-Mobility-Prediction
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deployed in a real-world bike share system, e.g., the

deployed devices, the data collection and update methods,

the user interfaces, etc.

The third challenge would be the impact of other

transportation modes. As discussed in Sect. A.3, public

transit usage affects the demand for shared bikes [12]. This

kind of influence is bi-directional and bike sharing systems

are tightly connected with other transportation modes.

5.2 Development directions

To address the above challenges, some development

directions are further proposed.

5.2.1 Prediction with more open datasets

As shown in Table 7, only four datasets are often seen in

the literature and all of them are collected from docked

bike share systems. One obvious research direction is to

collect and use more datasets, especially those from

dockless bike share systems. However, it is both time-

consuming and costly to collect new datasets. To solve this

problem, more open shared bike usage datasets are sum-

marized in Table 6, which can be used in future studies

with no cost 5. The temporal ranges of these datasets are

also listed for reference. It is worth mentioning that some

public dockless bike sharing datasets are available, e.g.,

Mobike Beijing [6], ValleyBike [65] and

DocklessLouisville.

5.2.2 Prediction for deployment

Most of the previous studies only evaluated the proposed

deep learning models with numerical simulations, without

deploying them in a real-world bike share system. The

evaluation of the model parameter number or the training

and inference time is often neglected. However, deep

learning models have been criticized for both their com-

putational complexity and the requirement of large-volume

training data, both of which limit the deployment of these

models in practice. Different ideas have already been

proposed for better deploying a prediction model in a bike

share system, for example, the idea of deploying the pre-

diction model with cloud or edge computing. However,

these early-stage ideas are far from satisfactory, and further

exploration is still needed, especially those with real-world

deployment experiences.

5.2.3 Joint prediction with other transportation modes

With the complex dynamics in a city environment, it is not

sufficient to use a single type of travel demand for pre-

diction, and some shared mobility-aware knowledge does

exist in multiple travel demands [70]. For example, it is

found that a majority of dockless bike trips in Singapore

start from or end at metro stations [90]. Co-evolving pat-

terns are also found between bike sharing and taxi usage in

[17]. Co-prediction of taxi and bike sharing demands are

further considered in [79], in which CNN is used to

decompose a spatial demand into a combination of hidden

spatial demand bases and LSTM is used to integrate the

states of taxi and bike sharing demands. Thus, a further

direction is to consider the joint prediction of bike share

systems with other transportation modes. The difficulty is

to collect and use heterogeneous data from different sys-

tems and data fusion techniques would be helpful in this

direction.

5.2.4 Prediction under specific social environments

Bike sharing usage vary a lot under specific social envi-

ronments, including both short-term and long-term ones.

Short-term social events include both human activities and

natural disasters, e.g., a flood, earthquake, or hurricane,

which could last for several days or weeks. During this

time period, abnormal bike sharing bike behaviors appear,

making the usage less predicable or existing prediction

models less reliable. Long-term social environments

instead would bring a fundamental change for bike share

systems, e.g., a new regulation policy. This kind of change

Table 6 More open datasets available for future studies

Name Type Link Temporal Range

BikeLondon[61] Docked https://cycling.data.tfl.gov.uk/ Since April, 2015

Bike Bay Area [81] Docked https://github.com/TwinkleBill/babs_open_data_year_3 September 1, 2015 to August 31, 2016

BikeChattanooga Docked https://data.chattlibrary.org/ July 23, 2012 to April 9, 2020

Mobike Beijing [6] Dockless https://github.com/SharingBikeNNU/Riding-Modes_Tucker May 10, 2017 to May 24, 2017

ValleyBike [65] Dockless http://traces.cs.umass.edu/index.php/Transportation/Transportation In 2019

DocklessLouisville Dockless https://data.louisvilleky.gov/dataset/dockless-vehicles Since August, 2018

5 For the DocklessLouisville dataset, both scooter and bike trips are

included and mixed without revealing the provider identities.
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would usually require new prediction models, instead of

the existing ones which are out-of-dated.

The COVID-19 outbreak is a typical long-term social

environment and has shown a wider and longer impact in

our society. Lockdown and home isolation policies have

been proven effective for controlling the epidemic spread,

which would highly affect the demand for all kinds of

transportation modes, including bike sharing. Both chal-

lenges and opportunities exist for various shared trans-

portation modes [57]. Both positive and negative impacts

on the usage of bike-sharing systems have been reported in

the literature. The demand for bike share usage shows a

drastic ridership reduction in New York, but the impact is

less severe on the bike share system than on the sub-

way [60]. A possible modal transfer from the subway to the

bike share system is also found in the same study [60].

Another study [33] finds that bike rentals for leisure pur-

poses rather than for means of transportation have

increased during the COVID-19 pandemic. Based on a

questionnaire survey conducted in the city of Thessaloniki,

Greece, bike-sharing is more attractive during the COVID-

19 period [49]. It would be interesting to explore whether

the COVID-19 relevant situations (e.g., confirmed cases)

and the lockdown policies would be useful as external

factors for bike usage prediction.

6 Conclusion

In this survey, a comprehensive review of bike sharing

usage prediction with deep learning is presented, from data

collection approaches to different prediction problem types

and deep learning solutions. For time series-format pre-

diction, RNNs are state-of-the-art solutions; for graph-

format prediction, GCN and GAT are two state-of-the-art

solutions; and for grid-format prediction, CNNs are state-

of-the-art solutions. More open datasets, various applica-

tions based on bike usage prediction and potential research

directions are summarized to encourage future research.

Appendix A: Bike sharing dataset
description

In this appendix, we first describe the process of collecting

bike sharing data in Sect. A.1. Then some commonly used

bike sharing datasets are described in Sect. A.2. The

external factors used in bike sharing usage prediction

problems are also summarized in Sect. A.3

A.1 Data collection

Different data collection techniques are used for docked

and dockless shared bikes, as shown in Fig. 2. In most

cities, a physical membership card would be necessary

before using docked bikes. The trip fare can be paid once

or within a monthly plan. For docked bikes, the trip records

can be collected in the docking stations and then trans-

mitted to the data center of the service operator. There are

no communication devices installed in the docked bikes.

For dockless bikes, the smart lock is empowered with

multiple communication functionalities. The lock is equip-

ped with the GPS location so that the users or the mainte-

nance team can find it easily. The lock is also equipped with

the 5G connection, e.g., Massive machine-type communi-

cations (mMTC), so that the status and location of the bike is

always monitored. Bluetooth can be a backup function for

unlocking the bike in the case of a 5G-denied environment,

e.g., in a tunnel or under a bridge. The trip record can be

transmitted to the data center of the service operator in real

time, and the trip fare can be paid with the smartphone

application. No physical membership card is needed.

One limitation of the dockless bike is that the smart lock

gradually consumes the electricity powered by a battery.

The battery has a life lasting for one or two years at most.

Solar cells in the basket may alleviate battery consumption

but cannot change the fact that the battery must be changed

to keep the dockless bike in an operational condition. This

shortcoming inevitably increases the operation and main-

tenance cost of a dockless bike-sharing system.

A.2 Dataset description

While collected in different approaches, the trip records

have a similar format for both the docked and dockless

bikes. The spatial information is usually recorded as a start

station id and an end station id in the docked bike system,

while the station locations are generally fixed and search-

able. The spatial information in a dockless bike system is

usually the start and end GPS coordinates for a single trip.

Geo-coding techniques may be applied to transform the

precise location to a broader region to protect user privacy.

The temporal information is usually the start and end

timestamps for a single trip. Other attributes can be col-

lected, but may not be relevant to usage prediction pur-

poses, e.g., bike id, user id, trip fare, etc.

To regulate and support the bike-sharing systems, the

relevant government departments are also defining and

unifying the trip data format. For example, the General

Bikeshare Feed Specification (GBFS) 6 is defined as the

6 North American Bikeshare Association General Bikeshare Feed

Specification. Retrieved from https://github.com/NABSA/gbfs.
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open data standard for shared bikes and makes real-time

data feeds in a uniform format publicly available online,

with an emphasis on findability. The GBFS has been

adopted in more than 12 cities in North America.

Many bike-sharing systems release their accumulated

trip records regularly, e.g., monthly or yearly. Some

famous open datasets are widely used in the studies

reviewed. A list of the open datasets used in the reviewed

studies is shown in Table 7. The datasets in Table 7 are all

collected in docked bike share systems, from four different

cities, namely New York, Washington, Chicago, and

Boston. All four datasets have been collected for a long

time, e.g., BikeNYC, BikeDC and BikeBoston can be dated

back to 2011, and BikeChicago can be dated back to 2015.

The station numbers also changed as new stations were

added and some old stations were removed. For example,

the NYC Bike System contains 416 stations and the

Washington D.C. Bike System contains 472 stations at the

time when this survey is in preparation.

The relevant studies using these open datasets are also

listed in Table 7. Since these bike-sharing systems are still

in operation and trip records continue to grow, different

studies may use these datasets with a different time range,

making the prediction results less comparable.

A.3 External factors

Bike usage prediction is mainly based on the temporal and

spatial dependencies learned from historical data. Many

external factors would also affect the bike-sharing demand

and should be considered in building an effective predic-

tion model [19]. The effect of each external factor for

prediction is considered in [10] and the combination of

different external factors is also considered in [55].

External factors used in the studies reviewed are sum-

marized in Table 8. Bike usage is more affected by the

weather factor than other transportation modes, e.g., and it

is not suitable for riding a bike on a rainy or windy day.

The calendar factor includes the time of day, weekdays,

weekends, and holidays. For those who ride the shared bike

on weekdays, there are obvious to-work and to-home pat-

terns in morning and evening peak hours. These patterns

would be totally different on weekends or holidays. The

point of interest (POI) or land usage situation around the

station or within a region is also used, which reflects the

potential need for bike usage, e.g., riding from a metro

station to the places of interest.

Other external factors are also used, although in rare

cases. Similar to the weather factor, air quality is another

factor that affects bike-riding willingness, especially in

cities with severe pollution. Social events affect the overall

transportation system, including the bike share system. For

example, the traffic demand would increase dramaticallyTa
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around a stadium after a match, with the audience going

home. Use with other public transit systems would also

affect the need for shared bikes with the similar purpose of

short-distance trips, e.g., buses and subways. Finally, traffic

accidents adversely affect the usage of road vehicles, e.g.,

buses and taxis, and bikes can be used as a potential

alternative in cases of road congestion or emergencies.

The difficulty of obtaining these external factors is

totally different. It is easy to find the weather, calendar, air

quality or public transit usage data sources that are pub-

lished by the government or commercial companies, with

or without a cost. The PoI data can be obtained from map

service providers and there are some non-commercial

options, e.g., OpenStreetMap. Land usage data can be

extracted from government documents, which usually

require more manual processing work than well-formatted

PoI data. It is not easy to obtain social event and traffic

accident data in real time. Previous studies have used

natural language processing and keyword matching tech-

niques to extract relevant event or accident information

from social media data, e.g., Twitter or Facebook.

The update frequency of these external factors also

varies. The weather, calendar, air quality and public

transmit usage data can be updated daily or hourly. The

social event and traffic accident data have no regular

update frequency. The POI and land usage data would stay

the same for a long time period, e.g., months or even years.
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