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Abstract

This and the follow-up paper deal with the valuation and hedging of bilateral coun-
terparty risk on OTC derivatives. Our study is done in a multiple-curve setup reflecting
the various funding constraints (or costs) involved, allowing one to investigate the ques-
tion of interaction between bilateral counterparty risk and funding.

The first task is to define a suitable notion of no arbitrage price in the presence of
various funding costs. This is the object of this paper, where we develop an “additive,
multiple curve” extension of the classical “multiplicative (discounted), one curve” risk-
neutral pricing approach. We derive the dynamic hedging interpretation of such an
“additive risk-neutral” price, starting by consistency with pricing by replication in the
case of a complete market. This is illustrated by a completely solved example building
over previous work by Burgard and Kjaer.
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1 Introduction

Counterparty risk is the risk of either party defaulting in an OTC derivative contract (or
portfolio of contracts). This is the native form of credit risk, which affects any OTC trans-
action between two parties. Early treatments of counterparty risk can be found for instance
in Duffie and Huang (1996) or Bielecki and Rutkowski (2002, Chapter 14). See also the
collection of papers in Pykhtin (2005), and see Gregory (2009) or Cesari et al. (2010) for
practically oriented presentations in book form. The interest in counterparty risk, along
with counterparty risk itself, has exploded since the credit crisis of 2007-09, when it was
realized that the resilience of a bank to a major financial turmoil, is largely determined by
its ability to properly value and hedge this risk. With the sovereign debt crisis the issue is
more topical than ever.

We shall deal in this paper with valuation and hedging of a generic contract, to be
understood in practice as a portfolio of OTC derivatives, between two defaultable coun-
terparties. These two parties, which will be referred to as “the bank” and “the investor”,
are tied by a legal agreement, the Credit Support Annex (CSA), prescribing the collater-
alization scheme and the close-out cash-flow in case of default of either party. The aim of
a CSA is to mitigate counterparty risk. Collateral means cash or various possible eligible
securities posted through margin calls as default guarantee by the two parties. The CSA
close-out cash-flow is the terminal cash-flow, including the accumulated collateral at that
time, to occur in case of default of either party.

A counterparty risk related issue, especially when dealing with bilateral counterparty
risk, is a proper accounting for the costs and benefits of funding one’s position into the con-
tract. From the perspective of say the bank (and symmetrically so for the investor), this lets
a third party enter the scene, namely the funder of the position of the bank. This gives rise
to another close-out cash-flow, from the external funder to the bank, at time of the bank’s
default (coming as a funding benefit of the bank upon her own default). Interaction between
the pricing, the hedging and the funding problems, has become a major topic of concern
for practitioners, reflected for instance in Piterbarg (2010), Morini and Prampolini (2010),
(Burgard and Kjaer 2011a; Burgard and Kjaer 2011b) or Castagna (2011).

The first task is to define a suitable notion on no arbitrage price in the presence of
various funding costs. This is the object of this paper, where we develop an “additive,
multiple curve” extension of the classical “multiplicative (discounted), one curve” risk-
neutral pricing approach.

1.1 Outline of the Paper

In Section 2, we define our market model of the contract between the bank and the investor,
its hedging assets and its funding assets. In Section 3 we characterize the hedging error
arising from a given pricing and hedging scheme, accounting in particular for the fund-
ing cash-flows. Given potential nonlinearities in the funding cash-flows, it is not possible
to get rid of funding costs through discounting as in a classical one-curve setup. In Sec-
tion 4, the cash-flows are priced instead under an “additive, flat” extension of the classical
“multiplicative, discounted” risk-neutral assumption. We also derive the dynamic hedg-
ing interpretation of this “additive risk-neutral” price. Section 5 provides an illustrative
example, discussing in the additive martingale pricing perspective of this paper the situa-
tion in a complete Black-Scholes market which is considered in (Burgard and Kjaer 2011a;



3

Burgard and Kjaer 2011b).
The take-away message of this paper is that for properly valuing and hedging (bilateral

in particular) counterparty risk in a multiple-curve setup reflecting the presence of various
funding costs, it is necessary to focus on a party of interest, say the bank, and to consider
the “system” consisting of the bank, the investor and the funder of the bank. One must also
have a clear view of the three equally important pillars of the bank’s position consisting of
the contract itself, its hedging portfolio and its funding portfolio (as opposed to getting rid
of the funding component of the position by risk-free discounting in a classical one-curve
setup).

2 Market Model

This Section specifies a model of a contract (generic CSA portfolio of OTC derivatives with
time horizon T between the bank and the investor), its hedging assets and its funding assets.
Let (Ω,GT ,G) stand for a filtered space with a finite horizon T, which is used throughout
the paper for describing the evolution of a financial market model. The filtration G as
well as any other filtration in this or the follow-up paper, are assumed to satisfy the usual
conditions. All random variables are GT -measurable. All random times are [0, T ] ∪ {∞}-
valued G-stopping times. All processes are defined over [0, T ] and G-adapted. We endow
the measurable space (Ω,GT ) with a probability measure ℙ, which is fixed throughout the
paper, and will later be interpreted as a martingale pricing measure in some sense. We as-
sume in particular that ℙ is equivalent to the historical probability measure ℙ̂ over (Ω,GT ).
We denote by Et the conditional expectation given Gt. All cash-flows that appear in the
paper are assumed to be ℙ-integrable. By default, all price and value processes (including
the collateral process Γ) are assumed to be semimartingales, and all semimartingales (in-
cluding finite variation processes) are taken in a càdlàg version; “martingale” simply means
local martingale; all inequalities between random quantities are to be understood dℙ-almost
surely or dt⊗ dℙ-almost everywhere, as suitable.

We denote by � and � the default times of the bank and the investor, in the sense of
the times at which promised dividends and margin calls, cease to be paid by a distressed
party. We assume that � and � cannot occur jointly at fixed (constant) times, which is for
instance satisfied in all intensity models of credit risk. Note that this does not preclude the
possibility of � and � jointly occurring at some stopping time, as it is for instance the case
in a Marshall Olkin model of two default times (see Bielecki et al. (2012) or Morini (2011)).
We denote

� = � ∧ � , �̄ = � ∧ T,

where �̄ represents the effective time horizon of our problem, since there will be no cash-flows
after it.

Remark 2.1 (Unilateral or Bilateral Counterparty Risk?) In principle the possibil-
ity of one’s own default should be accounted for by a suitable correction, actually standing
as a benefit, to the value of the contract. This benefit is the so-called Debt Valuation
Adjustment (DVA), see for instance Brigo and Capponi (2010). There is a debate among
practitioners however regarding the relevance of accounting for one’s own credit risk as a
benefit through bilateral counterparty risk valuation. The point is that since selling protec-
tion on oneself is hardly doable in practice (and typically illegal), it is not really possible
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to hedge one’s own credit risk. It is recent news that Goldman hedges DVA risk through
peers. But while this may take partly care of spread hedging, it does not hedge the jump to
default risk. To hedge jump to default risk one may try to repurchase one’s own bond (see
Section 5 for an example), but this is not practical in general. Given that hedging bilateral
counterparty risk is difficult, the principle of risk-neutral valuation of bilateral counterparty
risk is thus questionable.

But the practical justification for using a model of bilateral counterparty risk is that
unilateral valuation of counterparty risk induces a significant gap between the CVAs com-
puted by the two parties. This implies that it is difficult to agree on a CSA on the basis of
unilateral counterparty risk valuations.

If in the end one does not want to account for bilateral counterparty risk, one simply
considers a model of unilateral counterparty risk, which corresponds in our formalism to
letting � = ∞ everywhere below (for unilateral counterparty risk from the perspective of
the bank).

We let D represent the clean or promised cumulative dividend process of the contract,
assumed to be of finite variation. A promised dividend dDt is only effectively paid if none of
the parties defaulted by time t, resulting in the effective dividend process dCt = 1t<�dDt.

In order to mitigate counterparty risk, the contract is collateralized. Collateral consists
of cash or various possible eligible securities posted through CSA regulated margin calls as
default guarantee by the two parties. We model collateral by means of an algebraic margin
amount Γ� passing from the bank to the investor at time � < T . So, before � , a positive Γt

represents an amount “lent” by the bank to the investor (and remunerated as such by the
investor), but devoted to become the property of the investor in case of default of either
party at time � (if < T ). Symmetrically, before � , a positive (−Γt) represents an amount
“lent” by the investor to the bank (and remunerated as such by the bank), but devoted to
become the property of the bank in case of default of either party at time � < T.

There is also a CSA close-out cash-flow 1�<TR
i from the bank to the investor at time

of default � < T , in which Ri is a G� -measurable random variable which will be specified in
the follow-up paper.

We shall focus on the bank shortening the contract to the investor under the rules
of a given CSA, and setting up a related hedge. By the bank shortening the contract to
the investor we mean that all the cash-flows of the contract are paid by the bank. This
is conventional however since promised cash-flows are algebraic. For instance ΔDt = ±1
means a bullet cash-flow of ±1 “from” the bank to the investor at time t.

We call external funder (or funder for short) a generic third-party1 insuring funding
of the position of the bank. External here stands in opposition to the internal sources of
funding provided to the bank via the remuneration of the swapped component of her hedge,
or via the remuneration of the margin amount (see Subsections 2.1 and 2.2).

Remark 2.2 For simplicity we assume the external funder to be default-free. Note that
this hinders a direct application of our framework to the study of systemic risk.

In the context of this paper where the focus is on counterparty risk, recoveries upon
default are more conveniently excluded from dividends and accounted for separately as
boundary conditions. We shall thus distinguish two categories of related cash-flows:

1Possibly composed in practice of several entities and/or devices.



5

∙ Dividends, in the sense of all pre-default cash-flows involving the bank, decomposing
into:

– Counterparty clean or promised contract dividends;

– Gains on the hedging instruments before time � ;

– The dt-cost/benefit of funding the position/investing into it;

∗ This includes in particular the remuneration of the collateral;

∙ Close-out cash-flows, meaning cash-flows at the default time � (if < T ), consisting of:

– The CSA close-out cash-flow, or recovery on the contract paid by the bank to
the investor upon default of either party;

∗ This includes in particular the delivery of the collateral;

– A close-out funding cash flow from the funder to the bank in case of a default of
the bank.

Remark 2.3 Apart from the promised dividends of the contract and the remuneration
of the collateral, which are exchanged between the two parties, all other cash-flows differ
between them. This induces an asymmetry between the parties, to the consequence that
the value of the contract will not be the same from their perspectives. This is why we
need to focus on a given party, the one conventionally called “the bank” in this paper.
Of course symmetrical considerations apply to “the investor”, but with non-symmetrical
hedging positions and funding conditions.

The fact that the economic value (in a sense of cost of hedging as we shall see below) of a
deal is different to the two parties, poses the practical problem of agreeing on a price between
them. Asymmetry in economic value is as factual as for instance market incompleteness
in a real world. One thus has to live with it and find trading agreements in this context
(still better knowing it than ignoring it). One might claim that asymmetry is only on the
funding side, not on the (bilateral) counterparty risk side, so that “maybe at first order”
the asymmetry is not so big. This would need to be checked numerically however. Moreover
the point of this paper is that counterparty risk and funding are tied together. So even the
view that symmetry is at least there counterparty risk side, is a simplistic one.

2.1 Hedging Assets

Let P denote the ℝd-valued semimartingale price process of a family of hedging assets,
and let C stand for the corresponding ℝd-valued cumulative effective dividend process. The
finite variation dividend process C represents all the cash-flows that are paid to a holder of
a buy-and-hold position in the hedging assets until time �̄ .

An hedging asset can be traded either in swapped form, at no upfront payment, or (at
least for a physical asset as opposed to a natively swapped primary asset, see below) directly
on a primary market. Hedging assets traded in swapped form include (counterparty risk
clean) CDS on the two parties which are typically used for hedging the counterparty jump-
to-default exposure of the contract. Note that a fixed CDS (of a given contractual spread
in particular) cannot be traded dynamically in the market. Indeed, only freshly emitted
CDS can be entered into, at no cost and at the related fair market spread, at a given time.
What is used in practice for hedging corresponds to the concept of a rolling CDS, formally
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introduced in Bielecki et al. (2008),2 which is essentially a self-financing trading strategy
in market CDS. So, much like as in futures contracts, the value of a rolling CDS is null
at any point in time, yet due to the trading gains of the strategy, the related cumulative
value process is not zero. The case of hedging assets traded in swapped form also covers the
situation of a physical (as opposed to natively swapped) hedging asset traded via a repo
market.

We assume in this paper that every hedging asset can be traded in swapped form,
either as a natively swapped instrument rolled over time, or, for a physical asset, via a
corresponding repo market. In mathematical terms, trading the hedging asset with price
Pi
t in swapped form effectively means than one uses, instead of the original (physical or

fixed swap) asset, a synthetic asset with price process S i
t = 0 and gain process given by

dPi
t −

(
rtP

i
t + cit

)
dt+ dCi

t , (2.1)

where:

∙ In case of a physical primary asset traded via a repo market, the basis ci corresponds
to the so-called repo basis; the meaning of all other terms in (2.1) is clear;

∙ In case of a natively swapped asset rolled over time, the different terms in (2.1) are
to be understood as3

dPi
t = dP̄i,t0

t ∣t0=t , Pi
t = P̄i,t

t = Si
t = 0 , ci = 0 , dCi

t = dC̄i,t0
t ∣t0=t (2.2)

where (P̄i,t0
t )t≥t0 is the price process at time t of the corresponding fixed (as opposed

to rolled) swap emitted at time t0 ≤ t, with dividend process (C̄i,t0
t )t≥t0 .

All the dt-funding costs in this paper are expressed in terms of a basis, like a repo
basis ci in (2.1), to the risk-free rate rt.

2.2 Funding Assets

This Subsection provides a comprehensive specification of funding cash-flows. The corre-
sponding notion of a self-financing trading strategy will be derived in Subsection 3.1. A
general formulation of the pricing and hedging problem under abstract funding constraints
will then be given in Subsection 3.2.

We assume that the bank can lend money to (respectively borrow money from) its
external funder at an excess cost over the risk-free rate rt determined by a funding credit
and/or liquidity basis � (respectively �̄). In case the bank is indebted to its (default-free)
funder at time � = � < T, the bank will in principle not be in a position to reimburse the
totality of its external debt, but only a fraction r of it, where a [0, 1]-valued G�-measurable
random variable r represents the recovery rate of the bank towards its external funder.
This results as we shall see below in a close-out funding cash-flow, proportional to (1 − r),
from the external funder to the bank in case � = � < T. This cash-flow corresponds to the
funding side of “the bank benefiting from her own default”. In case r < 1 the bank defaults
at time � not only on its commitments in the contract with regard to the investor, but also
on its related funding debt. The case r = 1 can be seen as a partial default in which at time
� the bank only defaults on its contractual commitments with regard to the investor, but

2See also the related concept of Floating Rate CDS in Brigo (2005).
3See Bielecki et al. (2008) and Bielecki et al. (2011) for more details.
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not on its funding debt with respect to its funder. It can be used for modeling the situation
of a bank in a global net lender position, so that it actually does not need any external
lender (in case cash is needed for funding its position, the bank simply uses its own cash).
Also note that in case of unilateral counterparty risk (from the perspective of the bank, so
� = ∞ almost surely) the value of r is immaterial; by convention in this case one shall let
r = 1 almost surely.

Regarding the collateral, we restrict ourselves for simplicity to collateral posted as cash.
We follow the most common CSA covenant under which the party getting the collateral
can use it in its trading, as opposed to a covenant where collateral is segregated by a third
party in order to avoid the so-called re-hypothecation risk (see Bielecki and Crépey (2011)).
Specific CSA rates rt+bt and rt+ b̄t, where b and b̄ stand for related bases, are then typically
used to remunerate the collateral owned by either party. This results in a dt-remuneration
of the margin amount which is worth

(rt + bt)Γ
+
t dt− (rt + b̄t)Γ

−
t dt = rtΓtdt+

(
btΓ

+
t − b̄tΓ

−
t

)
dt

to the bank, and the opposite to the investor.
Regarding funding of the hedging instruments, we suppose that a hedging position is

either entirely swapped, or funded in totality by the external lender, and that this choice
is given and fixed once for all at time 0 for every hedging instrument. We let a superscript
s refer to the subset of the hedging instruments traded in swapped form, and s̄ refer to
the subset, complement of s, of (physical) hedging instruments which are traded directly
on a primary market (and are therefore funded together with the contract by the external
funder).

Remark 2.4 In the above specification it is assumed for simplicity that the funding cost is
not deal specific but always the same, distinguishing only the direction of the flow (funding
or investment). A different model of treasury, more on the micro scale, would allocate
different funding to deals with different characteristics.

In order to account for the above funding specification in a classical formalism of self-
financing trading strategies, we introduce the following funding assets on [0, �̄ ] (with all
initial conditions set to one):

∙ Two collateral funding assets, B0 and B̄0, evolving as

dB0
t = (rt + bt)B

0
t dt , dB̄0

t = (rt + b̄t)B̄
0
t dt, (2.3)

dedicated to the funding of the positive and the negative part of the margin account,

∙ Two external funding assets, Bf and B̄f , evolving as

dB
f
t = (rt + �t)B

f
t dt , dB̄

f
t = (rt + �̄t)B̄

f
t dt− (1− r)B̄f

t−��(dt) (2.4)

where the symbol � denotes a Dirac measure; these are the investing and funding
assets of the bank by its external lender.

Remark 2.5 By funding assets we mean riskless, finite variation assets which are used for
funding a position. In the classical one-curve setup with risk-free rate rt, there is only one
funding asset, the so-called savings account, growing at rate rt. The savings account is
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thus the inverse of the risk-free discount factor �t = e−
∫ t

0
rsds. In this paper, we do not

postulate the existence of the savings account. The risk-free rate rt simply corresponds to
the time-value of money, and one can only think of �−1

t as a “fictitious” savings account.
What we have instead is the coexistence of various funding assets with different growth
rates in the economy. This raises the question of arbitrage that might result from trading
between these rates. These can simply reflect different levels of credit-riskiness, so that a
related arbitrage opportunity is only a pre-default view, disregarding losses-upon-defaults.
Even without credit risk, different funding rates may consistently coexist in an economy,
reflecting trading constraints, or, in other words, liquidity funding costs. The rationale here
is that a given funding rate may be only accessible for a definite notional and for a specific
purpose, so that funding arbitrage strategies are either not possible, or not sought for by the
parties. An example that arises in the context of counterparty risk is that of the collateral,
in which the two parties must have a contractually prescribed amount (Γ±

t below) at any
point in time. The question of the co-existence of no-arbitrage with several funding assets
is work in progress in Bielecki et al. (2011).

3 Trading Strategies

The task of the bank shortening the contract to the investor, consists in devising a price
and a dynamic hedging portfolio for the contract sold to the investor, whilst getting funded
by its external lender. In this Section we characterize the hedging error arising from a given
pricing and hedging scheme, detailing in particular the funding cash-flows.

A hedge process is defined as a left-continuous (see Remark 3.1) and locally bounded,
ℝd-valued row-vector process � over [0, �̄ ], representing the number of units of the hedging
assets which are held in the hedging portfolio. By price-and-hedge of the contract for the
bank shortening it to the investor, we mean any pair-process (Π̄, �) over [0, �̄ ], where � is
a hedge process and Π̄ is an ℝ-valued semimartingale such that Π̄�̄ = 1�<TR

i (the CSA
close-out cash-flow). Accordingly, by hedging error process of the price-and-hedge (Π̄, �),
we mean % = Π̄ − W̄, where W̄ is the value process of the collateralization, hedging and
funding portfolio. Replication corresponds to %�̄ = 0 almost surely.

3.1 Self-Financing Condition

The position of the bank being funded as described in Subsection 2.2, one has for t ∈ [0, �̄ ],

W̄t =
(
Γ+
t − Γ−

t

)
+

(
�st S

s
t + � s̄tP

s̄
t

)
+

(
(W̄t − Γt − � s̄tP

s̄
t )

+ − (W̄t − Γt − � s̄t P
s̄
t )

−
)

(3.1)

where the three terms in the right-hand side correspond to the amounts respectively invested
as collateral, into the hedging assets (swapped and non swapped components � s and � s̄, see
the explanations surrounding Equation (2.1)) and into the external funding assets. Note
St = 0, so a hedging instrument traded in swapped form does not directly contribute to
the value W̄t. However it contributes as we shall see below to the dynamics of W̄t, via the
related gain process in (2.1). Equivalently to (3.1), one can put in a more formal notation

W̄t = �0tB
0
t + �̄0t B̄

0
t + �st S

s
t + � s̄tP

s̄
t + �

f
t B

f
t + �̄

f
t B̄

f
t (3.2)

with

�0t =
Γ+
t

B0
t

, �̄0t = −
Γ−
t

B̄0
t

, �
f
t =

(W̄t − Γt − � s̄tP
s̄
t )

+

B
f
t

, �̄
f
t = −

(W̄t − Γt − � s̄t P
s̄
t )

−

B̄
f
t
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Hedge Pt

Investor (�)

Bank (�)

Funder

Hedge St = 0

W̄t − Γt − � s̄tP
s̄
t = −Xt(W̄t, �t)

Γt

�st S
s
t + � s̄tP

s̄
t

Ri�� (dt)

dCt = 1t<�dDt

(rt + bt)Γ
+
t dt− (rt + b̄t)Γ

−

t dt

� = � ∧ �

�st
(
dPs

t − (rtPs
t + cst )dt+ dCs

t

)

� s̄t (dP
s̄
t + dCs̄

t )

(rt + �t)X
−

t (Wt, �t)dt− (rt + �̄t)X
+
t (Wt, �t)dt

(1− r)X+
�−(W�−, ��−)��(dt) = R̄f ��(dt)

�̄ = � ∧ T

Xt(�, &) = − (� − Γt − & s̄P s̄
t )

R̄f = (1 − r)X+

�−
(W�−, ��−)

W0 = W̄0

Wt = W̄t − 1t=�R̄
f

Figure 1: Cash-flows of the bank over [0, �̄ ].

Following a standard terminology, we then say in view of (3.2) that a price-and-hedge (Π̄, �)
of the bank is self-financing if and only if W̄0 = Π̄0 and for t ∈ [0, �̄ ]

dW̄t = −dCt + �0t dB
0
t + �̄0t dB̄

0
t+ (3.3)

�st
(
dPs

t − (rtP
s
t + cst )dt+ dCs

t

)
+ � s̄t (dP

s̄
t + dC s̄

t ) + �
f
t dB

f
t + �̄

f
t−dB̄

f
t

where the “minus” in �̄
f
t− is needed4 because B̄

f
t jumps at time � (and process �̄f is not

predictable).

Remark 3.1 Being able to take a left-limit in �̄f is the reason why we restrict ourselves
to left-continuous hedges �, as opposed to predictable hedges in general in the hedging
literature. This restriction does not harm in practice (see for example the hedges found in
Section 5 of this paper or in Section 4 of the follow-up paper).

Figure 1 provides a graphical representation of all the cash-flows over [0, �̄ ]. We denote
for every real number � and ℝd-valued row-vector &

Xt(�, &) = −
(
� − Γt − & s̄P s̄

t

)

ft(�, &) = btΓ
+
t − b̄tΓ

−
t + �t

(
� − Γt − & s̄P s̄

t

)+
− �̄t

(
� − Γt − & s̄P s̄

t

)−
− &scst

(3.4)

where Xt−(W̄t−, �t−) will be interpreted as the (algebraic) debt of the bank towards its
external funder at time t, and ft(W̄t, �t) as the dt-excess-funding-benefit of the bank. Let
finally for t ∈ [0, �̄ ]

Π∗
t = Π̄t − 1t≥�R̄

f , Wt = W̄t − 1t≥�R̄
f (3.5)

4We thank Marek Rutkowski for pointing this out as well as for a significant clarification of this section
of the paper.
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where R̄f := (1 − r)X+
�−(W�−, ��−) will appear in the last line of (3.7) as the close-out

cash-flow from the external funder to the bank at time � = � < T .

Proposition 3.1 Under the funding specification of Subsection 2.2, a price-and-hedge (Π̄, �)
is self-financing if and only if W0 = Π∗

0(= Π̄0) and for t ∈ [0, �̄ ]

dWt = −dCt +
(
rtWt + ft(Wt, �t)

)
dt+ �t(dPt − rtPtdt+ dCt). (3.6)

Proof. Plugging (2.3)-(2.4) into (3.3) and using also the current specification of the funding
policy regarding hedging assets, yields that the strategy is self-financing if and only if for
t ∈ [0, �̄ ]

dW̄t =− dCt + (rt + bt)Γ
+
t dt− (rt + b̄t)Γ

−
t dt+ �t(dPt + dCt)− �s (rtP

s
t + cst ) dt

+ (rt + �t)
(
W̄t − Γt − � s̄tP

s̄
t

)+
dt− (rt + �̄t)

(
W̄t − Γt − � s̄tP

s̄
t

)−
dt

− �̄
f
�−(1− r)B̄f

�−��(dt)

=− dCt + rt(W̄t − �tPt)dt+ �t(dPt + dCt) + btΓ
+
t dt− b̄tΓ

−
t dt− �scstdt

+ �t

(
W̄t − Γt − � s̄tP

s̄
t

)+
dt− �̄t

(
W̄t − Γt − � s̄tP

s̄
t

)−
dt

+ (1− r)
(
W̄�− − Γ�− − � s̄�−P

s̄
�−

)−
��(dt)

=− dCt + rtW̄tdt+ �t(dPt − rtPtdt+ dCt) + ft(W̄t, �t)dt+ R̄f��(dt).

(3.7)

□

3.2 General Price-and-Hedge

As illustrated in Subsection 2.2, the exact nature of the funding cash-flows depends on the
specification of a funding policy defined in terms of related funding assets. For the sake of
clarity and generality one shall work henceforth with the following abstract definition of a
(self-financing) price-and-hedge, in which the funding component of the hedging portfolio
only shows up through an abstract dt-excess-benefit-funding coefficient ft(�, &) and a fund-
ing close-out cash-flow (1− r)X+

t (�, &), without explicit reference to specific funding assets.5

In this expression, a G�-measurable random variable r represents as before a recovery rate
of the bank towards an external funder (assumed risk-free), the case r = 1 still covering
by convention the situation of unilateral counterparty risk with � = ∞; X represents an
abstract debt function of the bank to its external funder.

The following definition of a general price-and-hedge is put in the form of a forward-
backward stochastic differential equation (FBSDE, see Ma and Yong (2007)) in (W,Π∗, �, %),
where % equals Π∗−W (the hedging error) in view of the second line in (3.8). What solving
this FBSDE would mean is solving the related control problem, that is finding a general
price-and-hedge (Π̄, �) such that the related process % has “nice” properties in terms of
arbitrage (typically: % being a martingale under some equivalent probability measure) and
replication (typically: % being small in some appropriate norm). This would be a fairly
non-standard FBSDE however, accounting in particular for the “forward-backward initial
condition” W0 = Π∗

0 of W (see Horst et al. (2011) for related technical issues). But we
shall not try to solve the problem in this form, rather introducing soon a more tractable
backward stochastic differential equation (BSDE).

5There are also the internal sources of funding, measured by the data b, b̄ and c, provided to the bank by
the remuneration of the collateral and of the swapped component of her hedge.



11

Definition 3.1 (General Price-and-Hedge) Let semimartingales W,Π∗, % and a hedge
� form a quadruplet (W,Π∗, �, %) satisfying the initial conditions W0 = Π∗

0, %0 = 0, and
such that for t ∈ [0, �̄ ]

dWt = −dCt +
(
rtWt + ft(Wt, �t)

)
dt+ �t(dPt − rtPtdt+ dCt)

dΠ∗
t = −dCt +

(
rtWt + ft(Wt, �t)

)
dt+ �t(dPt − rtPtdt+ dCt) + d%t

(3.8)

along with a terminal condition Π∗
�̄ = 1�<T R̄ where

R̄ = Ri − 1�=�R̄
f (3.9)

in which R̄f := (1− r)X+
�−(W�−, ��−).

One then calls general price-and-hedge with hedging error %, the pair-process (Π̄, �)
where for t ∈ [0, �̄ ]

Π̄t := Π∗
t + 1t≥�R̄

f .

We say that (Π̄, �) is a replicating strategy if %�̄ = 0 almost surely.

Observe that R̄ represents the total close-out cash-flow delivered by the bank at time
� < T (CSA close-out cash flow Ri paid to the investor minus close-out funding cash-flow
1�=�R̄

f got from the external funder). Also note that under the funding specification of
Subsection 2.2, Definition 3.1 is consistent with the developments of Subsection 3.1. In the
abstract Definition 3.1 we focus on processes Π∗ andW rather on Π̄ and W̄ that concurrently
showed-up in the specific setup of Subsections 2.2 and 3.1, because Π∗ (actually, ultimately
Π to be introduced in Definition 4.1 below) and W will be more convenient mathematically.
By a slight abuse of terminology we call W the value of the hedging portfolio. To be
precise, it is process W̄ which corresponds to what should be called exactly the value of the
collateralization, hedging and funding portfolio.

Also observe that in case r = 1 and f = c = 0 (classical one-curve setup without
excess funding costs), one recovers the usual notion of a self-financing hedging strategy
with related wealth process W. The funding close-out cash-flow R̄f and the funding bases
f and c can thus be interpreted as the corrections to a classical one-curve setup.

4 Martingale Pricing Approach

In this Section we deal with pricing of the contract shortened by the bank to the investor,
under the funding conditions of the bank defined by the external recovery rate r and the
funding bases f and c. Note that given nonlinearities in the funding (unless r = 1 and the
funding coefficient f is linear), it will not be possible to get rid of the funding costs in the
pricing through discount factors as in a linear one-curve setup.6 Cash-flows will be priced
instead under an “additive, flat” extension of the classical “multiplicative, discounted”
risk-neutral assumption. We also derive the dynamic hedging interpretation of such an
additive risk-neutral price, starting by consistency with pricing by replication in the case
of a complete market.

6Unless one resorts to an implicit discount factor depending on the value of the contract.
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4.1 Primary Market

Let ℳ denote the gain process of all hedging instruments traded in swapped form. So, in
view of (2.1): ℳ0 = 0 and for t ∈ [0, �̄ ]

dℳt = dPt −
(
rtPt + ct

)
dt+ dCt. (4.1)

Our standing probability measure ℙ is henceforth interpreted as a risk-neutral pricing mea-
sure on the primary market of hedging instruments traded in swapped form, in the sense
that

Assumption 4.1 The primary gain process ℳ is an ℝd-valued ℙ-martingale.

By arbitrage, we mean a self-financing strategy with a related gain at time �̄ which
is almost surely non-negative, and which is positive with a positive probability (under the
historical or any equivalent probability measure). Since the pricing measure ℙ is equivalent
to the historical probability measure ℙ̂, Assumption 4.1 precludes arbitrage opportunities
on the primary market of the hedging assets traded in swapped form.

Remark 4.1 Expression (4.1) for the primary gain process ℳ (and similar expressions
related to valuation of the contract below) involves no discounting at some “reference rate”.
This is why we call this approach an “additive” version of the “multiplicative” risk-neutral
assumption which is more commonly used through the language of discounting at the risk-
free rate rt in the one-curve literature. For instance, in a Black-Scholes model on a stock S

(with constant risk-free rate r and nil repo basis on S for notational simplicity), the “addi-
tive” martingale ℳ and the usual one-curve “multiplicative” martingale write respectively

ℳt = ℳ+
t :=

∫ t

0
dSs −

∫ t

0
rSsds , ℳ×

t = e−rtSt

so dℳ×
t = e−rtdℳ+

t . In a one-curve setup more generally, an additive and a multiplicative
approach are equivalent, and the multiplicative one is actually more convenient, since it
allows one to get rid of the funding issue, “absorbed” in the discounting at the risk-free
rate. In a multiple-curve setup however, the funding issue (intrinsically a nonlinear one in
a bilateral counterparty risk setup, unless r = 1, via the positive part X

+ in the external
close-out cash-flow) has to be accounted for explicitly, “additively”.

Under Assumption 4.1 it is convenient to rewrite (3.6) in martingale form as

dWt =
(
rtWt + gt(Wt, �t)

)
dt− dCt + �tdℳt (4.2)

where for � ∈ ℝ and & ∈ ℝd

gt(�, &) = ft(�, &) + &ct. (4.3)

Example 4.1 Under the funding specification of Subsection 2.2, one gets in view of the
expression of f in (3.4) that

gt(�, &) = btΓ
+
t − b̄tΓ

−
t + �t

(
� − Γt − & s̄P s̄

t−

)+
− �̄t

(
� − Γt − & s̄P s̄

t−

)−
+ & s̄cs̄t (4.4)

which depends on & through & s̄, the position in the hedging assets funded together with the
contract by the external lender.
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Remark 4.2 In the case of a physical (as opposed to a natively swapped) primary asset,
the coefficient ci corresponds to a repo basis, and one might wonder why in Example 4.1 the
repo rates eventually present in g are actually those of the hedging instruments which are not
traded in swapped form. An interpretation is that in case of a hedging instrument traded
in swapped form, the opportunity of getting it funded at the excess cost ci is exploited,
whereas for a hedging instrument not traded in swapped form this opportunity is not,
creating an (algebraic) “loss of income” which should be reflected in the final “pricing
formula”, and therefore in the coefficient g of the corresponding pricing equation as we
shall see in Definition 4.1 below.

From the BSDE point of view, a particularly simple situation will be the one where

X
+
t (�, &) = X

+
t (�) , gt(�, &) = gt(�). (4.5)

We call this the fully swapped hedge case in reference to its financial interpretation under
the funding specification of Subsection 2.2. Otherwise we shall talk of an externally funded
hedge.

4.2 ℙ-Price-and-Hedge BSDE

The class of general price-and-hedges introduced in Definition 3.1 is too large for practical
purposes. This leads us to introduce the following more restrictive definition. Given a hedge
� and a semimartingale Π, we denote R = Ri − 1�=�R

f , in which

Rf := (1− r)X+
�−(Π�−, ��−). (4.6)

Let us stress that R implicitly depends on (Π�−, ��−) in this notation.

Definition 4.1 (ℙ-price-and-hedge) Let a pair (Π, �) made of a semimartingale Π and
a hedge � satisfy the following BSDE on [0, �̄ ]:

Π�̄ = 1�<TR and for t ∈ [0, �̄ ] :

dΠt + dCt −
(
rtΠt + gt(Πt, �t)

)
dt = d�t

(4.7)

for some martingale � null at time 0. Letting for t ∈ [0, �̄ ]

Π̄t := Πt + 1t≥�R
f ,

process (Π̄, �) is then said to be a ℙ-price-and-hedge. The related cost process is the
martingale " defined by "0 = 0 and for t ∈ [0, �̄ ]

d"t = d�t − �tdℳt. (4.8)

Equivalently to the BSDE (4.7) in differential form, one can write in integral form, for

t ∈ [0, �̄ ] (recall �t = e−
∫ t

0
rsds)

�tΠt = Et

( ∫ �̄

t

�sdCs −

∫ �̄

t

�sgs(Πs, �s)ds+ ��̄1�<TR
)
. (4.9)

The reader is referred to El Karoui et al. (1997) for a general reference about BSDEs in
finance, and to Example 1.1 therein as a basic example of use of BSDEs in connection with
funding constraints (different borrowing and lending rates).
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The ℙ-price-and-hedge BSDE (4.7) is made non-standard by the random terminal time
�̄ , the dependence of the terminal condition R in (Π�−, ��−), the contract effective dividend
term dCt, and the fact that it is not driven by an explicit set of fundamental martingales
like Brownian motions and/or compensated Poisson measures. In this last respect, the
representation (4.8) rather suggests that this BSDE will be solved with respect to the
“primary martingale” ℳ, up to a (typically orthogonal) martingale ".

Remark 4.3 (BSDEs) An analysis of counterparty risk under funding constraints led us
to the ℙ-price-and-hedge BSDE (4.7), as a simplification of the general price-and-hedge
FBSDE of Subsection 3.2. BSDE modeling should not be really seen as a choice here,
but rather as an output of this paper. This is mainly due to the intrinsically nonlinear
feature of the funding issue under bilateral counterparty risk (via the positive part X

+ in
the external close-out cash-flow unless r = 1, see Remark 4.1). As observed recurrently in
the mathematical finance literature, BSDEs and FBSDEs emerge naturally in the context
of nonlinear pricing problems. In this the reader can be referred to the literatures on large
investors, insiders and pricing impact, see for instance Cvitanic and Ma (1996). Regarding
counterparty risk, another good point with BSDEs is that since they are a “nonlinear
pricing tool,” they can as easily deal with recursive features which will appear in the follow-
up paper like a CVA close-out valuation process Q given not exogenously, but in terms of
the counterparty risky price (or CVA) that one is looking for – a practically important issue
as recently pointed out in Brigo and Morini (2010).

Again, the ℙ-price-and-hedge BSDE (4.7) is rather non standard at first sight. However
we shall see in the follow-up paper that it can ultimately be reduced to a rather classical
pre-default CVA BSDE. This will also raise interesting questions from the point of view
of BSDEs per se. Firstly, the solution of the general price-and-hedge FBSDE that we got
before simplification into the more tractable BSDE (4.7), is an open problem to the best of
our knowledge. Secondly, via path-dependent collateralization, this provides an important
field of motivation and application for the theory of time-delayed BSDEs (see Remark 3.3
in the follow-up paper). Thirdly, via the large-size and high-dimensional features of the
CVA computational pricing problem, this provides an important field of motivation and
application for numerical BSDEs.

About numerics, it’s interesting to note that a BSDE modeling approach is consistent
with the American Monte Carlo technology which is advocated for practical CVA compu-
tations (without explicit references to BSDEs) in the book by Cesari et al. (2010). The
regression scheme which is used in Brigo and Pallavicini (2008) for computing the “clean
price P” (in the terminology and notation of our follow-up paper) at all points of a simulated
grid, also has a flavor of numerical BSDEs.

By construction, a ℙ-price-and-hedge (Π̄, �) is a general price-and-hedge in the sense
of Definition 3.1. In Subsection 4.3 we shall comment upon a ℙ-price-and-hedge from the
points of view of arbitrage, hedging and computational tractability. For this one first needs
to derive the equations for the wealth W of the corresponding hedging portfolio, and for
the corresponding hedging error %. This is the object of the following

Lemma 4.1 Given a ℙ-price-and-hedge (Π̄, �) and the related process Π, let a process W
be defined by the first line in (3.8), starting from the initial condition W0 = Π0; let then a
process Π∗ be defined by, for t ∈ [0, �̄ ]

Π∗
t = Π̄t − 1�=�R̄

f
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where R̄f := (1 − r)X+
�−(W�−, ��−). Then (Π̄, �) is a general price-and-hedge, with wealth

W of the hedging portfolio such that for t ∈ [0, �̄ ]

(
�tΠt −

∫ t

0
�sgs(Πs, �s)ds

)
−

(
�tWt −

∫ t

0
�sgs(Ws, �s)ds

)
=

∫ t

0
�sd"s (4.10)

and with hedging error % = Π∗ −W such that for t ∈ [0, �̄ ]

d%t = d"t +
(
rt%t + g(Πt, �t)− g(Wt, �t)

)
dt − 1�=�(1− r)(R̄f −Rf )�� (dt)

= d"t +
(
rt%t + g(Πt, �t)− g(Wt, �t)

)
dt

− 1�=�(1− r)
(
X
+
�−(W�−, ��−)− X

+
�−(Π�−, ��−)

)
�� (dt)

(4.11)

(and %0 = "0 = 0).

Proof. Identity (4.10) immediately follows from (4.2), (4.7) and (4.8) (plus the fact that
W0 = Π0). Rewritten in term of the hedging error % = Π∗ − W, Equation (4.2) for the
value W of the hedging portfolio of (Π̄, �) yields that for t ∈ [0, �̄ ]

dΠ∗
t =

(
rtWt + gt(Wt, �t)

)
dt− dCt + �tdℳt + d%t. (4.12)

Besides, the equation part (second line) in the ℙ-price-and-hedge BSDE (4.7) can be written
in terms of the cost d"t = d�t − �tdℳt of (4.8) as

dΠt =
(
rtΠt + gt(Πt, �t)

)
dt− dCt + �tdℳt + d"t. (4.13)

Since Πt −Π∗
t = 1t=�(R̄

f −Rf ), substracting (4.13) from (4.12) yields (4.11). □

4.3 Arbitrage, Replication and Computational Issues

Assume first that it is possible to find a ℙ-price-and-hedge process (Π̄, �) with a vanishing
cost process " = 0, and second that for this (Π̄, �) and the related process Π, uniqueness
holds for the following forward SDE in Y : Y0 = Π0 and for t ∈ [0, �̄ ],

d(�tYt)− �tgt(Yt, �t)dt = d(�tΠt)− �tgt(Πt, �t)dt.

Via the BSDE machinery (see for instance El Karoui et al. (1997)), the first assumption is
typically met by application of a martingale representation property (whenever available),
whereas the second assumption is a technical requirement guaranteeing that Π and W
coincide if they solve the same forward SDE. Under these assumptions, one gets by (4.10)
with " = 0 therein that W = Π. It follows that Rf = R̄f , and therefore by (4.11) that
% = " = 0. In this case the ℙ-price-and-hedge process (Π̄, �) is thus a replicating strategy.

We refer the reader to Section 5, expanding over Burgard and Kjaer (2011b), for a
practical example of replication. Since replication ultimately relies on a martingale repre-
sentation property, it typically holds (or not) not only for a particular contract, but for any
financial derivative. We shall thus refer to this case henceforth as the “complete market”
case.

In a more general, “incomplete” market, the cost " of a ℙ-price-and-hedge (Π̄, �), and
in turn its hedging error %, can only be reduced up to a level “proportional” to the “degree
of incompleteness” of the primary market. The bank shortening the contract to the investor
can only partially hedge its position, ending-up with a non-vanishing hedging error % �̄ .
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Remark 4.4 (Arbitrage) In a complete market or if r = 1 (under unilateral counterparty
risk in particular), the Dirac-driven term vanishes in (4.11). Under suitable conditions, one
can then change the measure ℙ into an equivalent measure ℚ such that the hedging error % is
a ℚ-martingale. This excludes that %�̄ could be non-negative almost surely and positive with
positive probability. In conclusion a ℙ-price-and-hedge (Π̄, �) cannot be an arbitrage in this
case. On the opposite, in an incomplete market with moreover r < 1, a ℙ-price-and-hedge
(Π̄, �) is, in principle, arbitrable.

A non-arbitrable strategy would be a general price-and-hedge (Π̄, �) such that the
quadruplet (W,Π∗, �, %) in Definition 3.1 solves the related FBSDE, in the sense in particular
that the hedging error % would be a martingale under some equivalent probability measure.
However in an incomplete market and with moreover r < 1 this FBSDE seems intractable
(again, see Horst et al. (2011) for related technical issues). The ℙ-price-and-hedge BSDE
can be viewed as a simplified version of this theoretical FBSDE. The price to pay for this
simplification is that it opens the door to an arbitrage (unless a market is complete or
r = 1, in which cases the ℙ-price-and-hedge BSDE and the above FBSDE are essentially
equivalent). However we believe that this arbitrage is quite theoretical (the corresponding
“free lunch” seems quite difficult to lock in).

In view of the above arbitrage, hedging and computational considerations, we restrict
ourselves to ℙ-price-and-hedges in the sequel. For brevity we write henceforth in this and
the follow-up paper “a price-and-hedge (Π, �)” when the related pair-process (Π̄, �) is a
ℙ-price-and-hedge. By price related to a hedge process �, we mean any process Π such that
(Π, �) is a price-and-hedge (solves the BSDE (4.7)). Also in the sequel we simply call (4.7)
the price BSDE, as opposed to CVA BSDEs to appear in the follow-up paper.

Note that this shift of terminology is rather immaterial since nobody cares about the
price of the contract at time �̄ (as soon as Π̄�̄ = 1�<TR

i, for consistency with our definition
of the hedging error % as W̄ − Π̄). What matters in practice is the price for t < �̄ , in which
case Πt = Π̄t = Π∗

t .

Remark 4.5 (Symmetries) Similarly to the funding benefit coefficient g and the external
funding recovery rate r of the bank, one can introduce a funding cost coefficient g and an
external funding recovery rate r for the investor. In the very case where r = r = 1 and
g = g = g(�), all cash-flows are symmetric from the point of view of the two parties. In
this case the seller price of the bank will agree with the buyer price of the investor. An
example of symmetric funding costs is the setup of Fujii and Takahashi (2011), where the
funding close-out cash-flows are not represented (so implicitly r = r = 1) and excess funding
costs reduce to collateral bases b and b̄ in the sense of our Subsection 2.2. Since collateral
remuneration cash-flows are between the two parties of the contract (they do not involve
external entities), collateral bases does not break the symmetry in our sense.7

A contrario it is worth emphasizing that as soon as r or r < 1, or the g-coefficients
depend on &, or they don’t but g ∕= g, funding induces an asymmetry between the two
parties, resulting in a short bank price of the contract, different from its long investor price
(and in turn different CVAs in the follow-up paper). See Remark 2.3 for the practical
“violation of money conservation” issue.

Another notable specification, corresponding to the setup of Piterbarg (2010), is the
linear case where r = 1 and g = g(�) is linear. The bank has then a common buyer and

7Fujii and Takahashi (2011) consider in their paper a different notion of symmetry, which may be broken
even in their setup.
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seller price. Under the funding specification of Subsection 2.2, the linear case corresponds
to r = 1, b = b̄ and � = �̄.

Finally the one-curve setup corresponds to the case where r = 1 and all the bases are
equal to 0, so g = c = 0. The only funding rate8 in the economy is then the risk-free interest
rate r.

5 Example

This Section illustrates our approach by applying it to a Black-Scholes case considered
in (Burgard and Kjaer 2011a; Burgard and Kjaer 2011b). Note however that Burgard and
Kjaer disregard defaultability of the bank regarding her funding debt to her external funder.
So their setup corresponds to the special case r = 1. As soon as one wants to deal with
bilateral counterparty risk, defaultability of the bank regarding her funding debt is an
important issue. We thus treat the general case where r ≤ 1.

5.1 Setup

We consider an European option with payoff �(ST ) on a Black-Scholes stock S. The option
is sold by the bank to the investor at time 0. Both parties are defaultable but they cannot
default simultaneously. The option position is hedged by the bank with the stock S and
zero-recovery risky bonds B and I issued by the bank itself and by the investor. Repo
markets (with nil repo bases for notational simplicity) are assumed to exist for S, B and I.
Assuming a constant risk-free rate r, the gain process ℳ of a buy-and-hold position into
the hedging assets traded in swapped form writes as follows

dℳt =

⎛
⎜⎝

dSt − rStdt

dBt − rBtdt

dIt − rItdt

⎞
⎟⎠ .

Consistently with the martingale requirement of Assumption 4.1 on ℳ, one assumes the
following model for (S,B, I):

⎧
⎨
⎩

dSt − rStdt = �StdWt

dBt − rBtdt = Bt−

(
dJ�

t + 
dt
)

dIt − rItdt = It−

(
dJ�

t + 
dt
)

(5.1)

where Wt is a ℙ-Brownian motion, and J �
t = 1t<� and J�

t = 1t<� are the non-default
indicator processes of the bank and the investor, with constant ℙ-default intensities 
 and

. However only S and I are assumed to be traded by the bank on their repo market. As for
B, the bank funds it, together with its option position, by an external funder, at a constant
external borrowing basis �̄ over the risk-free rate r (and her external lending rate is simply
r). Moreover there is no collateralization (Γ = 0). In this case, (3.4) and (4.4) yield

Xt(�, &) = −
(
� − &BBt

)
, gt(�, &) = −�̄

(
� − &BBt

)−
. (5.2)

Note that in this case of a non fully swapped hedge, X and g depend on & = (&S , &B , &I)T

(so (4.5) does not hold), through the hedging position &B of the bank in her own bond.

8Assuming the existence of a riskless asset with growth rate r.
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Finally one assumes a CSA close-out cash-flow of the form (consistently with the general
CSA close-out framework of the follow-up paper)

Ri = 1�=�

(
��+ − �−

)
− 1�=�

(
��− − �+

)
(5.3)

where � = Q(�, S� ) for a CSA close-out pricing function Q, and where � and � denote
constant recovery rates of the bank and the investor to each other. Letting � = (� S , �B , �I),
the price BSDE (4.7) writes as follows:

Π�̄ = 1�<TR and for t ∈ [0, �̄ ] :

dΠt + 1T<� �T (dt)�(ST ) =
(
rΠt − �̄

(
Πt − �Bt Bt

)−)
dt+ �tdℳt + d"t

(5.4)

where

R = Ri − 1�=�R
f = Ri − 1�=�(1− r)X+

�−(Π�−, ��−) (5.5)

= 1�=�

(
��+ − �− − (1− r)

(
Π�− − �B�−B�−

)− )
− 1�=�

(
��− − �+

)

for some recovery rate r (assumed constant) of the bank toward her external funder.

5.2 Analysis of a Solution

In this simple, complete market case (note there are three independent sources of random-
ness W , �, � in the model and three hedging assets S, B and I, plus an external funding
source), a solution (Π, �) to the price BSDE can be guessed intuitively. Moreover this will
be a solution with vanishing cost process " = 0, in other words a replication strategy for
the bank selling the option to the investor.

The Markovian structure of the problem leads us to seek for a solution (Π, �) to (5.4)
such that for t ∈ [0, �̄ ]

Πt + 1t=T<��(ST ) = u(t, St, J
�
t , J

�
t )

�t = �(t, St)
(5.6)

for suitable pricing and “delta” functions u and � = (�S , �B , �I ). We denote ũ(t, S) =
u(t, S, 1, 1), B̃c(t) = Bc

0e
(r+
c)t and B̃b(t) = Bb

0e
(r+
b)t. Equation (5.5) writes as follows

R = 1�=�

(
�Q(�, S� )

+ −Q(�, S� )
− − (1− r)

(
ũ(�, S� )− �B(�, S� )B̃(�)

)− )

− 1�=�

(
�Q(�, S� )

− −Q(�, S� )
+
)
.

One then has in view of the first lines in (5.4) and (5.6), for every (t, S) ∈ [0, T ]× (0,∞)

u(t, S, 0, 1) = �Q(t, S)+ −Q(t, S)− − (1− r)
(
ũ(t, S)− �B(t, S)B̃(t)

)−

u(t, S, 1, 0) = Q(t, S)+ − �Q(t, S)−.
(5.7)

Besides, on one hand, the first line of (5.6) and the second line of (5.4) (assuming
" = 0 therein) yield that for t ∈ [0, �̄ ]

du(t, St, J
�
t , J

�
t ) =

(
rũ(t, St)− �̄

(
ũ(t, St)− �B(t, St)B̃(t)

)−)
dt+ �(t, St)dℳt. (5.8)
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On the other hand, assuming ũ of class C1,2, one has in view of the model dynamics for
(St, J

�
t , J

�
t ) the following Itô formula over [0, �̄ ]:

du(t, St, J
�
t , J

�
t ) =

(
∂tũ(t, St) +Absũ(t, St)

)
dt+ ∂S ũ(t, St)�St dWt

− (u(t, St, 0, 1) − ũ(t, St)) dJ
�
t − (u(t, St, 1, 0) − ũ(t, St)) dJ

�
t

where Abs = rS∂S + �2S2

2 ∂2
S2 is the Black-Scholes generator, and where the right-hand side

can be rewritten as
(
∂tũ(t, St) +Absũ(t, St) + 


(
u(t, St, 0, 1) − ũ(t, St)

)
+ 


(
u(t, St, 1, 0) − ũ(t, St)

))
dt

+ ∂S ũ(t, St)�St dWt

− (u(t, St, 0, 1) − ũ(t, St))
(
dJ�

t + 
dt
)

− (u(t, St, 1, 0) − ũ(t, St))
(
dJ�

t + 
dt
)
.

(5.9)

Equating the martingale terms of the right-hand side in (5.8) and of (5.9), and using also
(5.7), denoting additionally Ĩ(t) = I0e

(r+
)t, one obtains that for every (t, S) ∈ [0, T ] ×
(0,∞):

−�B(t, S)B̃(t) = �Q(t, S)+ −Q(t, S)−−(1− r)
(
ũ(t, S)− �B(t, S)B̃(t)

)−

− ũ(t, S)

−�I(t, S)Ĩ(t) = Q(t, S)+ − �Q(t, S)− − ũ(t, S)

�S(t, S) = ∂S ũ(t, S).

(5.10)

The first line of (5.10) is equivalent to
(
ũ(t, S)− �B(t, S)B̃(t)

)+
− r

(
ũ(t, S) − �B(t, S)B̃(t)

)−
= �Q(t, S)+ −Q(t, S)− (5.11)

which reduces to (assuming r > 0)

−�B(t, S)B̃(t) =

{
�Q(t, S)− ũ(t, S), Q(t, S) ≥ 0
1
r
Q(t, S)− ũ(t, S), Q(t, S) ≤ 0.

(5.12)

This together with the two last lines of (5.10) explicitly yields �(t, S) in terms of ũ(t, S). In
particular (5.11) yields that

(
ũ(t, S) − �B(t, S)B̃(t)

)−
=

1

r
Q(t, S)−. (5.13)

Equating now the dt-terms of the right-hand side in (5.8) and of (5.9), and accounting
also for (5.7), (5.13) and for the terminal payoff �(ST ) in case T < � , one obtains that
the pre-default pricing function ũ(t, S) should satisfy the following pricing equation over
[0, T ]× (0,∞):

{
ũ(T, S) = �(S) , S ∈ (0,∞)(
∂t +Abs

)
ũ(t, S) + g̃(t, S, ũ(t, S)) = 0 , t < T, S ∈ (0,∞)

(5.14)

with for every real u

g̃ (t, S, u) = 

(
�Q(t, S)+ −Q(t, S)− − (1− r)

1

r
Q(t, S)− − u

)

+ 

(
Q(t, S)+ − �Q(t, S)− − u

)
− ru+ �̄

1

r
Q(t, S)−.
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Or equivalently in terms of �̃ = �̄− (1− r)
 (the related “liquidity basis”, see Example 3.1
in the follow-up paper) and r̃ = r + 
 + 
:

g̃ (t, S, u) =
�̃

r
Q(t, S)− + 


(
�Q(t, S)+ −Q(t, S)−

)

+ 

(
Q(t, S)+ − �Q(t, S)−

)
− r̃u.

(5.15)

This achieves the analysis of a solution, assumed to exist of the form (5.6) and with
null cost process ", to the price BSDE (5.4). Conversely, the linear PDE (5.14) is known
to have a unique classical solution ũ(t, S) under mild conditions on the coefficients. This
function ũ(t, S) and the function �(t, S) associated to it via (5.10) and (5.12), yield by
reverse-engineering in the above computations a solution of the price BSDE (5.4) with null
cost process ". One finally obtains a solution in the sense of replication to the pricing and
hedging problem of the bank, accounting also for the defaultability of the latter regarding
her funding debt, for any 0 < r ≤ 1.

Remark 5.1 (i) Practicality of the solution only holds if �B ≥ 0, corresponding to the
bank repurchasing her own bond. Otherwise �B ≤ 0 would mean that the bank should
issue more bond for hedging her CVA, which is not practical (see Burgard and Kjaer).
(ii) The case r = 0 can be dealt with likewise provided Q ≥ 0, otherwise (5.11) has no
solution and replicability does not hold.

5.2.1 CVA

Letting v(t, S) denote the Black-Scholes pricing function of the option (price clean of coun-
terparty risk and excess funding costs), and defining the pre-default CVA function w̃ = v−ũ,

the following pre-default CVA pricing equation follows from (5.14)-(5.15):

{
w̃(T, S) = 0 , S ∈ (0,∞)(
∂t +Abs

)
w̃(t, S) + ℎ̃(t, S, w̃(t, S)) = 0 , t < T, S ∈ (0,∞)

(5.16)

with for every real w

ℎ̃ (t, S, w) = −
�̃

r
Q(t, S)− + (
 + 
)(v(t, S) −Q(t, S)) + 
(1− �)Q(t, S)+

− 
(1− �)Q(t, S)− − r̃w.

(5.17)

5.2.2 CSA Close-Out Pricing Schemes

It is implicitly understood above that a CSA close-out valuation scheme Q is an exogenous
process, as in the standard clean CSA close-out pricing scheme Q(t, S) = v(t, S) (in this
latter case the (
+
)(v(t, S)−Q(t, S))-term, a replacement benefit/cost of the bank in the
financial interpretation, vanishes in (5.17)).

However one can also see by reverse-engineering in the above computations that it
is possible to deal likewise with the so-called pre-default CSA close-out pricing scheme
Q(t, S) = ũ(t, S). In this “recursive” case where the data (in principle) Q depends on
the solution ũ, the pre-default price and CVA PDEs become semilinear, via the resulting
nonlinear dependence of g̃ or ℎ̃ in their third argument u or w. This implies some viscosity
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(instead of classical) solution technicalities but it does essentially not change the flow of
arguments.

Note finally that the solution by replication that we were able to obtain in the complete
market, Black-Scholes example of this Section, was only possible due to many detail features
of the setup like, for instance, the use of zero-recovery bonds as hedging instruments. With
non-zero recovery bonds, even though one has three hedging assets S, B and I in regard
of three independent sources of randomness W , �, �, the nonlinearity (unless r = 1) of the
funding close-out cash-flow (we take a positive part in X

+ in (5.5)) makes the replication
equations nonlinear, and therefore non trivial to solve (even if three equations in three
unknowns, see for instance the case made in the end of Remark 5.1(ii)).

5.3 Comparison with the results of Burgard and Kjaer

In the special case where r = 1, the results of Burgard and Kjaer coincide with the ones
we just derived (with in this case �̃ = �̄ representing a liquidity basis, since for r = 1, �̄
should not incorporate any credit spread). There is a caveat however. Burgard and Kjaer
implicitly disregard defaultability of the bank regarding her funding debt (they do not have
any close-out funding cash-flow in their setup, which is tantamount to letting r = 1 in our
notation). But in the interpretation of their results, they dwell upon a case where despite of
the bank being practically risk-free with regard to her funding debt, the external borrowing
basis �̄ (that they denote sF ) would be of the form (1−�)
. However �̄ = (1−�)
 implicitly
refers to a case (actually a sensible one) where r(= �) < 1, whereas in their case r is always
(implicitly) equal to one. As a consequence, in this case, the simplifications that they find
in the coefficient ℎ̃ in (5.17) (for Q = v, see Subsubsection 5.2.2), and the conclusions
that they draw regarding the appropriate internal organization of the bank for managing
counterparty risk and funding costs, may not be relevant (in this situation sF = (1 − �)

and Q = v that they consider among others). More precisely, in Equation (5.14)-(5.15)
above, the coefficient of the first Q(t, S)−-term that appears in the expression of g̃ in (5.15)

is �̃
r
,9 as opposed to sF in Burgard and Kjaer. This �̃

r
has no special relation with 
(1− �).

So no simplification occurs between the − �̃
r
Q(t, S)−-term and the 
(1− �)Q(t, S)+-term10

in ℎ̃ in (5.17).

Perspectives

In conclusion of this paper, in the presence of nonlinear funding costs, a martingale pric-
ing approach is already useful in the context of a complete market model, allowing us to
streamline the analysis of Burgard and Kjaer in the previous Section. However the corre-
sponding computations were quite setup-dependent, and a general study at the level of the
price BSDE (5.4) needs to be conducted, as soon in particular as one leaves the realm of
complete markets.

Observe in the above example that passing from a price BSDE to a CVA BSDE allowed
one to get rid of coupon payments (the option payoff in the example) that blur the picture in
the price BSDE. One also learned from this example that the valuation problem is essentially
a pre-default one, so that a reduced-form approach should be a fruitful way to go.

These avenues of research will be explored systematically in the follow-up paper, which

9which indeed coincides with �̄ alias sF in Burgard and Kjaer in case r = 1, but in this case only.
10corresponding to the FCA- and the DVA-terms in Burgard and Kjaer (2011a).



22

will see the emergence of the CVA not only as a very important financial issue, but also as
a valuable tool in the mathematical analysis of counterparty risk under funding constraint.
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