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Abstract. This paper proposes modeling motion in a bilateral domain that aug-
ments spatial information with the motion itself. We use the bilateral domain
to reformulate a piecewise smooth constraint as continuous global modeling con-
straint. The resultant model can be robustly computed from highly noisy scattered
feature points using a global minimization. We demonstrate how the model can
reliably obtain large numbers of good quality correspondences over wide base-
lines, while keeping outliers to a minimum.

1 Introduction

Finding point-to-point correspondence between images is a fundamental vision prob-
lem. Applications include recognition, structure from motion, self-localization, warp-
ing, etc. For wide baselines, researchers typically focus on matching scattered, feature
points which are distinctive and easy to match. Despite substantial success in feature
descriptor design [1,2,3], basing correspondence solely on local information remains an
unstable, outlier prone process.

Researchers usually handle outliers at the application level through task-specific mo-
tion models1, that are often integrated into a RANSAC [4,5] outlier removal framework.
Some of the most successful techniques, are based around identifying specific motion
types/aspects that are amenable to global parameterization. Examples include epipo-
lar geometry [6] for different views of a static scene, homography [7,8] for planar or
pure rotational motion and non-rigid thin-plate splines [9] for smooth deformations. We
believe the high reliance on task-specific global models highlights two issues:

A) Strength of global modeling: Global models have many features important to the
correspondence problem. These are:

– Robustness: By defining a global rigidity/ smoothness, model computation can po-
tentially tolerate high noise levels and even handle correlated noise [10].

– Scattered Samples: Models can be computed on a sub-set of available data and the
results extrapolated. This approach permits computational efficiency and a natural
interface with sparse feature matchers.

*This work was supported by the research grant for the Human Sixth Sense Programme at
the Advanced Digital Sciences Center from Singapore’s Agency for Science, Technology and
Research (A*STAR).

1 Motion model: a finite global parameter set that defines an aspect of a continuous motion field.

D. Fleet et al. (Eds.): ECCV 2014, Part IV, LNCS 8692, pp. 341–356, 2014.
c© Springer International Publishing Switzerland 2014



342 W.-Y. Daniel Lin et al.

– Generalization: Models can verify existing data and hypothesize new data points.

B) Lack of a general motion model: Creating a general motion model for image cor-
respondence is difficult. Not only are correspondence points scattered and noisy, the
primary underlying constraint is piecewise smoothness, with the potential for large mo-
tion discontinuities. Thus, modeling requires detection and change of parametrization
at motion boundaries; a process that risks preserving outlier clusters and destroys the
model’s global properties. Yet, exclusively focusing on easily modeled motion aspects
discards a great deal of information. This increases the brittleness of more general mod-
els like the epipolar constraint, while restricting the flexibility of robust models like
homography. Our paper fills the gap by reformulating the piecewise-smoothness as a
robust, global constraint. This allows model fitting, outlier removal and matching set
expansion to begin before reaching the application level.

Our key concept is a general definition of motion coherence. Traditionally, coher-
ence [11] is equated to spatial (x, y) smoothness, i.e. a motion model is coherent if the
motion or its proxy2 varies smoothly over the spatial domain. In contrast, we suggest a
motion model be considered coherent if the motion/proxy varies smoothly in some low
dimensional domain.

Fig. 1. Inset: a one-dimensional discon-
tinuous set of motion hypothesis Main
figure: the same data (black dots) over
the bilateral domain with a likelihood
motion proxy. Note: the bilateral do-
main expresses discontinuous data as a
smooth field.
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In particular, an extended domain that includes the motion itself, x, y, u, v, allows
modeling of (spatially) piecewise smooth motions with a smoothly varying motion
proxy. A detailed explanation is given in Sec. 3. We term such functions, which achieve
smoothness by incorporating the desired output as part of the function domain, bilat-

eral functions. Fig. 1 illustrates a bilateral function with a likelihood motion proxy.
The bilateral domain makes it possible to fit a global function to (spatially) piecewise
smooth motion data via the traditional as-smooth-as-possible data modeling. This can
be solved by minimizing a global cost. The global smoothness makes bilateral motion
model computation highly robust and it can be computed directly from noisy correspon-
dence without RANSAC’s [4] hypothesis and test framework. Once computed, models
can robustly validate new matching hypothesis. This provides large numbers of corre-
spondence points over wide baselines, while keeping outliers to a minimum (zero in
many cases). Fig. 2 illustrates our performance.

To summarize our paper’s contributions:

– We propose a bilateral model as a principled means of imposing a piecewise motion
constraint via a global cost minimization. Our model is sufficiently robust to handle
high noise levels without RANSAC’s hypothesis and test framework.

2 Motion proxy: a value which indicates but does not define the motion (an example is likeli-
hood or a single affine parameter)
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(a) (b) (c)

Fig. 2. An example of our global method for finding correspondences. Circles represent feature
locations and lines their motion. a) Noisy feature correspondence (inliers highlighted in dark
blue). b) Our global model eliminates outliers. The model is directly computed from the noisy
matches in (a). c) The global model allows us to robustly expand the set of matches.

– We utilize the bilateral model to remove outliers from feature correspondences and
expand the existing matching set. The resultant algorithm procures large numbers
of correspondences while keeping outliers to a minimum. over wide baselines.

2 Related Works

Formulation: The piecewise smooth motion constraint has a long history in computer
vision. Examples range from piecewise smooth flow estimation [12,13] to plane-fitting
stereo [14]. However, to our knowledge, piecewise smoothness has always been en-
forced with some form of motion boundary discovery. Rather than the usual piece-
wise smooth approaches, our formulation builds on the global coherence [11,15,16,10]
framework which fits a smooth, continuous field over scattered points. By applying the
field on the bilateral domain, the global coherence accommodates discontinuities, while
retaining its original robustness.

RANSAC: For rigid parametric models, RANSAC [4,17,18] provides a general
means of removing outliers from feature correspondence. Of particular relevance are
recent piecewise planar RANSAC techniques [18], which handle general motion. Un-
fortunately, they relinquish the global model, forcing tight thresholding (that removes
many inliers). The lack of a global model also makes generalization for matching set ex-
pansion difficult. Interestingly, our bilateral coherence constraint is sufficiently robust to
directly fit highly noisy data, without RANSAC’s hypothesis and test framework. This
enables our flexible non-rigid model. If additional parametric constraints are appropri-
ate, RANSAC can be applied as a post-processor to further improve correspondence.
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Fig. 3. An image pair
with huge motion. The
warp projects the sec-
ond image onto the first.
While this is not a dif-
ficult feature correspon-
dence scene, the large
occlusions makes it dif-
ficult for optical flow.

Deep Flow [19] LDOF [20]

Optical flow [21,22,20], graph matching [23], surface modeling [24]: An alter-
native to modeling feature correspondences is optical flow or graph matching tech-
niques. These approaches embed the smoothness constraint at the matching step. This
reduces correspondence ambiguity and opens the possibility of dense matching. How-
ever, wide baselines introduce extensive occlusion which can turn the linkage of every
pixel/feature through a neighbor-wise smoothness into a liability as seen in Fig. 3. For
such scenes, our integration of bilateral modeling with point correspondence provides
a natural means of handling high occlusion. This is discussed in more detail in the
supplementary material.

Others: Outlier detection can also be achieved by local mesh techniques developed
by Pizarro and Bartoli [25]. However, the lack of a global model reduces its effective-
ness at higher noise level.

As our name suggests, bilateral functions are inspired by bilateral filters [26] that use
the same domain change technique for edge preserving image de-noising. Bilateral fil-
ters have also been applied to optical flow computation [27]. However, they do not deal
with the scattered point sets. Further, their window based approach makes identifying
outlier clusters difficult. By extending the bilateral concept as a function domain, we
overcome both these restrictions.

Interestingly, bilateral functions are related to patch-match [28] and quasi-dense cor-
respondence algorithms [29,30]. These techniques grow seed correspondences by itera-
tively searching their neighborhood. This growing mechanics is similar manner to min-
imization of a bilateral likelihood function as elaborated in Sec. 3.2. However, patch-
match does not compute an explicit model and it is unclear how its formulation can
extend to outlier removal or multi-image matching.

3 Formulation

We begin with an intuitive explanation of our approach. Our underlying function is
based on the motion coherence used in [11,15,16,10]. These techniques formulate a
non-rigid motion fitting problem in terms of finding the smoothest fk(p) function that
is consistent with given data. In these cases, p represents pixel coordinates, while the
range of fk(p) represents motion or its proxy.
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The smoothness (or infinite differentiability) implies a continuity constraint

lim
∆p �→0

fk(p+∆p)− fk(p) = 0, p =
[

x y
]T

∈ R
2, (1)

which forces the function value in the neighborhood of p to be similar. This causes the
function to incur large errors at discontinuous motion boundaries.

Our formulation changes the domain of fk(p) to a bilateral one spanning both the

spatial and motion dimensions i.e. p =
[

x y u v
]T

. This might mean that points with
different velocities are no longer near each other. Thus, we can assign very different
function values to points with adjacent spatial coordinates, while retaining the constraint
that fk(p) must be smooth. If the motion difference (∆u,∆v) between two points in
the domain p tends to infinity, the point separation also tends to infinity, reducing their
influence on each other. This occurs irrespective of their spatial coordinates and ensures
the smoothness penalty in the bilateral domain does not tend to infinity as the magnitude
of the motion’s spatial discontinuity increases.

The (spatial) piecewise smoothness of the true underlying motion, creates large clus-
ters of inlier points that are similar in both spatial and motion values, while sharing simi-
lar motion proxies. These points can be fitted at minimal cost to the smoothing function.
In contrast, outliers appear as isolated point clusters requiring their own unique motion
proxies. These incur a high smoothness cost if fit. The overall problem can now cast as
finding the globally smoothest function consistent with the data. As we do not modify
the as-smooth-as possible requirement, the global curve fitting [10] retains all is original
robustness. Fig. 1 provides a visualization of the bilateral domain.

Preliminaries: We discuss two different bilateral functions in Sec. 3.1, Sec. 3.2. Sec.
3.3 gives an intuitive explanation of their properties while implementation is discussed
in Sec. 3.4. Formally, we denote spatial locations as x = [x y ]T and motion as m =
[u v ]T . The set of N correspondences across two images is {xj ,mj, aj}. xj denotes
pixel locations, mj their corresponding motion hypothesis, and aj is a 4 × 1 vector
representing the relative affine orientation derived from local feature’s orientation.

3.1 Bilaterally Varying Affine

A bilaterally varying affine is a set of affine parameters which vary smoothly in a bilat-
eral domain. p = [x y u v ]T is a point in D = 4 dimension bilateral domain and q is
a scalar. For simplicity, we focus on the X motion direction first. The given correspon-
dences are observed data:

observed data = {pj = [xj ; mj ], q̂xj = xj + uj} (2)

where j is the correspondence index, and {q̂xj} are noisy observations of model qx(p)
evaluated at locations {pj}. We define qx(p) as a linear sum of smooth functions

qx(p) = f1(p)x + f2(p)y + f3(p), (3)

where each fk(.) represents an affine parameter.
Our goal is to fit the smoothest possible, continuous, fk(.) functions to observed,

{q̂xj} data. Individual fk(.) functions are composed of two terms, fk(p) = Hk+φk(p).
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Hk is an optional scalar offset and φk(p) is a smooth function with attached motion
coherence [11,15,10] penalty:

Ψk =

∫

RD

|φk(ω)|
2

g(ω)
dω. (4)

φk(.) denotes the Fourier transform of a function φk(.), while g(ω) is the Fourier trans-
form of a Gaussian with spatial distribution γ. Hence, (4) achieves smoothness by pe-
nalizing high frequency terms.

We seek the fk(p) functions which minimize the cost

E =
∑N

j=1
C(q̂xj − qx(pj)) + λ

∑3

k=1
Ψk (5)

where C(.) represents the Huber cost

C(z) = huber(z) =

{

z2 if |z| ≤ ǫ
2ǫ|z| − ǫ2 if |z| > ǫ

(6)

that penalizes deviation of the estimated function predictions from given q̂xj observa-
tions. λ represents the weight given to the smoothness constraint Ψk.

From [10], we know that both the continuous functions fk(p) and the coherence
terms Ψk can be re-expressed in terms of a finite number of variables given by the
N -dimensional vectors wk and scalars Hk:

fk(p) = Hk +
∑N

j=1
wk(j)g(p− pj , γ), Ψk = wT

k Gwk, k ∈ {1, 2, 3} (7)

where g(z, γ) = e−|z|2/γ2

and G(i, j) = g(pi−pj, γ). This allows us to minimize the
energy in (5) with gradient descent as it is convex in terms of the variables Hk,wk. The
Huber based energy in (5) allows the robust, non-parametric fitting of smooth curves by
leveraging the smoothness constraint to ignore individual outliers and outlier clusters
[10]. Note that the resultant bilateral affine model (3), is not a one-to-one mapping
function. Rather it validates a match location p by checking the cost (qx − (x+ u))2.

Similarly, for the Y direction, repeating the same steps as X but replacing k ∈
{1, 2, 3} with k ∈ {4, 5, 6} respectively and replacing q̂xj with q̂yj = yj + vj , one
obtains the bilateral affine model

qy(p) = f4(p)x+ f5(p)y + f6(p). (8)

Note that the formulation used here is not restricted to bilateral affines, with different
choices of fk(.) domain and range leading to different functions as we demonstrate in
the following subsection.

3.2 Likelihood Proxy

Another potential motion proxy is likelihood. For this proxy, we choose an 8 dimen-
sional bilateral domain over spatial position, motion and relative feature affine param-
eters. A point in the domain given by p = [x; m; a ]. The function range is set from



Bilateral Functions for Global Motion Modeling 347

[ 0 1 ]. Each match j hypothesizes a 1 value at location pj . Thus the observed data in
(2) takes the form:

observed data = {pj = [xj ; mj; aj ], q̂j = 1}.

We can fit a likelihood surface, f(p), to the observed data in a manner similar to the
bilaterally varying affine of Sec. 3.1. In this case, we have only one smooth function,
q = f(p). f(p) is subject to the smoothness constraint

Ψ =

∫

R8

|f(ω)|2

g(ω)
dω. (9)

Similar to (5), we seek the final f(p) that minimizes the cost

E =
∑N

j=1
huber(1− f(pj)) + λΨ. (10)

Without the Hk offset terms in Sec. 3.1, the Fourier smoothness in (9) causes the f(p)
function to return to zero unless given correspondence data biases it to 1. The robust
fitting provided by both the Huber function and the smoothness requirement ensures that
the cost in (10) does not fit the given data blindly but rejects correspondence clusters
without sufficient support.

As in (7), from [10] we know that f(p) and Ψ can be re-parametrized in terms of a
N -dimensional w vector.

f(p) =
∑N

j=1
w(j)g(p− pj , γ), Ψ = wTGw (11)

This allows gradient descent minimization of cost in (10), which is convex in w.
f(p) in (11) forms a motion proxy which indicates whether matches at a specific p

location should be considered an inlier. An example with a simplified p = [x u ]T is
shown in Fig. 1. Interestingly, algorithms that iteratively grow seed matches [28,29,30]
exploit a similar coherence. By biasing the matching search radius towards the sur-
roundings of pre-existing matches, they implicitly update a bilateral field with like-
lihood potentials similar to Fig. 1. This may explain why, despite having no explicit
smoothing function, such techniques provide matching results with a strong sense of
overall coherence (albeit with some outliers).

3.3 One-to-Many Mapping

Observe that the bilateral motion models indicate likely motion directions, rather than
specify a one-to-one mapping between images. While inconvenient, the one-to-many
mapping reflects the reality of multiple motion layers. For a foreground image point,
its alternative motion hypothesis reflects the estimated motion of the occluded back-
ground. For a background image point, the alternative motion hypothesis suggests its
position if it were actually part of the foreground. Due to this ambiguity, bilateral mo-
tion models must be integrated with some image measure (such as gray-level value or
SIFT descriptors) to provide a final match location. In practice, for independently ob-
tained matching hypothesis, the motion model can reliably distinguish between inliers
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and outliers, through a thresholding based on deviation from the model. The discrimi-
nation is surprisingly good. Even when the given point correspondences contain many
outliers, the computed motion model can preserve a large fraction of the inliers, while
eliminating all outliers. An example can be seen in the inlier recall of Fig. 2c) with more
rigorous analysis performed in Sec. 4.1. Apart from validating matches, the model can
also be used to search for desired features as discussed in Sec. 5.2.

3.4 Implementation

This section gives a broad overview of the computation of bilateral models from feature
correspondence. We primarily use A-SIFT [1] for matching. The SIFT threshold is set at
t = 0.82. This incurs many more outliers than the typical t = 0.66. However, for wide
baselines, it provides nearly an order of magnitude more inlier matches as seen in Fig. 8.
The inliers at the relaxed threshold are also more evenly distributed, allowing for better
motion modeling. The spatial coordinates of features are Hartley normalized [31] to
allow parameters to be invariant to image size. We compute the likelihood field given by
f(p) in (11) by finding the w that minimizes the energy functionE in (10). We accept as
inliers all matches with likelihood greater than 0.5 (i.e. f(pj) > 0.5). This thresholding
is deliberately weak and there are still outliers remaining. The inlier set obtained from
the likelihood function is used to obtain a bilaterally varying affine in (3), (8) by finding
the Hk,wk values that minimize the energy in (5). A match p = [x y u v ]T is accepted
if (qx(p)− (x+ u))2 +(qy(p)− (y+ v))2 < 0.01. The likelihood cost has lower long
range ambiguity (removes extreme outliers) but does not validate matches finely (will
accept matches with some localization error). Its simpler formulation also makes it more
stable. The bilateral affine penalizes localization error but will occasionally accept gross
outliers if they coincide with the affine. While the stages can theoretically be integrated
into a single cost, they are computed separately for speed. If there too many points, we
perform random sub-sampling to keep computation time constant.

Once the bilateral model is computed, we can use it to validate matching hypothe-
sis. In this paper, our matching hypothesis are SIFT matches with no nearest neighbor
thresholding but other methods of generating hypothesis can be considered. Fig. 4 gives
a system overview.

Fig. 4. System overview: to ob-
tain large numbers of high qual-
ity matches, we compute bilat-
eral motion fields according to
noisy hypothesis set, and use the
model to validate hypothesized
matching without nearest neigh-
bor thresholding.

(a) Input images (b) Create noisy hypothsis set 

(c) Bilatera  ( ) Val at hypothesis match
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4 Experiments and Discussion

This section focuses on empirical evaluation. Images are evaluated at 480 × 640 res-
olution. For data with known camera pose, an inlier is a match whose deviation from
epipolar geometry is less than 5 pixels. An outlier is one that deviates more than 40 pix-
els (due to large scale changes, this is not especially generous). The strict threshold for
inliers and outliers, ensures that algorithms are neither penalized nor rewarded based
on classification of ambiguous matches. We urge readers to view the supplementary
material which contains many images and visualizations of the empirical results.

4.1 Inlier-Outlier Discrimination for Measuring Motion Model Quality

The bilateral motion model does not define a one-to-one correspondence between im-
ages, making direct quantitative evaluation difficult. However, the overall correctness of
the model and robutsness of its computation can be indirectly measured via its ability
to discriminate between inlier and outlier correspondences. While many modern outlier
removal techniques work robustly at standard 0.66 A-SIFT thresholds, our evaluation
uses a more challenging 0.82 threshold3. For wide baselines, this also has the practical
advantage of providing many more inliers as illustrated in Fig. 8. Occ [25] (an excellent
outlier detector for general motion) forms the baseline. One measure of inlier-outlier
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Fig. 5. Recall and % outliers between image
pairs, with varying algorithm parameters (dia-
monds indicate default parameters). Occ [25]
is the baseline. The recall value where the
curves first intersect outliers = 0 represents
the maximum number of inliers that can be re-
tained if no outliers are tolerated. Apart from
highly repetitive scenes (blue and red curves),
our curves are vertical lines on the outliers = 0
axis. Our default parameters provide over 90%
recall with no outliers for many scenes.

discrimination is the percentage of of inliers sacrificed to eliminate outliers. We per-
form this analysis on wide baseline image pairs chosen from Strecha’s dataset [32] .
Results are shown in Fig. 5. Pair 1, 2 are the first and last images of [33]’s “cannonical"
sampling of Strecha’s Dataset. Pair 3, 4 are chosen as difficult cases for our algorithms
as they involve both wide baselines and strong image self similarity. Observe that local
fitting of Occ trades a large percentage of inliers to remove the final few outliers. In
contrast, for the “canonical" Pair 1, 2, our lines are vertical on the outlier = 0 axis,
indicating little need to trade inlier recall for outlier removal. For repetitive scenes like
Pairs 3, 4, there is indeed a trade-off but performance is still substantially better.

3 Ideally, we would evaluate directly on matches without thresholding. However, the noise level
is too high for all tested algorithms.
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We also use the entire viewpoint change section of Hienly’s dataset [33] for evalua-
tion. This includes many images with extreme illumination and viewpoint changes. For
each set, we use the first image as a base and match the rest to it. We compared our
results against epipolar RANSAC [34] and MLESAC [35], implemented by [36]. We
also evaluated piecewise homographic RANSAC (RCM homo) [18] and Occ [25], run
at their default parameters. Results are shown below

Ours epipolar RANSAC [34,35] RCM homo [18] Occ [25]
Images with outliers 5/35 18/35, 24/35 6/35 25/35
Precision (1-% outliers) 0.987 0.947, 0.963 0.966 0.983
Inlier recall 0.928 0.873, 0.886 0.561 0.733
F-Measure 0.957 0.908, 0.923 0.709 0.839

Our bilateral motion models provide good recall and precision compared to other outlier
rejection methods. Our recall is even comparable with epipolar RANSAC which is a
valid motion model for test images. Apart from precision and recall, the flexibility of
bilateral models allow us to tune parameters to a level where recall remains high despite
having zeros outliers for many image pairs. As discussed in Fig. 5, for other methods,
removing the last few outliers often involves discarding a large percentage of inliers. It
is important to bear in mind that these methods are not mutually exclusive. As we do
not enforce the epipolar constraint, RANSAC can still be run as a post-processor on our
correspondences.

4.2 Independent Motion

We evaluate independent motion on images from AdelideRMF [37]. Every image pair
contains large independent motions. Ground truth inlier-outlier labeling is provided for
noisy pre-computed correspondences. As the small set of background matches are auto-
matically labeled outliers, the dataset systematically lowers precision statistics of some
scenes. Thus, the number of images with no outliers is not directly meaningful. Im-
ages used are the same as those in [18] and results for other RANSAC algorithms on
the same data can be found in [18]. As feature orientation is not given, we modified
our algorithm to use only spatial location information. Fig. 6 shows our performance
improvement over multi-fundamental (RCM fund), multi-homographic (RCM homo)
RANSAC [18] and Occ.

Fig. 6. Ex-
ample of our
performance
on independent
motion data [37].
Statistics for
inlier recall and
precision are
given below.
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Ours
Precision

Ours
Recall

RCM
fund

Precision

RCM
fund

Recall

RCM
homo

Precision

RCM
homo
Recall

Occ
Precision

Occ
Recall

dinobooks 0.8062 0.8927 0.7519 0.9902 1.0000 0.1659 0.8672 0.5415
toycubecar 1.0000 0.9063 0.8880 0.8672 1.0000 0.7734 0.9878 0.6328
cubebreadtoychips 0.9712 0.9874 0.9271 0.9582 1.0000 0.3264 0.9943 0.7238
carchipscube 1.0000 0.8762 0.9196 0.9810 1.0000 0.8000 1.0000 0.7429
breadtoycar 0.9892 0.8364 0.8560 0.9727 1.0000 0.5364 1.0000 0.6909
breadcubechips 1.0000 0.8591 0.9013 0.9195 1.0000 0.6443 1.0000 0.6779
breadcartoychips 1.0000 0.9935 0.8284 0.7161 1.0000 0.6516 1.0000 0.5548
biscuitbookbox 1.0000 0.9444 0.8710 1.0000 1.0000 0.6790 0.9926 0.8272
average 0.9708 0.9120 0.8679 0.9256 1.0000 0.5721 0.9802 0.6740
F-Measure 0.94 0.90 0.73 0.80

Limitations Our algorithm assumes piecewise smooth motion and treats small sets of
independently moving matches as outliers. This makes it unsuited for tasks like corre-
spondence on pedestrian scenes, as the algorithm will only focus on the background.
In extreme scenarios (large viewpoint change and lighting changes), scenes with strong
self similarity can cause ambiguities unresolvable by global coherence. For moderate
motions, matches are sufficiently well distributed for global coherence to handle self
similar images. Visual examples are given in the supplementary material.

5 Applications

As a general motion model, bilateral functions can extend to many correspondence
related problems. This section discusses examples such as expanding a correspondence
set, drift free multi-image correspondence and template image search.

(a1) A-SIFT: t=0.66 (Default) (a2) Ours with 8.9× more matches

(b1) A-SIFT: t=0.66 (Default) (b2) Ours with 5.8× more matches

Fig. 7. Top: two views of half-dome, taken a few miles apart, causing parallax in the foreground.
Bottom: an office scene with re-arranged stationary. Observe that our algorithm provides many
more matches and fewer outliers than standard A-SIFT.
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Fig. 8. Inlier numbers (log scale) versus
increasing displacement for the herzjesu

sequence [32]. Vertical bars represents the
−log10(fraction of inliers). Thresholding
varies from 1 (no thresholding) to 0.66 (typi-
cal SIFT threshold). A-SIFT controls outlier
numbers, at the cost of rejecting many inliers.
Our bilateral models retain most inliers, while
having no outliers (short vertical bars).
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5.1 Additional Correspondence

Applications like Structure from Motion rely on matching algorithms to deliver many
correspondences while controlling outlier numbers. Typically, outliers are controlled
by a ratio test of nearest neighbor matches. A match is accepted, only if its descriptor
matching score (zero is best) is below a certain fraction of the second best match. A
typical ratio threshold is t = 1/1.5 = 0.66 [38]. This threshold ensures that as baselines
increase, the number of outliers remain restricted to a small handful but at the price of
removing an enormous percentage of the inliers (often over 90%) from wide baseline
image pairs. A typical SIFT threshold is shown by the red, t = 0.66 curve in Fig. 8,
while the maximum number of inliers is shown by the blue t = 1 curve.

Our bilateral models can procure many additional correspondence as seen in Fig.
7). These results rely on two properties of bilateral functions. Firstly, as shown in Sec.
4.1, the functions can be run on SIFT thresholds that are much weaker than usual.
This produces substantially more, better distributed potential inlier matches. The ac-
companying explosion of outliers can be controlled as shown in Sec. 4.1. This makes
the correspondences usable. Secondly, once computed, the bilateral model can validate
new matching hypothesis, using the steps in Sec. 3.4. These hypothesis can be obtained
by setting t = 1. This produces the green curve of Fig. 8.

We applied this algorithm to the 35 image pairs of the Heinly dataset of Sec. 4.1.
We incurred no new outlier images compared to our basic outlier rejection technique
in Sec. 4.1 (number remained at 5). However, we average of 225% more matches than
our basic algorithm. Overall, we have 470% more matches than standard 0.66 A-SIFT.
This occurs despite the high noise level at t = 1, with image pairs having an average
of only 25% inliers. Note that the averages mask extreme cases. In one example, our
model successfully filtered an inlier ratio of below 5%. It had 4100% more matches
than standard A-SIFT with no outliers. More modest improvements are recorded when
the baseline is narrow.

If correspondence numbers are important, quasi-dense NRDC [30] techniques offer
a viable alternative. While NRDC provides many more matches, its average correspon-
dence error of 5.94 pixels is significantly higher than our 3.16, and it had 17/35 images
with outliers, compared to our 5/35. However, the bilateral model’s primary advantage
lies in a graceful handling of difficult scenes. Fig. 9 shows NRDC’s error distribution
has a heavy tail. This is due to large sections of erroneous correspondence on difficult



Bilateral Functions for Global Motion Modeling 353

scenes. Ideally, NRDC should be fused with our bilateral functions, however, this is a
research direction we have not yet explored.
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Fig. 9. Tail distribution of average corre-
spondence error for test image pairs. In dif-
ficult cases, NRDC gives extremely high av-
erage errors (in one case reaching 43 pixels).
In contrast, bilateral models have stabler er-
ror, with average error exceeding 15 pixels
only once.

5.2 Drift-Free Multi-Image Correspondence

Multi-image correspondence is a perennial computer vision problem. Many algorithms
like factorization [39], tri-focal tensor [40] and camera calibration [41] require corre-
spondence across multiple wide-baseline images. However, feature matchers seldom
reliably match the same feature across multiple frames, while feature trackers are prone

a) Our long tracks

b) KLT SIFT [42] matching

c) Zoom in on our first and last view d) Zoom in on KLT’s first and last view

Fig. 10. Matching across the car sequence. Observe that KLT-SIFT tracking drifts. A clear exam-
ple can be seen at the car’s front wheel.
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to drift. Bilateral motion models can solve this problem as they can find a specified
feature’s matching location in another image. This is achieved by proposing potential
matching locations which are verified using local information. By matching all images
to a base frame, the formulation avoids drift. In fact, to save computational time, we
automatically choose the widest baseline (quickly detected by using our algorithm to
match low resolution images) pair to begin correspondence. Examples are shown in Fig.
10. Implementation details and more results are in the supplementary.

5.3 Needle in the Haystack

When multiple agents operate collaboratively, they need to identify locations of interest
to each other. This becomes a needle-in-the-haystack search problem which involves
locating a template within a much larger image. Bilateral matching is especially adept
at this problem as it produces many matches and few outliers. This creates a large re-
sponse gap between image pairs from similar and different locations, an ideal situation
when comparing sub-images. In practice, we decompose the large image into multiple
sub-images. These are ranked based on similarity to the template using gist [43]. Bi-
lateral matching is applied on the top 10 candidates to perform the final selection and
matching. Results are shown in Fig. 11. Details and alternative solutions are discussed
in the supplementary.

(a) Input Images (b) Matching

Fig. 11. Examples of our algorithm localizing a template in a large image. Note that the template
was taken at street level while the target image is from an overlooking roof.

6 Conclusion

We proposed a principled solution for modeling of general motion from noisy, scat-
tered features matches. This allows reliable recovery of large numbers of inlier matches
without reliance on situation specific models or RANSAC. Our formulation extends
naturally to associated correspondence tasks like drift free multi-image correspondence
and template localization. Applying the current formulation for dense correspondence
estimation [44] is an interesting future direction.
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