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Abstract

Real-time performance of stereo matching networks is

important for many applications, such as automatic driv-

ing, robot navigation and augmented reality (AR). Although

significant progress has been made in stereo matching net-

works in recent years, it is still challenging to balance real-

time performance and accuracy. In this paper, we present

a novel edge-preserving cost volume upsampling module

based on the slicing operation in the learned bilateral grid.

The slicing layer is parameter-free, which allows us to ob-

tain a high quality cost volume of high resolution from a

low-resolution cost volume under the guide of the learned

guidance map efficiently. The proposed cost volume upsam-

pling module can be seamlessly embedded into many ex-

isting stereo matching networks, such as GCNet, PSMNet,

and GANet. The resulting networks are accelerated sev-

eral times while maintaining comparable accuracy. Fur-

thermore, we design a real-time network (named BGNet)

based on this module, which outperforms existing published

real-time deep stereo matching networks, as well as some

complex networks on the KITTI stereo datasets. The code is

available at https://github.com/YuhuaXu/BGNet.

1. Introduction

Stereo matching is a key step in 3D reconstruction,

which has numerous applications in the fields of 3D mod-

eling, robotics, UAVs, augmented realities (AR), and au-

tonomous driving [27, 10, 1]. Given a pair of stereo images,

the purpose of stereo matching is to establish dense corre-

spondences between the pixels in the left and right images.

Although this problem has been studied for more than 40

years, it has not been completely solved due to some dif-

ficult factors, such as sensor noise, foreground-background

occlusion, weak or repeated textures, reflective regions, and

transparent objects.

In recent years, deep learning has shown great potential

in this field [43, 14, 18, 16, 5, 37]. Some recent work indi-
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cates that 3D convolutions can improve the accuracy of the

disparity estimation networks [14, 5, 9]. However, the 3D

convolutions are time consuming, which limits their appli-

cation in real-time systems.

Bilateral filter [32] is an edge-preserving filter, which

has wide applications in image de-noising, disparity estima-

tion [41], and depth upsampling [40]. However, the orig-

inal implementation of bilateral filter is time-consuming.

Bilateral grid proposed by Chen et al. [7] is a technique

for speeding up bilateral filtering. It treats the filter as a

“splat/blur/slice” procedure. That is, pixel values are “splat-

ted” onto a small set of vertices in a grid, those vertex values

are then blurred, and finally the filtered pixel values are pro-

duced via a “slice” (an interpolation) of the blurred vertex

values. Recently, Gharbi et al. [11] utilize the idea of the

bilateral grid to estimate the local affine color transforms in

their real-time image enhancement network.

For StereoNet [16], the 2D disparity map regressed from

an aggregated 4D cost volume at a low resolution (e.g., 1/8)

is upsampled via bilinear interpolation and refined hierar-

chically. Although the speed of the lightweight network is

fast, the accuracy is relatively low compared with existing

complex networks, as shown in Table 4. On the ranking list

of KITTI 2012 [10] and KITTI 2015 [23], the top perform-

ing methods usually conduct 3D convolutions at a relatively

high resolution, such as 1/3 resolution for GANet [44] and

1/4 resolution for PSMNet [44]. However, their efficiency

is reduced. For example, it takes 1.8s for GANet to process

a pair of images of 1242 × 375, and 0.41s for PSMNet.

The motivation of this paper is to propose a solution that

can regress the disparity map at a high resolution to keep

the high accuracy, while maintaining high efficiency. The

main contributions of this work are as follows:

(1) We design a novel edge-preserving cost volume up-

sampling module based on the learned bilateral grid. It can

efficiently obtain a high-resolution cost volume for dispar-

ity estimation from a low-resolution cost volume via a slic-

ing operation. With this module, cost volume aggregations

(e.g., 3D convolutions) can be performed at a low resolu-

tion. The proposed cost volume upsampling module can

be seamlessly embedded into many existing networks such
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as GCNet, PSMNet, and GANet. The resulting networks

can be accelerated 4∼29 times while maintaining compa-

rable accuracy. To the best of our knowledge, it is the first

time that the differential bilateral grid operation is applied

in deep stereo matching networks.

(2) Based on the advantages of the proposed cost volume

upsampling module, we design a real-time stereo match-

ing network, named BGNet, which can process stereo pairs

on the KITTI 2012 and KITTI 2015 datasets at 39fps.

Experimental results show that BGNet outperforms exist-

ing published real-time deep stereo matching networks, as

well as some complex networks, such as GCNet, AANet,

DeepPruner-Fast, and FADNet, on the KITTI 2012 and

KITTI 2015 stereo datasets.

2. Related Work

Stereo Matching Network. MC-CNN [42] is the first

work that uses convolutional neural network (CNN) to com-

pare two image patches (e.g., 11×11) and calculate their

matching costs. Meanwhile, the following steps, such as

cost aggregation, disparity computation, and disparity re-

finement, are still traditional methods [22]. It significantly

improves the accuracy, but still struggles to produce accu-

rate disparity results in textureless, reflective and occluded

regions and is time-consuming. DispNetC [20] is the first

end-to-end stereo matching network with a similar network

structure as FlowNet [8]. DispNetC is more efficient, al-

most 1000 times faster than MC-CNN-Acrt [42]. In Disp-

NetC, there is an explicit correlation layer. To further im-

prove the estimation accuracy, the residual refinement lay-

ers are exploited [18, 19, 24]. Besides, the segmentation

information [39] and the edge information [31] are incorpo-

rated into the networks to improve the performance. GC-

Net [15] uses 3D convolutions for cost aggregation in a 4D

cost volume, and utilizes the soft argmin to regress the dis-

parity. DeepPruner [9] brings the idea of PatchMatch Stereo

[3], and builds a narrow cost volume based on the estimated

lower and upper bounds of the disparity to speed up the pre-

diction. The narrow cost volume optimization is also used

in [12]. Since disparities can vary significantly for stereo

cameras with different baselines, focal lengths and resolu-

tions, the fixed maximum disparity used in cost volume hin-

ders them to handle different stereo image pairs with large

disparity variations. Wang et al. [34, 33] propose a generic

parallax-attention mechanism to capture stereo correspon-

dence regardless of disparity variations.

Recent work [5, 9] shows that the networks with 3D con-

volution can achieve higher disparity estimation accuracy

on specific datasets. However, 3D convolution is more time-

consuming than 2D convolution, which makes it difficult

to apply in real-time applications. In order to pursue real-

time performance, StereoNet [16] performs 3D convolution

at a low resolution (e.g., 1/8 resolution) and the resulting

network can run in real-time at 60fps. However, this sim-

plification reduces the network’s accuracy. For other net-

works, such as AANet [37], FADNet [35], and DeepPruner-

Fast [9], although the accuracy has been improved, they

have not achieved real-time performance.

Bilateral Grid. Since this work is inspired by bilateral

grid of Chen et al. [7], we will give it a brief review.

The bilateral grid was originally introduced to speed up

the bilateral filter. It consists of three steps, including splat-

ting, blurring, and slicing. For an input image I and a guid-

ance image G, the splatting operation projects the original

pixels of I into a 3D grid B, where the first two dimen-

sions (x, y) correspond to 2D position in the image plane

and form the spatial domain, while the third dimension g
corresponds to the image intensity of the guidance image.

Then, Gaussian blurring is performed in the 3D bilateral

grid B. Finally, based on the blurred bilateral grid and the

guidance image G, a 2D value map Ī is extracted by access-

ing the grid at (sx, sy, sGG(x, y)) using trilinear interpola-

tion, where s is the width or height ratio of the grid’s dimen-

sion w.r.t the original image dimension, and sG ∈ (0, 1) is

the ratio of the gray level of the grid to the gray level of the

guidance image G. This linear interpolation under the guide

of the guidance image in the bilateral grid is called slicing.

In practice, most operations on the grid require only a coarse

resolution, where the number of grid cells is much smaller

than the number of image pixels. See [7] for more details.

The bilateral grid is utilized to accelerate stereo match-

ing algorithms [26, 2]. Chen et al. [6] approximate an im-

age operator with a grid of local affine models in bilateral

space, the parameters of which are fit to a reference input

and output pair. By performing this model-fitting on a low-

resolution image pair, this technique enables real-time on-

device computation. Gharbi et al. [11] build upon this bi-

lateral space representation. Rather than fitting a model to

approximate a single instance of an operator from a pair of

images, they construct a rich CNN-like model that is trained

to apply the operator to any unseen input.

3. Method

Inspired by bilateral grid processing [7], we propose an

edge-aware cost volume upsampling module. With this

module, we can perform the majority of calculation at a

low resolution. Meanwhile, we can obtain accurate dis-

parity prediction with the upsampled cost volume at a high

resolution. In this section, we first describe the proposed

cost volume upsampling module in details. Then, we show

that the upsampling module can be utilized as an embedded

module in many existing stereo matching networks. Addi-

tionally, based on the advantages of this module, we design

a real-time stereo matching network.

12498



Slicing

Guidance

High-resolution 
cost volume

Low-resolution 
cost volume

Image feature maps

Bilateral grid

CUBG module

Figure 1. The module of Cost volume Upsampling in the learned

Bilateral Grid (CUBG). The high-quality cost volume at high res-

olution can be obtained with the CUBG module from the low reso-

lution (e.g., 1/8) via the slicing operation of bilateral grid process-

ing.

3.1. Cost Volume Upsampling in Bilateral Grid

As stated in Section 1, the goal of this paper is to seek

a solution that can regress the disparity map at a high res-

olution to keep the high accuracy, while maintaining high

efficiency. In order to achieve this goal, we design a mod-

ule of Cost volume Upsampling in Bilateral Grid (CUBG).

The CUBG module can upsample the cost volume calcu-

lated at the low resolution (e.g., 1/8) to a high resolution via

the slicing operation of bilateral grid processing.

As illustrated in Figure 1, the input of the CUBG module

is a low-resolution cost volume CL and image feature maps,

and the output is the upsampled high-resolution cost vol-

ume. The operation in the CUBG module includes bilateral

grid creation and slicing.

Cost volume as a bilateral grid. Given an aggregated

cost volume CL with four dimensions (including width x,

height y, disparity d , and channel c) at a low resolution

(e.g., 1/8), the conversion from the cost volume CL to the

bilateral grid B is straightforward. In all experiments, we

use a 3D convolution of 3 ×3×3 to achieve the conversion.

There are four dimensions in the bilateral grid B: width

x, height y, disparity d, and guidance feature g. The value

in the bilateral grid is represented by B(x, y, d, g).
Upsampling with a slicing layer. With the bilateral

grid, we can produce a 3D high-resolution cost volume CH
(CH ∈ R

W,H,D) via a slicing layer. This layer performs

data-dependent lookups in the low-resolution grid of match-

ing costs. Specifically, the slicing operation is the linear in-

terpolation in the four-dimensional bilateral grid under the

guide of the 2D guidance map G of high resolution. The

slicing layer is parameter-free and can be implemented effi-

ciently. Formally, the slicing operation is defined as

CH(x, y, d) = B (sx, sy, sd, sGG(x, y)) (1)

where s ∈ (0, 1) is the width or height ratio of the grid’s

dimension w.r.t the high-resolution cost volume dimension,

sG ∈ (0, 1) is the ratio of the gray level of the grid (lgrid)

to the gray level of the guidance map lguid.

The guidance map G is generated from the high-

resolution feature maps via two 1 × 1 convolutions. Note

that, the guidance information of each pixel depends on its

own feature vector. Consequently, sharp edges can be ob-

tained.

Unlike the original grid designed in [7], the bilateral grid

in this work is learned from the cost volume automatically.

In experiments, the size of the grid is usually set to W/8×
H/8×Dmax/8×32, where W and H are image width and

height, respectively. Dmax is the maximal disparity value.

3.2. Network Architecture

3.2.1 Embedded Module

The proposed CUBG module can be seamlessly embedded

into many existing end-to-end network architectures. In this

work, we embed the CUBG module into four representative

stereo matching models: GCNet [14], PSMNet [5], GANet

[44], and DeepPrunerFast [9]. The resulting models are

denoted with a suffix BG (e.g., GCNet-BG). For the first

three networks, we re-build the cost volume at the resolu-

tion of 1/8, 1/8, and 1/6, respectively. Then, the cost vol-

umes are upsampled via our CUBG module to the resolution

of 1/2, 1/4, and 1/3, respectively. For DeepPrunerFast, the

PatchMatch-like upper and lower bounds estimation mod-

ule and the narrow cost volume aggregation module are re-

placed by a full cost volume aggregation at the resolution

of 1/8. Then, the cost volume is upsampled via the CUBG

module to the resolution of 1/2. All the other parts remain

the same as in their original implementation.

3.2.2 BGNet

Based on the CUBG module, we also design an efficient

end-to-end stereo matching network, named BGNet. Fig-

ure 2 provides an overview of the network. The network

consists of four modules of feature extraction, cost volume

aggregation, cost volume upsampling, and residual dispar-

ity refinement. It can run in real-time at the resolution of the

KITTI stereo dataset. In the following, we introduce these

modules in details.

Feature Extraction. The ResNet-like architecture is

widely used in stereo matching networks [5, 13]. We uti-

lize the similar architecture to extract the image features

for matching here. For the first three layers, three convo-

lution of 3 × 3 kernel with strides of 2, 1, and 1 are used

to downsample the input images. Then, four residual layers

with strides of 1, 2, 2, and 1 are followed to quickly pro-

duce unary features at 1/8 resolution. Two hourglass net-

works are followed to obtain large receptive fields and rich
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Figure 2. Overview of the proposed BGNet.

semantic information. Finally, all the feature maps at 1/8

resolution are concatenated to form feature maps with 352

channels for the generation of the cost volume. We use fl

and fr to represent the final feature maps extracted from the

left and right images, respectively.

Cost Aggregation. After the feature extraction modules,

we build a group-wise correlation cost volume [13] for ag-

gregation, which combines the advantages of the concatena-

tion volume and the correlation volume. Group-wise corre-

lation is computed for each pixel location (x, y) at disparity

level d by dividing the feature channels into Nḡ groups, the

same as in [13]. In our experiments, Nḡ = 44.

In PSMNet [5], a stacked hourglass architecture was uti-

lized to optimize the cost volume using the contextual in-

formation. Here, considering the efficiency, only one hour-

glass architecture is used to filter the cost volume. Specifi-

cally, we first use two 3D convolutions to reduce the channel

number of cost volume from 44 to 16. Then, a U-Net-like

3D convolution network is used for cost aggregation, where

skip connection is replaced by an element-wise summation

operation to reduce computational cost. We use CL to rep-

resent the aggregated cost volume at 1/8 resolution.

Disparity Regression. With the high-resolution cost

volume CH , we can regress the disparity prediction via soft
argmin as in [14]:

Dpred(x, y) =

Dmax
∑

d=0

d× softmax (CH(x, y, d)) (2)

Loss Function. The loss function L is defined on the

final prediction Dpred using the smooth L1 loss L,

L =
∑

p

L (Dpred(p)−Dgt(p)) (3)

Here,

L(x) =

{

0.5x2, if |x| < 1

|x| − 0.5, otherwise

where Dgt(p) is the ground truth disparity for pixel p.

4. Experimental Results

4.1. Datasets and Evaluation Metrics

SceneFlow. The synthetic stereo datasets include Fly-

ingthings3D, Driving, and Monkaa. These datasets consist

of 35,454 training images and 4,370 testing images of size

960×540 with accurate ground-truth disparity maps. Since

the Finalpass of the SceneFlow datasets contains more mo-

tion blur and defocus and is more like real-world images

than the Cleanpass, we use the Finalpass for ablation study.

The End-Point-Error (EPE) will be used as the evaluation

metric for the SceneFlow dataset.

KITTI. KITTI 2012 [10] and KITTI 2015 [23] are out-

door driving scene datasets. KITTI 2012 provides 194 train-

ing and 195 testing image pairs, KITTI 2015 provides 200

training and 200 testing image pairs. The resolution of
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Figure 3. Qualitative results on SceneFlow. The abbreviations Lin-

ear Upsampling (LU) and CUBG denote the two different cost vol-

ume upsampling methods.

KITTI 2015 is 1242 × 375, and that of KITTI 2012 is 1226

× 370. The groundtruth disparities are obtained from Li-

DAR points. For KITTI 2012, percentages of erroneous

pixels and average end-point errors for both nonoccluded

(Noc) and all (All) pixels are reported. For KITTI 2015, the

percentage of disparity outliers D1 is evaluated.

Middlebury 2014. The Middlebury stereo dataset [28]

had been widely used for the evaluation of stereo matching

methods. The disparity maps in this dataset are calculated

using accurate structured-light techniques. However, this

dataset only contains dozens of image pairs and is insuffi-

cient to train a deep neural network.

We follow previous end-to-end approaches by perform-

ing initial training on SceneFlow and then individually fine-

tuning the resulting model on the KITTI datasets. For Mid-

dlebury, we only use the dataset for the evaluation of gener-

alization ability without fine-tuning.

4.2. Implementation Details

Our BGNet is implemented with PyTorch on NVIDIA

RTX 2080Ti GPU. We use the Adam optimizer with β1 =
0.9 and β2 = 0.999.

For the SceneFlow dataset, a series of data augmentation

techniques, including asymmetric chromatic augmentation,

y-disparity augmentation [38], Gaussian blur enhancement,

and scale zoom enhancement are adopted. Each enhance-

ment module has a 50% chance of being used. In addition,

following CRL [25], the stereo pairs with more than 25%

of their disparity values larger than 300 are removed. We

use the one-cycle scheduler [30] to adjust the learning rate

with the maximum value of 0.001. The batch size is set to

16, and crop size is set to 512 × 256 to train our network

for 50 epochs in total. To evaluate these methods on the test

dataset of SceneFlow, we set the maximum disparity values

to 192. Pixels with disparity values out of the valid range

are not considered in the evaluation.

For KITTI 2015, we randomly select 20 pairs as the val-

idation set, and use the remaining 180 pairs and 194 pairs

of KITTI 2012 as the training set. We first finetune our net-

work with a constant learning rate of 0.001 for 300 epochs

on the model pre-trained on SceneFlow, and repeat three

times to pick the one with the best evaluation metrics. For

KITTI 2012, we use a similar finetuning strategy.

4.3. Ablation Study

To validate the effectiveness of the proposed CUBG

module, we first replace the module in BGNet with direct

linear upsampling on the cost volume, and evaluate the EPE

results on SceneFlow. As shown in Table 1, EPE rises from

1.17 to 1.40. Qualitative results on SceneFlow are shown

in Figure 3. Although the disparity map is reconstructed

from a low-resolution cost volume, many thin structures and

sharp edges are still recovered by BGNet, which benefits

from the edge-aware nature of the bilateral grid. Perform-

ing disparity regression in a high-resolution cost volume

obtained via a slicing layer in the bilateral grid forces the

predictions of our network to follow the edges in the guid-

ance map G, thereby regularizing our predictions towards

edge-aware solutions.

To validate this point, we also evaluate the methods in

flat regions and the regions near edges. Edges are first de-

tected with the Canny detector [4] in ground-truth dispar-

ity maps. Then, these detected edges are dilated with a

5 × 5 square structuring element. The EPE of the regions

of these dilated edges is denoted as EPE-edge, others are

denoted as EPE-flat. Quantitative results are shown in Ta-

ble 1, from which we have two major observations. First,

for both methods, EPE-edge is much higher than EPE-flat,

which means the disparities near edges are hard to estimate.

Second, in flat regions, the errors of these two methods are

comparable. However, in the regions near edges, the EPE of

CUBG is 2.18 lower than linear upsampling, which benefits

from the edge-aware property of CUBG. Figure 3 shows

qualitative comparison. When the CUBG module is uti-

lized, the predicted edges are more accurate and sharper

than linear upsampling, and the thin structures are better

reconstructed.

We also performed ablation study on Middlebury 2014

and KITTI 2015. For Middlebury 2014, we use 13 addi-

12501



Method EPE EPE-edge EPE-flat Time (ms)

CUBG 1.17 5.95 0.68 25.3

LU 1.40 8.13 0.71 25.1

Table 1. Ablation study results of the proposed networks on Final-

pass of the SceneFlow datasets [20]. The abbreviation LU denotes

linear upsampling. EPE-edge represents the EPE near edges of

objects, and EPE-flat represents the EPE in flat regions.

Method Res-CV EPE
Time

(ms)

GCNet [14] 1/2 2.51 1673.2

GCNet-BG 1/8 1.07 57.1

PSMNet [5] 1/4 1.09 439.6

PSMNet-BG 1/8 0.92 89.4

GANet deep [44] 1/3 0.95 2240.2

GANet deep-BG 1/6 0.63 533.4

DeepPrunerFast [9] 1/8 0.97 64.7

DeepPrunerFast-BG 1/8 0.84 56.6

Table 2. Evaluation of the CUBG module embedded into other

networks on the SceneFlow dataset [20]. We embed the CUBG

module into four representative stereo matching models, GCNet,

PSMNet, GANet, and DeepPrunerFast. Resulting models are de-

noted with a suffix BG. Res-CV represents the resolution at which

the cost volume is built.

tional datasets with GT for training (finetuning), where 78

pairs of images are available in total. For the KITTI 2015

dataset, where the training set is split into 160 pairs for

training and 40 pairs for validation (as done in AANet [37]).

For Middlebury 2014, the Bad 2.0 errors for LU and BG are

18.7% and 16.8% (48.9% vs 45.3% near edges, and 14.7%

vs 13.0% in flat regions). For KITTI 2015, the D1-all errors

for LU and BG are 2.14% and 2.01%, respectively.

Impact of guidance map. If the original guidance map

is replaced with the luma-version of the input image, the

EPE on Scene Flow increases from 1.17 to 1.28.

Building cost volume at different resolutions. When

building the cost volume at the resolution of 1/16, the EPE

on Scene Flow increases from 1.17 to 1.58, and the run-time

decreases from 25.3 ms to 17.1 ms.

Embedded module. Table 2 shows the quantita-

tive results of GCNet-BG, PSMNet-BG, GANet-BG, and

DeepPruner-BG, where the CUBG module is used as an

embedded module in these networks. Compared with

top-performing stereo models GC-Net, PSMNet and GA-

Net, our method not only obtains clear performance im-

provements, but is also significantly faster (29× than

GC-Net, 4.9× than PSMNet, and 4.2× than GANet),

demonstrating the high efficiency of the CUBG module.

Additionally, although the cost volumes of DeepPruner-

Fast and DeepPrunerFast-BG have the same resolution,

DeepPrunerFast-BG is faster while having lower EPE.

Method Res
D1-all

(KIT)

T (ms)

(KIT)

Bad2.0

(MID)

PSMNet [5] 1/4 1.95 410 19.36

PSMNet-BG 1/8 2.07 79 20.77

GANet deep [44] 1/3 1.58 1800 15.67

GANet deep-BG 1/6 1.67 406 15.30

DeepPrunerFast [9] 1/8 2.06 61 16.80

DeepPrunerFast-BG 1/8 1.91 55 15.14

Table 3. Evaluation of the CUBG module when embedded into

three networks on the KITTI 2015 and Middlebury 2014 datasets.

The second column gives the resolution at which the cost volume

is built, the third and fourth columns show D1-all and run-time

results on KITTI 2015 (KIT), and the last column shows Bad 2.0

errors on Middlebury (MID).

We also tested them on the KITTI 2015 and Middlebury

2014 datasets, where the finetuning strategies are the same

as those in Subsection 4.3. The results in Table 3 show

that, compared with their original networks, GA-Net-BG

and PSM-Net-BG achieve comparable accuracy while be-

ing accelerated more than four times.

4.4. Evaluation on KITTI

Table 4 shows the performance and runtime of compet-

ing algorithms on the KITTI stereo benchmark. Our BGNet

can run in real-time on the dataset at 39 fps. Compared

with the latest FADNet [35], AANet [37] and DeepPruner-

Fast [9], our BGNet is not only more accurate, but also

two times faster than those methods, as shown in Table

4. Among the published networks with computational time

less than 50 ms, our BGNet has the best accuracy.

In addition, we build another model variant BGNet+.

Compared with BGNet, BGNet+ has an additional hour-

glass disparity refinement module as in [37]. The result-

ing model is still real-time (30 fps). Although the model is

light-weight, it even outperforms some complex networks,

such as GCNet [14], iResNet [18] and PSMNet [5] on the

KITTI 2015 dataset. Qualitative results of BGNet+ on

KITTI 2015 are shown in Figure 4.

Runtime analysis. We calculated the average time of

each module by testing 100 pairs of stereo images on KITTI

2015, as shown in Table 5. The proposed cost volume up-

sampling module is efficient and takes 4.3 ms.

The run-time for bilateral grid generation, guidance im-

age calculation and upsampling with BG is 4.3 ms, 0.07

ms, and 0.74 ms, respectively. The linear cost volume up-

sampling (LU) takes 3.78 ms. However, when the whole

network is deployed in GPU, BG upsampling is only 0.2

ms slower than linear upsampling. Note, the run-time of

the whole network is not simply the sum of run-times con-

sumed by all modules, this may be related to the parallel

computing mechanism of GPU.
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KITTI 2012 [10] KITTI 2015 [23]

Method 2-noc 2-all 3-noc 3-all
EPE

noc

EPE

all
D1-bg D1-fg D1-all

Runtime

(ms)

MC-CNN-acrt [43] 3.90 5.45 2.09 3.22 0.6 0.7 2.89 8.88 3.89 67000

SGM-Net [29] 3.60 5.15 2.29 3.50 0.7 0.9 2.66 8.64 3.66 67000

GANet [44] 1.89 2.50 1.19 1.6 0.4 0.5 1.48 3.46 1.81 1800

PSMNet [5] 2.44 3.01 1.49 1.89 0.5 0.6 1.86 4.62 2.32 410

GC-Net [14] 2.71 3.46 1.77 2.30 0.6 0.7 2.21 6.16 2.87 900

EdgeStereo-V2 [31] 2.32 2.88 1.46 1.83 0.4 0.5 1.84 3.30 2.08 320

iResNet2-i2 [18] 2.69 3.34 1.71 2.16 0.5 0.6 2.25 3.40 2.44 120

DeepPruner-Best[9] - - - - - - 1.87 3.56 2.15 182

DeepPruner-Fast[9] - - - - - - 2.32 3.91 2.59 61

RTSNet [17] 3.98 4.61 2.43 2.90 0.7 0.7 2.86 6.19 3.41 20

StereoNet [16] 4.91 6.02 - - 0.8 0.9 4.30 7.45 4.83 15

DispNet [21] 7.38 8.11 4.11 4.65 0.9 1.0 4.32 4.41 4.34 60

FADNet[35] 3.98 4.63 2.42 2.86 0.6 0.7 2.68 3.50 2.82 50

AANet[37] 2.90 3.60 1.91 2.42 0.5 0.6 1.99 5.39 2.55 62

BGNet 3.13 3.69 1.77 2.15 0.6 0.6 2.07 4.74 2.51 25.4

BGNet+ 2.78 3.35 1.62 2.03 0.5 0.6 1.81 4.09 2.19 32.3
Table 4. Quantitative evaluation on the test sets of KITTI 2012 and KITTI 2015. For KITTI 2012, we report the percentage of pixels

with errors larger than x disparities in both non-occluded (x-noc) and all regions (x-all), as well as the overall EPE in both non occluded

(EPE-noc) and all the pixels (EPE-all). For KITTI 2015, we report the percentage of pixels with EPEs larger than 3 pixels in background

regions (D1-bg), foreground regions (D1-fg), and all (D1-all).

Figure 4. Qualitative comparisons on KITTI 2015. The first row

shows the input RGB images, the second row shows the results of

PSMNet, the third shows the results of DeepPruner-Fast, and the

last row is the results of BGNet+.

Module Time (ms)

Feature extraction 8.8

Cost volume building and aggregation 12.2

Bilateral grid operation 4.3

Refinement (for BGNet+) 7.0

Total 32.3

Table 5. Runtime analysis for each module of BGNet and BGNet+

on the KITTI 2015 dataset.

4.5. Generalization Performance

The generalization performance is important for a stereo

network. We evaluate the generalization ability of our net-

work on the training set of the Middlebury 2014 dataset,

where the parameters of these networks are trained on Fly-

ingthings3D of SceneFlow [20] only, no additional training

is done on Middlebury. The results are illustrated in Ta-

ble 6. Our BGNet and BGNet+ show better performance

than some complex networks, such as iResNet [18], GANet

[44], and PSMNet [5]. Figure 5 shows the qualitative dis-

parity estimation results achieved by BGNet+ and PSMNet

on this benchmark.

For DeepPruner-Fast-BG, as shown in Table 6, the Bad

2.0 error is lower than its original version, which further

demonstrates the effectiveness of our cost volume upsam-

pling module.

DSMNet [45] has the best generalization performance,

which benefits from feature normalization along both the

spatial axis and the channel dimension. However, the do-

main invariant normalization process increases the compu-

tational time of the network. For the resolution of KITTI

2015, when the batch normalization modules are replaced

by the domain invariant normalization modules, the com-

putational time of the network is increased by 15.4 ms.

Additionally, we conduct another interesting evaluation.

We use the IRS dataset [36], a large synthetic stereo dataset,

and Flyingthings3D together to train BGNet and BGNet+.

IRS contains more than 100,000 pairs of 960 × 540 res-

olution stereo images (84,946 for training and 15,079 for

testing) in indoor scenes. The Bad 2.0 error of BGNet on

Middlebury reduces from 17.5 to 13.5, and the Bad 2.0 er-

ror of BGNet+ reduces from 17.2 to 11.6. This shows that

the synthetic dataset also plays a significant role in improv-

ing the generalization performance of the network without

increasing computational time.
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Figure 5. Qualitative results of generalization performance evaluation on the Middlebury 2014 dataset. The first row shows the left RGB

images of the stereo pairs, the second row shows the results of BGNet+, and the third row shows the results of PSMNet. The models were

trained only on the synthetic SceneFlow dataset.

Network Bad 2.0 (%)

PSMNet [5] 25.1

iRestNet-i2 [18] 19.8

GANet [44] 20.3

DSMNet [45] 13.8

DeepPruner-Fast [9] 17.8

DeepPruner-Fast-BG 16.5

BGNet 17.5

BGNet+ 17.2

BGNet (IRS) 13.5

BGNet+ (IRS) 11.6

Table 6. Generalization ability on the Middlebury 2014 dataset of

half resolution. The percentage of pixels with errors larger than

2 pixels (Bad 2.0) is reported. All the models are trained on the

synthetic datasets.

5. Conclusion

In this paper, we have proposed a cost volume upsam-

pling module in the learned bilateral grid. The upsam-

pling module can be seamlessly embedded into many ex-

isting end-to-end network architectures and can accelerate

these networks significantly while maintaining comparable

accuracy. In addition, based on this upsampling module,

we design two real-time networks, BGNet and BGNet+.

They outperform all the published networks with compu-

tational time less than 50 ms on the KITTI 2012 and KITTI

2015 datasets. The experimental results also demonstrate

the good generalization ability of our network.

In the future, we plan to apply our approach to both

monocular depth estimation and depth completion tasks.
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