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Abstract 
 
We study the problem of information sharing in oligopoly, when sharing decisions are taken 
before the realization of private signals. Using the general model developed by Raith (1996), 
we show that if firms are allowed to make bilateral exclusive sharing agreements, then some 
degree of information sharing is consistent with equilibrium, and is a constant feature of 
equilibrium when the number of firms is not too small. Our result is to be contrasted with the 
traditional conclusion that no information is shared in common values situations with strategic 
substitutes - such as Cournot competition with demand shocks - when firms can only make 
industry-wide sharing contracts (e.g., a trade association). 
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1 Introduction

The incentives of oligopolistic firms to share private information when facing an uncertain

environment have been the object of a large literature, pioneered by the works of Novshek and

Sonnenschein (1982), Clarke (1983), Vives (1985) and Gal-or (1985)). Such incentives have

turned out to vary across the various models of oligopolistic competition, and to delicately

depend on specific assumptions, making the construction of a general theory problematic.

The general model proposed by Raith (1996) has shown, however, that such differences

can be basically imputed to the nature of the private information held by firms (which can

be of the common value or private value type and can have various degrees of precision) and

to the type of strategic interaction on the market (where strategies can be complements or

substitutes).

In terms of economic policy, understanding the incentives to share information is of crucial

importance. When no such incentives exist, any evidence of information sharing should be

interpreted as evidence of collusion, with obvious implication for social welfare. This has in

fact been the line followed by Kühn and Vives (1995) in their study of the EU industry.

As shown in several works on this topic and effectively summarized by Raith (1996), the

absence of information is a typical feature of common value problems in which strategies are

substitutes (therefore including the standard Cournot model). This result has been obtained

in various forms and in two different models of information transmission.

The ”strategic” model studies a simultaneous game of information revelation, in which

firms decide whether to disclose or to withhold information. In this model, the decision to

withhold one’s own information does not affect the acquisition of the private information

disclosed by other firms. Withholding information is the unique dominant strategy of this

game in all common value situations with strategic substitutes. In contrast, when private

information is not correlated across firms (private value) or, even if correlated, contains no

noise (perfect signals), revealing information is always a dominant strategy (see Raith, 1996).

In the ”contractual” model, sharing contracts are ”exclusive”, by this meaning that firms

exchange information on a quid pro quo basis (see Clarke, 1983 and Kirby, 1988). Here, all

firms that do not reveal their private information are excluded from the information revealed

by other firms. This model has lent itself to the analysis of a simple mechanisms (e.g., an

industry-wide trade association) which universally discloses information if and only if all firms

have chosen to disclose, otherwise no information is shared. Information sharing takes place
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in equilibrium when the expected profits of firms are higher than when using only their own

private signal. As shown in Raith (1996), under common value and strategic substitutes firms

prefer the complete absence of information to an industry-wide sharing contract, as long as

products differentiation is not too high.1

In this paper we will study a different contractual model, in which firms share informa-

tion on the basis of exclusive bilateral contracts. Information sharing is therefore no longer

mediated by a centralized industry-wide agency, but goes through private arrangements of

entrepreneurs. The restriction to bilateral contracts does not, in principle, rule out equilib-

ria in which information sharing groups arise, and allows for the emergence of other, more

complex, information structures, that can be usefully thought of as a network of sharing

agreements.

We define a pairwise stable information structure as a set of sharing agreements with the

property that no new agreement is formed and no existing one is severed.2 Our main result is

contained in proposition 1 and refers to common value situations. We show that the absence

of information sharing (the empty network in the present context) is never a pairwise stable

structure, even when strategies are substitutes and products are homogeneous (the standard

Cournot game). For those situations in which complete information pooling (the complete

network) is Pareto dominated by the absence of information sharing, this result is obtained

under the additional condition that the number of firms in the market is not too small.

The intuition underlying this result is quite simple. Consider the decision of two firms, say

i and j, to share their private information when no other firm is in the market. This decision

has two distinct effects on the expected profits of, say, firm i. The first (positive) effect stems

from the refinement of i’s expectation the state of the world and from the observation of

j́’s signal; the second (negative) effect stems from the revelation of i’s signal to firm j. As

discussed above, the net effect is negative as long as products are not too differentiated (see

Raith, 1996).

Suppose now that other firms are in the market. Now, the information shared by i and j

1For the standard Cournot game with homogeneous goods, Kirby (1988) has also looked at a different

contract, in which firms can decide to infringe the contract, expecting all other firms to keep sharing their own

information. He finds that the industry-wide agreement is stable whenever it Pareto dominates the absence

of information sharing. The same type of contract was considered in Vives (1990) for the case of monopolistic

competition.
2The concept of pairwise stability, adapted here to information structures, has been defined for general

network problems by Jackson and Wolinsky (1996).
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has the additional effect of refining both i’s and j’s expectation on the private information

held by the other firms (and, thereby, on their equilibrium behavior). This refinement is

due to the correlation of firms signals, and has a positive effect on both i’s and j’s expected

profits. Note also that this additional information is acquired by i and j without revealing

to the other firms any information about i’s and j’s signals (in this sense, at no cost).

The magnitude of this second effect clearly increases with the number of firms in the

market, from which the requirement of proposition 1 on the number of competitors. It

must be pointed out, however, that the presence of information sharing in equilibrium can

be compatible with the minimal number of firms (three) for which the additional effect

underlying our proposition is generated. This is shown by means of an example in proposition

2.

Proposition 2 also shows that the positive relation between the benefits from information

sharing and the number of unobserved firms can generate incomplete stable information

structure, in which a group of firms agree to share information, excluding the other firms

from the agreement. Proposition 3 shows, however, that such incomplete structures are

never the unique stable networks, since the complete network, in which complete pooling of

information occurs, is always pairwise stable.

The paper is organized as follows. Section 2 presents Raith model on information sharing,

and a few new concepts and definitions due to the presence of bilateral agreements. Section

3 presents the main results, contained in propositions 1, 2 and 3; section 4 concludes.

2 The Model

We consider a stochastic oligopoly model with n firms, in which the state of the world

τ = (τ1, τ2, ..., τn) represents deviations from the means of either the marginal costs or the

intercept of the demand function of each firm i. Each τi is a random variable distributed

normally, with zero mean, variance ts and covariance tn ≥ 0.
Each firm i receives a private noisy signal yi about the state of the world τi, with yi =

τi+ ηi, where the noise ηi is normally distributed with zero mean, variance u and covariance

un ≥ 0. Raith (1996) defines three classes of situations with respect to information: ”common
value” when tn = ts, ”independent values” when tn = un = 0 and ”perfect signals” when

u = 0.

Firms may observe other firms’ signals as a result of information sharing agreements.
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We assume that such agreements are bilateral and exclusive; this means that firm i is not

allowed to observe firm j’s signal unless it reveals its own signal to firm j. We do not require

transitivity in sharing agreements, in the sense that information sharing between firms i and

j and between firms j and k need not imply information sharing between firms i and k.

Formally, an ”information structure” is given by a non directed network g, in which each

link ij denotes a bilateral information sharing agreement between firms i and j. We denote

by gi ≡ {j : ij ∈ g} ∪ {i} the set of neighbours of i in g. The information available to firm

i in the information structure g is therefore Ii(g) ≡ {yj : j ∈ gi}. We will use the notation
g + ij to denote the network obtained by adding to g the link ij /∈ g, and g − ij to denote

the network obtained by severing the link ij ∈ g from g.

Following Raith (1996), we formulate firm i’s profit in a general manner, without referring

to a specific interpretation of τ . We restrict our attention to the case of Cournot competition,

in which si denotes the quantity set by firm i:

πi = αi(τi) +
X
j 6=i
(βn − εsi)sj + (β + γsτi − δsi)si. (1)

The term αi(τi) is a function of τi, δ is a positive parameter and ε ∈
³
− δ

n−1 , δ
i
expresses

the degree of products differentiation. When γs = 1 we have demand uncertainty, while when

γs = −1 we have cost uncertainty.
With each possible information structure g we associate the Bayesian Nash Equilibrium

of the Cournot game in which each firm i sets its quantity si in order to maximize its profit as

given by (1), given its available information as this is determined by i’s links in g. Formally,

a Bayesian Nash equilibrium associated with g is a vector s∗ such that for each firm i, s∗i
solves the following problem:

s∗i = arg max
si∈R+

Eτ,η

£
πi
¡
si, s

∗
−i
¢ |Ii(g)¤ . (2)

The reaction function of firm i as a function of i’s information structure is:

si =
1

2δ

β + γsE [τi|Ii(g)]− ε
X
j 6=i

E [sj |Ii(g)]
 . (3)

Standard results (see Radner, 1962 and Proposition 3.1 in Raith (1996)) can be used to

establish the existence of a unique Bayesian Nash Equilibrium for all information structures
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g. Firms’ Bayesian equilibrium strategies are affine in the observed signals:

s∗i = ai +
X

j∈Ii(g)
bijsj , i = 1, 2, ...n. (4)

The ai and bij coefficients can be computed by solving the following system, which im-

mediately points to the main forces at work within a given information structure:

ai =
1

2δ

β − ε
X
j 6=i

aj

 ;
bii =

1

2δ

γsK
i
1 − ε

 X
j∈gi\{i}

bji +
X
z /∈gi

X
j∈gz

Ki
3bjz

 ; (5)

bih =
1

2δ

γsK
i
2 − ε

 X
j∈gh\{i}

bjh +
X
z /∈gi

X
j∈gz

Ki
3bjz

 . (6)

The coefficients Ki
1, K

i
2 and K

i
3 describe the way in which firms use their observed signals

to update their beliefs. In particular, Ki
1 and K

i
2 are applied to yi and to all yj 6= yi such that

yj ∈ I(gi), respectively, to take the expectation of τi, while K
i
3 is applied to all yj ∈ I(gi) to

take the expectation on the signals yh, for all h /∈ I(gi). Formally we have:

Ki
1 =

(ts + u+ (|gi|− 2) (tn + un)) ts − (tn + un) tn (|gi|− 1)
(ts − tn + u− un) ((ts + u) + (|gi|− 1) (tn + un))

; (7)

Ki
2 =

(ts + u+ (|gi|− 2) (tn + un)) tn − (tn + un) (ts + (|gi|− 2) tn)
(ts − tn + u− un) ((ts + u) + (|gi|− 1) (tn + un))

; (8)

Ki
3 =

(tn + un)

(|gi|− 1) (tn + un) + ts + u
. (9)

The difference in firm i’s expected profit in the information structures g and g0 can be

expressed as follows (see also Raith (1996), page 274):

Eπi(g)−Eπi(g
0) = δ

£
var(s∗i (g)− var(s∗i (g

0))
¤

(10)

where in (10) we have used the fact that the terms ai in the equilibrium strategies are the

same for all firms i and for all information structures.

3 Information Sharing in Common Value Games

We study the incentives to share information in common value situations (ts = tn) when

sharing agreements are bilateral and exclusive. The main results in the literature for the
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case of exclusive agreements refers to the specific contract in which firms choose whether

to universally share information (the complete network in the present setting) or not to

share any (the empty network in the present setting). These results are well summarized by

Proposition 4.4 in Raith (1996), rephrased below in the terminology of this paper:

In a Common Value information sharing situation, the expected profits of firms in the

complete network is larger than the expected profits in the empty network if µ ≡ ε

δ
<

2

n+ 1
, is

smaller if µ >
2√
n+ 1

, and may be either larger or smaller in the range
2

n+ 1
< µ <

2√
n+ 1

,

depending on the parameters of the model.

Note that ε is an index of products’ differentiation, and that when ε < 0 strategies

are complements, while ε > 0 is the case of strategic substitutes. So, complete pooling of

information is never profitable when strategies are substitutes and products are homogeneous,

while it is always profitable when products are extremely differentiated and/or strategies are

complements.

In the present context of bilateral information sharing, we are not only interested in

comparing the complete and the empty networks, and we allow for any incomplete structure

where information sharing is partial. In order to identify equilibrium information structures,

we borrow a well known stability notion from the theory of strategic network formation. We

say that the network g is a pairwise stable information structure if it satisfies two conditions:

no firm has an incentive to sever one of its links in g and no pair of firms have an incentive

to add a new link to g.

Definition 1 The information structure g is pairwise stable if:

1) Eπi(g) ≥ Eπi(g − ij) for all ij ∈ g;

2) Eπi(g + ij) > Eπi(g)→ Eπj(g + ij) < Eπj(g) for all ij /∈ g.

Note that the empty network is not pairwise stable if there exists a pair of firms that

would be better off by mutually exchanging their private information. The next proposition

shows that such incentives may exist even when strategies are substitutes and products are

homogeneous, and always exist when the number of firms in large enough (the proof of all

results in the paper are found in the appendix).

Proposition 1 Consider a common value information sharing situation.

i) If µ < 2
3 the empty network is never pairwise stable, for all values of n.
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ii) If 23 < µ < 2
1+
√
2
then there exists a p∗∗n such that for all pn < p∗∗n the empty network

is never pairwise stable, for all values of n; otherwise (when pn > p∗∗n ) there exists a finite

number of firms n∗ such that for all n > n∗ the empty network is not pairwise stable.

iii) If µ > 2
1+
√
2
there exists p∗n and a finite value n∗ such that for all pn > p∗n and n > n∗

the empty network is not pairwise stable.

It is useful to discuss the forces behind propositions 1 and 2 comparing our results with

Raith’s (1996) results for the contractual model. Point i) covers those cases in which two

firms always have an incentive to share information when no other firm is in the market

(23 is in fact
2

n+1 for n = 2). Point i) shows that these incentives remain when there are

more than two firms in the market. Points ii) and iii) cover situations in which two firms

may not have the incentive to share information when alone in the market. Point ii) shows

that when these incentives exist (low pn), they do not vanish as we add firms to the market.

More interestingly, when such incentives are absent when no other firms are in the market

(high pn), these incentives are shown to appear as we add more firms in the market. Finally,

point iii) refers to those problems in which two firms would never share information, for any

value of pn (these problems include the standard Cournot game with homogeneous products).

Here, it is shown that by adding firms in the market we can generate incentives for bilateral

information sharing, provided the correlation parameter pn is large enough.

Note that the threshold levels of µ is Raith’s paper are decreasing in n. Therefore, it is

not possible that by adding firms in the market we pass from a situation where the empty

graph dominates the complete graph to a situation where the opposite is true. In other words,

the results of points ii) and iii) show that incentives for bilateral information sharing exist

in problems where complete information pooling is not profitable, and are responsible for the

instability of the empty network.

The mechanics underlying these results have been briefly discussed in the introduction.

When two firms share information in a market where other firms exist, they not only obtain

a refined information on the state of the world and the observation of the other firm’s signal,

but also obtain a refined information on the signals observed by the other firms in the market,

through signals’ correlation. The larger the number of these firms, the larger the benefits

for the two sharing firms in terms of expected profits. Not surprisingly, at point iii), where

the dominance of the empty network on the complete network is more severe for n = 2, our

result requires a sufficiently large correlation of firms signals.
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Note finally how the number of firms in the market play opposite roles in the present

paper and in the previous literature. While in Raith’s paper a larger n enlarges the set of

problems in which the absence of information is profitable with respect to an industry-wide

information sharing agreement, in the present paper a larger n increases the benefits from

bilateral information sharing, making the empty network unstable.

Proposition 2 below provides an example in which information is shared in equilibrium

even with the minimal number of firms that is required to generate the beneficial effect

underlying the result of proposition 1. Proposition 2 also shows that equilibrium information

structures need not entail either the absence or the complete pooling of information, but may

disclose part of the information in the system to a subset of firms.

Proposition 2 There exist common value problems that admit an incomplete stable infor-

mation structure.

It is useful to sketch here the example used to prove Proposition 2 in the appendix. Firms

1 and 2 find it profitable to share information (an example of proposition 1 at work in which

the required level of n is n∗ = 2), but neither have the incentive to form a link with 3, on

which they already acquired enough information through the link 12. The result is obtained

for a high level of signals’ errors’ correlation un, ensuring at the same time the incentives

to form the link 12 and not to form a link with firm 3. Firm 3 is actually excluded from

information sharing, since it would have an incentive to form a link with either 2 or 1.

Proposition 2 also implies that the complete network may not always be achieved though a

dynamic process of formation of bilateral agreements. However, in the example of proposition

2 the complete network is pairwise stable, since no firm has an incentive to sever one of its

links. The next final proposition shows that this is a very general feature of all common value

situations.

Proposition 3 Let n ≥ 3. The complete network is always a pairwise stable information
structure.

We finally remark that the stability result of proposition 3, at least in its general form,

is very specific to the concept of pairwise stability, allowing only for one-link deviations.

A more sever requirement for stability would allow firms to sever all their links at a time,

withdrawing all their private information from all competitors. Although it can be checked
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that the complete network satisfies this stronger requirement in the example studied by

proposition 2, other instances of Cournot competition can be constructed in which it is not

so. In contrast, the results of both proposition 1 and 2 would carry over to this stronger

notion of stability.

4 Conclusions

We have studied information sharing in oligopoly when firms can make bilateral and exclusive

agreements. We have shown that some amount of information is always shared in equilibrium,

even in common value situations with strategic substitutes, for which the previous literature,

allowing only for an industry-wide agreement, has predicted the complete absence of infor-

mation sharing. We have also shown that it is possible to construct symmetric situations in

which some but not all information is shared in equilibrium, and some firms are excluded

from the group of information sharing firms. The implications for policy are quite relevant

and partly contrast with those inspired by previous works on the subject, since evidence of

information sharing need not be associated with collusive behaviour.
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APPENDIX

Proof of proposition 1.

The proof is organized in several steps, and goes by studying the difference in expected

profits of two firms, 1 and 2, in the empty networks g∅ and in the network g12 ≡ {12}.
Denoting by a and b the coefficients of equilibrium strategies in the empty network and by

a1 = a2, b11 = b12 = b21 = b22 the equilibrium coefficients of firms 1 and 2 in the network

g12, we obtain:

a1 = a2 = a =
β

2δ + (n− 1)ε ;

b =

¡
K1
1

¢2
(ts + u)γ2s

2δ +K1
3ε (n− 1)

;

b11 = b12 = b21 = b22 =
γs
¡
2K2

1δ +K2
1K

1
3(n− 3)ε

¢−K1
1K

2
3(n− 2)ε)

4δ2 + 2
¡
1 +K1

3(n− 3)
¢
δε+K1

3(n− 3− 4K2
3 (n− 2))ε2

.

From (10), we can express the difference in profits of firm 1 (and, by symmetry, of firm

2) in g∅ and in g12 as the difference of the variances of equilibrium quantities:

Eπ(g∅)−Eπ(g12) = b2 (ts + u)− 2b211 (2ts + u+ un) . (11)
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Plugging in (11) the values of the K’s and the b’s coefficients, denoting by pi = (ts + u)

and by pn = (ts + un) the variance and covariance of signals, and letting p ≡ pi + pn, we

obtain the following expression:

Eπ(g∅)−Eπ(g12) = t2γ2s

·
pi

(2piδ + (n− 1) pnε)2

− 2p (pnε− 2piδ)2
(4pipδ2 + 2p (pi + (n− 3) pn) δε− pn ((3n− 5) pn − (n− 3) pi) ε2)2

#

It can be shown that the denominator of (12) is always strictly positive for all admissible

values of the parameters (a complete proof of this fact is available on request). The sign of

(11) is therefore the same as the sign of the numerator of (12). Dividing the numerator of

(12) by δ4 and denoting
ε

δ
by µ we obtain the following expression:

a · n2 + b · n+ c (12)

where

a = (pi − pn) p
2
nµ

2
¡
4pip (µ− 1) +

¡
p2i − 5pipn + 2p2n

¢
µ2
¢

b = 2 (pi − pn) pnµ
¡−8p2i p+ 4pip (2pi + 3pn)µ+ 2pi (pi − 8pn) pµ2 − pn

¡
3p2i − 11pipn + 2p2n

¢
µ3
¢

c = (pi − pn)
£
2p4nµ

4 + pip
3
nµ

2 ((44− 21µ)µ− 36) + 4p4 (µ (4 + µ)− 4)
−4p3i pn (µ− 1) (3µ (4 + µ)− 4) + p2i p

2
nµ (48 + µ (µ (32 + 9µ)− 76))¤

We first record the following two facts:

E1) setting n = 2 we obtain3 that the sign of (12) is negative for µ < 2
3 , is positive for

µ > 2
1+
√
2
and in the intermediate range is positive if and only if pn >

pi
¡
4− 4µ− µ2

¢
2µ2

≡ p∗∗n .

E2) the roots (n−, n+) of (12) are real (since b2 − 4ac ≥ 0), distinct and finite as long as
a 6= 0.

To continue the proof we need of the following lemmas:

Lemma 1 1) if µ < 2
1+
√
2
then (12) is concave. 2) if µ > 2

1+
√
2
then there exists p∗n such

that for all pn > p∗n (12) is concave, otherwise it is convex.

3These are same stability conditions as in Raith (1996), proposition 4.4: in fact, for n = 2, the formation

of the link 12 is equivalent to complete pooling of information.
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Proof of Lemma 1: Note that concavity of (12) depends on the sign of term a, that is

the same of the term: ¡
4pip (µ− 1) +

¡
p2i − 5pipn + 2p2n

¢
µ2
¢
. (13)

Let us evaluate the roots of this last term as a function of pn. We find:

4pi (1− µ) + 5piµ
2 ± pi (µ− 2)

p
4 (1− µ) + 17µ2

4µ2
(14)

The largest root yields a value which exceeds pi. We therefore consider only the smaller root

p∗n, and conclude that if (13) is a convex function of pn, then a is negative for all pn > p∗n.

Since it can be easily checked that the second derivative of a with respect to pn has the same

sign as µ2, we conclude that a is negative for values of pn larger than the smaller root p
∗
n.

Now we show that if µ < 2
1+
√
2
then p∗n < 0, implying, by virtue of step above, that a < 0 for

all parameters’ values. Otherwise, when µ > 2
1+
√
2
, p∗n > 0 and increasing in µ. In this case,

a < 0 for all values p∗n < pn < pi. Consider again the smaller root in (14)

p∗n =
4pi (1− µ) + 5piµ

2 + pi (µ− 2)
p
4 (1− µ) + 17µ2

4µ2
. (15)

Solving 15 with respect to µ we obtain that it is equal to zero for:

µ− = 2
³
−1−

√
2
´
; µ+ =

2

1 +
√
2
. (16)

Computing the first derivative of (15) with respect to µ we obtain a strictly positive value

for all µ in the range (0, 1]. This implies that for all 0 < µ < µ+ we have p
∗
n < 0. Also, we

have that pi > p∗n > 0 for 1 ≥ µ > µ+. Finally we note that µ− is out of the allowed range

(− 1
n−1 , 1] of µ; moreover computing the first derivative of (15) with respect to µ we obtain

a strictly negative value for all µ in the range (µ−, 0).Then for all − 1
n−1 < µ < µ+ we have

p∗n < 0, that means a < 0. QED

Lemma 2 Let n = 2. 1) If µ > 0, there exists p̂n > 0 such that (12) is increasing in n if

pn < p̂n and µ > 2
1+
√
2
, otherwise (12) is decreasing in n; 2) If µ < 0 then (12) is increasing

in n.

Proof of Lemma 2: The first derivative of (12) at n = 2 is given by:

2 (pi − pn) pnpµ (2pi − pnµ)
¡
pi (µ (4 + µ)− 4)− 2pnµ2

¢
(17)

13



The sign of (17) is the same as the sign of the following expression:

µ
¡
pi (µ (4 + µ)− 4)− 2pnµ2

¢
(18)

The expression in brackets in (18) is positive for pn <
pi (µ (4 + µ)− 4)

2µ2
. It is directly

verifiable that the right side of this inequality will take negative values for µ < 2
1+
√
2
and

positive values for µ > 2
1+
√
2
. The results follows. QED.

We are now ready to prove points i)-iii) of the proposition.

Point i) (µ < 2
3 ). The proof of this part is organized in two steps.

Step 1. (µ < 0). We know that at n = 2 (12) is negative (by E1) and increasing (by

Lemma 2); moreover we know that (12) is concave (by Lemma 1). These facts tell us that

the two real roots of (12) (n−, n+) are larger than 2. Now we show that (n−, n+) are larger

than the admissible value of n for any µ < 0.

It is directly verifiable that when µ < 0, n < 1− 1
µ
.

We find that the difference between the smaller root n− and the maximum allowed value

of n is positive for all µ < 0. It follows that (12) remains negative for all admissible values

of n, which means that the empty network is not pairwise stable.

Step 2. (0 < µ < 2
3). We know that at n = 2 (12) is decreasing (Lemma 2); moreover

we know that (12) is concave (Lemma 1). This two facts tell us the all points n ≥ 2 are in
the right (and decreasing) branch of the (parabola) (12). By E1 we know that (12) takes

negative values at n = 2 4; Therefore these evidences are enough to show that (12) remains

negative for all n ≥ 2.
Point ii) (23 < µ < 2

1+
√
2
). We know that at n = 2 (12) is decreasing (Lemma 2);

moreover we know that (12) is concave (Lemma 1). These two facts tell us the all points

n ≥ 2 are in the right (and decreasing) branch of the parabola given by (12). Now suppose
that (12) takes negative values at n = 2;5 the two real roots of (12) are strictly smaller than

2; it follows that (12) remains negative for all n ≥ 2. Now suppose that (12) takes positive
values at n = 2;6 the larger real root n+ must be larger than 2; it follows that, for all n > n+

(12) takes negative values.

4by E1, it happens when either µ > 2

1+
√
2
or 2

3
< µ < 2

1+
√
2
and pn >

pi 4− 4µ− µ2

2µ2
.

5By E1, it happens when either µ < 2
3
or 2

3
< µ < 2

1+
√
2
and pn <

pi 4− 4µ− µ2

2µ2
.

6By E1, it happens when either µ > 2

1+
√
2
or 2

3
< µ < 2

1+
√
2
and pn >

pi 4− 4µ− µ2

2µ2
.
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Point iii) (µ > 2
1+
√
2
). By lemma 1 we know that (12) is concave if pn > p∗n, and

otherwise is convex; moreover we know that at n = 2 (12) is positive (by E1). Now suppose

(12) is concave (that is, pn > p∗n): the larger real root n+ must be larger than 2; it follows

that, for all n > n+ (12) takes negative values. Now suppose (12) is convex (that is pn < p∗n);

by lemma 2 we know that at n = 2 the function (12) is increasing in n if pn < p̂n (note

that we find that p̂n = p∗n when µ = 2
1+
√
2
; moreover, we find that for µ > 2

1+
√
2
, p̂n− p∗n is

increasing in µ 7; it follows that p∗n < p̂n so that we have pn < p∗n < p̂n). Therefore the two

real roots (n−, n+) must be smaller than 2 and the (12) takes positive values for n ≥ 2. ¥

Proof of proposition 2. We develop a simple Cournot example in which three firms

are endowed with symmetric private information (same un and ui) and produce slightly

differentiated products (ε = 0.9) in a common market with demand uncertainty (γs = 1).

For simplicity we neglect costs, and we let αi(τi) = 0 for all i, βn = 0 and δ = 1. We also set

ts = u = 1. We show that the network g∗ = {12} is pairwise stable.
We first compute equilibrium strategies and expected profits in g∗. The updating coeffi-

cients in g∗ are (see expressions (7)-(9)):

K1
1 = K1

2 = K2
1 = K2

2 = K3
1 = K3

2 =
1

(2 + (1 + un))

K1
3 = K2

3 = K3
3 =

(1 + un)

3 + un
. (19)

The coefficient of firms’ equilibrium strategies in the Bayesian game associated with g∗

are (see expressions (5)-(6):

a11 = a12 =
β

2 + 2ε
(20)

b11 = b21 = b12 = b22 =
2K1

1 −K1
1K

2
3ε

2 + ε− 2 ¡K1
3ε
¢2 (21)

b33 =
4K2

1K
1
3ε−K1

1 (2 + ε)

4
¡
K1
3ε
¢2 − 2(2 + ε)

(22)

In order to evaluate the stability of the information structure g∗, we need to evaluate the

equilibria and the expected profits associated with the two networks g∅ (that originates by

7More precisely, the first derivative of the expression
pi (µ (4 + µ)− 4)

2µ2
− pn is increasing in µ.
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severing the link 12 from g∗) and the network g0 = {12, 23} (that originates by adding the
link 23 to g∗). For g∅ we obtain:

K1
1 = K2

1 = K3
1 =

(1 + un)

(1− un)
2 ; (23)

K1
3 = K2

3 = K3
3 =

(1 + un)

2
. (24)

and:

a =
β

2 + 2ε
; (25)

b =
K1
1

2
¡
1 +K1

3ε
¢ . (26)

For g0 we obtain::

K1
1 = K1

2 = K3
1 = K3

2 =
1

(2 + (1 + un))
(27)

K2
1 = K2

2 =
2− (1 + un)

(1− un) (4 + 2un)
(28)

K1
3 = K3

3 =
(1 + un)

3 + un
(29)

K2
3 =

(1 + un)

2 (2 + un)
(30)

and:

b11 = b33 =
2K2

1 − εK3
1 −K3

1K
2
3ε

(2− ε)
¡
2 + ε+K2

3ε
¢ (31)

b12 = b32 =
2K2

2

¡
2 + ε− 2K2

3 + 2εK
2
3

¢−K3
1

¡
2 + 2εK2

3 +K3
1ε
2 +K2

3ε
2
¢

2 (2− ε) (1 + ε)
¡
2 + ε+ εK2

3

¢ (32)

b21 = b23 =
K3
1

¡
2 + εK2

3

¢− εK2
1

(2− ε)
¡
2 + ε+ εK2

3

¢ (33)

b22 =
K3
1

¡
4 + 4ε+ 2εK2

3 + ε2 + 3K2
3ε
2
¢−K2

2

¡
4ε+ 2ε2

¢
2
¡
2 + ε+ εK2

3

¢
(2− ε+ ε2)

(34)

a1 = a2 = a3 =
β

2 + 2ε
(35)

From (10), in order to compare firms’ expected profits in these three structures we only

need to look at the variance of their equilibrium strategies (note, in fact, that the term a -

the intercept of the equilibrium strategy - is the same in all three networks and for all firms).

We obtain the following expressions:.
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Eπ1 (g
∗) = Eπ2 (g

∗) = 2 (2b11)2 + 2b211 (1 + un) ; (36)

Eπ3 (g
∗) = 2b233; (37)

Eπi
¡
g∅
¢
= 2b2, i = 1, 2, 3; (38)

Eπ2
¡
g0
¢
= 2

¡
2b221 + b221

¢
+ 2b21b21 (1 + un) + 2b23b22 (1 + un) + 2b21b23 (1 + un) ;(39)

Eπ3
¡
g0
¢
= 2

¡
b211 + b212

¢
+ 2b211 (1 + un) . (40)

We show that for high enough values of un (the correlation of the error term of firms’

signals), the network g∗ satisfies the following conditions and is therefore pairwise stable:

Eπ1 (g
∗) > Eπi

¡
g∅
¢
; (41)

Eπ2 (g
∗) > Eπ2

¡
g0
¢
; (42)

Eπ3
¡
g0
¢

> Eπ3 (g
∗) . (43)

Although the expressions of profits are quite long and complex, the result can be easily

illustrated by means of three pictures.

Figure 1 reports the difference Eπi
¡
g∅
¢−Eπ1 (g

∗)

0.5 0.6 0.7 0.8 0.9
-0.000025

0.000025

0.00005

0.000075

0.0001

0.000125

Figure 1. Incentives to sever link 12.

This difference is negative for high enough values of un, meaning that for high enough

correlation of signals, firms 1 and 2 have no incentives to sever their link in g0. This result is

a specific case of proposition 2, in which the value of n which is sufficient to create incentives

to form a link starting from the empty network is n = 3.
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Figure 2 reports the difference Eπ2 (g
0)−Eπ2 (g

∗) as a function of un.

0.2 0.4 0.6 0.8 1

-0.0004

-0.0002

0.0002

0.0004

Figure 2. Incentive of firm 2 to form the link 23.

For high enough values of signals’ correlation, firm 2 has no incentives to form the link

23 starting from g∗. This result has an intuitive interpretation: when correlation among

signals is not too low, firms 1 and 2 are able to infer enough information on firm 3’s signal

by observing each other’s signals. It follows that neither firm is willing to disclose to agent

3 its own private information (that is, to form a link with 3) in order to obtain additional

information on firms 3’s signal. Note that firms 3 is actually excluded from the information

sharing group made of firms 1 and 2. In fact, it can be shown that condition (43) holds,

that is, that firm 3 would indeed be willing to link and form the link 23. This is illustrated

in Figure 3, reporting the difference Eπ3 (g
∗) − Eπ3 (g

0), which is positive for high enough

values of un.
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0.2 0.4 0.6 0.8 1

-0.0006

-0.0004
-0.0002

0.0002

0.0004

0.0006

Figure 3. Incentive of firm 3 to form the link 23.

This observations conclude the proof.¥

Proof of proposition 3

The proof is organized in several steps, and goes by studying the difference in expected

profits of two firms, 1 and 2, in the complete networks gc and in the network g−12 ≡ {gc − 12}.
Denoting by a and b1 = bij for all i, j ∈ N the coefficients of equilibrium strategies in the

complete network and by a1 = a2, b11 = b22, and b13 = b1j = b23 = b2j for all j ∈ N /1, 2 the

equilibrium coefficients of firms 1 and 2 in the network g−12 , we obtain:

a1 = a2 = a =
β

2δ + (n− 1)ε
b1 =

γsK
i
1

2δ + (n− 1) ε

b11 = γs
K1
1 (2δ + (n− 3) ε)−

¡
1 +K1

3

¢
K3
1 (n− 2) ε

(2δ − ε)
¡
2δ +

¡
n− 2 +K1

3

¢
ε
¢

b13 = γs
(2δ + (n− 2) ε)K1

1 (2δ + (n− 3) ε)−
¡
1 +K1

3

¢
K3
1 (n− 2) ε

(2δ − ε) (2δ + (n− 1) ε) ¡2δ + ¡n− 2 +K1
3

¢
ε
¢

From (10), we can express the difference Eπ(gc)−Eπ(g−12) in the profits of firm 1 (and,

by symmetry, of firm 2) in gc and in g−12 as the difference of the variances of equilibrium

quantities, here given by the following expression:

n · b21 ((ts + u) + (n− 1) (ts + un))−
¡
b211 + (n− 2) b213

¢
(ts + u) (44)

− (n− 2) b13 (2b11 + (n− 3) b13) (ts + un) .
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Plugging in (44) the values of the K’s and the b’s coefficients, denoting by pi = (ts + u)

and by pn = (ts + un) the variance and covariance of signals, and letting p ≡ pi + pn, we

obtain the following expression for the difference Eπ(gc)−Eπ(g−12):

(pi−pn)t2γ2sδ(4(pi+(n−2)pn)(δ2+(n−3)δε)+((7+(n−6)n)pi+(n(19+(n−8)n)−16)pn)ε2)
(pi+(n−1)pn)(2δ+(n−1)ε)2(2piδ+2(n−2)pnδ+(n−2)piε+(5+(n−4)n)pnε)2 . (45)

It can be shown that the denominator of the above equation is always strictly positive

for all admissible values of the parameters; moreover the sign is the same as the sign of the

following expression.

¡
4 (pi + (n− 2) pn)

¡
δ2 + (n− 3) δε¢+ ((7 + (n− 6)n) pi + (n (19 + (n− 8)n)− 16) pn) ε2¢

(46)

We divide (46) in two terms. The first, 4 (pi + (n− 2) pn)
¡
δ2 + (n− 3) δε¢, is always:

indeed by assumption ε > − δ
n−1 and the proof follows directly; it can be directly verified

that the second term of (46) is positive for n ≥ 5. Therefore (46) could be negative only for
n = 3 and n = 4. But for n = 3 (46) becomes 4 (pi + pn) δ

2 − 2 (pi + 2pn) ε2and for n = 4

(46) becomes 4 (pi + 2pn)
¡
δ2 + δε

¢ − (pi + 4pn) ε2 and, by the assumption that ε > − δ
n−1 ,

both terms are strictly positive.¥
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