

Bilateral Mesh Denoising

S. Fleishman, I. Drori, D. Cohen-Or *Tel Aviv University*

Presented by Derek Bradley

Previous Work

- Implicit Fairing (IF) [Desbrun 1999]
 - Implicit integration of the diffusion equation

$X^{n+1} = (I + \lambda dtL)X^{n}$ Explicit Anisotropic Feature-Preserving Denoising (AFP) [Desbran 2000] Features detected using local curvature Denoise using weighted mean curvature smoothing

Penalize vertices with large ratio between principle curvatures

Bilateral Mesh Denoising

- Application of an image smoothing technique
- Vertices are moved along their normal direction

$v_i = v_i + d \cdot n_i$

- Scalar value *d* to be computed for each vertex
- Feature preserving
- Can be iterative or single-pass
- But first ... some image processing basics

erek Bradley 2006

Bilateral Image Filtering

- Goal: Smooth the image intensities, but preserve strong edges (features)
- New intensity = weighted average of neighbours
- Two weights:
 - <u>Geometric</u>: Closer pixels weighted higher (closeness smoothing filter)
 - <u>Photometric</u>: Strong changes in intensity penalized (similarity weight function)

Derek Bradley 2006

Bilateral Image Filtering Closeness Smoothing Filter								
2d Gaussian Filter								
	N	N	N	N	N			
N	N	N	N	N	N	N		
N	N	N	N	N	N	N		
N	N	N	۷	N	N	N		
N	N	N	N	N	N	N		
N	N	N	N	N	N	N		
	N	N	N	N	N			
							$W_c(x) = e^{-x^2/2\sigma_c^2}$	
Derek Bradley 2006 13								

Bilateral Image Filtering

Transforming from Images to Meshes

- Vertices instead of pixels
- Neighbourhood **N(v)**, defined the same
- Closeness smoothing filter:
 - 3D Euclidean distance instead of 2D
- Similarity weight function:
 - Heights of neighbouring vertices = pixel intensities

Derek Bradley 2006

Discussion

- Issues when using an image-based technique on a mesh:
 - Only applies to manifold meshes
 - Irregularity of meshes
 - Shrinkage
 - Vertex drift
- Handling boundaries
 - Mirror neighbours at boundary vertices
 - Virtual vertices at infinity (used in this algorithm)

Derek Bradley 2006

Discussion

- Setting the parameters (σ_c , σ_s , # iterations)
 - User-assisted method
 - $\blacksquare \sigma_{c} \text{ and } \sigma_{s}$:
 - User selects smooth point and radius on the mesh
 - Large σ_c = few iterations, small σ_c = more iterations
 - Small σ_c makes sense
 - large values can cross features
 - smaller neighbourhood leads to faster iterations
 - < 6 iterations for all results in the paper</p>

Discussion Independently, Jones et al. present the same algorithm with minor differences: Surface predictor Single pass

Discussion

- Disadvantages
 - Assumes well-behaved meshes
 - Can result in self-intersection

Conclusion

- Simple, effective and fast algorithm for denoising meshes
- Easy to implement
- **T**akes advantage of the success of an image processing technique
- Would I implement this algorithm?

References

- S. Fleishman, I. Drori, D. Cohen-Or. Bilateral mesh denoising. SIGGRAPH 2003.
- C. Tomasi, R. Manduchi. Bilateral filtering for gray and color images. ICCV 1998.
- ICCV 1996.
 T. Jones, F. Durand, M. Desbrun. Non-iterative feature-preserving mesh smoothing. SIGGRAPH 2003.
 M. Desbrun, M. Meyer, P. Schroder, A.H. Barr. Implicit fairing of irregular meshes using diffusion and curvature flow. SIGGRAPH 1999.
- M. Desbrun, M. Meyer, P. Schroder, A.H. Barr. Anisotropic feature-preserving denoising of height fields and bivariate data. Graphics Interface 2000.
- www.wikipedia.org