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Abstract
Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in

the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the

conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the

early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes.

Subsequently, several studies confirmed the finding and recently – despite elusive mechanisms of action – bile acid

sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled

as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators.

They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a

myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids

are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling

bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of

TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like

peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the

possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.
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Introduction
In recent years, it has become clear that bile acids are

candidate agents in newly identified pathways through

which carbohydrate metabolism and lipid metabolism are

regulated. Bile acids are ligands of the nuclear farnesoid

X receptor (FXR) (1, 2, 3) – a receptor that plays a central

role in the regulation of synthesis, excretion and transport

of bile acids, as well as lipid, glucose and energy

metabolism (4, 5, 6). Bile acids also act as signalling

molecules through the cell surface G protein-coupled

receptor (GPCR) TGR5 (also known as M-BAR, GPBAR1

and GPR131) (7, 8). In brown adipose tissue (BAT) and

skeletal muscles, TGR5 activation results in local activation
of thyroid hormone through the stimulation of type 2

iodothyronine deiodinase (D2) (9, 10, 11). Moreover, in

enteroendocrine L cells, TGR5 activation leads to the

secretion of the incretin hormone glucagon-like peptide 1

(GLP1 (GCG)). In addition to its glucose-dependent

insulinotropic effect, GLP1 also has glucagonostatic

properties and induces satiety. Other hormonal L cell

products with a satiety effect, such as peptide YY (PYY) and

oxyntomodulin, may also be released following bile acid-

induced TGR5 activation. This suggests that bile acids may

regulate glucose homoeostasis, appetite and body weight

via TGR5 (12, 13, 14, 15). Indeed, bile acids and their
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intestinal feedback signal fibroblast growth factor 19

(FGF19) have been suggested to be implicated in the

beneficial glucometabolic changes taking place after

Roux-en-Y gastric bypass (RYGB). Evidence suggests that

manipulation of the bile acid pool with bile acid

sequestrants, i.e. bile acid-binding agents, improves glucose

control in patients with type 2 diabetes (16, 17). The

mechanisms underlying the blood glucose-lowering effect

of bile acid sequestrants are incompletely understood, but

recent data have suggested that it may be mediated via

increased secretion of the insulinotropic gut incretin

hormones (13, 18, 19, 20, 21, 22). In the following, the

effects of bile acids on glucose metabolism and lipid

metabolism are reviewed. Furthermore, a potential role of

bile acids in the pathophysiology of type 2 diabetes is

described, and the effect of bile acids and bile acid

sequestrants on human GLP1 secretion – including

potential interplay with other gut hormones – and carbo-

hydrate metabolism is reviewed. Finally, the use of bile acid

sequestrants as a possible new therapeutic approach to

augment GLP1 secretion is put into perspective.
The physiology of GLP1

Glucose-dependent insulinotropic polypeptide (GIP) and

GLP1 constitute the incretin hormones and act in

concert to generate the so-called incretin effect. The

incretin effect expresses the augmentation of insulin

secretion after oral administration of glucose compared

with an isoglycaemic i.v. glucose stimulus (23, 24, 25).

GIP is secreted from K cells primarily located in the

upper small intestine (duodenum and proximal jeju-

num). GLP1 producing L cells are believed to exist

throughout the small and large intestines with the

highest cell density in the distal part of the small

intestine (ileum) and colon (26, 27, 28). Both GIP and

GLP1 are rapidly metabolised by the ubiquitous enzyme

dipeptidyl peptidase 4 (DPP4), whereby the biological

activity of both hormones is abolished (26). As

mentioned above, GLP1 also inhibits glucagon secretion

(during high plasma glucose concentrations), an effect

that might be as clinically important as the insulino-

tropic effect of GLP1 (26, 29). GIP, however, has been

proposed to elicit glucagonotropic actions (during low

plasma glucose concentrations) and, hence, most likely

plays a more complex role in glucose metabolism (30).

Furthermore, GLP1 reduces food intake (most likely via

activation of GLP1 receptors in the CNS) and delays

gastric emptying, whereby postprandial glucose excur-

sions are reduced (26).
www.eje-online.org
GLP1 secretion

Meals containing organic nutrients (i.e. carbohydrate, fat

and/or protein) are effective stimuli for secretion of GLP1

(31, 32, 33, 34) as well as many other gut hormones

(26, 35). The exact mechanisms behind nutrient-induced

GLP1 secretion remain elusive. It has been suggested that

nutrients interact with luminal microvilli and, in the

GLUTag cell model, a correlation among glucose absorp-

tion (36), glucose metabolism (37) and GLP1 secretion has

been demonstrated. In dogs, blocking the luminal

sodium–glucose transporter SGLT1 on intestinal L cells

decreases GLP1 secretion, positioning SGLT1-mediated

glucose uptake as an important regulator of GLP1

secretion (38, 39). Several GPCRs have been identified on

the L cells. These include GPR119 (40), which is activated

by N-acylethanolamines (41), GPR120 (42) and GPR40

(43), which are activated by long-chain fatty acids

(LCFAs), GPR41 (44), GPR43 (45) and FFAR2 (46), which

are activated by short-chain fatty acids (SCFA), and TGR5

(8), which is activated by bile acids. In addition, taste

receptors (primarily T1R2/T1R3 and a-gustducin) in

the stomach and intestine seem to regulate the secretion

of GLP1 (47, 48, 49). Paracrine, neuronal and neuro-

hormonal mechanisms may also be important for the

facilitation of postprandial GLP1 secretion (50, 51, 52, 53).

As mentioned earlier, bile acids are able to activate TGR5

(7, 8, 9), resulting in GLP1 secretion from intestinal L cells

(12, 14). Already in the 1980s, there were reports of bile-

induced secretion of GIP (54, 55) and glucagon-like

reactive materials in dogs (46, 57, 58, 59) and insulin

(60). Since then, various groups have reported similar

findings (13, 61, 62, 63, 64).
The concept of GLP1-based treatment revisited

The concept of GLP1-based treatment of type 2 diabetes

is rooted in augmentation of peripheral concentrations

of GLP1 receptor agonists – either endogenous active

GLP1 (via DPP4 inhibitors) or exogenous administration

of synthetic DPP4-resistant GLP1 receptor agonists. In

general, incretin-based treatment has not yet been able

to show GLP1-induced remission of type 2 diabetes in

humans – as anticipated from some animal studies (65).

Acknowledging the fact that a substantial part of GLP1’s

effects is elicited locally, i.e. in close proximity to where

GLP1 is secreted (26), a possible explanation for this

limitation may be that synthetic GLP1 receptor agonists

and DPP4 inhibitors primarily elevate the concentrations

of GLP1 receptor agonists in plasma. By contrast, the
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elevated plasma concentrations of GLP1 observed after the

RYGB (comparable to the GLP1 receptor agonist concen-

trations in plasma observed during s.c. treatment with

synthetic GLP1 receptor agonist) (66, 67, 68) result in

diabetes remission rates of up to 80% (69), depending on

remission definition (70), in obese patients with type 2

diabetes. This discrepancy may be explained by the fact

that local effects of GLP1 secretion in the intestine are not

fully exploited during GLP1-based treatment modalities.

Such local effects could include stimulation of local

afferent sensory nerve terminals (residing in the lamina

propria, the portal vein or in the liver), which

communicate with the nuclei of the solitary tract and

hypothalamus. Hereby, important physiological effects

such as reduced gastric emptying, inhibition of appetite

and food intake and modulation of pancreatic hormones

can be elicited through neural activation. Preclinical

studies have provided evidence for an important neural

mechanism of GLP1 function (26, 50). By targeting GLP1

secretion, a whole new treatment concept, based on local

effects of GLP1, may be unravelled. One approach is

potentiation of GLP1 secretion via bile acid-induced TGR5

activation. In fact, stimulation of GLP1 release with agents

that are neither deposited (i.e. bile acids or synthetic TGR5

receptor analogues) nor absorbed (i.e. bile acid seques-

trants) is captivating and might prove superior in

controlling type 2 diabetic hyperglycaemia and obesity

compared with current GLP1-based treatment strategies.

In the following, some key elements from the current

understanding of GLP1 secretion will be outlined in the

context of bile acid physiology and bile acid sequestrants.
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Figure 1

Pathways by which the enterohepatic circulation of bile acids

down-regulates bile acid biosynthesis. See text for details.
Bile acids

Bile acids are water-soluble, amphipathic molecules

synthesised from cholesterol in the liver. After hepatic

conversion of cholesterol, involving w16 enzymatic

reactions (71, 72), bile acids are secreted into the

canalicular space between hepatocytes. Bile then flows

into the bile ducts and, during fasting, half of the bile – or

450 ml/day – enters the gallbladder and the other half

flows into the intestine (4). Owing to isotonic reabsorp-

tion of NaCl and NaHCO3 in the leaky epithelium of the

gallbladder – mainly mediated by vasoactive intestinal

polypeptide (released from neurons innervating the

gallbladder) and secretin – bile salts are concentrated up

to 20-fold within the gallbladder lumen (73, 74, 75). Upon

meal ingestion, the gallbladder contracts and relaxation of

the sphincter of Oddi occurs, whereby bile acids from the

liver and highly concentrated bile from the gallbladder are
released into the intestinal lumen. Herein, they interact

with dietary lipids, lipid-soluble vitamins and cholesterol,

forming micelles, and thereby facilitate the uptake of

these molecules (76). Reabsorption of bile acids occurs

primarily in the terminal ileum where bile acids are

transported from the lumen into the portal bloodstream

and back to the liver (only 5% of bile acids escape

intestinal uptake – see below – and are excreted in the

faeces) (Fig. 1) (4). Reabsorption occurs via the apical

sodium-dependent bile salt transporter (ASBT) and then

bile acids are effluxed to the portal vein via the

heteromeric organic solute transporter a/b, the multidrug

resistance-associated protein 3 and a truncated form of

ASBT. This complex transport system constitutes just a

small part of the enterohepatic cycling of bile acids, which

is reviewed in great detail elsewhere (4).

The human liver produces the primary bile acids

cholic acid and chenodeoxycholic acid and their glycine

and taurine conjugates. In the intestinal lumen (terminal

ileum and colon), primary bile acids may undergo

deconjugation and dehydroxylation by bacteria, resulting

in secondary bile acids, of which the most important are

deoxycholic acid and lithocholic acid (6). The conversion

of cholesterol into bile acids by the liver enzymes accounts
www.eje-online.org
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for w90% of cholesterol breakdown (71, 72). Bile acids

also control gut flora by inhibiting the growth of bacteria

in the small intestine (77, 78). The mass of circulating bile

acids is termed the bile acid pool and can be measured by

isotope dilution (79).
Regulation of the bile acid pool: the role of

FXR and FGF19

Bile acids are powerful detergents and toxic due to their

high hydrophobicity. Consequently, the composition

of bile acids is strictly regulated, as is their synthesis,

secretion, transport and metabolism. Importantly, the

biological properties of bile acids depend on their

chemical structure, thus indicating that bile acid pool

size and composition are regulatory factors for potential

bile acid signalling pathways (4, 6, 80, 81). Bile acids feed

back to regulate their own synthesis by binding to FXR

in the liver (1, 2). FXR is activated by both primary and

secondary bile acids, with chenodeoxycholic acid being

the most potent natural ligand (1, 2). The activation of

FXR in the liver (82) leads to increased conjugation of

primary bile acids followed by the excretion of bile acids,

thereby promoting bile flow into the lumen of the

gastrointestinal tract (4, 80, 83, 84, 85). Furthermore,

FXR activation in liver tissue induces transcription of the

inhibitory small heterodimer partner (Fig. 1). As a result,

transcriptional activity of the nuclear receptors, liver

receptor homologue and hepatocyte nuclear factor 4a, is

reduced. This leads to impaired activity of the microsomal

enzyme cholesterol 7a hydroxylase (CYP7A1), the rate-

limiting enzyme of the so-called ‘classic’ or ‘acidic’

pathway of bile acid biosynthesis. Via a small heterodimer

partner, FXR activation also inhibits the ASBT (intestine)

and the NaC-taurocholate co-transporting polypeptide

(NTCP) transporter (liver) (4). In addition to FXR

activation in the liver, bile acids activate FXR in the distal

small intestine, postprandially, and induce expression and

secretion of FGF19 (designated as FGF15 in mouse). FGF19

has been established as a postprandial gut hormone

released mainly from the small intestine. Recently, it has

been shown that FGF19 is expressed in the human ileum

and at low concentrations in the colon (86). Following

secretion into the portal circulation, FGF19 binds to the

hepatic receptor complex FGFR4/b-Klotho that induces

c-Jun N-terminal kinase activation in the liver (Fig. 1)

(87, 88, 89). Bile acids may also directly down-regulate

CYP7A1 via FGF19-independent c-Jun N-terminal kinase

activation (90). In addition, bile acids activate other

nuclear receptors, such as the constitutive androstane
www.eje-online.org
receptor (91), pregnane X receptor (92) and vitamin D

receptor (93), which are implicated in bile acid detoxifi-

cation (94) as well as the aforementioned inhibition of

bile acid synthesis. Furthermore, bile acids activate the

p38 MAP kinase pathway and the ERK pathway (95),

leading to regulation of apoptosis and cytoprotective

effects. Thus, taken together, FXR activation is considered

as a crucial modulator of the enterohepatic circulation and

de novo synthesis of bile acids, and it governs tight

regulation of the bile acid pool (4, 6).
Bile acids activate GPCRs

As mentioned earlier, bile acids activate TGR5 – one of

the three GPCRs activated by bile acids; the others

being muscarinic receptors (M1–5) (96, 97) and formyl

peptide receptors (98, 99). TGR5 is widely expressed in the

gastrointestinal tract and associated glands, including

human gallbladder epithelium and cholangiocytes (100,

101, 102), several cell types in the liver (103, 104), spleen

(8), colon and ileum (7, 101, 105). In addition, TGR5 is

expressed in human monocytes and CD14C white blood

cells (8), and, interestingly, in BAT, skeletal muscle and

various areas of the CNS (9, 106, 107). TGR5 is activated by

several bile acids, with lithocholic acid being the most

potent natural agonist (7, 8). More hydrophilic bile acids,

deoxycholic acid, chenodeoxycholic acid and cholic acid,

are less potent activators of TGR5 (8). TGR5 has recently

been found in human pancreatic islets and shown to

release insulin upon stimulation with the TGR5 selective

ligands oleanolic acid and INT-777 (a semisynthetic cholic

acid derivative, and a potent and selective TGR5 agonist)

and also lithocholic acid (108).

In recent years, it has become clear that bile acids are

signalling molecules with classical endocrine properties

(6, 80) and work as metabolic integrators modulating lipid

and glucose metabolism (see below) (6, 14). These

integrative functions of bile acids are most likely mediated

by activation of the TGR5 in the intestine (7, 8) and the

FXR and FGF19 signalling pathways in the liver and the

intestine (Fig. 2) (1, 2, 3, 6).
Bile acids and energy expenditure

An intriguing effect of bile acids is their ability to affect

energy expenditure. FXR activation has been suggested to

be involved in bile acid-induced energy expenditure (109),

but recent studies in mice have indicated that bile acids

increase energy expenditure through activation of the D2

in BAT, resulting in deiodination of the minimally active
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thyroid hormone thyroxine (T4) to the biologically active

triiodothyronine (T3) (9). Interestingly, Thomas et al.

showed that administration of INT-777 attenuated weight

gain in C57BL6/J mice fed on a high-fat diet compared

with control mice not receiving INT-777. These findings

were related to enhanced energy expenditure, as indicated

by the measurement of O2 consumption and CO2

production during indirect calorimetry (14), suggested to

be a result of an induction of D2 (DIO2) gene expression

(along with an increase in several mitochondrial genes

involved in energy expenditure) (9, 14). However, the

physiological relevance (bile acid-induced increase in

energy expenditure) of these findings is somewhat

contentious because INT-777 improves EC50 on TGR5 by

30-fold compared with cholic acid.

Watanabe et al. have recently carried out a study on

C57BL/6J mice fed on a normal chow, high-fat diet or

high-fat diet supplemented with either the bile acid

sequestrant colestimide (2% w/w) or cholic acid (0.5%

w/w) for 96 days (10). Notably, both treatments augmen-

ted energy expenditure, caused weight reduction and

improved insulin sensitivity, and the authors speculated,

with support from older studies (9, 10, 110), that these

effects may be TGR5 mediated due to changes in the bile

acid pool (increased concentrations of cholic acid) and

gene expression in liver, BAT, muscle and ileum after both

treatments (genes involved in bile acid synthesis, gluco-

neogenesis and thyroid function (D2)). Presumably, the

ability of bile acids to increase energy expenditure is linked

to a TGR5-mediated rise in cAMP, which results in
augmented activation of D2 and thereby increased

conversion of T4 into T3 in BAT (rodents) and muscle

(humans) (11). However, human studies have yielded

conflicting results (111, 112, 113). Patti et al. (21) showed

that total bile acids in serum correlate inversely with

thyrotrophic hormone (TSH) in patients who have

undergone RYGB surgery, and the works by Nakatani

et al. (114) and Simonen et al. (115) demonstrated similar

results. By contrast, Brufau et al. (111) could not

demonstrate any effect of bile acids or bile acid seques-

trants on energy metabolism in humans. Thus, further

studies are warranted to clarify whether bile acids and

bile acid sequestration affect energy expenditure and

promote weight reduction in humans.
Bile acid sequestrants

Bile acid sequestrants (cholestyramine, colesevelam,

colestimide and colestipol) are non-absorbable resins

that bind negatively charged bile salts in the intestinal

lumen. Via this mechanism, bile acids are incorporated

into a complex that gets excreted in the faeces – diverting

bile acids from the enterohepatic cycle (116, 117). To

compensate for the reduction of the bile acid pool,

delivery of LDL cholesterol (substrate for bile acid

production) to the liver is increased, and bile acid

synthesis is increased by a factor four to six. Thus, bile

acid sequestrants decrease circulating concentrations of

LDL cholesterol. Other contributing factors to the LDL

cholesterol-lowering effect are enhanced cholesterol

synthesis and up-regulation of LDL receptors (79, 118).

The cholesterol-lowering action of bile acid sequestrants

has been known since the early 1960s (76), and since then,

bile acid sequestrants have been used for the treatment of

hypercholesterolaemia. In line with this, studies have

shown a decrease in coronary heart disease following

treatment with bile acid sequestrants (119, 120).
Sequestration of bile acids modulate the bile acid pool

In the study by Brufau et al. (121), 2 weeks of treatment

with colesevelam altered the synthesis of specific bile

acids, which affected their relative contribution to the

total pool size. Cholic acid concentration increased by

more than twofold (from 30 to 65%) in both control

subjects and type 2 diabetic patients, whereas the

concentrations of chenodeoxycholic acid and deoxycholic

acid decreased in both groups (from w35 to w15%). Thus,

the ratio of cholic acid to the sum of chenodeoxycholic

acid and deoxycholic acid (‘triols’ vs ‘diols’, a surrogate
www.eje-online.org
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marker of the hydrophobicity of bile acid pool (6)) resulted

in a fivefold increase in both groups, indicating a

considerable decrease in the hydrophobicity in the bile

acid pool. This pattern has also been observed in older

studies after treatment with bile acid sequestrants

(122, 123, 124). However, in a recent study by Beysen

et al., treatment with colesevelam has resulted in increased

fractional synthesis of both chenodeoxycholic acid and

cholic acid from newly synthesised cholesterol, suggesting

that individual bile acids respond differently to bile acid

sequestrants (22, 125, 126, 127). Interestingly, bile acid

sequestrants have been reported to slow colonic transit

time (128), which is known to increase deoxycholic acid

concentrations in colon and plasma (due to bacterial

dehydroxylation (129)), and thus, may possibly also lead

to enhanced TGR5 activation in the L cell-rich milieu of

the colon (see below).

The physiological significance of changes in bile acid

pool composition induced by bile acid sequestration may

arise from the altered signalling on the FXR receptor, as

well as other receptors (i.e. liver X receptor (LXR) and

TGR5) (6). Indeed, concentrations of FGF19 are lowered in

response to the sequestration of the majority of bile acids,

indicating bile acid sequestrant-induced reduction of FXR

signalling. Again, these alterations may also simply occur

as a consequence of binding and faecal loss of specific bile

acids (22, 121, 130).
Bile acid pool composition is altered in type 2 diabetes

Already in 1977, Bennion & Grundy (131) showed that

type 2 diabetic patients were characterised by increased

bile acid pool size and faecal excretion of bile acids, which

decreased upon insulin treatment. Subsequently, changes

in bile acid pool composition have been demonstrated in

both animal models of type 1 diabetes and type 2 diabetes,

respectively (132, 133, 134, 135), as well as in early

(131, 136, 137, 138, 139) and recent human studies

(22, 111, 121, 140). Of note, both glucose (141) and

insulin have been suggested to modulate bile acid

synthesis in preclinical studies (135, 142, 143) and in

some (131, 138, 144), but not all (137), clinical studies. As

noted by Staels & Fonseca, the finding that insulin is able

to suppress FXR (NR1H4) gene expression (in contrast

to glucose, which produces the opposite effect) suggests

that diabetes is associated with the dysregulation of FXR

expression (141, 145). Indeed, Brufau et al. showed that

patients with type 2 diabetes exhibited increased concen-

trations of deoxycholic acid and decreased concentrations

of chenodeoxycholic acid, which was due to the increased
www.eje-online.org
synthesis rate of cholic acid and deoxycholic acid. Other

human studies have found similar changes in the bile acid

pool in diabetes, but these studies are difficult to interpret

in a comparative manner due to different methodologies

and study populations (131, 136, 136, 137, 138). Recently,

Haeusler et al. have reported that there might be a

plausible, mechanistic explanation for diabetes-related

changes in the bile acid pool composition involving

Forkhead box protein 01 (FOX01 (FOXP1)), a transcription

factor regulating gluconeogenesis, glycogenolysis and

liver sensitivity to insulin (140, 146). They showed that

mice lacking Fox01 developed a less hydrophilic bile acid

pool (146). Moreover, FOX01 activity was shown to be

important for Cyp8b1 transcription (12a-hydroxylase). As

CYP8B1 determines bile acid pool composition (increases

cholic acid production) (147) and was relatively deficient

compared with the other enzymes, 12a-OH bile acid

concentrations (mainly cholic acid and deoxycholic

acid) were found to be lower compared with concen-

trations of non-12a-OH bile acids (mainly chenodeoxy-

cholic acid) (146). Interestingly, the activity of FOX01 is

inhibited by insulin via Akt-dependent phosphorylation

and nuclear exclusion of FOX01. Thus, the authors

hypothesised that, in diabetes, the inhibition of FOX01

might fall short leading to increased synthesis of 12a-OH

bile acids as well as increased hepatic glucose production.

In an elegant study in healthy subjects and patients with

type 2 diabetes, Haeusler et al. provided support to this

hypothesis with the finding of a significant association

between the ratio of 12a-OH/non-12a-OH bile acids and

the degree of insulin resistance. By contrast, however,

the diabetic population of the study exhibited a higher

hydrophobicity index (due to higher concentrations of

deoxycholic acid and its conjugated forms, relative to

cholic acid and chenodeoxycholic acid and their con-

jugates), but no disproportionate increase in 12a-OH bile

acids despite the marked insulin resistance (140). It bears

emphasising that a larger ratio of 12a-OH/non-12a-OH

bile acids may theoretically induce less FXR activation

owing to relatively lower concentrations of chenodeoxy-

cholic acid – the most abundant non-12a-OH bile acid and

a potent FXR agonist in humans. Thus, these results

confirm that alterations in the bile acid pool composition

and FXR activity may constitute important factors in the

pathophysiology of type 2 diabetes. Metabolomic studies

have shown that patients with type 2 diabetes exhibit a

lower cholic acid concentration and a higher deoxycholic

acid concentration compared with control subjects,

indicating that cholic acid in type 2 diabetes might be

increasingly converted into deoxycholic acid (148).
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Similar studies have also revealed that bile acid concen-

trations become markedly increased in serum in response

to an oral glucose challenge, suggesting that systemic

bile acids may orchestrate the fine-tuning of human

glucose homoeostasis (149, 150) – possibly through FXR

signalling (6).

The mechanisms underlying the abnormal compo-

sition of the bile acid pool in patients with type 2 diabetes

may also be linked to their gut microbiota composition,

which has been suggested to be different from that of

healthy control subjects (see below) (151, 152). As

mentioned earlier, reduced colonic transit time (i.e.

constipation), the commonest gastrointestinal symptom

of type 2 diabetes, also increases bacterial dehydroxylation

of cholic acid to yield deoxycholic acid, possibly explain-

ing part of the postulated alterations of deoxycholic acid

concentrations in these patients (128, 129). Despite the

unknown causality of the changed bile acid pool

composition in type 2 diabetes, it constitutes an attractive

field of research into possible new treatment targets –

perhaps based on modulation of specific bile acids in

patients with type 2 diabetes. In fact, already, sequestra-

tion of bile acids in the lumen of the gut represents a way

of treating type 2 diabetes.
Sequestration of bile acids alters glucose metabolism

In 1994, Garg & Grundy (16) established clinical evidence

that bile acid pool modulation affects glucose metabolism.

In addition to the sound effect of the bile acid sequestrant

cholestyramine on total and LDL cholesterol concen-

trations in patients with hypercholesterolaemia and type 2

diabetes, bile acid sequestration also, surprisingly, resulted

in improvements of mean plasma glucose concentrations

and urinary glucose excretion. The effect of bile acid

sequestration on glucose homoeostasis has subsequently

been corroborated in recent clinical trials (17, 153, 154,

155, 156, 157, 158, 159), but the exact mechanisms of how

bile acid sequestrants improve glycaemic control are

contentious (Fig. 3).

Originally, bile acid sequestrants were suggested to

affect glucose absorption (160, 161). However, this has not

been confirmed in later in vivo studies (121, 162). Indeed,

in a pilot study by Schwartz et al. (162), the first dose of

colesevelam with a standard meal had no effect on

postprandial concentrations of glucose compared with

baseline and placebo. Furthermore, there was no effect on

peripheral insulin sensitivity measured by the hyper-

insulinaemic–euglycaemic clamp technique; but, perhaps

as reflected by an increase in the Matsuda index (163),
hepatic insulin sensitivity may have been improved (162).

However, in another study, colesevelam did not appear to

affect hepatic or peripheral insulin sensitivity as measured

by the hyperinsulinaemic–euglycaemic clamp technique

(164). Neither acute nor chronic treatment with coleseve-

lam seems to affect post-OGTT glucose concentrations

(162, 164, 165). However, post-meal concentrations (total

area under the curve) have been found to be slightly

reduced after both acute (166) and chronic treatments

(weeks) with colesevelam (17, 130, 162, 167). Notably,

examining glucose kinetics, Beysen et al. (22) could not

demonstrate any effect of colesevelam on endogenous

glucose production, and recently, Smushkin et al. (167)

showed that colesevelam decreased the appearance of

meal-derived glucose, without changes in insulin

secretion, insulin action or GLP1 concentrations. Thus,

the mechanisms behind the glucose-lowering effect of bile

acid sequestrants remain a matter of controversy.

As mentioned previously, bile acid sequestrants were

originally developed for the purpose of binding bile acids

in the intestinal lumen, diverting bile acids from the

enterohepatic cycle (116, 117). In this respect, it is

important to reiterate that bile acids themselves are

increasingly being recognised as modulators of hepatic

glucose metabolism via FXR signalling (168, 169, 170, 171,
www.eje-online.org
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172, 173, 174). Animal studies have demonstrated that

FXR activation inhibit gluconeogenesis (169, 175),

whereas others report an overall activation of gluconeo-

genesis (141, 170, 173). It has been suggested that the

control of FXR activation on whole-body glucose homo-

eostasis is limited to certain time points of the fasting/

feeding cycle (80, 176). Furthermore, Fxr-deficient mice

are characterised by decreased hepatic glycogen (168) and

exhibit reduced insulin sensitivity and secretion (169, 173,

177). Of note, experiments on human islets and b-cell

lines have revealed the findings on FXR-dependent insulin

secretion (178, 179). With the recent findings outlined

above, some of which may constitute new avenues in

the search for the target of antidiabetic and antiobesity

treatments, it seems to be of tremendous importance to

delineate the precise mechanisms by which bile acids

and FXR modulate hepatic glucose metabolism, and how

FXR activity changes in response to bile acid sequestration

in the gut.

Another hypothesis behind the glucose-lowering

effects of bile acids and bile acid sequestrants is rooted in

FGF19. As already pointed out, FGF19 is secreted upon

postprandial bile acid activation of intestinal FXR

(87, 180). In addition, FGF19 is secreted from the human

gallbladder into the bile at very high concentrations

compared with plasma concentrations, suggesting a yet

undefined exocrine function of FGF19 (181). A decade

ago, Tomlinson et al. (182) demonstrated, in transgenic

mice, that FGF19 modulates energy and glucose homoeo-

stasis. Most striking was the observation that FGF19

shares some metabolic actions of insulin, namely the

stimulation of protein synthesis and glycogen synthesis

(independent of insulin), and inhibition of gluconeo-

genesis (183, 184, 185). Besides positioning FGF19 as a

selective agonist of insulin signalling (without promoting

lipogenesis), Kir et al. (184) demonstrated that Fgf15 (the

FGF19 equivalent in mice)-null mice exhibited increased

blood glucose concentrations after an oral glucose bolus.

These studies suggest that FGF19 acts subsequent to

insulin as a postprandial regulator of hepatic carbohydrate

homoeostasis, utilising signalling pathways independent

of insulin (183). In this regard, it is intriguing that FGF19

concentrations, in some studies, are lower in type 2

diabetic patients compared with control subjects

(186, 187). However, not all researchers agree on this

postulate (121), but, interestingly, it has been proposed

that diabetic patients may also exhibit decreased FGF19

signalling and a subsequent impaired FGF19-dependent

reduction in bile acid synthesis (121, 188). Lastly,

following RYGB surgery, FGF19 concentrations increase,
www.eje-online.org
probably reflecting enhanced delivery of bile to the distal

intestine and thus increased activation of FXR

(21, 189, 190). Thus, FGF19 may constitute an important,

postprandial enteroendocrine factor – with possible

incretin-like actions – regulating hepatic protein and

glycogen synthesis and gluconeogenesis (180, 184).

Although fasting FGF19 concentrations may be lower in

type 2 diabetic patients, little is known about the

physiological relevance of this finding (180). However,

the presence of lower FGF19 concentrations in type 2

diabetic patients fits well with the notion of reduced FXR

activity, putatively, owing to a less hydrophilic bile acid

pool (as mentioned above). Certainly, further studies are

required to elucidate the possible contribution of impaired

FGF19 signalling to dysregulation of glucose homoeo-

stasis, and importantly, such studies should also outline

the importance of the observed cell proliferative effects of

FGF19 (191).

As already mentioned, a novel hypothesis takes into

account that the gut microbiota composition is altered in

type 2 diabetes (151, 152). Notably, gut bacteria are known

to exert a great impact on bile acids (and vice versa) (147),

cholesterol and glucose metabolism (192). Thus, as

recently suggested (193), and elegantly confirmed (194),

changes in the gut microbiome may influence glucose

metabolism itself. Hypothetically, bile acid sequestrants

may, via bile acid binding, be capable of inducing changes

in the gut microbiota composition, adding yet another

intriguing aspect of bile acid sequestration. Clearly,

further studies on this matter are warranted.

Finally, as already outlined, bile acid sequestration is

considered to enhance GLP1 secretion via bile acid-

induced activation of the intestinal TGR5 receptor. Recent

evidence in animal and human studies has provided

rigorous proof of this hypothesis and, therefore, in the

following, we will discuss the physiological importance of

TGR5 in the gut and propose viewpoints as to how bile

acid sequestrants may exert their glucose-lowering effects

through TGR5-dependent GLP1 release.
Effects of bile acid sequestrants on
GLP1 secretion

As for the FXR-dependent effects mentioned above, the

mechanisms responsible for the enhancement of GLP1

secretion seen after bile acid sequestration remain enig-

matic. Recent studies have suggested that cholestyramine

and colesevelam improve insulin resistance in diabetic rats

by increasing GLP1 release, independent of FXR signalling

(activity reduced, see above) (195, 196, 197, 198). As
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already mentioned, these findings were not confirmed in

type 2 diabetic patients after colesevelam treatment

(130, 162). However, colestimide treatment for 1 week

has been shown to reduce postprandial glycaemia in type

2 diabetes – an effect that was associated with increased

postprandial GLP1 plasma concentrations (18). In line

with these results, a recent multicentre, randomised,

parallel, double-blind, placebo-controlled study has

shown that treatment with colesevelam (3.75 g/day) for

12 weeks in patients with type 2 diabetes increased

concentrations of GLP1 (and GIP) and improved both

fasting and postprandial glucose homoeostasis (22).
TGR5-dependent mechanisms

Today, it is fairly well established that sequestering of bile

acids increases GLP1 secretion from intestinal L cells

through activation of TGR5 (18, 22, 195, 196, 197, 198,

199). A widespread hypothesis explaining this pheno-

menon takes into account that bile acids, when intra-

luminally bound to sequestrants, are not reabsorbed into

the bloodstream. This facilitates the transport of luminal

bile acids into the distal L cell-rich parts of the intestine,

which, in turn, enhances activation of TGR5 on ‘distal’

L cells and leads to enhanced GLP1 secretion. As noted

above, the most potent natural TGR5 agonists are

lithocholic acid and taurine-conjugated lithocholic acid,

which activate the receptor in nanomolar concentrations,

whereas cholic acid, deoxycholic acid and chenodeo-

xycholic acid activate it in the micromolar range of

concentrations (7, 8). TGR5 activation leads to induction

of cAMP and activation of protein kinase A, which in turn

leads to further downstream signalling (7, 8). In 2005, bile

acids were shown to induce TGR5-mediated GLP1 release

from the enteroendocrine GLP1-secreting cell line STC1

(12) and, in 2008, also in primary L cells from mice (200).

In 2009, Thomas et al. (14) unravelled, in great detail, the

physiological function of TGR5-induced GLP1 secretion.

The authors used pharmacological and genetic gain-

of-function and loss-of-function models to establish the

impact of TGR5 activation on GLP1 secretion. However,

albeit intriguing, these results are somewhat difficult to

translate into human physiology in terms of bile acid-

induced GLP1 secretion via TGR5. Reasons for this are,

mainly, the use of very high (supraphysiological) doses of

lithocholic acid, which is only present in low concen-

trations in humans (79), and the use of the aforemen-

tioned semisynthetic cholic acid derivative, INT-777,

which has a 30-fold improved EC50 on TGR5 compared

with cholic acid (201, 202). Recently, however, Parker et al.
(203) have demonstrated that bile acids exert robust GLP1

secretion from GLUTag cells (L cell model) and primary

murine intestinal cultures, revealing evidence for an

additive, potentially synergistic interaction between glu-

cose and TGR5 activation. These results suggest that there

might be a role for bile acid-induced augmentation of the

L cell secretory response to glucose. In the same study,

it was also highlighted that delivery of bile acids to the

colon, where L cells are believed to be present at a higher

density (204, 205, 206) and express greater levels of TGR5,

results in enhanced L cell secretion (105, 197, 198, 203).

Indeed, Sato et al. (207) has recently demonstrated, in a

study in dogs, that biliary diversion to the ileum increases

the secretion of the L cell product PYY. Recently, the

results from several human studies have supported a role

for bile-induced secretion of GLP1 (13, 61, 62, 63, 64).

The notion of bile acid sequestrants binding bile acids

in the intestinal lumen, transporting them to more distal

regions of the intestine where they constitute a strong

stimulus for TGR5-mediated GLP1 release from the high

number of L cells present in the distal gut, is in agreement

with a recent paper showing that treatment with colestilan

in mice increased GLP1 secretion from colon to an extent

greater than that from duodenum and ileum (197).

Furthermore, in Tgr5K/K mice, it was demonstrated that

colonic TGR5 is important for the colestilan-stimulated

GLP1 increase. Moreover, an increased delivery of bile

acids to the colon by colestilan increased the expression of

the GLP1 precursor, preproglucagon (197). This finding

turned out to be TGR5 dependent, suggesting that bile acid

sequestration enhances the transcription of the glucagon

gene in the enteroendocrine L cells of the distal gut (197).

Of note, the authors also reported that acute adminis-

tration of colestimide (3-h treatment) increased GLP1

secretion, a finding that may position bile acid seques-

trants as candidate agents for the control of postprandial

glucose metabolism. These findings were confirmed by

Potthoff et al., who found that administration of

colesevelam to diet-induced obese mice inhibited glyco-

genolysis, increased GLP1 secretion and improved

glycaemic control, and that these effects were blunted in

Tgr5K/K mice. Interestingly, the authors established the

concept that bile acids bound to colesevelam appear to be

able to activate the TGR5 receptor and elicit downstream

effects (i.e. cAMP production and GLP1 release) (198).

Despite extensive research over the years, it is still not

understood how bile acid sequestration results in

increased TGR5 activation. It may be anticipated that

bile acids primarily activate TGR5 in their unbound form.

Furthermore, it may be speculated that the intestinal
www.eje-online.org
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milieu in the colon (or terminal ileum) may facilitate the

release of bile acids from the complexes (bile acids bound

to sequestrants) generated in the proximal intestine;

underlining the importance of the ratio between bound

and unbound bile acids in the colon (197). Interestingly,

fatty acids are also extensively bound by bile acid

sequestrants. This phenomenon may play an important

role in the bound:unbound bile acid equilibrium in colon,

where fatty acids are produced by the gut microbiota

(208). In line with this notion, colesevelam, having

intermediate hydrophobicity, binds bile acids tightly, as

well as being positively cooperative. The latter means that

the binding of fatty acids provides additional binding sites

for binding of bile acids, and thus enhances the binding

capacity of bile acid sequestrants for bile acids (127). Thus,

bile acids and fatty acids (or other negatively charged/

hydrophobic molecules) may be able to compete under

certain conditions. Hypothetically, arriving at the luminal

surface of L cells in the terminal ileum or colon, bound bile

acids and fatty acids are faced with altered luminal

conditions, which disrupt their mutual competition for

binding to colesevelam. Intriguingly, factors such as gut

microbiota, pH or even the L cells themselves may play

a key role in the facilitation of the release of bile acids

and fatty acids. Indeed, this puzzle constitutes an exciting

area of research.
TGR5-independent mechanisms

It has been suggested that the effects of bile acid

sequestrants on endogenous GLP1 secretion might

include factors not involving TGR5 signalling. In insulin-

resistant rats (F-DIO rats), 8 weeks of treatment with

colesevelam or the ASBT inhibitor SC-435 was investigated

(196). Colesevelam, but not SC-435, was shown to

improve glycaemic control and both fasting and post-

prandial plasma concentrations of GLP1 were higher after

colesevelam treatment compared with SC-435 treatment.

These results could indicate that sequestering of bile acids

in the intestinal lumen, thereby suppressing the forma-

tion of micelles and absorption of fatty acids, increases the

amount of fatty acids that reach the ileum and stimulate L

cells to release GLP1. The fact that SC-435 failed to affect

GLP1 secretion and glucose control might be because

SC-435 blocks bile acid uptake with no effects on the

formation of micelles. In line with this, Hofmann has

suggested that sequestering of bile acids results in a

reduction of the solubilisation of fatty acids in micelles,

whereby fatty acids will remain in an emulsified form,

which reduces the absorption substantially (209, 210). As a
www.eje-online.org
result, fatty acids are thought to pass to the ileum where

the density of L cells is high, inducing GLP1 secretion via

G protein-coupled fatty acid receptors on the L cells

(26, 27, 28, 209). Supporting this notion, Knoebel et al.

showed that biliary diversion in rats changes the site of

fatty acid absorption from the jejunum to both the

jejunum and ileum (211). Of interest, Ross & Shaffer

(212) suggested, already in 1981, that hydrolytic products

of triacylglycerol, mainly LCFAs, were potent incretin

secretagogues. Beglinger et al. (213) could confirm these

findings in humans recently. Thus, the GLP1-releasing

effect of bile acid sequestrants may be exerted via their

effects on assimilation of fatty acids.

Another important regulator of bile acid secretion is

the gut hormone CCK secreted from duodenal I cells upon

ingestion of lipids. In addition to the gallbladder contract-

ing effect of CCK, the hormone exerts direct, stimulatory

action on insulin secretion in many mammals including

humans (214). The putative effect of bile acid sequestration

on the classical enteroinsular axis may also act via a CCK-

dependent mechanism. Indeed, CCK release is inhibited

by bile acids (215) and, thus, sequestration of bile acids has

been reported to increase CCK concentrations (215, 216)

and stimulate insulin secretion, possibly by increasing

pancreatic b-cell sensitivity to glucose (217). However, in

other human studies, CCK antagonism was unable to affect

insulin secretion in response to duodenal perfusion with a

mixed meal (218, 219). In general, in humans, CCK does

not fulfil the criteria for being a physiological incretin

hormone, i.e. the ability to augment postprandial glucose-

stimulated insulin secretion (220, 221, 223). However, in a

small study by Ahrén et al. (220), CCK8 was infused into six

healthy and six type 2 diabetic postmenopausal women

during a meal test and it has been demonstrated that CCK8

(in doses that have been shown to increase insulin

secretion) did not affect the postprandial secretion of GIP

and GLP1. Although the majority of studies do not support

a role for CCK-induced, postprandial incretin secretion

(220, 223, 224, 225, 226, 227), it should be underlined that

in the physiological setting of mixed meal intake, a

stimulatory effect of CCK on postprandial GLP1 release

may easily be overlooked due to the meal response, which

could ‘drown’ the effect of CCK itself. Furthermore, any

response must be seen in the light of potential effects of

endogenous CCK in control experiments. Indeed, in the

study by Beglinger et al. (213), the CCK receptor antagonist

dexloxiglumide abolished the increase in GLP1 secretion

in response to intraduodenal oleate. However, CCK

concentrations were markedly enhanced. Of interest, a

recent human study has demonstrated that treatment with
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colesevelam for 8 weeks improved i.v. but not oral glucose

tolerance (130). Surprisingly, incretin concentrations were

unchanged, but, as expected, CCK concentrations were

augmented. This finding has led the authors to suggest that

the improved postprandial glucose tolerance was attrib-

uted to CCK-induced delay in gastric emptying. Although

gastric emptying was not measured, the study underlines

the fact that manipulation of the bile acid pool may inflict

multiple changes in gut hormone secretion, possibly

affecting several organ functions. In addition, it may be

speculated that such actions may prove efficient at

modulating postprandial glucose homoeostasis.
A possible role for gallbladder emptying

It may be anticipated that antagonising CCK with

dexloxiglumide results in the impairment of postprandial

gallbladder emptying (228, 229). It therefore seems

relevant to hypothesise that antagonisation of CCK

reduces the flow of bile acids into the intestine, resulting

in impaired GLP1 secretion. Indeed, bile acids, gut

hormones and gallbladder emptying (via intestinal CCK

release) have been linked together in human studies of

healthy subjects, where bile acid depletion with cholestyr-

amine was shown to increase gallbladder emptying,

plasma motilin concentrations and antroduodenal moti-

lity (230, 231). Nevertheless, findings from our recent

study of postprandial GLP1 concentrations in cholecys-

tectomised patients revealed that postprandial GLP1

release was similar to that in control subjects (age, gender

and BMI matched) (232).

To sum up, the role of the individual bile acids, the

interplay of gut hormones, gallbladder emptying, fatty

acid absorption and metabolism are all of great import-

ance and, as indicated above, the relative contributions of

these factors – and many more possible factors – need to be

evaluated. Thus, undoubtedly, the role of the gut in the

pathophysiology of type 2 diabetes continuously needs to

be redefined.
Summary and conclusions

Current evidence suggests that disruption of the luminal

enteral communication exerted by bile acid sequestrants

might contain the secret behind the captivating effects

of these drugs. The role of bile acids, CCK, gallbladder

emptying and fatty acid absorption constitute factors that

could contribute to the regulation of incretin function

and glycaemic control. A multitude of gastrointestinal

cells and hormones act in concert to achieve precise
neuroendocrine regulation of digestion and metabolic

function, probably in a rather adaptive manner (233).

Detecting a way to augment endogenous GLP1 secretion,

without increasing overall energy intake and deposition, is

an attractive concept in the future treatment of type 2

diabetes – simultaneously improving our understanding of

endocrine gut physiology. The role of bile acid-induced

GLP1 secretion via TGR5 and the effects on glucose and

lipid metabolism via FXR activation are probably two of

many ways whereby the human body regulates digestion,

metabolism and energy expenditure. In addition, unravel-

ling the interactions between gut hormones might be the

key to elucidate the complexity of the largest human

endocrine organ, the gut. However, it must be importantly

noted that most of our knowledge of the influence of bile

acids on the signalling pathways outlined here arises from

cell, mouse and rat studies, in which relatively high

concentrations (30–100 mM) of bile acids or bile acid

sequestrants have been used. Obviously, this raises

questions about the physiological relevance of the meta-

bolic, regulatory functions of bile acids in humans.

Whether TGR5 activation modulates the in vivo

control of human intestinal GLP1 release and glucose

homoeostasis remains to be fully elucidated. In the

attempt to do so, possible downsides of TGR5 activation,

such as gallbladder dysfunction (102, 234), cancer risk

(235, 236, 237) and pancreatitis (238), should be

considered. Nevertheless, targeting the TGR5 signalling

pathway could provide a promising incretin-based

strategy for the treatment of type 2 diabetes and the

associated metabolic diseases.
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