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A great amount of new applied problems in the area of energy networks has recently arisen that can be e	ciently solved only as
mixed-integer bilevel programs. Among them are the natural gas cash-out problem, the deregulated electricity market equilibrium
problem, biofuel problems, a problem of designing coupled energy carrier networks, and so forth, if we mention only part of
such applications. Bilevel models to describe migration processes are also in the list of the most popular new themes of bilevel
programming, as well as allocation, information protection, and cybersecurity problems. �is survey provides a comprehensive
review of some of the above-mentioned new areas including both theoretical and applied results.

1. Introduction

Although a wide range of applications 
t the bilevel pro-
gramming framework, real-life implementations are scarce,
due mainly to the lack of e	cient algorithms for tackling
medium- and large-scale bilevel programming problems
(BLP). Solving a bilevel (more generally, hierarchical) opti-
mization problem, even in its simplest form, is a di	cult
task. A lot of di�erent alternativemethodsmay be used based
on the structure of the problem analyzed, but there is no
general method that guarantees convergence, performance,
or optimality for every type of problem.

Many new ideas appeared and were discussed in works
of plenty of authors. Among them, we would name Dempe
[1], Dempe et al. [2], Dempe and Dutta [3], Dewez et al. [4],
�i et al. [5], and Vicente and Calamai [6], whose works

have developed various ways of reducing original bilevel
programming problems to equivalent single-level ones, thus
making their solution somewhat easier task for conventional
mathematical programming soware packages.

Mixed-integer bilevel programming problems (with part
of the variables at the upper and/or lower level being
integer/Boolean ones) are even harder for the conventional
optimization techniques. For instance, a usual replacement of
the lower level optimization problem with a corresponding
KKT condition may not work if some of the lower level
variables are not continuous. �erefore, solid theoretical
base is necessary to be found, in order to propose e	cient
algorithmic procedures aimed at 
nding local or global
solutions of such a problem.

A great amount of new applied problems in the area of
energy networks has recently arisen that can be e	ciently
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solved only as mixed-integer bilevel programs. Among them
are the natural gas cash-out problem, the deregulated electric-
ity market equilibrium problem, biofuel problems, a problem
of designing coupled energy carrier networks, and so forth, if
we mention only part of such applications. Bilevel models to
describe migration processes are also in the list of the most
popular new themes of bilevel programming.

�is special volume of the Hindawi journalMathematical
Problems in Engineering comprises papers dealingwith three
main themes: bilevel programming, equilibriummodels, and
combinatorial (integer programming) problems, and their
applications to engineering. Because of that, it opens with
this survey paper “Bilevel Programming and Applications”
summing up some recent and new directions and results
of the development of the mathematical methods aimed at
the solution of bilevel programs of di�erent types and their
applications to real-life problems.

�e paper is organized as follows: the survey of the
literature dealing with the formulation and history of bilevel
programming problems is given in Section 2. Section 3
describes the ways the linear bilevel programs are treated,
while Section 4 surveys the recent results in an important
application of BLP to the well-known imbalance cash-out
problem arising in the natural gas industry. Section 5 reviews
the new methods of reducing the number of upper level
variables, which helps a lot in applying stochastic program-
ming algorithms to solve the optimal cash-out problems.
Section 6 describes various promising bilevel approaches
to the mixed-integer allocation model. Finally, Section 7
presents the latest bilevelmechanisms to solve very important
information protection and cybersecurity problems. �e
conclusion, acknowledgements, and the list of references

nish the survey.

2. Bilevel Programs: Statement and History

A bilevel program is an optimization problem where the
feasible set is partly determined through a solution set
mapping of a second parametric optimization problem [1].
�e latter problem is given as

min� {� (�, �) : � (�, �) ≤ 0, � ∈ �} , (1)

where � : � × � → , � : � × � → �, � ⊆ � is a
(closed) set.

Let � : � → � denote the feasible set mapping: let

� (�) := {� : � (�, �) ≤ 0} ,

� (�) := min� {� (�, �) : � (�, �) ≤ 0, � ∈ �}
(2)

be the optimal value function, and let Ψ : � → � be the
solution set mapping of the problem (1) for a 
xed value of �:

Ψ (�) := {� ∈ � (�) ∩ � : � (�, �) ≤ � (�)} . (3)

Let

gphΨ := {(�, �) ∈ � × � : � ∈ Ψ (�)} (4)

be the graph of the mapping Ψ. �en, the bilevel program-
ming problem is given as

“min� ” {� (�, �) : � (�) ≤ 0, (�, �) ∈ gphΨ, � ∈ �} , (5)

where � : � × � → ,� : � → �, � ⊆ � is a closed
set.

Problems (1) and (5) can be interpreted as an hierarchical
game of two decision makers (or players) which make their
decisions according to the hierarchical order. �e 
rst player
(called the leader)makes his selection 
rst and communicates
it to the second player (the so-called follower).�en, knowing
the choice of the leader, the follower selects his response
as an optimal solution of problem (1) and gives this back
to the leader. �us, the leader’s task is to determine a best
decision, that is, a point �̂ which is feasible for problem (5):
�(�̂) ≤ 0, �̂ ∈ �, minimizing, together with the response
�̂ ∈ Ψ(�̂), the function �(�, �). �erefore, problem (1) is
called the follower’s problem and (5) the leader’s problem.
Problem (5) is the bilevel programming problem.

2.1. Optimistic and Pessimistic Approaches. Strictly speaking,
problem (5) is ill-posed in the case when the set Ψ(�) is not
a singleton for some �, which means that the mapping � �→
�(�, �(�)) is not a function but a multivalued mapping. �is
is implied by an ambiguity in the computation of the upper
level objective function value, which is rather an element in
the set {�(�, �) : � ∈ Ψ(�)}. �e quotation marks in (5) are
used purely to indicate this ambiguity. To cope with such an
obstacle, there are several ways out.

(1) �e leader can assume that the follower is willing
(and able) to cooperate. In this case, the leader simply
selects the solution within the setΨ(�) that is the best
one with respect to the upper level objective function.
�is leads then to the function

�� (�) := min {� (�, �) : � ∈ Ψ (�)} (6)

to be minimized over the set {� : �(�) ≤ 0, � ∈ �}.
�is is the optimistic approach leading to the opti-
mistic bilevel programming problem. Roughly speak-
ing, this problem is closely related to the problem

min�,� {� (�, �) : � (�) ≤ 0, (�, �) ∈ gphΨ, � ∈ �} . (7)

If � is a local minimum point of the function ��(⋅) on
the set

{� : � (�) ≤ 0, � ∈ �} (8)

and � ∈ Ψ(�), then the point (�, �) is also a local
minimum point of problem (7). �e converse is in
general not true. For more information about the
relation between both problems, the interested reader
is referred to Dempe [1].
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(2) �e leader has no possibility to in�uence the fol-
lower’s selection, neither has he/she any guess about
the follower’s choice. In this case, the leader has to
take into account the follower’s ability to select the
worst solution with respect to the leader’s objective
function; hence the leader has to diminish the damage
resulting from such an unlucky selection. �is brings
up the function

�� (�) := max {� (�, �) : � ∈ Ψ (�)} (9)

to be minimized on the set {� : �(�) ≤ 0, � ∈ �} :

min {�� (�) : � (�) ≤ 0, � ∈ �} . (10)

�is is the pessimistic approach resulting in the pes-
simistic bilevel programming problem. �is problem
is oen much more complicated than the optimistic
bilevel programming problem; see Dempe [1].
�ere is also another pessimistic bilevel optimization
problem in the literature. To describe this problem
consider the bilevel optimization problem with con-
necting upper level constraints and an upper level
objective function depending only on the upper level
variable �:

“min� ” {� (�) : � (�, �) ≤ 0, � ∈ Ψ (�)} . (11)

In this case, a point� is feasible if there exists� ∈ Ψ(�)
such that �(�, �) ≤ 0, which can be written as

min� {� (�) : � (�, �) ≤ 0 for some � ∈ Ψ (�)} . (12)

Now, if the quanti
er ∃ is replaced by ∀ we derive a
second pessimistic bilevel programming problem

min� {� (�) : � (�, �) ≤ 0 ∀� ∈ Ψ (�)} . (13)

�is problem has been investigated in Wiesemann et
al. [7]. �e relations between (13) and (10) should be
studied in the future.

(3) �e leader is able to predict a selection of the follower:
�(�) ∈ Ψ(�) for all �. If this function is inserted into
the upper level objective function, this leads to the
problem

min� {� (�, � (�)) : � (�) ≤ 0, � ∈ �} . (14)

Such a function �(⋅) is called a selection function of
the point-to-set mapping Ψ(⋅). Hence, we call this
approach the selection function approach. One special
case of this approach arises if the optimal solution of
the lower level problem is unique for all values of �.
It is obvious that the optimistic and the pessimistic
problems are special cases of the selection function
approach.

Even under restrictive assumptions (as in the case of
linear bilevel optimization or if the follower’s problem has
a unique optimal solution for all �), the function �(⋅) is in

general nondi�erentiable. Hence, the bilevel programming
problem is a nonsmooth optimization problem.

Various results and examples/counterexamples concern-
ing the existence of solutions to di�erent formulations of
bilevel programming problems can be found in [1, 8–10], to
mention only few.

2.2. A Short History of Bilevel Programming. �e history of
bilevel programming dates back to von Stackelberg who (in
1934 in monograph [11]) formulated a hierarchical game of
two players now called Stackelberg game. �e formulation
of the bilevel programming problem goes back to Bracken
and McGill [12]; the notion “bilevel programming” has been
coined probably by Candler and Norton [13]; see also Vicente
et al. [14]. With the beginning of the 80’s of the last century
a very intensive investigation of bilevel programming started.
A number of monographs, for example, Bard [15], Shimizu
et al. [16] and Dempe [1], edited volumes, see Dempe and
Kalashnikov [17] and Migdalas et al. [18] and (annotated)
bibliographies, for example, Vicente and Calamai [6], and
Dempe [19] have been published in that 
eld.

One possibility to investigate bilevel programs is to
transform them into single-level (or ordinary) optimization
problems. In the 
rst years, linear bilevel programming
problems (where all the involved functions are a	ne (linear)
and the sets � and � are whole spaces) were usually
transformed making use of linear programming duality or,
equivalently, the Karush-Kuhn-Tucker conditions for linear
programming. Applying this approach, solution algorithms
have been developed; compare, for example, Candler and
Townsley [20]. �e transformed problem is a special case
of a mathematical program with equilibrium constraints
MPEC (now sometimes called mathematical program with
complementarity constraints, MPCC). We can call this the
KKT transformation of the bilevel programming problem.
�is approach is also possible for convex parametric lower
level problems satisfying some regularity assumption.

General MPCCs have been the topic of some mono-
graphs; see Luo et al. [21] and Outrata et al. [22]. Solution
algorithms for MPCCs (see, for instance, Outrata et al. [22],
Demiguel et al. [23], Ley�er et al. [24], and many others)
have also been suggested for solving bilevel programming
problems.

Since MPCCs are nonconvex optimization problems,
solution algorithms will hopefully compute local optimal
solutions of the MPCCs. �us, it is interesting if a local
optimal solution of the KKT transformation of a bilevel
programming problem is related to a local optimal solution
of the latter problem. �is has been the topic of the paper by
Dempe and Dutta [3].

Later on, the selection function approach to bilevel
programming has been investigated in the case when the
optimal solution of the lower level problem is uniquely
determined and strongly stable in the sense of Kojima [25].
�en, under some assumptions, the optimal solution of the
lower level problem is a ��1-function; see Ralph and Dempe
[26] and Scholtes [27] for the de
nition and properties of
��1-functions.�is can then be used to determine necessary
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and su	cient optimality conditions for bilevel programming;
compare Dempe [28].

Using the optimal value function �(�) of the lower level
problem (1), the bilevel programming problem (7) can be
replaced with

min�,� {� (�, �) : � (�) ≤ 0, � (�, �) ≤ 0,

� (�, �) ≤ � (�) , � ∈ �} .
(15)

�is is the so-called optimal value transformation.
Since the optimal value function is nonsmooth even

under very restrictive assumptions, this is a nonsmooth, non-
convex optimization problem. Using nonsmooth analysis,
see, for example, Mordukhovich [29, 30] and Rockafellar
and Wets [31], optimality conditions for the optimal value
transformation can be obtained, compareOutrata [32], Ye and
Zhu [33], and Dempe et al. [34].

Nowadays, a large number of Ph.D. theses have been
written on bilevel programming problems, very di�erent
types of (necessary and su	cient) optimality conditions can
be found in the literature, the number of applications is huge,
and both exact and heuristic solution algorithms have been
suggested.

3. Linear Bilevel Programming Problems

�e linear bilevel program is the problem of the following
structure:

min�,� { 
⊤� + !⊤� : "� + #� ≤ $, (�, �) ∈ gphΨ} , (16)

where Ψ(⋅) is the solution set mapping of the lower level
problem

Ψ (�) := Argmin� {%⊤� : �� ≤ �} . (17)

Here, ", #, and � are matrices of sizes & × ', & × *, and
' × *, respectively, and all variables and vectors used are
of appropriate dimensions. Note that we have used here the
so-called optimistic bilevel optimization problem, which is
related to problem (7).

�e so-called connecting constraints "� + #� ≤ $
are included in the upper level problem. Validity of such
constraints is beyond the selection of the leader and can be
veri
ed only aer the follower has selected his/her (possibly
not unique) optimal solution. In the case especially when
Ψ(�) does not reduce to a singleton, certain di	culties may
arise. In order to examine the bilevel programming problem
in the case that Ψ(�) does not reduce to a singleton, Ishizuka
and Aiyoshi [35] introduced their double penalty method. In
general, connecting constraints may imply that the feasible
set of the bilevel programming problem is disconnected.�is
situation is illustrated by the following example:

Example 1 (Mersha and Dempe [36]). Consider the problem

- = −� − 2� /→ min�,� (18)

0

10

x

A C

B

10

y −x − 2y → min −y → min

Figure 1:�e problem with upper level connecting constraints.�e
feasible set is depicted with bold lines. �e point � is global optimal
solution and point " is a local optimal solution.
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y −x − 2y → min −y → min

Figure 2:�e problem when the upper level connecting constraints
are shied into the lower level problem. �e feasible set is depicted
with bold lines. �e global optimal solution is point #.

subject to

2� − 3� ≥ −12

� + � ≤ 14,

� ∈ Argmin� {−� : −3� + � ≤ −3, 3� + � ≤ 30} .
(19)

�e optimal solution for this problem is the point � at
(�, �) = (8, 6) (see Figure 1). But if we shi the two upper
level constraints to the lower level we get the point # at
(�̃, �̃) = (6, 8) as an optimal solution (see Figure 2). From
this example one can easily notice that if we shi constraints
from the upper level to the lower one, the optimal solution
obtained prior to shiing is not optimal any more in general.
Hence ideas based on shiing constraints from one level
to another will lead to a solution which may not solve the
original problem.

In Example 1, the optimal solution of the lower level
problem was unique for all �. If this is not the case, feasibility
of a selection of the upper level decision maker possibly
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depends on the selection of the follower. In the optimistic
case, this means that the leader selects within the set of
optimal solutions of the follower’s problem one point which
is at the same time feasible for the upper level connecting
constraints and gives the best objective function value for the
upper level objective function.

As we can see in Example 1 the existence of connecting
upper level constraints might lead, in general, to a dis-
connected feasible set in the bilevel programming problem.
�erefore, solution algorithms will live in one of the con-
nected components of the feasible set (i.e., a sequence of
feasible points which all belong to one of the connected parts
is computed) or they need to jump from one of the connected
parts of the feasible set to another one. Some ideas of discrete
optimization are needed in such cases.

In order to avoid the above-mentioned di	culties, some
researchers restrict themselves to the cases when the upper
level constraints depend on the upper level variables only (i.e.,
matrix # is zero-matrix, # = 0). �us, the bilevel problem
(16)-(17) reduces to a simpler one:

min�,� { 
⊤� + !⊤� : "� ≤ $, (�, �) ∈ gphΨ} , (20)

where Ψ(⋅) is the solution set mapping of the lower level
problem

Ψ (�) := Argmin� {%⊤� : �� ≤ �} . (21)

In this problem, parametric linear optimization (see, for
example, Nožička et al. [37]) can be used to show that the
graph of the mapping Ψ(⋅) equals the connected union of
faces of the set {(�, �)⊤ : �� ≤ �}.

4. Application of Bilevel Programming to
Imbalance Cash-Out Problem

In the early 1990s, several regulations were passed in the USA
and the European Union [38, 39] changing the way natural
gas was marketed and traded. Particularly, this liberalization
[40] e�ectively ended a period in which natural gas was a
state-driven industry. �e liberalization has also created the
emergent natural gas markets, as well as a strong demand
for models to better tackle the new problems and pro
t from
this new setting [41, 42]. It is possible to say that the above-
mentioned processes formed the natural gas supply chain.
�e resulting market con
guration demanded the indepen-
dence of the transportation and commercialization processes.
As a result of this paradigm shi—and the accompanying
restructurization of the market—a systematic analysis of
several new features becomes indispensable.

Of particular interest is a problem that arises in the
natural gas supply chain, namely, that of balancing the fuel
volumes over a distribution network. Such a balancing pro-
cedure directly concerns the Pipeline Operating Company
(POC), since the correct operation of the pipeline means the
well controlled volumes of the transported gas.Moreover, any
natural gas shipping company (NGSC) is also concernedwith
the balancing of the volumes because it is oen impossible

to avoid an imbalance justi
ed by certain economic reasons.
A natural gas shipping company’s business is to sell the gas
by moving it through the pipeline to its clients: it has to
ful
ll signed contracts 
rst and then market excesses of the
gas to achieve the maximum pro
ts. In order to do that, the
NGSC has to manage the volumes at each selling point (so-
called pipeline meters) taking into account the balance, the
selling prices, and the total revenue. �e basic mathematical
framework of this problem’s modeling is found in [43].

Owing not only to this liberalization, but also to the new
local conditions that aremore open to competition, new small
players entered the natural gas industry, especially at the local
scale. Indeed, the USA has over 80 interstate, long-distance
pipelines [44], serving di�erent regions with various climatic,
demographic, economic, andpolitical circumstances.Natural
gas usage in Alabama, for example, intuitively is not the same
as in Oregon; thus the market dynamics of the fuel are also
di�erent, and this, we presume, should be re�ected in some
way in the econometric data of the states.

Not only macroeconomic trends, however, are a�ected
by this setting. When doing cross-regions studies of various
aspects of the supply chain, such as the forecasting of demand
[45, 46], the balancing of the pipelines aer imbalances have
been created by the natural gas shippers [43, 47, 48], or the
dynamics of interstate-intrastate systems [49], one has to take
into account the existence of di�erent markets.

�e existence of a common relationship between price
and consumption of natural gas across several zones allows
for strong claims of uniformity, which are useful when, for
example, we are building scenarios for a stochastic problem.
Indeed, if we manage to group the regions in clusters with
similar price and consumption functions, we can reduce the
number of variables needed in a scenario tree formulation
[42, 50]

It must be emphasized that, while natural gas pipeline
networks have been thoroughly studied, most of the existent
models focus on aspects of this part of the supply chain other
than the NGSC-POC interaction in the system balancing,
such as network operation optimization [51, 52] or deploy-
ment of facilities [53]. �ere are also papers considering the
natural gas supply chain in amultilevel scheme, inwhich both
theNGSC and the POCare present and accounted for, such as
the related [54, 55]. �ese works are remarkable in the sense
that they span thewhole supply chainwithmuch emphasis on
the traders (
nancial front-ends of the natural gas producers,)
so that there is little to nomention of imbalances in the system
resulting from the dealings of the NGSCs and the POCs, even
though both actors are present in the models.

Many authors do acknowledge [56, 57] the existence of
a problematic situation in the NGSC-POC system following
the paradigm shi, yet we have found very few sources that
explain plausible ways in which this problem is nowadays
solved. For example, [58] shows how storage is required by the
NGSC when no �exibility exists in the network volumeman-
agement, either because it is not allowed, or because it is not
technically possible. Nevertheless, balancing is an important
part of the modern natural gas supply chain management,
and to date, no policy has been accepted as optimal regarding
the way, in which the imbalances produced by the NGSC
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are physically and economically handled. Among the most
important tools that aid the POC in its task of restoring the
balance of the system is the arbitrage penalization policies, in
which the POC performs a maintenance redistribution of the
imbalances in the system and charges the NGSC(s) for the
cost of this operation.

In [59], one 
nds a modeling framework (which we are
going to follow) of the penalization part of this problem.�is
penalization refers only to the cash-out that occurs between
the NGSC and the POC: it leaves outside any reference to
actual market conditions, which are obviously important to
the NGSC. �e paper presents a solution method through a
modi
cation of the original problem, as well as the analysis
of how this modi
cation a�ects the objective function and
the obtained solutions. In [47], the authors compare two
algorithms that solve the problem making use of certain
numerical procedures. In the present paper, we adapt these
algorithms to our extended model. We also make use of the
idea proposed in [43] to divide our problem into several gen-
eralized transportation problems when 
nding its numerical
solution.

In [60, 61], we study a modi
ed version of the above-
described problem, in which the upper level objective func-
tion includes certain new terms based upon the net pro
t
of the leader—the natural gas shipping company. �is for-
mulation assumes, however, the complete knowledge (perfect
information) about the changes in the prices of natural gas
during the process, which is somewhat nonrealistic and not
quite useful, as the resulting function does not clearly re�ect
the reasons behind the actions of the NGSC.

In [62] a stochastic reformulation of the problem is
presented, so that the NGSC is now able to forecast the
next several values of the natural gas demand and then to
plan the extraction of natural gas from the pipeline. �e
resultingmodel is a stochastic variation of the originalmixed-
integer bilevel optimization problem, for which two di�erent
solution methods are proposed and compared.

To the best of our knowledge, there is no literature,
beyond the works listed in the paragraphs above and their
derivatives, that explicitly deals with the NGSC-POC sub-
system in the same way we propose, formulating a bilevel
optimization problem out of the balancing operations. We
attribute this to the relatively recent nature of the problem
we are dealing with, as well as the di	culty of its accurate
formulation for speci
c instances.

4.1. Problem Speci�cation. Following the scheme constructed
in [47, 59], wewill consider a leader-follower system, inwhich
the 
rst agent (the leader), namely, the Natural Gas Shipping
Company (NGSC), buys the gas at the wells, arranges for its
injection into an (interstate) pipeline at its starting point, and
extracts some amount of gas—ideally, equal to the deposited
amount—from pipeline meters in several pool zones across
the country. �e follower here is the administrator of the
pipeline, which we call the Pipeline Operating Company
(POC), who permits the NGSC to extract amounts of natural
gas that may di�er from the originally injected volumes, thus
creating positive or negative imbalances. �e latter is a kind

of usual market practice that allows for a dynamic �ow of the
fuel within the natural gas supply chain.

However, since disrupting the system in this way implies
extra costs for the NGSC, the company attempts to do it
only when its predictions of future market conditions show
that the total revenues overcome the losses incurred by the
penalization policy applied to the NGSC. It is clear that
the NGSC needs tools that provide it with the best possible
information and help it make advantage of the latter.

�e NGSC-POC system operates in the following way.

(1) �e NGSC makes a forecast of the demand it is likely
to have during the next period (month, year, etc.) and
considers di�erent scenarios, in which this can occur.

(2) �e NGSC books certain capacity 9
 for every pool
zone and stage (day, week, month, etc.)

(3) For each subsequent stage, the NGSC determines the
amount of gas to extract and sell, which possibly cre-
ates positive and negative imbalances in the process;
this continues until the period is over;.

(4) �ePOC studies the resulting last day imbalances and
rearranges them according to certain business rules.

(5) �e POC charges the NGSC with certain penalty
for the 
nal (rearranged) imbalances. �e latter may
occur to be negative; that is, the POC may pay to the
NGSC.

(6) �e NGSC calculates the net pro
ts as its sales
revenue minus the penalty.

�e resulting model is a bilevel multistage stochastic
optimization problem [63], in which the upper level decision
maker (the leader) is the NGSC who has the objective of
maximizing its net pro
t as the revenue from the sales of its
gas in the pipeline minus the penalty imposed by the POC.
�e lower level decisionmaker (the follower) is the POCwho
aims at minimizing the absolute value of the penalization
cash-out �ow, either from the POC to the NGSC or vice
versa.�e 
rst stage of the stochastic problem corresponds to
the capacity booking made by the NGSC, and these capacity
values remain unchanged throughout the whole process. At
the next stages, the decision variables are the daily extraction
amounts (and hence, the imbalances), unsatis
ed demand,
and the penalty cash-outs imposed by the POC.

Note that, while the POC may appear as the party with
more in�uence in the system, the NGSC is the leader of the
bilevel problem. �e only reason why the NGSC is the upper
level (leader) is because of the timing of the decision process.
Indeed, it would seem logical that the POC, enjoying stronger
control over its own facilities, has to abide to the decisions
(regarding 
nal day imbalances) that the NGSC has already
made. �is is because of the relative freedom that has been
awarded (in the current business’ practice) to the NGSC in
creating imbalances to maintain healthy business in favor of
its customers.

4.2. Stochastic Model. In [62], the authors present a bilevel
multistage stochastic optimizationmodel, which is developed
to deal with a certain subsystem of the natural gas supply
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chain. While former models were focused on the arbitrage
policies in a deterministic setting, here we have expanded
the problem to include such elements as gas sales and
booking costs and added a stochastic framework to model
the uncertainty in demand and prices faced by the upper level
decision maker (the leader).

�e developed model was implemented numerically and
compared to the perfect information solution (PIS) and the
expected value solutions (EVS). Experimental 
ndings show
that 19 of the 21 instances deliver implementation values of
over half of the PIS, whereas only one of the EVS implemen-
tation values has a relative error below 0.75. �e stochastic
solution implementation values are better than those of the
EVS values in all but one case—which corresponds to the
simplest instance tested—which testi
es in favour of our
approach. �e performed linear reformulation also proved
advantageous, as solving the original model with nonlinear
levels takes considerably longer time and does not provide
better solutions aer up to 10 hours of running time in 20
of the 21 experiments.

Future work includes assessing the convenience of using
heuristic approaches for solving the lower level (as opposed to
using a specialized linear solver) and reformulating the linear
lower level in the form of its duality conditions, adding these
to the upper level to solve a single-level problem instead of a
bilevel one. It is also worthwhile to study these models under
di�erent time series not showing seasonality is also planned,
as it is the implementation of a rolling horizon approach to
remedy the lack of accuracy over long-period problems (such
as problem B011 involving 28 periods).

4.3. Penalty Function Method. Paper [64] studies a special
bilevel programming problem that arises from the dealings of
a Natural Gas Shipping Company (NGSC) and the Pipeline
Operator Company (POC), with facilities of the latter used
by the former. Because of the business relationships between
these two actors, the timing and objectives of their decision-
making process are di�erent and sometimes even opposed.

In order to model that, bilevel programming was tra-
ditionally used in the above-mentioned works. Later, the
problem was expanded and theoretically studied to facilitate
its solution; this included extension of the upper level objec-
tive function, linear reformulation, heuristic approaches, and
branch-and-bound techniques.

In this paper, the authors presented a linear programming
reformulation of the latest version of the model, which is sig-
ni
cantly faster to solve when implemented computationally.
More importantly, this new formulation makes it easier to
theoretically analyze the problem, allowing one to draw some
conclusions about the nature of the solution of the modi
ed
problem.

When aNGSC and a POC engage in a contract, the result-
ing dynamics may be subject to multilevel programming
analysis. In this work, an inexact penalization approach (IPA)
was developed to solve the related bilevel linear programming
problem, in which the NGSC is the upper level decision
maker, and tries to maximize its earnings. In the meantime,
the POC is the lower level decisionmaker trying to minimize

the cash-out between both parties, while balancing the
pipeline network to guarantee an adequate operation of the
latter.

�e IPA algorithm is adapted to the linearized versions of
the problems found in [65], and theoretical work is thenmade
to demonstrate the convergence of this solution method.

Combining the inexact penalization approach and a
modi
ed Nelder-Mead simplex algorithm has resulted in a
fast and e	cient enough optimization scheme, in which new
iterations are generated, corrected, and then evaluated for
optimality. To summarize the numerical experiments, the
IPMNMapproachworks considerably better than both direct
implementations and IPA versionswithout linearization.�is
makes a support for our linearization attempts, as well as for
the advantageous usage of the IPA algorithms developed in
[47]. Altogether, numerical results concerning the running
time, convergence, and optimal values are presented and
compared to previous reports, showing a signi
cant improve-
ment in speedwithout actual sacri
ce of the solution’s quality.

In conclusion, it is possible to believe that the new
solution speed achieved allows one to reach a quick andmore
frequent balancing. Indeed, the more accurate the solution is,
the more dynamic and successful the industry’s response to
market necessities will be.

5. Reduction of Upper Level Dimension in
Bilevel Programming Problem

As we have already seen from the previous sections, bilevel
programmingmodeling is a new and dynamically developing
area of mathematical programming and game theory. For
instance, when we study value chains, the general rule usually
is that decisions are made by di�erent parties along the
chain, and these parties have oen di�erent, even opposed
goals. �is raises the di	culty of supply chain analysis,
because regular optimization techniques (e.g., like linear
programming) cannot be readily applied, so that tweaks and
reformulations are oen needed (cf. [59]).

�e latter is exactly the case with the Natural Gas
Value Chain. From extraction at the wellheads to the 
nal
consumption points (households, power plants, etc.), natural
gas goes through several processes and changes ownership
many a time.

Bilevel programming is especially relevant in the case
of the interaction between a Natural Gas Shipping Com-
pany (NGSC) and a Pipeline Operating Company (POC).
�e 
rst one owns the gas since the moment it becomes
a consumption-grade fuel (usually at wellhead/re
nement
complexes, from now onward called the extraction points)
and sells it to Local Distributing Companies (LCD), who
own small, city-size pipelines that serve 
nal costumers.
Typically, NGSCs neither engage in business with end-users,
nor actually handle the natural gas physically.

Whenever the volumes extracted by the NGSCs di�er
from those stipulated in the contracts, we say an imbalance
occurs. Since imbalances are inevitable and necessary in a
healthy industry, the POC is allowed to apply control mech-
anisms in order to avoid and discourage abusive practices
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(the so-called arbitrage) on part of the NGSCs. One of
such tools is cash-out penalization techniques aer a given
operative period. Namely, if a NGSC has created imbalances
in one or more pool zones, then the POC may proceed
to “move” gas from positive-imbalanced zones to negative-
imbalanced ones, up to the point where every pool zone has
the imbalance of the same sign, that is, either all nonnegative
or all nonpositive, thus rebalancing the network.At this point,
the POCwill either charge the NGSC a higher (than the spot)
price for each volume unit of natural gas withdrawn in excess
from its facilities, or pay back a lower (than the sale) price, if
the gas was not extracted.

Prices as a relevant factor induce us into the area
of stochastic programming instead of the deterministic
approach. �e formulated bilevel problem is reduced to the
also bilevel one but with linear constraints at both levels (cf.
[62]). However, this reduction involves introduction of many
arti
cial variables, on the one hand, and generation of a lot
of scenarios to apply the essentially stochastic tools, on the
other hand. �e latter makes the dimension of the upper
level problem simply unbearable burden even for the most
modern and powerful PC systems. First attempts to diminish
the number of decision variables were made by the authors in
[66, 67].

�e aim of chapters [68, 69] is a mathematical formal-
ization of the task of reduction of the upper level problem’s
dimension without a�ecting (if possible!) the optimal solu-
tion of the original nonlinear bilevel programming prob-
lem. Under a couple of quite reasonable assumptions about
the data of the original bilevel programming problem, the
authors of [68, 69] established that the modi
ed problem
obtained by translating part of upper level variables to the
lower level and replacing the original lower level program
with an appropriate equilibrium problem will have the same
solution set as the original bilevel program.

Abitmore specialized and profound results were deduced
in [68] for the linear bilevel program bymaking use of certain
tools from the previous works [70–74]. As paradoxically
it could sound, in the linear case, the problem is much
more complicated. Indeed, the uniqueness of a generalized
Nash equilibrium (GNE) at the lower level of is much too
restrictive a demand. As was shown by Rosen [72], the
uniqueness of a so-called normalized GNE is rather more
realistic assumption.�is idea was further developed later by
many authors, including the authors of [69, 73].

Following the line proposed in [72], the authors of [69]
introduce and study the concept of normalized generalized
Nash equilibrium (NGNE) de
ned similarly to the concept
from [72]. Based upon the revealed properties of such a entity,
they establish the existence and uniqueness results for the
lower level problem. Hence, the coincidence of the solution
sets of the original bilevel (linear or nonlinear) program and
the modi
ed model obtained by the translation of part of
variables from the upper to the lower level is demonstrated.

To conlcude, chapters [68, 69] deal with an interesting
problem of reducing the number of variables at the upper
level of bilevel programming problems. �e latter problems
are widely used to model various applications, in particular,
the natural gas cash-out problems described in [59, 62]. To

solve these problems with stochastic programming tools, it is
important that part of the upper level variables be governed
at the lower level, to reduce the number of (upper level)
variables, which are involved in generating the scenario trees.

�e chapters present certain preliminary results recently
obtained in this direction. In particular, it has been demon-
strated that the desired reduction is possible when the lower
level optimal response is determined uniquely for each vector
of upper level variables. In [69], the necessary base for
similar results is prepared for the general case of bilevel
programs with linear constraints, when the uniqueness of the
lower level optimal response is quite a rare case. However, if
the optimal response is de
ned for a 
xed set of Lagrange
multipliers, then it is possible to demonstrate (following the
ideas and techniques from [72]) that the so-called normalized
Nash equilibrium is unique.�e latter gives one a hope to get
the positive results about reducing the dimension of the upper
level problem without a�ecting the solution of the original
bilevel programming problem.

6. Allocation Models as Bilevel
Programming Problems

Bilevel programming has also served as a suitable option
for modeling allocation problems where two-hierarchized
levels with di�erent objectives are involved. At each level,
the decision maker aims to optimize his own interest. �e
prede
ned existing hierarchy allows that the upper level has
complete information about the lower level’s decision on the
allocation, but not on the vice versa manner. In particular,
bilevel programming o�ers a convenient framework for
dealing with the allocation problems.

An important and very common problem that appears in
these kinds of situations is the allocation of resources or the
allocation of parties in the whole process considered. Hence,
we are going to divide this literature review in two directions:

rst, the previous works done where the optimal allocation
of resources are described, and then, the papers related to
optimally allocate customers, distribution centers, plants, or
other parties involved in a speci
c supply chain are refereed.

6.1. Bilevel Allocation of Resources. When considering a com-
pany’s personnel and workers as limited resources, we could
mention paper [75] where the main department boasting
several branching divisions needs to allocate the personnel
(workers, technicians, and management personnel) for the
company’s tasks. �e leader intends to maximize its bene
t
by allocating the speci
c workers to the divisions, while
the followers aim to maximize their own bene
ts using the
assigned personnel. �e authors of [75] solved the proposed
model by applying a simulation bionic algorithm. �e main
issue is that they did not make any conclusions about the
quality of the thus obtained solution due to the complexity
inherent to the bilevel model.

In [76], theminimum total time for 
nishing jobs in a sys-
tem is sought. In that problem, the leader is the job scheduler
who tries to optimize the system performance by allocating
the workers to the machines. On the other hand, the follower
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is represented by many noncooperative workers seeking to
use a set of commonmachinesminimizing the latency of their
work schedule.�ree polynomial-time algorithms for solving
the problem are proposed, and complexity results are given
demonstrating that this problem is NP-hard.

Next, one can 
nd a plenty of papers devoted to the
analyzis of the allocation of water to di�erent regions of the
world. For example, in [77] a nonlinear bilevel programming
model with fuzzy random variables for distributing (in
an equitable way) the water in a region is studied. �e
whole community (society) is seen as the leader, and the
followers are seen as the subareas contained in the region.
Both decision levels strive to maximize their economic gain.
�e authors of [77] proposed a hybrid heuristic based on
an interactive fuzzy programming technique and a genetic
algorithm. Also, an application to a real case study was
made showing the reasonable performance of the developed
solution method.

Paper [78] examines a similar situation: a bilevel mul-
tiobjective linear programming model is considered. It is
important to note that the lower level problem contains
multiple objective functions. �e leader has to allocate the
amount ofwater destined for irrigation, industry, domesticity,
and ecology in order to maximize the bene
t for the region.
�en, the follower optimizes its gain using the water resource
doomed for each purpose. �e problem is solved by using
fuzzy goal programming in the upper level and a tolerance-
based approach in the lower level. �eir model and method-
ology was validated in a case study from China. In [79], more
references concerning this particular topic can be found (in
Japanese).

Another interesting application is about housing alloca-
tion. In [80], this problem for a continuum transportation
system is analyzed. �e leader selects the optimal housing
development pattern while the follower decides about the
allocation of the houses based on their renting and travel
costs.�e lower level problem is de
ned by a set of di�erential
equations and it is solved by the 
nite element method. �e
results obtained from numerical experimentation show that
the algorithm seems to be e	cient enough. An extension of
the previous work was done in [81]. �e main di�erence is
in that the leader optimizes the housing allocation in order to
achieve theminimumCO2 emissions, while the followers aim
is to 
nd the equilibrium among the users in a transportation
system. �e authors of [81] also adapted the 
nite element
method and proposed two alternative solution algorithms
based on the Newton-Raphson procedure and the convex
combination approach. �e computational tests showed that
tra	c intensity, CO2 emissions, and transport demand are
balanced along with the best housing allocation.

Bilevel programs related to the optimal allocation of a
speci
c product can also be found in the literature. For
example, [82] presents a problem where a company markets
products and allocate resources to two producer factories
that consume the resources. Hence, the model can be viewed
and treated as a Stackelberg equilibrium problem, because
in the lower level, both followers compete for the common
allocated resources trying to optimize their own criteria. A
hybrid intelligent algorithm based on fuzzy simulation, as

well as neural network, and genetic algorithms are proposed
for solving this bilevel problem.

Wang and Lootsma [83] introduced a bilevel model for
the case when the general manager tries to allocate resources
among the di�erent departments of the company. In the
upper level, the correct allocation of the resources to the
departments is made in order to maximize the company’s
total revenue. On the other hand, in the lower level, each
department estimates its own bene
t generated with the
allocated resources. A numerical example is given to illustrate
the proposed exact method.

As we mentioned before, bilevel programming allows a
realistic mathematical modeling for a very wide application
areas. We are going to con
rm this fact with the work done
by Burgard et al. [84] where a genomic problem is addressed.
In that problem, the leader maximizes the bioengineering
objective, that is, the chemical production, and the follower
optimizes the �ux allocation based on the biomass generated
through the gene deletions.

6.2. Bilevel Allocation for the Supply Chain Models. It is
well known that supply chains involve many components in
the whole process. At some point of the supply chain, an
allocation is required, for example, to allocate customers to
plants, demanded zones to distribution centers, vehicles to
producers, and so forth.Under this scheme, Calvete et al.
[85] introduced a production-distribution bilevel problem,
in which a company (the leader) is dedicated exclusively to
the allocation of customers to distribution centers satisfying
their demand of products. Another company (the follower) is
doomed to produce these products.�e leader will distribute
the products and purchase them from some plants, and
then the distribution centers will transport them to their
customers meeting their requirements in order to minimize
the distribution costs. On the other hand, the follower decides
its own production plan based on the production capacity of
the plants and by considering the requirements of the demand
grouped in the distribution centers seeking to minimize
the operation costs. �e authors of [85] considered a real
case from a company in Spain and also some benchmark
instances. Furthermore, they solved this problem by using
a heuristic algorithm based on an ant colony optimization
method delivering pretty good quality solutions in a reason-
able time.

Also, Legillon et al. [86] considered the same problem
proposing a coevolutionary algorithm without improving
the solution quality given in the seminal paper. Camacho-
Vallejo et al. [87] developed a method based on scatter
search obtaining the best known results for the benchmark
instances. In [88], a single-commodity, multiplant network
with multiple depots is studied.�e leader seeks to minimize
the total cost (i.e., the cost associated with the distribution
from the plants to depots and then to the customers, plus
the warehousing costs and the operation costs of the depots)
of locating depots and allocating customers to them. �e
follower intends to balance the workload of the system
improving the customer service and 
nding a trade-o�
between cost and e	ciency. A standard genetic algorithmwas
proposed [88] in order to solve some randomly generated test
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problems with demonstrating certain opportunity areas for
improving its performance.

Humanitarian logistics have given rise to application of
bilevel programming frameworks for dealing with situations
that appear in that area. Feng and Wen [89] considered
the bilevel program where an earthquake a�ected the local
transportation network. Here, the leader tries to maximize
the �ow of vehicles entering the a�ected area to provide
assistance, whereas the followers attempt to travel through
an una�ected route to minimize their total travel time. Since
this situation generates tra	c jams andnegatively impacts the
recovery and relief e�orts, a government agency regulates the
use of existing roads. In order to solve the proposed model,
a genetic algorithm was implemented and validated in a case
study showing that this algorithm is an e�ective tool to solve
the problem in question.

In their turn, Wang et al. [90] proposed a model for
locating storage centers and allocating the sent aid. �e
leader minimizes the cost of locating the storage centers,
allocation of sent aid, distribution, and penalties, while the
follower (an a�ected community) optimizes its own cost
based on the resources allocated to each community. A
small test instance was created for testing the developed
particle swarm optimization algorithm showing the ease of
its implementation.

Similar to the models discussed above, Sun et al. [91].
seek an optimal decision about locating distribution centers
by the search of an equilibrium among the customers’ costs.
�e leader will locate new distribution centers to minimize

xed and variable costs while meeting the demand by a
set of customers. In its turn, the follower will allocate the
customers to the distribution centers so as to minimize the
cost of meeting their demand. An algorithm that exploits the
special structure of the lower level problem and a branch-and-
bound (B&B) scheme in the upper level is proposed to deal
with this bilevel program. In a di�erent context (but with a
similar structure) Xu andWei [92]modeled a problem related
to the waste management of constructions and demolitions.
�e government is the leader that has to make the decision
about locating the waste collection depots and processing
centers. �e administrators of di�erent construction waste
management systems control the allocation of thewaste to the
located facilities. Both objectives functions minimize their
own costs in a fuzzy random environment. An improved
particle swarm optimization algorithm was designed to treat
and solve the latter problem.

It seems that facility location and customers’ allocation
requirements can be e�ectively modeled with bilevel pro-
gramming when taking into account the customers’ demand
at the facilities that will serve them. Various papers in which
the customers are allocated to the facilities according to
a predetermined list of preferences can be found in the
literature; see [93–96]. In all those papers, the facility location
problem under customers’ preferences is studied. In the
bilevel program induced, the leader has to locate some facili-
ties, while the follower will allocate the customers optimizing
their preestablished preferences towards the facilities. �e

rst three papers (i.e., [93–95]) developed valid two-sided
bounds for the objective functions invloved in this problem,

and the last two works (i.e., [95, 96]) implemented heuristic
algorithms to process the bilevel model.

Moreover, competitive facility location models have been
approached with bilevel programming, too. In that problem,
two competing 
rms have to locate some facilities in order
to capture the maximum demand of the existing customers.
With an aim to classify the problem as a bilevel program,
a hierarchy among the 
rms must exist in the model. A
lot of variations of these models have been published. �e
di�erentiation relies on the customers’ behavior; for example,
the customers may be allocated to the facilities based on
a prede
ned criterion, such as the shortest distance, a list
of preferences, preestablished contracts, or in a random
way. Another important factor is the characteristics of the
competing 
rms, for instance, (i) if they have an exact
number of facilities to be located, that is, (; | &)-centroid
problem; (ii) whether one 
rm already has located facilities
and the other 
rm has to locate new ones, that is, (;, ��)-
medianoid problem.�e existence of facilities, the possibility
of closing some ormake themmore attractive, and so forth,—
all them are the issues that are addressed in these models.
It is important to note that in competitive facility location
problems, neither the leader nor the follower will make
the decision of the customers’ allocation, but this allocation
implicitly appears in the process and clearly a�ects both
levels’ decisions. �e reader is referred to [97–106] in order
to have a closer look to particular models in this area.

Further, the design of telecommunication networks has
also been analyzed as a bilevel programming scheme. A
problemwithin this area is the one studied by Kim et al. [107],
in which the topological design of a local area network is
proposed.�e problem consists of allocating users to clusters
and the union of clusters by bridges in order to obtain
a minimum response time network boasting at the same
time the minimum connection costs. �erefore, the decision
concerning the optimal allocation of users to clusters will be
made by the leader, while the follower will make the decision
about connecting all the clusters by forming a spanning tree.
�e authors [107] applied a coevolutionary genetic algorithm
based on Nash equilibrium to solve the problem.

Finally, optimization in ports has also attracted the
attention of researches and found applications of bilevel
programming: compare Lee et al. [108], where a problem
for scheduling berth and quay cranes is studied. In that
problem, the leader deals with the berth allocation problem
minimizing the sum of waiting and handling times of each
vessel. On the other hand, the follower solves the quay crane
scheduling problem in order to minimize the total time until
all the vessels and the quay cranes have 
nished up their
activities. Owing to the di	culty of the exact solution of this
bilevel problem, a genetic algorithm that 
nds reasonable
quality solutions is proposed in [108].

7. Information Protection and Cybersecurity
Problems as Bilevel Programs

�e methods and approaches solving bilevel programming
problems also are actual in the areas of information
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protection and cybersecurity. However, the solutions in
these similar areas have some special features, especially,
concerning certain cryptographic applications. One of these
features is the following.�ere exists a standard (single-level)
mathematical formalization of the cryptographic problem,
but it has been shown to bear some �aws.�us, the proposed
methods and approaches based on the bilevel programming
techniques helps eliminate those de
ciences and enhance the
processing of problems of the information protection and
cybersecurity on the new quality level.

At the same time, the problems of information protec-
tion and cybersecurity clealy lack good interpretations with
the help of the bilevel programming apparatus. �erefore,
this section of the survey is presenting the 
rst-time and
original review of the possible treatment of these important
information protection and cybersecurity problems as bilevel
programs.

7.1. Some Cryptographic Applications. One of the urgent
problems of public key cryptosystem improvements is the
increase of the qulity of soware performance and hardware
implementations. One of the approaches helping improve the
functioning of cryptosystems is marking up the performance
of 
nite 
eld arithmetic concerning operations of multipli-
cation. A possible way to do is to widely apply the bilevel
programming techniques.

As the well-known publications show (cf. [109–112], to
mention only few), the most e�ective multiplication algo-
rithms have been provided by Comba [109] and Karatsuba
[112]. However, Comba’s algorithm shows somewhat better
results in numerous rendition (benchmark) tests of so-
ware implementations on modern platforms. �e combined
Karatsuba-Comba multiplication (KCM) algorithm for pro-
cessors of the reduced instruction set computers (RISC-
processors) is described in paper [113].

�e KCM-algorithm is an example of a promising com-
bination of those by Comba and Karatsuba, while Karatsuba’s
algorithm is especially oen used for the machine word
multiplication. As a result, the main goal of that paper [113]
is to provide a suggestion for the e�ective increasing of
soware implementation of the 
nite 
eld ��(&) multipli-
cation (squaring) with the aid of Comba’s algorithm. Such
researchwasmotivated by the necessity to obtain the e�ective
con
rmation of soware implementation of some known
algorithms for continuous development of the modern 32-
bit and 64-bit platforms. It is important to mention that the
last ten years have seen a rapid development of multicore
processors and multiprocessor systems [113].

7.2. Soware Implementation. With the recent boost of infor-
mation technology in modern society, the problem of infor-
mation security became of special urgency.�emost di	cult
task is to provide secure handling and storage of critical
and con
dential data for government and private companies,
banks, and other systems. A solution to this problem is to
implement systems that provide for information con
den-
tiality, integrity, authenticity, and accessibility by means of

cryptographic soware and cryptographic hardware based on
some approaches making use of bilevel programming.

At the same time, cryptoanalyticalmethods taking advan-
tage of the progress in capabilities of modern computers
demand high requirements on the security parameters of
modern cryptosystems with the use of the well-known
techniques and devices of bilevel programming. Moreover,
the increased amount of data processed in modern infor-
mation systems needs a quite high-level performance of
the modern cryptosystems. Hence, the timing requirements
to cryptographic applications have increased dramatically;
that is, prospective cryptoalgorithms must provide e	cient
processing of bulk data when applying bilevel programming
and, at the same time, a high level of security.

So far, most research activity has been carried out
about some theoretical aspects of hyperelliptic curve cryp-
tosystems (HECC), including many improvements of the
underlying arithmetic of the hyperelliptic curves. On the
implementation side, improvements for speci
c processors
and hardware platforms have been analyzed. �e present
approach provides a very important contribution towards
practical implementation of HECC by showing how to build
an e	cient hyperelliptic curve of digital signature algorithm
(HECDSA) implementation and provides cryptographically
suitable curves. Unfortunately, the published results on prac-
tical implementations of HECC are rare (see, for example,
[114, 115]). �is solution is intended to provide very practical
facts for the implementation of an HECDSA system with all
its necessary details at the interpretation with the help of the
bilevel programming techniques. �ere are numerous mod-
ern publications dealing with HECC, but they describe no
validated system parameters for the e	cient implementation
of a workable cryptosystem.

�e lack of publications dedicated to this topic was the
motivation behind the thorough summary of all results for
e	cient HECC implementation presented in this review
and the comparison of HECC (HECDSA) with the existing
elliptic curve cryptosystems (ECC) and/or elliptic curve of
digital signature algorithms (ECDSA) based on the use of
some bilevel programming methods.

7.3. Cybersecurity Applications. �e bilevel formulation is
investigated through a problem in which the goal of the
destructive agent is to minimize the number of power system
components that must be destroyed in order to cause a
loss of load greater than or equal to a specied level. �is
goal is tempered by the logical assumption that, following
a deliberate outage, the system operator will implement all
feasible corrective actions to minimize the level of system
load shed.

�e resulting nonlinear mixed-integer bilevel program-
ming formulation is transformed into an equivalent single-
level mixed-integer linear program by replacing the lower
level optimization problem with its Karush-Kuhn-Tucker
(KKT) optimality conditions and also converting a number
of nonlinearities to linear equivalents using somewell-known
integer algebra results. �e equivalent formulation has been
tested in [116] on two case studies, including the 24-bus IEEE
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reliability test system (RTS) through the use of commercially
available soware.

�e bilevel model specically allows one to dene di�erent
objective functions for the terrorist and the system opera-
tor and permits to impose constraints on the upper level
optimization problem. �e latter are functions of both the
upper and lower level variables. �is degree of exibility is not
possible to implement through the existingmax-minmodels.

As present, researchers have begun to look into some
newways of addressing the security assessment problem, here
called the Terrorist �reat Problem (TTP). For example, in
[117], a multiagent system was proposed capable of assessing
power system vulnerability, monitoring hidden failures of
protection devices, and providing adaptive control actions
to prevent catastrophic failures and cascading sequences of
events.

Attack tree (AT) is another widely used combinatorial
model in the cybersecurity analysis. �e basic formalism of
AT does not take into account defense mechanisms. Defense
trees (DT) have been developed to investigate the e�ect of
defense mechanisms using measures such as attacker’s cost
and security cost, return on investment (ROI) and return
on attack (ROA). DT, however, places defense mechanisms
only at the leaf node level while the corresponding ROI/ROA
analysis does not incorporate the probability of attack. In an
attack response tree (ART), an attacker-defender game was
used to 
nd an optimal policy from the countermeasures’
pool. �e latter su�ers from the problem of state-space
explosion, since a solution in ART is sought by means of
a partially observable stochastic game model. In [118], the
authors have presented a novel attack tree named the attack
countermeasure tree (ACT), in which (i) defense mechanisms
can be applied at any node of the tree, not just at the leaf node
level; (ii) some qualitative analysis (usingmin-cuts, structural
and Birnbaum importance measures) and probabilistic anal-
ysis (using attacker’s and security costs, the system risk,the
impact of an attack, ROI, and ROA) can be performed; (iii)
the optimal countermeasure set can be selected from the
pool of defense mechanisms without constructing a state-
space model. �ey have used single- and multiobjective
optimization tools to 
nd suitable countermeasures under
di�erent constraints. In addition, they have illustrated the
features of ACT using a practical case study, namely, a
supervisory control and data acquisition (SCADA) attack.

Finally, some authors [119] have proposed a trilevelmodel.
Cybersecurity is becoming an area of growing concern in
the electric power industry with the development of smart
grid. A false data injection attack, which is against the
state estimation through a SCADA network, has recently
attracted the ever wider interest of researchers. �is review
[119] further develops the concept of a Load redistribution
(LR) attack, a special type of the false data injection attack.
�e damage from LR attacks to power system operations
can manifest in an immediate or a delayed fashion. For the
immediate attacking goal, they have shown in [119] that the
most damaging attack can be identi
ed through a max-min
attacker-defender model. Benders decomposition within a
restart framework is used to solve the bilevel immediate LR
attack problem with a moderate computational e�ort. Its

e	ciency has been validated by the Karush-Kuhn-Tucker-
(KKT-) basedmethod solution in their previouswork. For the
delayed attacking goal, the authors of [119] have proposed a
trilevelmodel to identify themost damaging attack and trans-
form the model into an equivalent single-level mixed-integer
problem for its 
nal solution. In order to summarize, the
techniques developed in [119] enable a quantitative analysis of
the damage from LR attacks to the power system operations
and security and hence provide an in-depth insight into
an e�ective attack prevention when resources (budgets) are
limited. A 14-bus system is used to test the correctness of the
proposed model and algorithm.

8. Concluding Remarks

In this paper, we present a survey of Bilevel Programming
andApplication area, closely related to applied problems such
as natural gas imbalance cash-out problem, toll optimization
problem, and others. Recent results and trends in the mixed-
integer bilevel programming models with linear objective
function and constraints are also described.

Many open questions still exist in Bilevel Program-
ming theory, especially in relation to applications. New
topics/questions arise as, for example, application of non-
smooth/variational analysis. Many new applications are
found; much is yet open with respect to solution algorithms;
important are also mixed-discrete bilevel optimization prob-
lems. All these items have not been included in this survey
only due to the space limitations, but we hope to enlight them
in the nearest future.
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gación) CAT-174 of the Tecnológico de Monterrey (ITESM),
CampusMonterrey and by the SEP-CONACYT Projects CB-
2008-01-106664 and CB-2013-01-221676, Mexico. Also, the
work of the fourth author was supported by the National
Council of Science and Technology (CONACyT) of Mex-
ico as part of the Projects CB-2011-01-169765, PROMEP
103.5/11/4330, and PAICYT 464-10. �e research activity of
the 
h author was 
nancially supported by the Project
PROMEP/103.5/10/3889, the Academic Groups Research
Project PROMEP/103.5/12/4953, and the Autonomous Uni-
versity of Nuevo León (UANL) within the Support Program
for Scienti
c Research and Technology (PAICYT) with the
Project CE960-11. �e coauthors would also like to express
their profound gratitude to the two anonymous referees
whose comments and suggestions have helped improve the
paper essentially.



Mathematical Problems in Engineering 13

References

[1] S. Dempe, Foundations of Bilevel Programming, Kluwer Aca-
demic Publishers, Dordrecht, �e Netherlands, 2002.

[2] S. Dempe, B. S. Mordukhovich, and A. B. Zemkoho, “Necessary
optimality conditions in pessimistic bilevel programming,”
Optimization, vol. 63, no. 4, pp. 505–533, 2014.

[3] S. Dempe and J. Dutta, “Is bilevel programming a special case
of amathematical programwith complementarity constraints?”
Mathematical Programming A, vol. 131, no. 1-2, pp. 37–48, 2012.

[4] S. Dewez, M. Labb, P. Marcotte, and G. Savard, “New formu-
lations and valid inequalities for a bilevel pricing problem,”
Operations Research Letters, vol. 36, no. 2, pp. 141–149, 2008.

[5] L. �i, T. Duc, and P. Dinh, “A DC programming approach for
a class of bilevel programming problems and its application in
portfolio selection,” Numerical Algebra, Control and Optimiza-
tion, vol. 2, no. 1, pp. 167–185, 2012.

[6] L. N. Vicente and P. H. Calamai, “Bilevel and multilevel
programming: a bibliography review,” Journal of Global Opti-
mization, vol. 5, no. 3, pp. 291–306, 1994.

[7] W. Wiesemann, A. Tsoukalas, P.-M. Kleniati, and B. Rustem,
“Pessimistic bi-level optimisation,” Tech. Rep., Imperial College
London and Massachusetts Institute of Technology, 2012.

[8] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer,Non-
Linear Parametric Optimization, Birkhäauser, Basel, Switzer-
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