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BILINEAR ESTIMATES AND APPLICATIONS TO 2D NLS

J. E. COLLIANDER, J.-M. DELORT, C. E. KENIG, AND G. STAFFILANI

Abstract. The three bilinearities uv, uv, uv for functions u, v : R2×[0, T ] 7−→
C are sharply estimated in function spaces Xs,b associated to the Schrödinger
operator i∂t+∆. These bilinear estimates imply local wellposedness results for
Schrödinger equations with quadratic nonlinearity. Improved bounds on the
growth of spatial Sobolev norms of finite energy global-in-time and blow-up
solutions of the cubic nonlinear Schrödinger equation (and certain generaliza-
tions) are also obtained.

1. Introduction

The three bilinearities uv, uv, uv for functions u, v : R2 × [0, T ] 7−→ C are stud-
ied in function spaces Xs,b associated to the Schrödinger operator i∂t + ∆. We
establish sharp (up to endpoint) bilinear estimates for the R2 case extending the
work of Kenig, Ponce and Vega [9] and Staffiliani [13]. These estimates imply local
wellposedness of the initial value problems (i = 1, 2, 3){

i∂tu+ ∆u±Ni(u, u) = 0,
u(0) = φ ∈ Hs(R2)(1.1)

with rough initial data φ where N1(u, u) = u2, N2(u, u) = uu and N3(u, u) = u2.
The bilinear estimates also imply, following the arguments in [13], [12], polynomial-
in-time upper bounds on ‖u(t)‖Hs , s � 1, for certain global-in-time and blow-up
solutions of the physical cubic nonlinear Schrödinger equation.

The proof of the bilinear estimates relies on a delicate geometric analysis. This
analysis introduces new techniques which extend the calculus arguments first used
in [8] and also in [9] to the R2 setting. In particular, we show how the support
properties of the set where all the Xs,b denominators simultaneously vanish may be
exploited to prove sharp estimates. Similar ideas were used by Delort and Fang [7]
for the Klein-Gordon equation. These techniques are also applied in a forthcoming
paper on the Kadomtsev-Petviashvili I equation [6]. Related work which generalizes
this study to higher dimensions and to other dispersive operators has recently been
completed by T. Tao [14].

The next section contains the bilinear estimates and statements of the local
wellposedness results concerning (1.1). Section 3 addresses regularity properties
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of solutions of the cubic nonlinear Schrödinger equation on R2. The third section
also contains comments concerning higher power generalizations of cubic defocusing
NLS stemming from the recent scattering result [11] of Nakanishi. We thank Kenji
Nakanishi for a useful correspondence. We also thank Gustavo Ponce and Luis Vega
for sharing their preliminary notes (in collaboration with C.E.K.) on the trilinear
form uvw with x ∈ R.

2. Bilinear Schrödinger estimates on R2

Let u, v : R2 × [0, T ] 7−→ C. We consider here the three quadratic forms
uv, uv, uv and establish sharp bilinear estimates in the spaces Xs,b associated to
the Schrödinger operator i∂t+∆ on R2. These estimates extend the work of Kenig,
Ponce and Vega [9] in one-dimension to the two-dimensional setting.

For u : R2
x × R1

t 7−→ C, we recall the definition of the norm in Xs,b from [1],

‖u‖Xs,b =
(∫ ∫

|(1 + |λ+ |k|2|)b(1 + |k|)sû(k, λ)|
2

dkdλ

) 1
2

,(2.1)

where û denotes the space-time Fourier transform of u,

û(k, λ) =
∫ ∫

e−i(kx+λt)u(x, t)dxdt.

Since Xs,b is a weighted L2 norm, we may replace all functions of the Fourier
transform variables in the calculations of this norm by their absolute value. We
will sometimes write α+ to denote α + ε and α− to denote α − ε for arbitrarily
small ε > 0.

This section establishes the following theorem.

Theorem 1. Let b = 1
2 + .

(i) The bilinear estimate

‖uv‖Xσ,b−1
≤ C‖u‖Xs,b‖v‖Xs,b(2.2)

holds provided − 1
4 − (1 − b) < s, and σ < min

(
s+ 1

2 + 2(1− b), 2s+ 2(1− b)
)
.

Moreover, the estimate (2.2) fails if s < − 1
4 − (1− b) and also if

σ > min
(
s+

1
2

+ 2(1− b), 2s+ 2(1− b)
)
.

(ii) The bilinear estimate

‖uv‖Xσ,b−1
≤ C‖u‖Xs,b‖v‖Xs,b(2.3)

holds provided − 1
4 − (1− b) < s, and σ < min

(
s+ 1

2 , 2s+ 2(1− b)
)
. Moreover, the

estimate (2.3) fails if s < − 1
4 − (1− b) and also if σ > min

(
s+ 1

2 , 2s+ 2(1− b)
)
.

(iii) The bilinear estimate

‖uv‖Xσ,b−1
≤ C‖u‖Xs,b‖v‖Xs,b(2.4)

holds provided − 1
2 (1 − b) < s, and σ < min

(
s+ 1

2 , 2s+ 2(1− b)
)
. Moreover, the

estimate (2.4) fails if s < − 1
2 (1− b) and also if σ > min(s+ 1

2 , 2s+ 2(1− b)).
In particular, we have the estimates

‖uv‖X− 1
2 +,− 1

2 +
. ‖u‖X− 3

4 +, 12 +
‖v‖X− 3

4 +, 12 +
,

‖uv‖X− 1
2−,−

1
2 +
. ‖u‖X− 3

4 +, 12 +
‖v‖X− 3

4 +, 12 +
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and

‖uv‖X 1
4 ,−

1
2 +
. ‖u‖X− 1

4 +, 12 +
‖v‖X− 1

4 +, 12 +
.

Using the technique used to prove Theorem 1.5 in [9] and also used in [8], the
bilinear estimates of the theorem imply the following results concerning the local
wellposedness of the initial value problems (1.1)

Corollary 2.1. In the cases i = 1, 3, the initial value problems (1.1) are locally
wellposed for data in Hs(R2), s > − 3

4 . In case i = 2, (1.1) is locally wellposed for
data in Hs, s > − 1

4 .

Our proof of the estimates (2.2), (2.3) and (2.4) isolates common geometric
features of all three estimates. In particular, a standard dyadic decomposition in
the spatial frequency variable and a parabolic level set decomposition collapses
consideration to four standard trilinear forms expressing the interactions of L2

functions supported near paraboloids above dyadic shells. The main new difficulty
in the R2 occurs when an orthogonal relationship among the vectors k, k1, k2 holds.

We outline the proof. We define the trilinear forms A±, B±, C± and then show
that the estimates (2.2), (2.3) and (2.4) collapse to estimating A+, B− and C+ on
functions supported above dyadic shells in the spatial frequency variable. Next,
we state and prove lemmas which provide estimates on the trilinear forms A+, B−
and C±. (The proofs of these lemmas contain the hard work.) The lemmas are
then used to prove the bilinear estimates of the theorem. Finally, we present some
examples which demonstrate the necessity of some of the parameter restrictions in
the theorem.

Notation. For nonzero µi, µj ∈ R2, let αij denote the angle between µi and µj .
For dyadicM0,M1,M2 write M∗ = min(M0,M1,M2) and M∗ = max(M0,M1,M2).
Subscripts on functions will sometimes be used to denote localizations, e.g.,
fχ{|µ0|∼M0} = fM0 . Superscripts denote components of vectors. Finally, we write∫
∗ to denote the expression ∫

µ0+µ1+µ2=0

τ0+τ1+τ2=0

.

Standard Forms. The following expressions appear naturally in our study of
bilinear Schrödinger estimates:

A±(f ; g, h) =
∫
∗

f(µ0, τ0)

| cosα12|1−b
g(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

h(µ2, τ2)

(1 + |τ2 ± |µ2|2|)
b
,

B±(f ; g, h) =
∫
∗

f(µ0, τ0)

| cosα02|1−b
g(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

h(µ2, τ2)

(1 + |τ2 ± |µ2|2|)
b
,

C±(f ; g, h) =
∫
∗
f(µ0, τ0)

g(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

h(µ2, τ2)

(1 + |τ2 ± |µ2|2|)
b
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3310 J. E. COLLIANDER, J.-M. DELORT, C. E. KENIG, AND G. STAFFILANI

Reduce (2.2) to Standard Forms. Duality and the definiton (2.1) show that
(2.2) is equivalent to showing∫

∗

(1 + |µ0|)σd(µ0, τ0)

(1 + |τ0 − |µ0|2|)
1−b

(1 + |µ1|)−sc1(µ1, τ1)

(1 + |τ1 − |µ1|2|)
b

(1 + |µ2|)−sc2(µ2, τ2)

(1 + |τ2 − |µ2|2|)
b

≤ C‖d‖L2

∥∥c1∥∥
L2

∥∥c2∥∥
L2 .

(2.5)

The convolution constraint τ0 + τ1 + τ2 = 0 and the triangle inequality imply

max(|τ0 − |µ0|2|, |τ1 − |µ1|2|, |τ2 − |µ2|2|) & |µ0|2 + |µ1|2 + |µ2|2.(2.6)

We study the contribution to the left-side of (2.5) arising from the region {|µ0| ∼
M0}, {|µ1| ∼M1}, {|µ2| ∼M2} for dyadic M0,M1,M2 in the three cases of (2.6)
when all of the Mi ≥ 1. In case the 0-denominator is the max, we note that
|τ0−|µ0|2| & (M∗)2 and need to estimate, after a change of sign of all the variables
appearing in the integral,

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

(M∗)2(1−b) C+(dM0 ; c1M1
, c2M2

)(2.7)

and then sum over dyadic 1 ≤ M0,M1,M2. When the 1-denominator is the max,
after borrowing a bit from the 1-denominator to replace 1 − b by b on the 0-
denominator, we encounter

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

(M∗)2(1−b) C+(c1M1
; dM0 , c

2
M2

)(2.8)

and a similar expression arises in the final case.

Remark 1. The low frequency cases (Mi ≤ 1) will be treated separately below using
(2.5) directly.

Reduce (2.3) to Standard Forms. The estimate (2.3) is equivalent to showing∫
∗

(1 + |µ0|)σd(µ0, τ0)

(1 + |τ0 − |µ0|2|)
1−b

(1 + |µ1|)−sc1(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

(1 + |µ2|)−sc2(µ2, τ2)

(1 + |τ2 + |µ2|2|)
b

≤ C‖d‖L2

∥∥c1∥∥
L2

∥∥c2∥∥
L2 .

(2.9)

Note that

max(|τ0 − |µ0|2|, |τ1 + |µ1|2|, |τ2 + |µ2|2|) & |µ1||µ2|| cosα12|.(2.10)

The contribution from {|µ0| ∼ M0}, {|µ1| ∼ M1}, {|µ2| ∼ M2} in case the 0-
denominator is the max is

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

M1−b
1 M1−b

2

A+(dM0 ; c1M1
, c2M2

).(2.11)

In case |τ1 + |µ1|2| is the max, the contribution is given by

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

M1−b
1 M1−b

2

B−(c1M1
; dM0 , c

2
M2

),(2.12)

and the final case leads to

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

M1−b
1 M1−b

2

B−(c2M2
; dM0 , c

1
M1

).(2.13)
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Remark 2. Some low frequency cases (Mi ≤ 1) will be treated separately below
using (2.9) instead of the reductions (2.11), (2.12) and (2.13).

Reduce (2.4) to Standard Forms. The uv estimate (2.4) is equivalent to showing∫
∗

(1 + |µ0|)σd(µ0, τ0)

(1 + |τ0 − |µ0|2|)
1−b

(1 + |µ1|)−sc1(µ1, τ1)

(1 + |τ1 − |µ1|2|)
b

(1 + |µ2|)−sc2(µ2, τ2)

(1 + |τ2 + |µ2|2|)
b

≤ C‖d‖L2

∥∥c1∥∥
L2

∥∥c2∥∥
L2 .

(2.14)

We have

max(|τ0 − |µ0|2|, |τ1 − |µ1|2|, |τ2 + |µ2|2|) & |µ0||µ1|| cosα01|.(2.15)

The 0,1,2 cases of the maximum lead (respectively) to the following bounds on the
contribution arising from {|µi| ∼Mi}:

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

M1−b
0 M1−b

1

B−(dM0 ; c2M2
, c1M1

),(2.16)

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

M1−b
0 M1−b

1

B−(c1M1
; c2M2

, dM0),(2.17)

and

(1 ∨M0)σ(1 ∨M1)−s(1 ∨M2)−s

M1−b
0 M1−b

1

A+(c2M2
; dM0 , c

1
M1

).(2.18)

Remark 3. Some low frequency cases will be treated separately below using (2.14)
instead of the reductions (2.16), (2.17) and (2.18).

Estimates for Standard Trilinear Forms. Apart from certain low frequency
cases, the preceding discussion reduced the study of the bilinear estimates (2.2),
(2.3), (2.4) to proving bounds on the trilinear forms A+, B− and C+ when applied to
functions supported on dyadic shells in the spatial frequency variable. We present
some lemmas establishing such bounds and then return to the expressions above to
complete the proof of the bilinear estimates.

Lemma 1. The following estimate holds,

|C+(fM0 ; gM1 , hM2)| ≤
(
M∗
M∗

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2 ,(2.19)

when M∗ > 1 and M∗ is arbitrary. We also have

|C−(fM0 ; gM1 , hM2)| ≤
(
M1 ∧M2

M1 ∨M2

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2 .(2.20)

Proof. Recall that

C±(f ; g, h) =
∫
∗
f(µ0, τ0)

g(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

h(µ2, τ2)

(1 + |τ2 ± |µ2|2|)
b
.
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Parabolic Level Set Decomposition. Cut the functions g, h into parabolic level
sets by writing g =

∑
l1∈Z gl1 , h =

∑
l2∈Z hl2 where gl1 = gχ{(τ1+|µ1|2)=l1+O(1)} and

hl2 = hχ{(τ2±|µ2|2)=l2+O(1)}. Matters collapse to controlling∑
l1,l2

1

(1 + |l1|)b(1 + |l2|)b
∫

{|θi|<O(1)}

∫
f(−µ1 − µ2,−|µ1|2±|µ2|2 − θ1 − θ2 − l1 − l2)

× gl1(µ1,−|µ1|2 + l1 + θ1)hl2(µ2,±|µ2|2 + l2 + θ2)dµ1dµ2dθ1dθ2

Since b > 1
2 , Cauchy-Schwarz in l1, l2 establishes (2.19) and (2.20) if we prove∫
θi=O(1)

∫
fM0(−µ1 − µ2,−|µ1|2 − |µ2|2 + θ1 + θ2)

× gM1(µ1,−|µ1|2 + θ1)hM2(µ2,−|µ2|2 + θ2)dµidθi

≤
(
M∗
M∗

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2 ,

(2.21)

and ∫
θi=O(1)

∫
fM0(−µ1 − µ2,−|µ1|2 + |µ2|2 + θ1 + θ2)

× gM1(µ1,−|µ1|2 + θ1)hM2(µ2,+|µ2|2 + θ2)dµidθi

≤
(
M1 ∧M2

M1 ∨M2

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2 ,

(2.22)

respectively.
We focus our attention on (2.21). Since µ1 and µ2 appear symmetrically, we

may assume M1 &M2 and consider the three cases M0 �M1 =⇒ M1 ∼M2 and
M0 ∼M1 �M2, M0 ∼M1 ∼M2.

Case 1. M0 �M1 ∼M2.
Since |µ1 + µ2| = |µ0| ∼ M0, we know that |µ2 − µ1| ∼ M1. We may assume

|µ2
2 − µ2

1| ∼ M1 since a modification of what follows applies in the alternative
case |µ2

2 − µ2
1| � M1 =⇒ |µ1

2 − µ1
1| ∼ M1. This modification is described

below. We decompose {|µ1| ∼M1} into disjoint cubes Qi of side M0 and similarly
decompse {|µ2| ∼ M2} into cubes Qj2 of side M0. Since µ0 + µ1 + µ2 = 0, Qj2
is uniquely determined by Qj1 which we indicate by writing j2 = j2(j1). For
fixed θ1, θ2, we change variables u = −µ1 − µ2, v = −|µ1|2 − |µ2|2 + θ1 + θ2,
dudv dµ1

2 = Jdµ1
1dµ

2
1dµ

2
2 dµ

1
2. A calculation shows J = 2|µ2

2 − µ2
1| which is of size

M1 by assumption. The µ1µ2-integration in (2.21) may be re-expressed as∑
Qj1

∫
µ1

2∈π1Qj2(j1)

∫
fM0(u, v)H(u, v, µ1

2)dudvdµ1
2

where π1 is the projection onto the first component and

H(u, v, µ1
2) =

gM1,Qj1
(µ1,−|µ1|2 + θ1)hM2,Qj2(j1)(µ2,−|µ2|2 + θ2)

J
.
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Cauchy-Schwarz in u, v followed by Cauchy-Schwarz in µ1
2 and changing back to

the original variables leads to

∑
Qj1

(
M0

M1

) 1
2

‖fM0‖L2

(∫
|gM1,Qj1

(µ1,−|µ1|2 + θ1)|2dµ1

) 1
2

×
(∫
|hM2,Qj2

(µ2,−|µ2|2 + θ2)|2dµ2

) 1
2

as the desired upper bound on the inner integral in (2.21). Cauchy-Schwarz in Qj1
and θi finishes off this case.

In case |µ2
2−µ2

1| �M1 =⇒ |µ1
2−µ1

1| ∼M1, we modify the change of variable by
using the same u, v as above but dudv dµ2

2 = Jdµ1
1dµ

2
1dµ

1
2 dµ

2
2. Upon calculating,

we find J = 2|µ1
1 − µ1

2| which is of size M1. Therefore, the Cauchy-Schwarz and
change of variables argument used previously leads to the same result here.

Case 2. M0 ∼M1 �M2.
Since M2 < M1, the change of variable used above satisfies, assuming |µ2

1| &M1,
J ∼ M1. The situation when µ1

1 is the big component of µ1 is handled similarly.
We decompose {|µ0| ∼M0} into cubes Qj0 of side M2 and {|µ1| ∼M1} into cubes
Qj1 also of side M2. Again, j0 = j0(j2) and an imitation of the Case 1 argument
yields the upper bound (

M2

M1

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2 .(2.23)

Case 3. M0 ∼M1 ∼M2.
Here, we have M∗ ∼M∗ and return to the expression∫

∗
f(µ0, τ0)

g(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

h(µ2, τ2)

(1 + |τ2 + |µ2|2|)
b
.

The desired estimate then follows in this case using a familiar argument exploiting
the Strichartz estimate∥∥∥∥∥

∫ ∫
a(k, λ)

(1 + |λ± |k|2)
b
ei(kx+λt)dkdλ

∥∥∥∥∥
L4
xt

≤ C‖a‖L2 .(2.24)

This completes the proof of (2.21).
We now turn our attention to (2.22) and break the analysis into four cases:

1. M0 ∼M1 �M2,
2. M0 ∼M2 �M1,
3. M1 ∼M2 �M0 and
4. M1 ∼M2 ∼M0.

In cases 1 and 2, we bust the largest shells into cubes of the smallest scale and make
a change of variable. Cases 3 and 4 follow directly from the Strichartz inequality
since M1 ∧M2 ∼M1 ∨M2.

Case 1. M0 ∼M1 �M2.
Bust up the M0 and M1 shells into cubes Qj0 , Qj2 (respectively) of side M2.

Rotate coordinates such that |µ2
1| ∼ |µ1|. We change variables u = −µ1 − µ2,

v = −|µ1|2 + |µ2|2 + θ1 + θ2 with dudv dµ1
2 = Jdµ1

1dµ
2
1dµ

2
2 dµ1

2. A calculation
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shows J = 2|µ2
1 − µ2

2| which may be assumed to have size ∼ M1. Cauchy-Schwarz
applications lead to the bound(

M2

M1

) 1
2

‖fM0‖L2‖gM1‖L2‖hM2‖L2

as claimed.
Case 2. M0 ∼M2 �M1.
The change of variable used in Case 1 above now has J ∼ M2, assuming |µ2

2| ∼
M2. We break the M0,M2 shells into M1-sized cubes and imitate the preceding
argument.

As mentioned above, Cases 3 and 4 follow from (2.24).

Lemma 2.

|A+(fM0 ; gM1 , hM2)| ≤ C‖fM0‖L2‖gM1‖L2‖hM2‖L2 .(2.25)

Proof. Recall that

A+(f ; g, h) =
∫
∗

f(µ0, τ0)

| cosα12|1−b
g(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

h(µ2, τ2)

(1 + |τ2 + |µ2|2|)
b
.

The symmetric appearance of µ1, µ2 allows us to assume M1 ≥ M2. In case
| cosα12| > δ > 0, we reduce to C+(fM0 ; gM1 , hM2) which was appropriately es-
timated in Lemma 1. We may assume | cosα12| is small and, therefore, that µ1 is
almost perpendicular to µ2.

Consider the contribution arising from the region where | cosα12| ∼ ν � 1 for
ν dyadic. A parabolic level set decomposition using b > 1

2 reduces matters to
considering

1
ν1−b

∫
θi=O(1)

∫
{| cosα12|∼ν}

fM0(−µ1 − µ2,+|µ1|2 + |µ2|2 + θ1 + θ2)

× gM1(µ1,−|µ1|2 + θ1)hM2(µ2,−|µ2|2 + θ2)dµidθi.

(2.26)

The small cosine level set suggests decomposing the M1 and M2 shells into disjoint
“pie slices” of angular aperture ν. Write for i = 1, 2, {|µi| ∼ Mi} =

⋃
ji
Aji with

Aji = {ki : ki = |ki|eiθ, |θ − jiν2π| < O(ν)} pairwise disjoint. The cosine level set
condition | cosα12| ∼ ν forces Aj2 = Aj2(j1) for nonzero contribution. We replace
gM1 by gM1,Aj1

and hM2 by hM2,Aj2
in (2.26) and must sum over j1. For fixed

j1, we can rotate to ensure Aj2(j1) is bisected by the µ2
2 axis. Note then that

|π1(Aj2 )| ∼ νM2 where we have again used π1 to denote the projection onto the
first coordinate. We may assume that Aj1 lies (nearly) along the positive µ1

1 axis.
We apply the change of variable used in Case 1 of the proof of Lemma 1. Since

the Jacobian J = |2(µ2
1 − µ2

2)|, the arrangement of the “pie slices” shows J ∼
M2.1 The “extra integration” along µ1

2 takes place along π1(Aj2) which is of size
νM2. Therefore, the change of variable and Cauchy-Schwarz show the fixed j1
contribution to (2.26) is bounded by

1
ν1−b

(νM2)
1
2

M2
1
2
‖fM0‖L2

∥∥gM1,Aj1

∥∥
L2

∥∥∥hM2,Aj2(j1)

∥∥∥
L2

1There is the possibility that νM1 &M2 in which case µ2
1−µ2

2 may be very small. If this occurs,

a change of variable with µ2
2 playing the “extra integration” role leads to the same conclusion.
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and Cauchy-Schwarz allows us to sum in j1. Finally, note that ν
1
2−(1−b) = νε, ε > 0,

so we can sum over small dyadic levels of the cosine completing the proof.

Lemma 3.

B−(fM0 ; gM1 , hM2) ≤ C‖fM0‖L2‖gM1‖L2‖hM2‖L2 .(2.27)

Proof. Recall that

B−(f ; g, h) =
∫
∗

f(µ0, τ0)

| cosα02|1−b
g(µ1, τ1)

(1 + |τ1 + |µ1|2|)
b

h(µ2, τ2)

(1 + |τ2 − |µ2|2|)
b
,

A parabolic level set decomposition collapses the issue to controlling∫
θi=O(1)

∫
fM0(−µ1 − µ2,−|µ1|2 + |µ2|2 + θ1 + θ2)

| cosα02|1−b

× gM1(µ1,−|µ1|2 + θ1)hM2(µ2, |µ2|2 + θ2)dµidθi.

(2.28)

In case | cosα02| > δ > 0, we encounter the previously estimated C− expression.
We may therefore assume the cosine term is small. Consider the contribution arising
from | cosα02| ∼ ν � 1, ν dyadic.

Case 1. νM0 ≤ M2. As in the proof of Lemma 2 , we cut the M0 and M2

shells into disjoint “pie slices” Aj0(j2) and Aj2 . We have j0(j2) using the cosine
level set condition and µ0 + µ1 + µ2 = 0.

For fixed j2, rotate such that Aj0(j2) is bisected by the positive µ2
0 axis. Note that

Aj0(j2) is essentially a νM0 ×M0 rectangle. We may assume Aj2 is almost along
the positive µ1

2 axis. Decompose Aj2 and the M1 shell into disjoint translates of the
smallest rectangle containing Aj0(j2). Therefore, we can write {|µ1| ∼M1} =

⋃
Ri1

and Aj2 =
⋃
Ri2 . Since µ0 + µ1 + µ2 = 0, we have i1 = i1(i2). Note that this

decomposition cuts Aj2 into disjoint rectangles of size νM0 along the µ1
2 coordinate

axis and of size (νM2 ∧M0) along the µ2
2 axis.

The fixed j2 contribution to the | cosα02| ∼ ν contribution to (2.28) is estimated
by

1
ν1−b

∑
i2

∫
θi=O(1)

∫
fM0,Aj0

(µ0,−|µ1 + µ2|2 + |µ2|2 + θ1 + θ2)

× gM1,Ri1(i2)(−µ0 − µ2,−|µ0 + µ2|2 + θ2)hM2,Ri2
(µ2, |µ2|2 + θ2)dµidθi.

The change of variables u = µ0, v = |µ0 + µ2|2 − |µ2|2 + θ1 + θ2, dudv dµ1
2 =

Jdµ1
0dµ

2
0dµ

2
2 dµ

1
2 has J = 2|µ2

0| ∼M0. Note that |π1(Ri2 )| ∼ νM0 so the “extra in-
tegration” in µ1

2 leads to the factor (νM0)
1
2 . Familiar Cauchy-Schwarz applications

eventually give

1
ν1−b

∑
i2

(
νM0

M0

) 1
2∥∥fM0,Aj0

∥∥
L2

∥∥∥gM1,Ri1(i2)

∥∥∥
L2

∥∥hM2,Ri2

∥∥
L2 .

Applying Cauchy-Schwarz in i2 reveals

ν
1
2−(1−b)∥∥fM0,Aj0

∥∥
L2‖gM1‖L2

∥∥hM2,Aj2

∥∥
L2 .

Recalling that j0 = j0(j2), we apply Cauchy-Schwarz to sum in j2 and use 1
2 −

(1− b) > 0 to sum over small dyadic levels of | cosα02|.
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Case 2. νM0 > M2.
We cut the same decomposition into “pie slices”. We fix j2 and rotate into

the configuration considered above. The change of variables has J ∼ |µ2
0| ∼ M0.

Decompose Aj0(j2) and theM1 shell into disjoint translates of Aj2 . For any translate
τ , we have |π1(τ(Aj2 ))| ∼ M2 < νM0. Therefore, the “extra integration” and the

Jacobian manufacture the prefactor
(
M2
M0

) 1
2
<
(
νM0
M0

) 1
2
, and orthogonality and

Cauchy-Schwarz applications complete the proof.

Proof of Bilinear Estimates. The low frequency region M0,M1,M2 . 1 of the esti-
mates (2.2), (2.3) and (2.4) is treated the same way. Since the terms (1 + |µi|)(−s)

or (1 + |µi|)(σ) in the numerator are all O(1), we ignore them. The remaining
expression is estimated using the Strichartz estimate (2.24) using b > 1

2 . We may
now assume throughout that M∗ > 1.

We turn our attention to establishing (2.2). Symmetry in µ1, µ2 allows us to
assume M1 ≥M2. In Case 1, M2 � 1�M1 =⇒ M1 ∼M0, an application of the
C+ lemma (2.19) gives the bound Mσ−s−2(1−b)− 1

2
1 M

1
2

2 . This is summable in dyadic
M1 ≥ 1 if we require σ < s+ 1

2 +2(1−b). Clearly, we have summability over dyadic
M2 � 1. In Case 2, M0 � 1�M1 =⇒ M1 ∼M2; we again apply (2.19) to (2.7)
and (2.8) to find M

−2s−2(1−b)− 1
2

1 M
1
2

0 which sums over dyadic M1 � 1 provided
− 1

4 − (1 − b) < s and also over dyadic M0 � 1. In Case 3, 1 . M0,M1,M2 with
M1 ≥ M2. When 1 .M0 �M1 =⇒ M1 ∼M2, we are led, using (2.19) on (2.7),
(2.8) to Mσ+ 1

2
0 M

−2s−2(1−b)− 1
2

1 . If σ+ 1
2 ≥ 0, we bound by Mσ+ 1

2−2s−2(1−b)− 1
2

1 and
can sum using the condition σ < 2s + 2(1 − b). For σ + 1

2 < 0, we can sum over
dyadic M0 ≥ 1, and the condition − 1

4 − (1 − b) < s allows us to sum in M1. In

case 1 . M0 ∼ M1 with 1 . M2 ≤ M1, we are led to Mσ−s−2(1−b)− 1
2

1 M
−s+ 1

2
2 . If

−s+ 1
2 < 0, we can sum over dyadic M2 & 1. When −s + 1

2 ≥ 0, we can replace
M2 by M1 and require σ < 2s+ 2(1− b) to sum in M1.

Summarizing, we have found that (2.2) is valid when b = 1
2+, − 1

4 − (1− b) < s

and σ < min(s+ 1
2 + 2(1− b), 2s+ 2(1− b)).

We now concentrate on establishing (2.3). Again by symmetry, M1 ≥ M2. The
low frequency case common to (2.2), (2.3) and (2.4) treated above allows us to
assume M∗ > 1. We first consider the situation leading to (2.11).

1. M0 � M1 =⇒ M1 ∼ M2 and, moreover, µ1 ∼ −µ2 so we are certain that
| cosα12| > δ > 0 and can use the C+ estimate (2.19) instead of (2.25). This yields

(1 ∨M0)σM
1
2

0 M
−2s−2(1−b)− 1

2
1 . This is fine for M0 � 1 provided − 1

4 − (1 − b) < s.
For M0 & 1, we consider two possibilities: When σ + 1

2 < 0, we can ignore M0 and
are fine if − 1

4 − (1 − b) < s; when σ + 1
2 ≥ 0, we replace M0 by M1 and ask that

σ < 2s+ 2(1− b).
2. 1 . M2 . M1 ∼ M0. We apply the estimate (2.25) to obtain the bound

M
σ−s−(1−b)
1 M

−s−(1−b)
2 . Considering the two cases s+ (1− b) ≤ 0, s+ (1− b) > 0,

one finds that σ < min(s+ 1
2 , 2s+ 2(1− b)) suffices.

3. M2 � 1 .M1 ∼M0. We return to the left side of (2.9) and replace the largest
denominator by 1. The expression that remains is Mσ

0 M
−s
1 C+(dM0 ; c1M1

, c2M2
) which

we estimate using (2.19) and sum provided σ < s + 1
2 . The contribution (2.11) to

the left side of (2.3) is appropriately bounded provided b = 1
2+, − 1

4 − (1 − b) < s

and σ < min(s+ 1
2 , 2s+ 2(1− b)).
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Next, we consider (2.12).
1. M0 �M1 ∼M2 =⇒ µ1 ∼ −µ2 and therefore | cosα12| > δ > 0 in B− so we

can apply the C− estimate (2.20). This leads to (1 ∨M0)σM
1
2

0 M
−2s−2(1−b)− 1

2
1 . If

σ + 1
2 < 0 and − 1

4 − (1 − b) < s, this sums over dyadic M0,M1. When σ + 1
2 ≥ 0,

we replace M0 by M1 and impose the condition σ < 2s+ 2(1− b).
2. M0 ∼ M1 & M2 & 1. The B− estimate (2.27) gives Mσ−s−(1−b)

1 M
−s−(1−b)
2 .

When −s− (1− b) ≥ 0, we replace M2 by M1 and require σ < 2s+ 2(1− b). When
−s−(1−b) < 0, we ignore M2 and need σ < s+(1−b) which follows from σ < s+ 1

2

for b = 1
2+.

3. M2 � 1 . M1 ∼ M0. We return to (2.9), replace the largest denom-
inator by 1 and encounter Mσ

0 M
−s
1 C−(c1M1

; dM0 , c
2
M2

). Applying (2.20) leads to

Mσ
0 M

−s
1

(
M2
M1

) 1
2

which sums over small dyadic M2 and also over M1 ∼ M0 since

σ < s+ 1
2 .

The treatment of (2.13) is similar apart from one subcase. When M2 < 1 ≤
M1 = M0, we return to (2.9) and replace (1 + |τ0 − |µ0|2|)1−b by 1 leaving Mσ

0 M
−s
1

C+(dM0 ; c2M2
, c1M1

) which we estimate using (2.19).
Therefore, (2.3) holds if the parameters satisfy b = 1

2+, − 1
4 − (1 − b) < s and

σ < min(s+ 1
2 , 2s+ 2(1− b)).

We now prove (2.4).
1. 1 . M0 � M1 ∼ M2. We have Mσ−(1−b)

0 M
−2s−(1−b)
1 . If σ − (1 − b) ≥ 0,

replace M0 by M1 and require σ < 2s+ 2(1− b). If σ− (1− b) < 0, ignore M0 and
require − 1

2 (1− b) < s.
2. M0 � 1 . M1 ∼ M2. We return to (2.14). If the largest denominator

(1 + |τ0 − |µ0|2|) > M1, we apply (2.20) and need to sum M−2s
1

1

M1−b
1

which is fine.

If (1 + |τ0 − |µ0|2|) < M1, we pay a small penalty by multiplying by Mε
1

(1+|τ0−|µ0|2|)ε >

1. This leads to

M−2s
1 M ε

1

∫
∗

d(µ0, τ0)

(1 + |τ0 − |µ0|2|)
b

c1(µ1, τ1)

(1 + |τ1 − |µ1|2|)
b

c2(µ2, τ2)

(1 + |τ2 + |µ2|2|)
b
.

Since b = 1
2 +, we can take ε > 0 arbitrarily small. We replace (1 + |τ1 − |µ1|2|)

b
by

1 and find M−2s+ε
1 C−(c1M1

; c2M2
, dM0). Applying (2.20) gives M−2s+ε

1

(
M0
M2

) 1
2

and

summability requires −2s+ ε− 1
2 < 0 or − 1

4 < s which follows from the assumption
− 1

2 (1− b) < s with b = 1
2+.

3. M1 � 1 . M2 ∼ M0. We forget the largest denominator in (2.14) and find
Mσ

0 M
−s
2 C−(dM0 ; c2M2

, c1M1
) which is fine using (2.20).

4. 1 � M1 . M0 ∼ M2. We have Mσ−s−(1−b)
2 M

−s−(1−b)
1 . If −s − (1 − b) < 0,

ignore M1 and require σ < s+ (1− b) which follows from σ < s+ 1
2 for b = 1

2+. If
−s− (1− b) ≥ 0, replace M1 by M2 and require σ < 2s+ 2(1− b).

5. M2 � M0 ∼ M1 =⇒ µ0 ∼ −µ1 and therefore | cosα01| > δ > 0. Applying

(2.20) leads to M
σ−s−2(1−b)− 1

2
1 (1 ∨M2)−sM

1
2

2 . If −s + 1
2 ≥ 0, replace M2 by M1

and require σ < 2s+ 2(1− b). If −s+ 1
2 < 0, we can ignore M2 and easily sum in

M1.
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6. M0 ∼ M1 ∼ M2. Apply the B− estimate (2.27) to (2.16) yielding the
condition σ < 2s+ 2(1− b). The cases (2.17) and (2.18) can be checked in a similar
way.

In conclusion, the estimate (2.4) holds provided b = 1
2+, − 1

2 (1 − b) < s and
σ < min(s+ 1

2 , 2s+ 2(1− b)).

Examples Demonstrating Necessity of Parameter Restrictions. We begin
by considering the estimate (2.2). Define the set RN = {(k, λ) : |k − (N, 0)| ≤
1, |λ + |k|2| ≤ 1}. This set is essentially a thin rectangle hugging the paraboloid
near (N, 0,−N2) lying above a unit square centered at (N, 0). Note that |RN | ∼ 1.
Choose û = χRN , v̂ = χR−N . Geometric considerations imply (̂uv) ∼ 1

NχT3 where
T3 = {(k, λ) : |k| . 1, |λ − 1

2N
2| . N}. Indeed, T3 ∼ RN + R−N and a translate

of RN overlaps R−N in a set of size at most | 1
N × 1 × 1| ∼ 1

N . Note that |T3| ∼
|1× 1×N | = N . We can now calculate ‖uv‖Xσ,b−1

∼ 1
N

(
N2
)b−1

N
1
2 ∼ N2(b−1)− 1

2 .

Also, ‖u‖Xs,b = ‖v‖Xs,b ∼ Ns. Therefore, the estimate (2.2) requires that

−(1− b)− 1
4
< s.(2.29)

Since b = 1
2+, we require s > − 3

4 .
Now, consider the situation when û = v̂ = χRN . We observe that ûv ∼ χS3 where

S3 is the translate of (the double of) RN centered at (2N, 0, 2N2). Therefore, we
can calculate ‖uv‖Xσ,b−1

∼ Nσ+2(b−1) and ‖u‖Xs,b = ‖v‖Xs,b ∼ Ns. We find that
(2.2) requires σ + 2(b− 1) < 2s.

The same analysis shows the necessity of the conditions − 1
4 − (1 − b) < s and

σ < 2s+ 2(1− b) for (2.3) to hold. Indeed, first take û = χRN , v̂ = χR−N and then
consider û = v̂ = χRN .

Consider the situation in (2.4) when û = χΓN and v̂ = χRN where ΓN = {(k, λ) :
|k + (N, 0)| ≤ 1, |λ− |k|2| ≤ 1}. Note that ΓN and RN are essentially translates of
each other. Simple calculations lead to ‖uv‖Xσ,b−1

∼ N b−1 and to the requirement

−1
4

+ =
1
2

(b− 1) < s(2.30)

for (2.4) to hold.
Finally, introduce the sets P0 = {(k1, k2, λ) : |k1| < 1

N , |k2| < 1, |λ ± |k|2| ≤
1}, SN = {(k1, k2, λ) : |k1 − N | < 1

N , |k2| < 1, |λ + |k|2| ≤ 1}. (Recall that k1

denotes the first component of the 2-vector k, etc.) Define û = χP0 and v̂ = χSN . A
calculation reveals that (̂uv) ∼ 1

N χSN . So, we find that ‖uv‖Xσ,b−1
∼ Nσ− 3

2 . Since

‖v‖Xs,b ∼ N−
1
2 and ‖u‖Xs,b ∼ Ns− 1

2 , the estimate (2.4) requires that σ − 1
2 < s.

Also, since P0 is symmetric under reflection in the {λ = 0} plane, the same condition
must hold with u replaced by u. Hence, (2.3) also requires σ < s + 1

2 . A simple
modification of this example shows the necessity of the condition σ < s+ 1

2 +2(1−b)
for (2.2) to hold.

A Multilinear Estimate. We conclude this section with a multilinear estimate
which will be combined with (2.2) in the next section to prove regularity bounds
on finite energy solutions of certain nonlinear Schrödinger equations.
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Proposition 1. Let ũ denote u or u. Fix a natural number r. The multilinear
estimate

‖ũ1 . . . ũr‖X 1
2 +, 12 +

≤
r∏
j=1

‖uj‖X1+, 12 +
(2.31)

holds.

The proof does not distinguish between the factors u and u.

Proof. The case r = 2 is established in Theorem 2.3 in [13] (Note that the structure
u2 is not actually used in the proof.). The extra factors in the r > 2 case are
absorbed (essentially) using the fact that X1+, 12 + embeds in L∞x,t.

By duality and the definition of Xs,b, it suffices to show

∫
ξ=ξ1+···+ξr

λ=λ1+···+λr

(1 + |ξ|)
1
2 +(1 + |λ+ |ξ|2|)

1
2 +
d(ξ, λ)

r∏
j=1

(1 + |ξj |)−1−ε
cj(ξj , λj)

(1 + |λj ± |ξj |2|)
1
2 +

≤ C‖d‖L2

r∏
j=1

‖cj‖L2 ,

(2.32)

where the ± choices are arbitrary. The constraint λ = λ1 + · · ·+λr and the triangle
inequality imply

|λ+ |ξ|2| . max(|λ1 ± |ξ1|2|, . . . , |λr ± |ξr|2|, |ξ1|2, . . . , |ξr|2, |ξ|2).(2.33)

Since ξ=ξ1+· · ·+ξr, max(|ξ1|2, . . . , |ξr|2, |ξ|2) . |ξ∗|2 where |ξ∗|=maxj=1,...,r(|ξj |).
Case 1. |λ1 ± |ξ1|2| = max in (2.33).
The left side of (2.32) is estimated

∫
ξ=ξ1+···+ξr

λ=λ1+···+λr

(1 + |ξ|)
1
2 +
d(ξ, λ)(1 + |ξ1|)−1−ε

c1(ξ1, λ1)
r∏
j=2

(1 + |ξj |)−1−εcj(ξj , λj)

(1 + |λj ± |ξj |2|)
1
2 +

.

Case 1A. |ξ1| = |ξ∗|.
We have (1 + |ξ|)

1
2 +(1 + |ξ1|)−1−ε ≤ 1 and estimate in L2

x,t L
2
x,t

r∏
j=2

L∞x,t using a

standard argument involving Fourier transform properties, Hölder’s inequality and
then the Sobolev embedding theorem.

Case 1B. |ξk| = |ξ∗| for some k ∈ {2, . . . , r}.
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Without loss, we may take k = 2 by renaming the variables. In this situation,
we estimate ∫

ξ=ξ1+···+ξr

λ=λ1+···+λr

d(ξ, λ)(1 + |ξ1|)−1−ε
c1(ξ1, λ1)

(1 + |ξ2|)−
1
2−

1
2 εc2(ξ2, λ2)

(1 + |λ2 ± |ξ2|2|)
1
2 +

×
r∏
j=3

(1 + |ξj |)−1−ε
cj(ξj , λj)

(1 + |λj ± |ξj |2|)
1
2 +

.

This may be done in L2
tL

2
x L

2
tL
∞
x L∞t L

2
x

r∏
j=3

L∞t L
∞
x . The cases when |λj ± |ξj |2| =

max in (2.33) for 2 ≤ j ≤ r are similar.
Case 2. |ξ∗|2 = max in (2.33).
We may suppose |ξ1| = |ξ∗|. We need to bound

∫
ξ=ξ1+···+ξr

λ=λ1+···+λr

(1 + |ξ|)
1
2 d(ξ, λ)

c1(ξ1, λ1)

(1 + |λ1 ± |ξ1|2)
1
2 +

r∏
j=2

(1 + |ξj |)−1−ε
cj(ξj , λj)

(1 + |λj ± |ξj |2|)
1
2 +

.

Since |ξ| . |ξ∗|, we may write∫
ξ=ξ1+···+ξr

λ=λ1+···+λr

d(ξ, λ)

(
(1 + |ξ1|)

1
2 c1(ξ1, λ1)

(1 + |λ1 ± |ξ1|2)
1
2 +

(1 + |ξ2|)−1−ε
c2(ξ2, λ2)

(1 + |λ2 ± |ξ2|2)
1
2 +

)

×
r∏
j=3

(1 + |ξj |)−1−ε
cj(ξj , λj)

(1 + |λj ± |ξj |2|)
1
2 +

.

We estimate this expression via Hölder’s inequality in L2
x,t L

2
x,t

r∏
j=3

L∞x,t. Next, we

apply the Sobolev inequality to get

‖d‖L2‖FG‖L2

r∏
j=3

‖cj‖L2

where

F̂ (ξ, λ) =
(1 + |ξ1|)

1
2 c1(ξ1, λ1)

(1 + |λ1 ± |ξ1|2)
1
2 +

,

and

Ĝ(k, λ) =
(1 + |ξ2|)−1−ε

c2(ξ2, λ2)

(1 + |λ2 ± |ξ2|2)
1
2 +

.

Note that Cauchy-Schwarz and the L4 Strichartz estimate (2.24) shows that
‖FG‖L2

xt
≤ ‖F‖L4

xt
‖G‖L4

xt
≤ C‖F‖X0,b

‖G‖X0,b
≤ C‖c1‖

L2
tH

1
2
x

‖c2‖L2
tH
−1−ε
x

which
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is not good enough. We transport 1
2 derivative from F to G using Bourgain’s

Strichartz refinement [3] to obtain

‖FG‖L2 ≤ ‖c1‖L2‖c2‖
H−

1
2−ε
≤ ‖c1‖L2‖c2‖L2

and Case 2 follows.

3. Regularity of global-in-time and blow-up solutions

How does the spatial regularity of solutions of the initial value problem{
iut + ∆u± |u|2u = 0,
u(0) = φ ∈ S(R2)

(3.1)

evolve? Conservation of the Hamiltonian

H(u, u) =
∫
R2

1
2
|∇u|2 ∓ 1

4
|u|4dx(3.2)

and the L2 norm ‖u(t)‖L2 = ‖φ‖L2 implies a priori H1 control (‖u(t)‖H1 ≤
C‖φ‖H1 ) for all time in the defocusing case (− in (3.1); + in (3.2)) and also in
the focusing case for small enough ‖φ‖L2 . In the presence of a priori H1 control,
the available local wellposedness theory [5] iterates to imply global wellposedness.
Absent H1 control, solutions of the focusing (3.1) may satisfy

‖∇xu(t)‖L2 →∞ as t→ T ∗ <∞.(3.3)

For global-in-time solutions satisfying a priori H1 control, how does ‖u(t)‖Hs ,
s� 1 behave as t→ ∞? Bourgain showed [2] that a refined local-in-time analysis
implied ‖u(t)‖Hs ≤ C|t|2(s−1)+ which provides a substantial improvement over the
easy exponential bound. Staffilani proved in [12], [13] that ‖u(t)‖Hs ≤ C|t|(s−1)+

by a direct argument exploiting an estimate on the bilinearity uv in the scale of
Xs,b spaces. Insertion of the sharp bilinear estimate (2.2) into Staffilani’s argument
gives the following result.

Theorem 2. Consider initial data φ satisfying conditions implying that the asso-
ciated solution of (3.1) satisfies ‖u(t)‖H1 ≤ C‖φ‖H1 . Then, for s� 1,

‖u(t)‖Hs ≤ C|t|α(s) as |t| → ∞,(3.4)

where

α(s) =
2
3

(s− 1) + .(3.5)

For blow-up solutions (3.3) of (3.1), how does ‖u(t)‖Hs , s� 1, behave as t→ T ∗?
Cazeneve and Weissler [5] proved that for t near T ∗,

‖∇xu(t)‖L2 & (T ∗ − t)−
1
2 .(3.6)

The explicit blow-up solutions obtained using conformal invariance of (3.1) satisfy

‖∇xu(t)‖L2 ∼ (T ∗ − t)−1.(3.7)

It is conjectured, based in part on numerical evidence [10], that C(T ∗ − t)−1 is an
upper bound on the blow-up rate of ‖∇xu(t)‖L2 . This appears to be a hard prob-
lem. We thank Frank Merle for suggesting there may be a connection between the
global-in-time and blow-up regularity bounds. Theorem 2 above has the following
implication.
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Corollary 3.1. Assume that u(t) is a blow-up solution of (3.1) with blow-up oc-
curring at time T ∗, 0 < T ∗ <∞. Assume furthermore that for t ∈ [0, T ∗[

sup
τ∈[0,t]

‖∇u(τ)‖L2
x

= λ(t).(3.8)

Then, for s� 1,

C′[λ(t)]s ≤ ‖u(t)‖Hsx ≤ C[λ(t)]2α(s)+s(3.9)

where α(s) is the degree of the polynomial upperbound on the Hs norm of global-
in-time solutions satisfying a priori H1 control.

Proof. Fix t near T ∗. Then λ(t) = λ is defined. Introduce the rescaling

v(x, τ) =
1
λ
v
(x
λ
,
τ

λ2

)
.(3.10)

The function v solves {
i∂τv + ∆v + |v|2v = 0, τ ∈ [0, λ2t],

v(0) = 1
λu(xλ , 0),

(3.11)

and

‖∇v(τ)‖L2
x
≤ 1, τ ∈ [0, λ2t].(3.12)

Notice that λ2t is a huge number so the function v is defined for a very long interval
of τ and that (3.12) together with L2

x gives an a priori bound on ‖v(τ)‖H1 . Theorem
2 gives

‖∇sv(τ)‖L2
x
. [λ2t]

α(s)
, τ ∈ [0, λ2t],(3.13)

as a consequence of certain multilinear estimates as will be shown in the proof
below. The definition of v in terms of u shows that

λ−s
∥∥∥∇su(·, τ

λ2

)∥∥∥
L2
x

= ‖∇sv(·, τ)‖L2
x
.(3.14)

Finally, note that t appearing on the right side of (3.13) is bounded by the constant
T ∗. Combining (3.14) and (3.13) gives the upper estimate in the corollary. The
lower estimate follows by interpolating the H1 norm between the L2 and Hs norms.

We now revisit the argument of Staffilani [12] and prove Theorem 2.

Proof. Let s = 2n, n ∈ N for convenience. We are considering (3.1) with initial
data satisfying H1 control. Our goal is to bound ‖u(t)‖Hs from above as t → ∞.
Let T be the lifetime of the local wellposedness result which is bounded from below
by a negative power of ‖φ‖H1 . By a priori H1 control, the local result iterates to
prove global wellposedness.

Following Bourgain [2], we wish to show the local-in-time estimate

sup
t∈[0,T ]

‖u(t)‖Hs ≤ ‖u(0)‖Hs + ‖u(0)‖1−δHs(3.15)

which iterates to give ‖u(t)‖Hs ≤ C|t|
1
δ .
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By L2 conservation and interpolation, it suffices to control the homogeneous
norm ‖u(t)‖Ḣs . The fundamental theorem of calculus gives

‖u(t)‖2Ḣs − ‖u(0)‖2Ḣs =
∫ t

0

d

dτ
‖u(τ)‖2Ḣs

= 2<
∫ t

0

〈Bsu̇(τ), Bsu(τ)〉dτ

where 〈f, g〉 =
∫
fgdx is the standard L2

x inner product and B =
√
−∆. Using the

equation we obtain

= 2<i
∫ t

0

〈Bs(−∆u), Bsu〉dτ ± 2<i
∫ t

0

〈Bs(|u|2u), Bsu〉dτ.

The first integral is real so it disappears. The worst terms arise when all of Bs hits
u or all of Bs hits u. However, if all of Bs hits u, the resulting integrand is real
and so it disappears. Therefore, we can write,

‖u(t)‖2Ḣs − ‖u(0)‖2Ḣs ≤ C
∣∣∣∣∫ t

0

u2(Bsu)2
dxdt

∣∣∣∣+ l.o.t.,(3.16)

where l.o.t. stands for lower order terms in which the differentiation is shared among
the factors. Plancherel followed by Cauchy-Schwarz (with weights) shows the inte-
gral is estimated by ∥∥u2

∥∥
X 1

2 ,
1
2

∥∥∥(Bsu)2
∥∥∥
X− 1

2 ,−
1
2

.(3.17)

Theorem 1 establishes (up to a loss of ε) the bilinear estimate

‖uv‖XT
− 1

2 ,−
1
2

≤ C‖u‖XT
− 3

4 ,
1
2

‖v‖XT
− 3

4 ,
1
2

.(3.18)

The other term is estimated using Proposition 1 giving (again up to ε)∥∥u2
∥∥
XT1

2 ,
1
2

≤ C(‖u‖XT
1, 12

)2
.(3.19)

The local wellposedness result of Bourgain [1] implies, for µ > 0, that

‖u‖XTµ,b ≤ C‖u(0)‖Hµ .(3.20)

Therefore, applying (3.18), (3.19), (3.20) and exploiting H1 control, we obtain

‖u(t)‖2Ḣs − ‖u(0)‖2Ḣs ≤ C‖u(0)‖2
Hs−

3
4
.(3.21)

Upon interpolating ‖u(0)‖
Hs−

3
4

between ‖u(0)‖Hs and ‖u(0)‖H1 , we obtain (3.15)
for the top order term. A similar argument applies to the lower order terms.

Comments on Higher Power Semilinear NLS Equations on R2. Consider
a global-in-time solution u of the defocusing NLS equation{

iut + ∆u− |u|p−1u = 0, u : R2
x × Rt 7−→ C,

u(0) = φ,
(3.22)

with finite energy

E = E(u) =
∫
R2
|∇u|2 + |u|2 +

2
p+ 1

|u|p+1
dx.(3.23)
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Nakanishi recently proved [11] for p > 3 that such solutions satisfy

‖u‖L2(p−1)(R2
x×Rt) ≤ C(E).(3.24)

In case p − 1 is even, we infer from this inequality that smooth global-in-time
finite energy solutions of (3.22) satisfy

‖u(t)‖Hs ≤ C.(3.25)

We restrict our attention to p−1 even, so that u 7−→ |u|p−1u is smooth. We imitate
an argument appearing in [4].

1. A calculation shows, for s ≥ 1, I = [0, b], 0 < b ≤ ∞,

‖Ds
xu‖L4

x,t∈I
≤ c1‖φ‖Hs + c2‖u‖p−1

L
2(p−1)
x,t∈I

‖Ds
xu‖L4

x,t∈I
.(3.26)

Indeed, from the integral equation, we have

‖Ds
xu‖L4

x,t∈I
≤ ‖Ds

xe
it∆φ‖L4

x,t∈I
+ ‖Ds

x

∫ t

0

ei(t−τ)∆|u|p−1u dτ‖
L4
x,t∈I

.

Strichartz inequality in R2
x × Rt gives

‖Ds
xe
it∆φ‖L4

x,t∈I
≤ c1‖φ‖Hs

and the inhomogeneous version implies

‖Ds
x

∫ t

0

ei(t−τ)∆vdτ‖
L4
x,t∈I

≤ C‖Ds
xv‖

L
4
3
x,t∈I

.

We write

‖Ds
x|u|p−1u‖

L
4
3
x,t∈I

≤ C‖(Ds
xu)|u|p−1‖

L
4
3
x,t∈I

+ l.o.t.

where l.o.t. denotes lower order terms where the differentiation is shared among the
factors. By Hölder, we have

‖(Ds
xu)|u|p−1‖

L
4
3
x,t∈I

≤ ‖Ds
xu‖L4

x,t∈I
‖u‖p−1

L
2(p−1)
x,t∈I

as claimed. The lower order terms can be handled with the Leibniz rule and inter-
polation using the smoothness of the nonlinearity.

2. A similar calculation shows for s ≥ 1 that

sup
t∈I
‖u(t)‖Hs ≤ c3‖φ‖Hs + c4‖u‖p−1

L
2(p−1)
x,t∈I

‖Ds
xu‖L4

x,t∈I
.(3.27)

3. Fix ε > 0, by (3.24) there exist disjoint intervals I1, . . . , IJ , J = J(ε) < ∞,
such that

Rt =
J⋃
j=1

Ij

and, by (3.24),

‖u‖
L

2(p−1)
x,t∈I

< ε,

uniformly in j. Therefore, for small enough ε, we can absorb the nonlinear terms
in (3.26) and (3.27) into the left side of the inequalities. Finally, we note that there
are finitely many Ij so (3.27) implies (3.25).
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Remark 4. If we consider the evolution i∂tu + ∆u + |u|p−1u = 0, p > 3, in place
of the evolution in (3.1), the Cauchy-Schwarz application at (3.17) leads to∥∥∥u p+1

2 u
p−3

2

∥∥∥
X 1

2 ,
1
2

∥∥∥(Bsu)2
∥∥∥
X− 1

2 ,−
1
2

.

Proposition 1 allows us to estimate the first factor. An adaptation of the proof of
Theorem 2, exploiting the r > 2 case of Proposition 1 (see Remark 4), shows all
such solutions satisfy (3.4) provided p − 1 is even. It is not known if the smooth
global-in-time finite energy solutions of this focusing analog of (3.22) satisfy the
estimate (3.25).
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