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BILINEAR ESTIMATES AND APPLICATIONS TO 2D NLS

J. E. COLLIANDER, J.-M. DELORT, C. E. KENIG, AND G. STAFFILANI

ABSTRACT. The three bilinearities uv, wv, wv for functions u, v : R? x [0, T] —
C are sharply estimated in function spaces X ; associated to the Schrodinger
operator 19; +A. These bilinear estimates imply local wellposedness results for
Schrédinger equations with quadratic nonlinearity. Improved bounds on the
growth of spatial Sobolev norms of finite energy global-in-time and blow-up
solutions of the cubic nonlinear Schrédinger equation (and certain generaliza-
tions) are also obtained.

1. INTRODUCTION

The three bilinearities uv,wv, wv for functions u,v : R? x [0,T] — C are stud-
ied in function spaces X associated to the Schrédinger operator 0, + A. We
establish sharp (up to endpoint) bilinear estimates for the R? case extending the
work of Kenig, Ponce and Vega [9] and Staffiliani [13]. These estimates imply local
wellposedness of the initial value problems (i = 1,2, 3)

10w+ Au + N;(u,u) =0,
(1 s S ey
2

with rough initial data ¢ where Nj(u,%) = u?, Na(u,u) = tu and N3(u,u) = u>.
The bilinear estimates also imply, following the arguments in [13], [12], polynomial-
in-time upper bounds on |[u(t)||5.,s > 1, for certain global-in-time and blow-up
solutions of the physical cubic nonlinear Schrédinger equation.

The proof of the bilinear estimates relies on a delicate geometric analysis. This
analysis introduces new techniques which extend the calculus arguments first used
in [8] and also in [J] to the R? setting. In particular, we show how the support
properties of the set where all the X ; denominators simultaneously vanish may be
exploited to prove sharp estimates. Similar ideas were used by Delort and Fang [7]
for the Klein-Gordon equation. These techniques are also applied in a forthcoming
paper on the Kadomtsev-Petviashvili I equation [6]. Related work which generalizes
this study to higher dimensions and to other dispersive operators has recently been
completed by T. Tao [14].

The next section contains the bilinear estimates and statements of the local
wellposedness results concerning (II)). Section 3 addresses regularity properties
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of solutions of the cubic nonlinear Schrédinger equation on R%. The third section
also contains comments concerning higher power generalizations of cubic defocusing
NLS stemming from the recent scattering result [I1] of Nakanishi. We thank Kenji
Nakanishi for a useful correspondence. We also thank Gustavo Ponce and Luis Vega
for sharing their preliminary notes (in collaboration with C.E.K.) on the trilinear
form wow with = € R.

2. BILINEAR SCHRODINGER ESTIMATES ON R2

Let u,v : R? x [0,T] — C. We consider here the three quadratic forms
uv,uv,uv and establish sharp bilinear estimates in the spaces X, associated to
the Schrodinger operator i9; + A on R?. These estimates extend the work of Kenig,
Ponce and Vega [9] in one-dimension to the two-dimensional setting.

For u : R2 x R} —— C, we recall the definition of the norm in X 5 from [T],

I

2

(2.1) ||u||xs,,,=( /] |<1+|A+|k|2|>”<1+|k|>sa<k,A>|2dde) ,

where @ denotes the space-time Fourier transform of w,

a(k,\) = / / e 1Rt (2, t)ddt.

Since X;; is a weighted L? norm, we may replace all functions of the Fourier
transform variables in the calculations of this norm by their absolute value. We
will sometimes write a+ to denote o + € and a— to denote o — ¢ for arbitrarily
small € > 0.

This section establishes the following theorem.

Theorem 1. Let b= % +.
(i) The bilinear estimate
(2.2) [wvllx,, , < Cllulx,,

o,b—1 —

vllx.,
holds provided —1 — (1 —b) < s, and 0 < min (s+ 3 +2(1—b),2s+2(1-b)).
Moreover, the estimate (2.2) fails if s < —% — (1 —b) and also if

1
U>min<s+§+2(1—b),25—|—2(1—b)>.

(it) The bilinear estimate
(2.3) uvllx,, , < Clulx,,

o,b—1 —

vllx, ,

holds provided —% —(1-b) < s, and 0 < min (s + %, 2s+2(1— b)) Moreover, the

estimate fails if s < —1 — (1= b) and also if o > min (s + 3,25 + 2(1 — b)) .
(i1i) The bilinear estimate

(2.4) [avlx,, , <Cllulx,,

o,b—1 —

vllx, ,
holds provided —%(1 —b) < s, and 0 < min (s + %,25 +2(1 - b)) . Moreover, the
estimate ) fails if s < —%(1 —b) and also if o > min(s + 3,2s +2(1 —b)).

In particular, we have the estimates

@l ,, . Sl ) ol

vl , Sl Tl

1
5 +, 3+
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and

favllx, ,, Shuls ,,, ol .-

Using the technique used to prove Theorem 1.5 in [9] and also used in [g], the
bilinear estimates of the theorem imply the following results concerning the local
wellposedness of the initial value problems

Corollary 2.1. In the cases i = 1,3, the initial value problems ([LI) are locally
wellposed for data in H*(R?),s > —%. In case i = 2, (ILT) is locally wellposed for
data in H® s > —%.

Our proof of the estimates ([2:2), [2.3) and (24) isolates common geometric
features of all three estimates. In particular, a standard dyadic decomposition in
the spatial frequency variable and a parabolic level set decomposition collapses
consideration to four standard trilinear forms expressing the interactions of L2
functions supported near paraboloids above dyadic shells. The main new difficulty
in the R? occurs when an orthogonal relationship among the vectors k, k1, ko holds.

We outline the proof. We define the trilinear forms A4, B4, C+ and then show
that the estimates (Z2)), (Z3) and (Z4)) collapse to estimating A, , B_ and C on
functions supported above dyadic shells in the spatial frequency variable. Next,
we state and prove lemmas which provide estimates on the trilinear forms A, B_
and Cy. (The proofs of these lemmas contain the hard work.) The lemmas are
then used to prove the bilinear estimates of the theorem. Finally, we present some
examples which demonstrate the necessity of some of the parameter restrictions in
the theorem.

Notation. For nonzero p;, p; € R?, let a;; denote the angle between ; and p;.
For dyadic My, M1, My write M, = min(My, M1, M3) and M* = max(My, My, Ms).
Subscripts on functions will sometimes be used to denote localizations, e.g.,
IX{lpol~Moy = Ja,- Superscripts denote components of vectors. Finally, we write
f* to denote the expression

no+r1+p2=0

To+71+72=0

Standard Forms. The following expressions appear naturally in our study of
bilinear Schrodinger estimates:

f (1o, 70) g(p1, 1) h(pz2, T2)
Ai(f7g7h): 1—b 2. b 9,0’
«leosanal " (14 |y + | ?)) (1 + |72 £ |p2l?])
f (1o, 70) g(p1,71) h(pz, m2)
Bi(f;9,h) = 1-b m N N
« leosaoa| " (14 |y + |pa*]) (1 + |72 £ |p2f?])
glpr, T h(po, T
C:I:(f?ﬂah):/f(ﬂO;TO) (o, 71) 5 b (2, 72) 5"
* (L4 |m + [al7]) (X4 |72 £ |p2]7])
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Reduce (Z2) to Standard Forms. Duality and the definiton (ZII) show that
(22) is equivalent to showing
/ (1 + [pol)”d(po, 7o) (1 +[pa )" (pua, m1) (1 + |p2]) " ¢* (2, 72)
2, 1-b 2. b 2. b
* (L+ |70 = ol ™)) Tt fm = lml) (42 = |p2l7)
< Clldll 2 el [ .-

The convolution constraint 79 + 71 + 72 = 0 and the triangle inequality imply
|2

(2.5)

2 2 2 2 2
(2.6) max(|7o — [pol"|; |7 = |pa "l [72 = [p2l™]) Z lpol™ + [pa ™ + |
We study the contribution to the left-side of (Z3]) arising from the region {|uo| ~
Mo}, {lpa| ~ My}, {|p2| ~ My} for dyadic My, My, Ms in the three cases of (2.0
when all of the M; > 1. In case the 0-denominator is the max, we note that
170 — |po]?] = (M*)? and need to estimate, after a change of sign of all the variables
appearing in the integral,

(1V Mo)7(1V M) *(1Vv M)~ ®

2(1—b

(M*) (1-0)
and then sum over dyadic 1 < My, My, Ms. When the 1-denominator is the max,

after borrowing a bit from the 1-denominator to replace 1 — b by b on the 0-
denominator, we encounter

(1V Mo)?(1V M) °(1Vv M)~ ®
(M*)z(kb)

and a similar expression arises in the final case.

(2.7)

C+ (dMo ; C}\/Il ’ C?WQ)

(2.8) C(chr, dito, Ehs,)

Remark 1. The low frequency cases (M; < 1) will be treated separately below using

R3) directly.

Reduce (23) to Standard Forms. The estimate (23)) is equivalent to showing
/ (1 + [pol)”d(po, 7o) (1 +[pa)""et(pa, m1) (1 + |p2]) "¢ (2, 72)

1-b b b
(2.9) (1+ |70 — |mol?]) 1+ |m + | ) (1+ |72+ |pal?))
< Clidlga el 2]l -
Note that
(2.10) max (|0 — |pol*|, |71 + [ [*|, 72 + [p2l*]) 2 |pal|pe|| cos aral.

The contribution from {|ug| ~ Mo}, {|pi| ~ M1}, {|pe| ~ Mz} in case the 0-
denominator is the max is

(1 \Y Mo)g(]. \Y Ml)is(l \Y Mg)is
M=oy b

(2.11) A (day; Chay s G-

In case |7y + |p1]?] is the max, the contribution is given by
(1V M) (1V M) *(1V My)™*°
M{~PMy 0

and the final case leads to
(1V M) (1V M) °(1V My)™°
MMy

(212) B*(C}Wl;dMoﬂc?\/[z)v

(2.13)

B*(C?\/Iz;dMovc}Wl)'
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Remark 2. Some low frequency cases (M; < 1) will be treated separately below

using (Z9) instead of the reductions ([ZI1), (ZI12) and (ZI3).

Reduce (24) to Standard Forms. The v estimate (2.4)) is equivalent to showing

/ (14 Jpol)7d(po, 70) (1 + [pa])”*c (pa,m) (1 + |p2]) " (p2, 72)

1-b b b
(2.14) A+ 70— 2D ™" A+ m—1m?)’ A+ |7+ |uel?))
< Clldll [l || 2 €] -
We have
(2.15) max(|ro — |pol’[, |71 — |ual’], |72 + |p2|*]) 2 |pol k] cos .

The 0,1,2 cases of the maximum lead (respectively) to the following bounds on the
contribution arising from {|u;| ~ M;}:

(]. \Y M())U(]. \Y M1)75(1 \Y Mg)is

(2'16) MAI-ba it B*(dMo;C?\/IQaC}\/Il)v
0 1
(]. \Y M())U(]. \Y Ml)_s(l \Y Mg)_s
(217) lelefb B_(C}wl;C?\/]27dMo)7
0 1
and
1V M) (1v M) *(1V M)~ *
(2.18) ( ) Ay (cy,iday, iy, )-

T—bari—b
My~ M,

Remark 3. Some low frequency cases will be treated separately below using ([2:14)

instead of the reductions (2:16), (Z.I7) and (ZI8).

Estimates for Standard Trilinear Forms. Apart from certain low frequency
cases, the preceding discussion reduced the study of the bilinear estimates (2:2)),
B3), (Z4) to proving bounds on the trilinear forms A, B_ and C'y when applied to
functions supported on dyadic shells in the spatial frequency variable. We present
some lemmas establishing such bounds and then return to the expressions above to
complete the proof of the bilinear estimates.

Lemma 1. The following estimate holds,

M,
M*

(2.19) |c+<fM0;ng,hM2>|s( )||fMo||L2||ng||Lz||hM2||Lz7

when M* > 1 and M, is arbitrary. We also have

My A My

1
3
m> ||fMo||L2||9M1 ||L2||hM2 ||L2'

(220) |- (fatosgan han)| < (

Proof. Recall that

(p1,71) h(p2,72)
Ci(figih) = | Flo,m0)—2 :
/* " 4 P (4 e £ el
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Parabolic Level Set Decomposition. Cut the functions g, h into parabolic level

sets by writing g = > ) <z g1, h = > ¢z Iu, where g, = IX{(r1+ ) =11 +0(1)} and
hiy = hX{ (4| |2)=1+0(1)} - Matters collapse to controlling

1

Z f(=p1 = pa, =P |p2]? = 01 — 02 — 11 — 1)
1+ 1)@ + |12]) / /

l1,l2 ( +| 1|) ( + | 2|) {l6;]<O(1)}

X gu, (s =l [ + b+ 010) b, (pa, £ pel® + l2 + 02)dpn dpadfdos
Since b > %, Cauchy-Schwarz in [, o establishes (2:19)) and (B:20)) if we prove

Far (=11 = p2, —pa|* = Jp2]? + 01 + 62)
0:=0(1)

(2:21) X gar, (g1, = + 00) s, (2, —|pa|” + 62)dpridb);

1
M.\ 2
< (37) Wosillsslonn sVl

and
/ /fMo(—Ml—uz,—|u1|2+|u2|2+91+92)
0;=0(1)
(2:22) x gay (pi1, =i + 00)ha, (2, + || + 02)dprido);
1
My A DM\ 2
< (37972 ) Molalann s inelo

respectively.

We focus our attention on (Z2T)). Since p1 and ug appear symmetrically, we
may assume M7 = M, and consider the three cases My <« My = M;j ~ My and
My ~ My > My, My~ My ~ M.

Case 1. My < My ~ M.

Since |p1 + p2| = |pol ~ Mo, we know that |uo — p1| ~ M;. We may assume
|u2 — pu3| ~ M; since a modification of what follows applies in the alternative
case |u3 — p?| < My = |u} — p}| ~ M;. This modification is described
below. We decompose {|u1]| ~ M} into disjoint cubes Q; of side My and similarly
decompse {|u2| ~ My} into cubes Q;, of side My. Since po + p1 + p2 = 0, Qj,
is uniquely determined by @, which we indicate by writing jo = j2(j1). For
fixed 0,0, we change variables u = —u1 — p2, v = —|u1|? — |p2|® + 01 + 62,
dudv dpl = Jduldp2du? dud. A caleulation shows J = 2|u3 — p3| which is of size
M by assumption. The pjpo-integration in (2:21)) may be re-expressed as

) / / Fato 1ty 0) H (1, 0, 1)l
@it pemt Qg )
where 7! is the projection onto the first component and

2 2
H(’U,,U,/Jé) _ IM1,Qj (lu‘lv_|M1| +91)h}/[27Qj2(j1)(,u‘27_|M2| +92)
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Cauchy-Schwarz in u,v followed by Cauchy-Schwarz in p} and changing back to
the original variables leads to

Y !
> (50) ||fMo||L2( [l G, =l + 00
Qh

x < [ e 2l + 92)|2du2)

as the desired upper bound on the inner integral in (221]). Cauchy-Schwarz in Q;,
and 6; finishes off this case.

In case |2 —p2| < My = |pd —pul| ~ My, we modify the change of variable by
using the same u, v as above but dudv du3 = Jduldu?dul du3. Upon calculating,
we find J = 2|u] — p3| which is of size M;. Therefore, the Cauchy-Schwarz and
change of variables argument used previously leads to the same result here.

Case 2. My ~ M; > M.

Since My < Mj, the change of variable used above satisfies, assuming |u?| > Mj,
J ~ Mj. The situation when pi is the big component of u; is handled similarly.
We decompose {|po| ~ Mo} into cubes @, of side Ms and {|u1| ~ M} into cubes
Qj, also of side My. Again, jo = jo(j2) and an imitation of the Case 1 argument
yields the upper bound

1

Mo\ 2

(2.23) 2 W fanoll e llgnn | e llhas |l o
My

Case 3. My~ M, ~ M.
Here, we have M, ~ M* and return to the expression

ST h(pso, T
/f(:UOaTO) g(ﬂl 1) 5 b (HQ 2) N
* (L4 m + (™)) X+ 72+ |pe2l7])

The desired estimate then follows in this case using a familiar argument exploiting
the Strichartz estimate

// . z(kx-l—)\t)dkd/\
(1+ |)\ + |k| )

This completes the proof of (2.21]).
We now turn our attention to (2.22)) and break the analysis into four cases:

1. My~ My > M,
2. My~ My > My,
3. My ~ Ms > My and
4. My ~ My ~ M.

In cases 1 and 2, we bust the largest shells into cubes of the smallest scale and make
a change of variable. Cases 3 and 4 follow directly from the Strichartz inequality
since My A My ~ My V Ms.
Case 1. M() ~ M1 > Mg.
Bust up the My and M; shells into cubes Qj,,Q;, (respectively) of side Mo.
Rotate coordinates such that |u2| ~ |u1|. We change variables u = —pu; — pa,
—|p1)? + |p2|* + 01 + 02 with dudv dud = Jdpldp3du3 dul. A calculation

(2.24) < Cllall 2.

4
Ly
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shows J = 2|p? — p3| which may be assumed to have size ~ M;. Cauchy-Schwarz
applications lead to the bound

1
My 2
(32) Wosillisllons = o

as claimed.

Case 2. Mgy ~ My > M;.

The change of variable used in Case 1 above now has J ~ Ma, assuming |u3| ~
Ms. We break the My, My shells into Mj-sized cubes and imitate the preceding

argument.
As mentioned above, Cases 3 and 4 follow from (224). O
Lemma 2.
(2.25) | At (s 9anys b )| < Cllfaro |2 g [l 2 (1 | 2
Proof. Recall that
Ay (fig.h) = f(po,70) 9(p1,71) h(p2,72) =

 leosanal ™ (L fry + puaP)” (1 fr2 + 1)

The symmetric appearance of puq, o allows us to assume M; > Ms. In case
|cosaiz| > § > 0, we reduce to Cy(fnsy; gn,, har,) which was appropriately es-
timated in Lemma [ We may assume | cos ajo| is small and, therefore, that uy is
almost perpendicular to po.

Consider the contribution arising from the region where |cosaia| ~ v < 1 for
v dyadic. A parabolic level set decomposition using b > % reduces matters to
considering

1
10 / / Saro (=1 — piay +pa [ + |p2]® + 61 + 62)

v
(2.26) 0;=0(1) {| cos a12|~v}
X gy (s =[]+ 00) R, (p2, —| ol + 02)dpid6;.

The small cosine level set suggests decomposing the M; and M; shells into disjoint
“pie slices” of angular aperture v. Write for ¢ = 1,2, {[u;| ~ M;} = UJ;, A;, with
Aj, = {ki + ki = |kile?, |0 — jiv2m| < O(v)} pairwise disjoint. The cosine level set
condition |cosaiz| ~ v forces A, = Aj, (1) for nonzero contribution. We replace
gm, by gar, a;, and hag, by hag, a,, in ([226) and must sum over j;. For fixed
J1, we can rotate to ensure Aj,(;,) is bisected by the u3 axis. Note then that
|T1(Aj,)] ~ vMy where we have again used 7! to denote the projection onto the
first coordinate. We may assume that A4;, lies (nearly) along the positive pi axis.

We apply the change of variable used in Case 1 of the proof of Lemmalll. Since
the Jacobian J = |2(u? — p3)|, the arrangement of the “pie slices” shows J ~
M, [] The “extra integration” along pj takes place along 7' (A;,) which is of size
vMs. Therefore, the change of variable and Cauchy-Schwarz show the fixed j;
contribution to (2:20) is bounded by

1 M.
o s o

=

hata, 45, 12

IThere is the possibility that vMy 2 Mo in which case p? —p3 may be very small. If this occurs,
a change of variable with u% playing the “extra integration” role leads to the same conclusion.
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and Cauchy-Schwarz allows us to sum in j;. Finally, note that pz—(1-b) — vé e >0,

so we can sum over small dyadic levels of the cosine completing the proof. [l
Lemma 3.
(2.27) B (fanos guys haty) < Cllfano |l g2 lgan | 2 Vhas | o

Proof. Recall that
f(po, 70) 9(p1, 1) h(p2, 72)
» leosaoal ™ (14 fry + i PI) (14 |72 = paaf?])
A parabolic level set decomposition collapses the issue to controlling
/ /fMo(—u1—u2,—|u1|2+|u2|2+91+92)
(2.28) 0—b) | cos aga|' "

X gnry (1, —|pa|® + 01) o, (2, 2| + 02)dpidb;.

B_(f;9,h) =

b’

In case | cos agz| > § > 0, we encounter the previously estimated C_ expression.
We may therefore assume the cosine term is small. Consider the contribution arising
from | cos az| ~ v < 1, v dyadic.

Case 1. vMy < M,. As in the proof of Lemma [, we cut the My and My
shells into disjoint “pie slices” Aj (;,y and Aj,. We have jo(j2) using the cosine
level set condition and pg + 1 + pe = 0.

For fixed jz, rotate such that A;(;,) is bisected by the positive p3 axis. Note that
Ajo(j,) 18 essentially a vMy x My rectangle. We may assume Aj, is almost along
the positive pi axis. Decompose Aj, and the M; shell into disjoint translates of the
smallest rectangle containing A;(;,y. Therefore, we can write {|u1| ~ M1} = J Ry,
and A;, = |JR;,. Since po + p1 + w2 = 0, we have i1 = i1(i2). Note that this
decomposition cuts A, into disjoint rectangles of size My along the u} coordinate
axis and of size (vMy A M) along the p3 axis.

The fixed ja contribution to the | cos agz| ~ v contribution to ([228) is estimated
by

1 / / 2,
— Into, Ay, (o, —|pn + pol® + (2| + 61 + 62
75 2 fy oy ] ot il & izl + i )

X gMy Ra, iy (—H0 — p2, — |10 + pi2|* + 02)hasy Ry, (12, | 2] + 02)dpidb;.

The change of variables u = pg,v = |po + p2|? — |pa|® + 61 + 02, dudv dul =
Jdpyduddu dud has J = 2|u| ~ M. Note that |7 (R;,)| ~ v My so the “extra in-

tegration” in u3 leads to the factor (Z/Mo)%. Familiar Cauchy-Schwarz applications
eventually give

1
1 vMp 2
J1-b Z ( M00> HmeAjoHLz
i2

Applying Cauchy-Schwarz in iy reveals

l/%i(l*b)‘

|hM27R772 ’LT

thRil(iz) L2 |

| Fato g || 2l [z [ Ba,a, | o

Recalling that jo = jo(j2), we apply Cauchy-Schwarz to sum in jo and use % —

(1 —b) > 0 to sum over small dyadic levels of | cos agz].
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Case 2. vMy > Ms.

We cut the same decomposition into “pie slices”. We fix jo and rotate into
the configuration considered above. The change of variables has J ~ |ud| ~ M.
Decompose A}, (;,) and the M; shell into disjoint translates of A;,. For any translate
7, we have |r!(7(4;,))| ~ M2 < vMy. Therefore, the “extra integration” and the

1 1
Jacobian manufacture the prefactor (%) * < ("J\%‘)) 2, and orthogonality and

Cauchy-Schwarz applications complete the proof. O

Proof of Bilinear Estimates. The low frequency region My, M7, My < 1 of the esti-
mates (2:2), 23) and ([24) is treated the same way. Since the terms (1 4 [p;])(~*)
or (14 |pg))) in the numerator are all O(1), we ignore them. The remaining
expression is estimated using the Strichartz estimate (2.24]) using b > % We may
now assume throughout that M™* > 1.

We turn our attention to establishing (2.2). Symmetry in pq, po allows us to
assume M7 > Ms. In Case 1, My < 1 < My = M; ~ My, an application of the
C lemma (ZT9) gives the bound M, 7872(171))7%M2%. This is summable in dyadic
My > 1 if we require o < s+ % +2(1-05). Clearly, we have summability over dyadic

My <« 1. In Case 2, My < 1 < M; = M; ~ M>; we again apply (ZI9) to [21)
—9s—2(1—b)—21 1
and (2.8) to find M, 2s-2(1-) Mg which sums over dyadic M7 > 1 provided
—% — (1 =b) < s and also over dyadic My < 1. In Case 3, 1 < My, M7, My with
My > M. When 1 < My < My = My ~ Ms, we are led, using (2.19) on 2.7,
MU+%M72572(17b)7% If 1S bound b MU+%72872(17b)7% d
E23) to M, 1 . If 04 5 >0, we bound by M, an
can sum using the condition o < 2s + 2(1 — b). For o + % < 0, we can sum over
dyadic My > 1, and the condition —% — (1 -1b) < s allows us to sum in M;. In

e oy 1 _ 1
case 1 < My ~ M,y with 1 < My < M, we are led to M} ° 2(1-b) b 3y

—s+ % < 0, we can sum over dyadic Ms 2 1. When —s + % > 0, we can replace
My by M; and require o < 2s + 2(1 — b) to sum in M;.

Summarizing, we have found that ([Z3) is valid when b= 2+, —2 — (1 -b) <s
and o < min(s + 1 4+ 2(1 — b),2s 4+ 2(1 — b)).

We now concentrate on establishing ([2-3). Again by symmetry, M; > Ms. The
low frequency case common to (Z2), (Z3) and 27) treated above allows us to
assume M* > 1. We first consider the situation leading to (2IT]).

1. My < My = M; ~ M> and, moreover, u; ~ —p2 so we are certain that
|cosaiz| > ¢ > 0 and can use the C1 estimate (ZI9) instead of (Z23]). This yields
(1v MO)"MO%M172872(1717)7%. This is fine for My < 1 provided —1 — (1 —b) < s.
For My 2 1, we consider two possibilities: When o + % < 0, we can ignore My and
are fine if —i —(1-0) < s; when o + % > 0, we replace My by M7 and ask that
0<2s54+2(1—-0).

2. 1 < My S M ~ My. We apply the estimate (Z2H) to obtain the bound
Mf_s_(l_b)MQ_S_(l_b). Considering the two cases s + (1 —b) <0,s+ (1 —b) > 0,
one finds that o < min(s + 3,2s + 2(1 — b)) suffices.

3. My <1< My ~ My. Wereturn to the left side of (229) and replace the largest
denominator by 1. The expression that remains is Mg My *Cy (day; ¢}y, , €34,) which
we estimate using (2219) and sum provided ¢ < s + 4. The contribution (ZII) to
the left side of (Z3) is appropriately bounded provided b = %—l—, —% —(1-b)<s
and o < min(s + 3,25+ 2(1 — b)).
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Next, we consider (ZI2]).

1. My < My ~ My = p3 ~ —pe and therefore | cosaga| > 0 > 0 in B_ so we

1 og o(l_p)_1
can apply the C_ estimate (Z20). This leads to (1 V My)? M3 M, R B Ui

o+ % < 0 and —% — (1 =) < s, this sums over dyadic My, M;. When o + % >0,
we replace My by M; and impose the condition o < 2s 4+ 2(1 — b).

2. My~ M; > My > 1. The B_ estimate (Z27) gives MY *~ =% a0,
When —s — (1 —b) > 0, we replace My by M; and require o < 2s+2(1 —b). When
—s—(1-b) < 0, we ignore M5 and need o < s+ (1—b) which follows from ¢ < s+ 3
for b= %—I—.

3. My « 15 My ~ My. We return to ([29), replace the largest denom-
inator by 1 and encounter M§M; *C_(c} ;d,,c3y,). Applying (Z20) leads to

1
MgM, s(%ﬁ) * which sums over small dyadic M5 and also over My ~ My since
o<s+ %

The treatment of (ZI3) is similar apart from one subcase. When My < 1 <
My = My, we return to (2.9) and replace (1 + |p — |,u0|2|)17b by 1 leaving M§ M, ®
Cy (dagy; Gy, s €1y, ) Which we estimate using (2T9).

Therefore, [23) holds if the parameters satisfy b = 3+, —% — (1 — b) < s and
o < min(s + 3,2s +2(1 - b)).

We now prove (2.4)).

1. 1< My < My ~ My, We have MJ™ P a27070 15 6 — (1 - 1) > 0,
replace My by M; and require 0 < 2s+2(1—10). If 0 — (1 — b) < 0, ignore My and
require —1 (1 —b) < s.

2. My < 1S My ~ My, We return to (ZI4)). If the largest denominator

(14 |70 — |po|?|) > M, we apply Z20) and need to sum M, > Mlll"’ which is fine.

If (1 + |70 — |uo|?]) < My, we pay a small penalty by multiplying by MW >
1. This leads to

Ml—QSMle / d(MO; TO) Cl (Mlv 7—1) 02 (MQ; 7—2) .
*(

b b
Lo = luol*)” (L4 |m = | P (1 + |72 + |n2f*))

b
Since b = 3+, we can take € > 0 arbitrarily small. We replace (1 + |7 — L ’])” by
1

1 and find M;?¥"<C_ (¢hr,i Giryr dnry)- Applying (ZZ0) gives Mf2s+6(%)§ and
summability requires —2s+ e—% < 0or —% < s which follows from the assumption
—3(1—b) < s with b= 1+.

3. M1 <1< My ~ My. We forget the largest denominator in and find
Mg My >C_(dasy; €3y, €y, ) Which is fine using (2.20).

4. 1< My < My ~ My. We have MJ D=0 15 s — (1-1) <0,
ignore M; and require o < s+ (1 — b) which follows from o < s+ 1 for b= 2+. If
—s—(1—10b) >0, replace M; by Mz and require o < 2s + 2(1 — b).

5. My < My~ My = po ~ —pq and therefore | cosagr| > § > 0. Applying

Z20) leads to Mf_s_Q(l_b)_%(l v Mg)’SMQ%. If —s+ § > 0, replace M, by M,
and require o < 2s 4+ 2(1 —b). If —s + % < 0, we can ignore My and easily sum in
M.
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6. My ~ My ~ Ms. Apply the B_ estimate (ZZ7) to (ZIG) yielding the
condition o < 2s+2(1 —b). The cases (ZI1) and ([ZIF)) can be checked in a similar

way.
In conclusion, the estimate (ZZ) holds provided b = 1+, —1(1 —b) < s and
o < min(s + 3,25 +2(1 —b)). O

Examples Demonstrating Necessity of Parameter Restrictions. We begin
by considering the estimate (ZZ). Define the set Ry = {(k,A) : |k — (N,0)| <
1, |\ + |k|?| < 1}. This set is essentially a thin rectangle hugging the paraboloid
near (N 0, —N?) lymg above a unit square centered at (N, 0). Note that |Rn| ~ 1.
Choose T = XRus D= XR_y- Geometric considerations imply (uv) XTJ where
T5 = {(k,\) : |k] S L, |A— §N2| < N}. Indeed, T5 ~ Ry + R_n and a translate

of Ry overlaps R_y in a set of size at most |4 x 1 x 1| ~ . Note that T3] ~

|1 x1x N[ = N. We can now calculate [0y,  ~ %(NQ)b_lN% ~ N2(b-1)=3
Also, [lullx_, = [lvllx,, ~ N*®. Therefore, the estimate (2.2)) requires that

(2.29) —(1-b)— i <s.

Since b = %—i—, we require s > —%.

~

Now, consider the situation when U=07= XRy- We observe that 0 ~ X5 where
S5 is the translate of (the double of) Ry centered at (2N,0,2N?). Therefore, we
can calculate ||W||XM71 ~ No+20-1) and ullx,, = ||vHXS’b ~ N*. We find that
B2) requires o +2(b—1) < 2s.

The same analysis shows the necessity of the conditions —l —(1-b) < sand
o < 25+ 2(1—0b) for (Z3)) to hold. Indeed, first take & = xr,, ﬁ XR_y and then
consider U =0 = xR, -

Consider the situation in (Z4) when % = xp, and 0 = yg, where Ty = {(k, ) :
|k + (N,0)| < 1,|]A — |k[?| < 1}. Note that I'y and Ry are essentially translates of
each other. Simple calculations lead to [[wv||y ,  ~ N =1 and to the requirement

1 1
(2.30) _Z+ = E(b_ 1)<s
for (24) to hold.

Finally, introduce the sets Py = {(k', k% X) : [k'| < %,[k?] < 1,|A £ [k]?] <
1}, Sy = {(k' k%, N) : |k = N| < &, |k?| < 1, |A+ [k]?| < 1}. (Recall that k!
denotes the first component of the 2-vector k, etc.) Define 7 = Xp, and U = XSN A
calculation reveals that (ﬂ/;) ~ iXSN So, we find that |[Tv[|y ,  ~ N?7%. Since

lvllx,, ~ N—2 and ullx_, ~ N* 2, the estimate (Z4) requires that o — § < s.
Also, since Py is symmetric under reﬂectlon in the {\ = 0} plane, the same condition
must hold with @ replaced by u. Hence, [Z3) also requires 0 < s+ 3. A simple

modification of this example shows the necessity of the condition o < s+3+2(1—b)
for (Z2) to hold.

A Multilinear Estimate. We conclude this section with a multilinear estimate
which will be combined with (22)) in the next section to prove regularity bounds
on finite energy solutions of certain nonlinear Schrédinger equations.
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Proposition 1. Let u denote u or u. Fix a natural number r. The multilinear

estimate

(2.31) flut .. Uv"||xl I H |UJ||X
2 2 _

holds.

The proof does not distinguish between the factors v and .

Proof. The case r = 2 is established in Theorem 2.3 in [I3] (Note that the structure
u? is not actually used in the proof.). The extra factors in the r > 2 case are
absorbed (essentially) using the fact that X, 1, embeds in L

By duality and the definition of X 3, it suffices to show

(2.32)

i+ 1+|£] Cj(f]a )
(1+1¢h=" (1+|)\+|§||
/ 31;[1 (1+ Py 2160207

g=€1 -+ +Er

A=Ap o Ap

T
< Clldll g [T el e

j=1

where the + choices are arbitrary. The constraint A = A; +- - -+ A, and the triangle
inequality imply

(2.33) A+ €1 S max(h £ (&P e £ IEPL TG, - 167 1EP).

Since § =&+ ++&, max([&1]?, .., &% [€%) < |€¥[* where [€*| =max;—1 ..+ (I&])-
Case 1. |\ |&1]?| = max in ([2:33)
The left side of (2.32) is estimated

r —1—¢€
L D e+ 1) e TT A a6 A
/ (14 €) 2 (e, ML + &)™ e (& >1=I TR
E=E1++Er

A=A+ Ap

Case 1A. [&] = [¢*|.
We have (1 + |£|)%+(1 + &))" < 1 and estimate in L2, H L3, using a

standard argument involving Fourier transform properties, Holder’s mequahty and
then the Sobolev embedding theorem.
Case 1B. [&;| = |£*| for some k € {2,...,7}.
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Without loss, we may take k = 2 by renaming the variables. In this situation,
we estimate

1
2

[ denarian e Lol
T+ 2o 7))
g=61 4 ter

1+|§J cj(gja )
jI;IB (L+ Py 2160207 "

T
This may be done in L?L2 L?2L° L°L2 [] L°L. The cases when |\, + ;)% =
j=3
max in [Z33)) for 2 < j < r are similar.
Case 2. |¢*]? = max in (Z33).
We may suppose |£1| = |£*]. We need to bound

3 (&1, M) (416D T (6, )
(1+ ) (g, ) — 1 il) €&, 45)
e +_/+£ (1+|A1ﬂ:|£1|2)§+j1;[2 T+ A 16022 "

A=AL oA
Since |¢| < |€*|, we may write

/ d(€,\) <(1 + |€1|)%Cl(€17)\1> (1+ |§2|)_1_602(€27A2)>
7 I+ A £ 62)2 (14 A £]6?)2t

E=¢1++er

A=A+ HAr

D )
= (L+ [ £1g2)2T

We estimate this expression via Holder’s inequality in Lﬁ H L. Next, we

apply the Sobolev inequality to get

T
ldll 2 1EG 2 T llesl

j=3
where
Bley = LHaba@ )
(1 + |)\1 =+ |§1|2)§+
and
Gk, \) = 1+ &) eal&s >\2).

(14 o+ [&[2)5

Note that Cauchy-Schwarz and the L* Strichartz estimate ([224) shows that
IFGllz, < IFllg, IGlos, < CIFl, IGlx,, < Cllrl,,llcll oo whieh
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is not good enough. We transport % derivative from F to G using Bourgain’s
Strichartz refinement [3] to obtain

I1FGl 12 < lletllpalleall -3 -« < llexllp2lle2ll e
and Case 2 follows. O
3. REGULARITY OF GLOBAL-IN-TIME AND BLOW-UP SOLUTIONS

How does the spatial regularity of solutions of the initial value problem

iy + Au =+ |ul*u =0,
u(0) = 6 € S(R?)

evolve? Conservation of the Hamiltonian

(3.1)

1 1
(3.2) H(u,u) = / §|Vu|2 F Z|u|4dx
R2
and the L? norm |[u(t)||;2 = |¢|l;. implies a priori H* control (||u(t)||;: <

C||¢|| 1) for all time in the defocusing case (— in (BI); + in (B2)) and also in
the focusing case for small enough ||¢|| ;. In the presence of a priori H' control,
the available local wellposedness theory [5] iterates to imply global wellposedness.
Absent H'! control, solutions of the focusing (B.Il) may satisfy

(3.3) IVeu(t)]| ;2 = o0 ast — T < oo.

For global-in-time solutions satisfying a priori H' control, how does |[u(t)]| ;..
s> 1 behave as t — 0o? Bourgain showed [2] that a refined local-in-time analysis
implied ||u(t)| ;7. < C|t/**~DF which provides a substantial improvement over the
easy exponential bound. Staffilani proved in [12], [13] that ||u(t)| . < C|t|=D+
by a direct argument exploiting an estimate on the bilinearity v in the scale of
X, spaces. Insertion of the sharp bilinear estimate (2:2) into Staffilani’s argument
gives the following result.

Theorem 2. Consider initial data ¢ satisfying conditions implying that the asso-
ciated solution of BI) satisfies ||u(t)|| 1 < C||@|| 1. Then, for s > 1,

(3.4) [u(®)[l o < ClH*™) as [t] — oo,
where

2
(3.5) a(s) = g(s -1+.

For blow-up solutions (B.3) of (3.1)), how does ||u(t)|| ., s > 1, behave ast — T*?
Cazeneve and Weissler [5] proved that for ¢ near T*,

(3.6) IVau(®)ll 2 2 (T —1)"2.

The explicit blow-up solutions obtained using conformal invariance of (Bl) satisfy

(3.7) IVou(®)ge ~ (T =)

It is conjectured, based in part on numerical evidence [T0], that C(T* —¢)~" is an

upper bound on the blow-up rate of |V u(t)||;-. This appears to be a hard prob-
lem. We thank Frank Merle for suggesting there may be a connection between the
global-in-time and blow-up regularity bounds. Theorem 2] above has the following
implication.
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Corollary 3.1. Assume that u(t) is a blow-up solution of BI) with blow-up oc-
curring at time T*,0 < T* < co. Assume furthermore that for t € [0,T*]

(3.8) sup |[Vu(r)| 2 = A(t).
T€[0,1] !

Then, for s > 1,
(3.9) C'INO) < [lu®)llg; < CAO*

where a(s) is the degree of the polynomial upperbound on the H® norm of global-
in-time solutions satisfying a priori H' control.

Proof. Fix t near T*. Then A\(t) = )\ is defined. Introduce the rescaling

(3.10) v(x,T) = %v (%, %) .

The function v solves

10,0+ Av + [u*v = 0,7 € [0, X21]
3.11 ! e At
4y A e,
and
(3.12) IVo(r)llz <1, 7€ [0,3%].

Notice that A2t is a huge number so the function v is defined for a very long interval
of 7 and that (BI2) together with L2 gives an a priori bound on ||v(7)|| ;1. Theorem
gives

3.13 Veu(r) ||, < [N a(s), T €10, \%t],
L

as a consequence of certain multilinear estimates as will be shown in the proof
below. The definition of v in terms of u shows that

(3.14) A || veu ( %) HL = [9*0(, )| -

Finally, note that ¢ appearing on the right side of [B:13) is bounded by the constant
T*. Combining (314) and (BI3) gives the upper estimate in the corollary. The
lower estimate follows by interpolating the H' norm between the L? and H*® norms.

([l

We now revisit the argument of Staffilani [T2] and prove Theorem 21

Proof. Let s = 2n, n € N for convenience. We are considering ([BI) with initial
data satisfying H' control. Our goal is to bound |u(t)| ;. from above as t — oco.
Let T be the lifetime of the local wellposedness result which is bounded from below
by a negative power of ||@|| 1. By a priori H' control, the local result iterates to
prove global wellposedness.

Following Bourgain [2], we wish to show the local-in-time estimate

(3.15) S [u®)lze < a5 + u(0)[|3:°

)

which iterates to give [|u(t)| g < C’|t|%.
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By L? conservation and interpolation, it suffices to control the homogeneous
norm ||u(t)|| ;. The fundamental theorem of calculus gives

t
d 2
| e

25}?/0 (B®u(r), Bu(T))dr

where (f,g) = [ fgdz is the standard L2 inner product and B = v/—A. Using the
equation we obtain

()17 = 1u(0)|

t t
:m'/ <BS(—Au),BSu>de:28‘%i/ (B*(|ul*v), B*u)dr.
0 0

The first integral is real so it disappears. The worst terms arise when all of B* hits
u or all of B? hits u. However, if all of B® hits u, the resulting integrand is real
and so it disappears. Therefore, we can write,

t
(3.16) ()% = lu(0)]%. < c‘/ u2(BSH)2dxdt‘ +lo.t.,
0

where [.0.t. stands for lower order terms in which the differentiation is shared among
the factors. Plancherel followed by Cauchy-Schwarz (with weights) shows the inte-
gral is estimated by

(3.17) 22|

o]
2 *-1-3
Theorem [[ establishes (up to a loss of €) the bilinear estimate

(3.18) |@lyr, | <Clullxr, ol

1

[N

— 3
20 2 4°2

3
1
The other term is estimated using Proposition [l giving (again up to €)

(3.19) 17| r < Clllullxr, ).

[N
[N

The local wellposedness result of Bourgain [1] implies, for p > 0, that

(3.20) lullxr, < Clu(O)] g

Therefore, applying (318), (319), (3.20) and exploiting H! control, we obtain
2 2 2

(3:21) (@)l gs = u(0)|. < Cllu(0)ll},.-3-

Upon interpolating [|u(0)||, .- s between [[u(0)| . and [[u(0)[| 1, we obtain B.IH)

for the top order term. A similar argument applies to the lower order terms. O

Comments on Higher Power Semilinear NLS Equations on R?. Consider
a global-in-time solution u of the defocusing NLS equation

{iut+Au—|u|p1u=0, u:R2 x Ry — C,

(3.22) u(0) = &,

with finite energy

2 1
3.23 E = E(u) = Vul? + |u® + —=—|u[Pdr.
(3.23) (u) /RQI |+ |ul erl||
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Nakanishi recently proved [I] for p > 3 that such solutions satisfy
(3.24) el L2-1) (B2 xR,y < C(E).

In case p — 1 is even, we infer from this inequality that smooth global-in-time
finite energy solutions of (B.22) satisfy

(3.25) [w(@)ll e < C.

We restrict our attention to p— 1 even, so that u — |u[P~1u is smooth. We imitate
an argument appearing in [4].
1. A calculation shows, for s > 1, I =1[0,b], 0 < b < o0,

-1

(3.26) 1Dsulys ., < callély. + ealllzy D3l s,

p—1)
tel

Indeed, from the integral equation, we have

t
IDsully ., < ID5 0l sy, + D3 [ €2l ar]
z,tel z,tel 0 L4 rer

Strichartz inequality in R2 x R, gives
1Dl s, < callgl e

and the inhomogeneous version implies

t
IDs / S-DBar| < O||Dsw|
0 L4 L3

ztel z,tel

We write

D3 P~ | < Cll(Dzw)ul"~ 1|

tel

+ l.o.t.

4 4
3 3
L; L ier

where [.0.t. denotes lower order terms where the differentiation is shared among the
factors. By Holder, we have

s p—1 s p—1
T Y o N

as claimed. The lower order terms can be handled with the Leibniz rule and inter-

polation using the smoothness of the nonlinearity.
2. A similar calculation shows for s > 1 that

-1
(3.27) sup [|[u(®)]| g« < eslléll g + callull? o 1DZullps _ -
tel z,tel T
3. Fix € > 0, by (3.24)) there exist disjoint intervals Iy,...,I;, J = J(¢) < oo,
such that
J
Rt == U I]
j=1

and, by B.24),
”u”Liff&l) <é

uniformly in j. Therefore, for small enough ¢, we can absorb the nonlinear terms
in (326) and (BZ7) into the left side of the inequalities. Finally, we note that there

are finitely many I; so (827) implies (3:20]).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BILINEAR ESTIMATES AND APPLICATIONS TO 2D NLS 3325

Remark 4. If we consider the evolution idyu + Au + [u[P~tu = 0, p > 3, in place
of the evolution in ([BI), the Cauchy-Schwarz application at (B.I7) leads to

ptl p—3 _\2
B
By

u 2z u 2

11

1
2°2 2

1
T2
Proposition [T] allows us to estimate the first factor. An adaptation of the proof of
Theorem [2, exploiting the 7 > 2 case of Proposition [ (see Remark H), shows all
such solutions satisfy (34]) provided p — 1 is even. It is not known if the smooth
global-in-time finite energy solutions of this focusing analog of [B22) satisfy the

estimate (32H]).
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