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Abstract—In this paper, we extend the generalized approximate

message passing (G-AMP) approach, originally proposed for high-

dimensional generalized-linear regression in the context of com-
pressive sensing, to the generalized-bilinear case. In Part I of this

two-part paper, we derived our Bilinear G-AMP (BiG-AMP) algo-

rithm as an approximation of the sum-product belief propagation
algorithm in the high-dimensional limit, and proposed an adaptive

damping mechanism that aids convergence under finite problem

sizes, an expectation-maximization (EM)-based method to auto-
matically tune the parameters of the assumed priors, and two rank-

selection strategies. Here, in Part II, we discuss the specializations

of BiG-AMP to the problems of matrix completion, robust PCA,
and dictionary learning, and present the results of an extensive em-

pirical study comparing BiG-AMP to state-of-the-art algorithms

on each problem. Our numerical results, using both synthetic and
real-world datasets, demonstrate that EM-BiG-AMP yields excel-

lent reconstruction accuracy (often best in class) while maintaining

competitive runtimes.

Index Terms— Approximate message passing, belief propaga-
tion, bilinear estimation, matrix completion, dictionary learning

robust principal components analysis, matrix factorization.

I. INTRODUCTION

T HIS manuscript is Part II of a two-part work on Bilinear
Generalized Approximate Message Passing (BiG-AMP),

which is an extension of the AMP framework that was origi-
nally proposed for linear [5], [6] and generalized linear [7] in-
ference problems encountered in compressive sensing (CS), to
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the following generalized bilinear inference problem: estimate
the matrices and
from an observation that is statistically coupled

to their product, , where and are realizations of
random matrices and with known separable pdfs (or pmfs)

(1)

(2)

and where the likelihood function is known and separable, i.e.,

(3)

In Part I of the work [1], we proposed and derived the
BiG-AMP algorithm, whose general form is summarized
in [1, TABLE III]. We also uncovered special cases under
which the general approach can be simplified, such as the
scalar-variance BiG-AMP under possibly incomplete additive
white Gaussian noise (PIAWGN) observations, as summarized
in [1, TABLE IV], and its specialization to Gaussian priors, as
summarized by the BiG-AMP-Lite algorithm in [1, Table V].
In addition, Part I proposed an adaptive damping mechanism,
an expectation-maximization (EM)-based method of tuning the
parameters of , , and (in case they are unknown), and
two methods to select the rank (in case it is unknown).
In this Part II of the work, we detail the application of

BiG-AMP to the problems of matrix completion (MC) in
Section II, robust principle components analysis (RPCA) in
Section III, and dictionary learning (DL) in Section IV. For
each application, we discuss the BiG-AMP’s choice of ma-
trix representation, priors, likelihood, initialization, adaptive
damping, EM-driven parameter learning, and rank-selection.
Also, for each application, we provide an extensive empirical
study comparing BiG-AMP to state-of-the-art solvers on both
synthetic and real-world datasets. These results demonstrate
that BiG-AMP yields excellent reconstruction performance
(often best in class) while maintaining competitive runtimes.
For each application of BiG-AMP discussed in the sequel, we
recommend numerical settings for necessary parameter values,
as well as initialization strategies when appropriate. Although
we cannot guarantee that our recommendations are universally
optimal, they worked well for the range of problems considered
in this paper, and we conjecture that they offer a useful starting
point for further experimentation. Nevertheless, modifications
may be appropriate when applying BiG-AMP outside the
range of problems considered here. Our BiG-AMP Matlab
code can be found as part of the GAMPmatlab package at
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https://sourceforge.net/projects/gampmatlab/, including exam-
ples of BiG-AMP applied to the MC, RPCA, and DL problems.
Notation: Throughout, we use san-serif font (e.g., ) for

random variables and serif font (e.g., ) otherwise. We use
boldface capital letters (e.g., and ) for matrices, boldface
small letters (e.g., and ) for vectors, and non-bold small
letters (e.g., and ) for scalars. We then use to denote
the pdf of random quantity , and to denote the
Gaussian pdf for a scalar random variable with mean and
variance . Also, we use and to denote mean
and variance of , respectively, and for the Kull-
back-Leibler (KL) divergence between pdfs and . For a
matrix , we use to denote the entry in the
row and column, to denote the Frobenius norm, and

to denote transpose. Similarly, we use to denote the
entry in vector and to denote the
norm.

II. MATRIX COMPLETION

A. Problem Setup

In matrix completion (MC) [8], one seeks to recover a
rank- matrix after observing
a fraction of its (possibly noise-corrupted) entries,
where denotes the set of observations.
BiG-AMP approaches theMC problem bymodeling the com-

plete matrix as the product of random matrices
and with priors of the decoupled form

in (1), (2), where is probabilistically related to the observed
matrix through a likelihood of the decoupled form
in (3). To finally perform MC, BiG-AMP infers and from
under the above model. The corresponding estimates and
can then be multiplied to yield an estimate of the

noiseless complete matrix .
As in several existing Bayesian approaches to matrix comple-

tion (e.g., [9]–[12]), we choose Gaussian priors for the factors
and . Although EM-BiG-AMP readily supports the use of

priors with row- and/or column-dependent parameters, we focus
on simple iid priors of the form

(4)

(5)

where the mean and variance in (5) can be tuned using EM-BiG-
AMP, as described in the sequel, and where the variance in
(4) is fixed to avoid a scaling ambiguity between and .
Section II-F demonstrates that this simple approach is effective
in attacking several MC problems of interest. Assuming the ob-
servation noise to be additive and Gaussian, we then choose the
PIAWGN model from [1, Eq. 80] for the likelihood given
by

.
(6)

Note that, by using (4), (5) with and the scalar-vari-
ance approximation from [1, Sec. III-A], the BiG-AMP algo-
rithm from [1, Table III] reduces to the simpler BiG-AMP-Lite
algorithm from [1, Table V] with .

B. Initialization

In most cases we advocate initializing the BiG-AMP quanti-
ties and using random draws from the priors and
, although setting either or at zero also seems to

perform well in the MC application. Although it is also possible
to use SVD-based initializations of and (i.e., for
SVD , set and )
as done in LMaFit [13] and VSBL [14], experiments suggest
that the extra computation required is rarely worthwhile for
BiG-AMP.
As for the initializations and , we advocate set-

ting them at 10 times the prior variances in (4), (5), which has
the effect of weighting the measurements more than the priors

during the first few iterations.

C. Adaptive Damping

For the assumed likelihood (6) and priors (4), (5), the adap-
tive-damping cost criterion described in [1, Sec. IV-B] re-
duces to

(7)

To derive (7), one can start with the first term in [1, Eq. 108] and
leverage the Gaussianity of the approximated posterior on :

(8)

which then directly yields the first term in (7). The second term
in (7) follows using a similar procedure, and the third and fourth
terms follow directly from the PIAWGN model.
In the noise free setting (i.e., ), the third term in (7)

dominates, omitting the need to compute the other terms.

D. EM-BiG-AMP

For the likelihood (6) and priors (4), (5), the distributional pa-
rameters can be tuned using the EM approach
from [1, Section V-A].1 To initialize for EM-BiG-AMP, we
adapt the procedure outlined in [15] to our matrix-completion
problem, giving the EM initializations and

(9)

1For the first EM iteration, we recommend initializing BiG-AMP using
, , , and drawn randomly from

. After the first iteration, we recommend warm-starting BiG-AMP using
the values from the previous EM iteration.
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(10)

where is an initial estimate of the signal-to-noise ratio
that, in the absence of other knowledge, can be set at 100.

E. Rank Selection

For MC rank-selection under the penalized log-likelihood
strategy [1, Eq, 113], we recommend using the small sample
corrected AIC (AICc) [16] penalty .

For theMC problem, , where
counts the degrees-of-freedom in a rank- real-valued
matrix [8] and the three additional parameters come from .
Based on the PIAWGN likelihood (6) and the standard form of
the ML estimate of (see, e.g., [16, eq. (7)]), the update rule
[1, Eq. 113] becomes

(11)

We note that a similar rule (but based on BIC rather than AICc)
was used for rank-selection in [17].
MC rank selection can also be performed using the rank con-

traction scheme described in [1, Sec. V-B2]. We recommend
choosing the maximum rank to be the largest value such that

and setting . Since the
first EM iteration runs BiG-AMP with the large value ,
we suggest limiting the number of allowed BiG-AMP iterations
during this first EM iteration to . In many
cases, the rank learning procedure will correctly reduce the rank
after these first few iterations, reducing the added computational
cost of the rank selection procedure.

F. Matrix Completion Experiments

We now present the results of experiments used to as-
certain the performance of BiG-AMP relative to existing
state-of-the-art algorithms for matrix completion. For these
experiments, we considered IALM [18], a nuclear-norm based
convex-optimization method; LMaFit [13], a non-convex
optimization-based approach using non-linear successive
over-relaxation; GROUSE [19], which performs gradient
descent on the Grassmanian manifold; Matrix-ALPS [20], a
greedy hard-thresholding approach; and VSBL [14], a varia-
tional Bayes approach. In general, we configured BiG-AMP as
described in Section II2 and made our best attempt to configure
the competing algorithms for maximum performance. That
said, the different experiments that we ran required somewhat
different parameter settings, as we detail in the sequel.

2Unless otherwise noted, we used the BiG-AMP parameters
(see [1, Sec. II-H] for descriptions) and the adaptive damping parameters

, , , ,
, and . (See [1, Sec. IV-B] for descrip-

tions).

1) Low-Rank Matrices: We first investigate recovery of
rank- matrices from noiseless incomplete ob-
servations with indices chosen uniformly at
random. To do this, we evaluated the normalized mean square

error (NMSE) of the estimate returned by the var-

ious algorithms under test, examining 10 realizations of
at each problem size . Here, each realization of
was constructed as for and with iid
elements.3 All algorithms were forced4 to use the true rank ,
run under default settings with very minor modifications,5 and
terminated when the normalized change in either or
across iterations fell below the tolerance value of .
Defining “successful” matrix completion as NMSE

, Fig. 1 shows the success rate of each algo-

rithm over a grid of sampling ratios and ranks .
As a reference, the solid line superimposed on each subplot
delineates the problem feasibility boundary, i.e., the values
of yielding , where
is the degrees-of-freedom in a rank- real-valued
matrix; successful recovery above this line is impossible by
any method.
Fig. 1 shows that each algorithm exhibits a sharp phase-tran-

sition separating near-certain success from near-certain failure.
There we see that BiG-AMP yields the best PTC. Moreover,
BiG-AMP’s PTC is near optimal in the sense of coming very
close to the feasibility boundary for all tested and . In ad-
dition, Fig. 1 shows that BiG-AMP-Lite yields the second-best
PTC, which matches that of BiG-AMP except under very low
sampling rates (e.g., ). Recall that the only differ-
ence between the two algorithms is that BiG-AMP-Lite uses the
scalar-variance simplification from [1, Sec. III-A].
Fig. 2 plots median runtime6 to versus

rank for several sampling ratios , uncovering orders-of-
magnitude differences among algorithms. For most values of
and , LMaFit was the fastest algorithm and BiG-AMP-Lite
was the second fastest, although BiG-AMP-Lite was faster than
LMaFit at small and relatively large , while BiG-AMP-Lite
was slower than GROUSE at large and very small . In
all cases, BiG-AMP-Lite was faster than IALM and VSBL,
with several orders-of-magnitude difference at high rank.Mean-
while, EM-BiG-AMP was about 3 to 5 times slower than BiG-
AMP-Lite. Although none of the algorithm implementations
were fully optimized, we believe that the reported runtimes are
insightful, especially with regard to the scaling of runtime with
rank .

3We chose the i.i.d Gaussian construction due to its frequent appearance in
the matrix-completion literature. Similar performance was observed when the
low-rank factors and were generated in other ways, such as from the left
and right singular vectors of an i.i.d Gaussian matrix.
4This restriction always improved the performance of the tested algorithms.
5GROUSE was run with and , where

the latter was chosen as a good compromise between phase-transition perfor-
mance and runtime. VSBLwas run under and fixed ;
adaptive selection of was found to produce a significant degradation in the ob-
served phase transition. LMaFit was run from the same random initialization as
BiG-AMP and permitted at most iterations. IALM was allowed
at most 2000 iterations. A maximum runtime of one hour per realization was
enforced for all algorithms.
6The reported runtimes do not include the computations used for initialization

nor those used for runtime evaluation.
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Fig. 1. Empirical success rates for noiseless completion of an matrix sampled uniformly at random, as a function of sampling ratio and rank .
Here, “success” is defined as , success rates were computed from 10 random realizations, and . Points above the red curve
are infeasible, as described in the text.

Fig. 2. Runtime to for noiseless completion of an matrix sampled uniformly at random, versus rank , at and
several sampling ratios . All results represent median performance over 10 trials. Missing values indicate that the algorithm did not achieve the required
NMSE before termination and correspond to the black regions in Fig. 1.

2) Approximately Low-Rank Matrices: Next we evaluate
the performance of recovering approximately low-rank ma-
trices by repeating an experiment from the LMaFit paper
[13]. For this, we constructed the complete matrix as

, where were orthogonal
matrices (built by orthogonalizing iid matrices using
MATLAB’s orth command) and was a positive diagonal
matrix containing the singular values of . Two versions of
were considered: one with exponentially decaying singular

values , and one with the power-law decay
.

As in [13], we first tried to recover from the noiseless in-
complete observations , with chosen uniformly
at random. Fig. 3 shows the performance of several algorithms
that are able to learn the underlying rank: LMaFit,7 VSBL,8 and
EM-BiG-AMP under the penalized log-likelihood rank selec-

7LMaFit was run under the settings provided in their source code for this
example.
8VSBL was allowed at most 100 iterations and run with ,

, and tolerance .

tion strategy from [1, Sec. V-B1].9 All three algorithms were
allowed a maximum rank of . The figure shows that
the NMSE performance of BiG-AMP and LMaFit are similar,
although BiG-AMP tends to find solutions with lower rank but
comparable NMSE at low sampling ratios . For this noiseless
experiment, VSBL consistently estimates ranks that are too low,
leading to inferior NMSEs.
Next, we examined noisy matrix completion by constructing

the matrix as above but then corrupting the
measurements with AWGN. Fig. 4 shows NMSE and estimated
rank versus the measurement signal-to-noise ratio (SNR)

at a sampling rate of
. There we see that, for SNRs 50 dB, EM-BiG-AMP

and VSBL offer similarly good NMSE performance and nearly
identical rank estimates, whereas LMaFit overestimates the
rank and thus performs worse in NMSE. Meanwhile, for
SNRs 50 dB, EM-BiG-AMP and LMaFit offer similarly

9Rank-selection rule [1, Eq. 113] was used with up to 5 EM iterations for each
rank hypothesis , a minimum of 30 and maximum of 100 BiG-AMP iterations
for each EM iteration, and a BiG-AMP tolerance of .
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Fig. 3. NMSE (top) and estimated rank (bottom) in noiseless completion of an matrix sampled uniformly at random, versus sampling ratio . The
complete matrices were approximately low-rank, with power-law (left) and exponential (right) singular-value decays and . All results represent
median performance over 10 random trials.

Fig. 4. NMSE (top) and estimated rank (bottom), versus SNR, in noisy completion of an 500 500 matrix sampled uniformly at random at rate . The
complete matrices were approximately low-rank, with power-law (left) and exponential (right) singular-value decays.

good NMSE performance and nearly identical rank estimates,
whereas VSBL underestimates the rank and thus performs
worse in NMSE. Thus, in these examples, EM-BiG-AMP is
the only algorithm to successfully estimate the rank across the
full SNR range.
3) Image Completion: We now compare the performance

of several matrix-completion algorithms for the task of recon-
structing an image from a subset of its pixels. For this, we re-
peated the experiment in the Matrix-ALPS paper [20], where
the 512 512 boat image was reconstructed from 35% of its
pixels sampled uniformly at random. Fig. 5 shows the com-
plete (full-rank) image, the images reconstructed by several ma-
trix-completion algorithms10 under a fixed rank of ,
and the NMSE-minimizing rank-40 approximation of the com-
plete image, computed using an SVD. In all cases, the sample
mean of the observations was subtracted prior to processing and
then added back to the estimated images, since this approach
generally improved performance. Fig. 5 also lists the median
reconstruction NMSE over 10 sampling-index realizations .
From these results, it is apparent that EM-BiG-AMP provides

10All algorithms were run with a convergence tolerance of . VSBL was
run with hand-tuned to maximize performance, as the adaptive version did
not converge on this example. GROUSE was run with and

. Matrix-ALPS II with QR was run under default parameters
and 300 allowed iterations. Other settings are similar to earlier experiments.

the best NMSE, which is only 3 dB from that of the NMSE-op-
timal rank-40 approximation.
4) Collaborative Filtering: In our final experiment, we in-

vestigate the performance of several matrix-completion algo-
rithms on the task of collaborative filtering. For this, we repeated
an experiment from the VSBL paper [14] that used the Movie-
Lens 100k dataset, which contains ratings , where

and , from users
about movies. The algorithms were provided with
a randomly chosen training subset of the ratings
(i.e., ) from which they estimated the unseen ratings

. Performance was then assessed by computing
the Normalized Mean Absolute Error (NMAE)

(12)

where the 4 in the denominator of (12) reflects the difference be-
tween the largest and smallest user ratings (i.e., 5 and 1). When
constructing , we used a fixed percentage of the ratings given
by each user and made sure that at least one rating was provided
for every movie in the training set.
Fig. 6 reports the NMAE and estimated rank for

EM-BiG-AMP under the PIAWGN model (6), LMaFit, and
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Fig. 5. For the image completion experiment, the complete image is shown on the top left, its best rank-40 approximation is shown on the top middle, and the
observed image with 35% of the pixels observed is shown on the top right. The other panes show various algorithms’ image reconstructions from 35% of the
complete-image pixels (selected uniformly at random) as well as the mean NMSE over 10 trials.

VSBL,11 all of which include mechanisms for rank estimation.
Fig. 6 shows that, under the PIAWGN model, EM-BiG-AMP
yields NMAEs that are very close to those of VSBL12 but
slightly inferior at larger training fractions, whereas LMaFit
returns NMAEs that are substantially worse all training frac-
tions.13 Fig. 6 also shows that LMaFit’s estimated rank is much
higher than those of VSBL and EM-BiG-AMP, suggesting that
its poor NMAE performance is the result of overfitting. (Recall
that similar behavior was seen for noisy matrix completion in

11VSBL was allowed at most 100 iterations and was run with
and . Both VSBL and EM-BiG-AMP used a tolerance

of . LMaFit was configured as for the MovieLens experiment in [13]. Each
algorithm was allowed a maximum rank of .
12The NMAE values reported for VSBL in Fig. 6 are slightly inferior to those

reported in [14]. We attribute the discrepancy to differences in experimental
setup, such as the construction of .
13The NMAE results presented here differ markedly from those in the Movie-

Lens experiment in [13] because, in the latter paper, the entire set of ratings was
used for both training and testing, with the (trivial) result that high-rank models
(e.g., ) yield nearly zero test error.

Fig. 4.) In addition, Fig. 6 shows that, as the training fraction
increases, EM-BiG-AMP’s estimated rank remains very low
(i.e., 2) while that of VSBL steady increases (to 10). This
prompts the question: is VSBL’s excellent NMAE the result
of accurate rank estimation or the use of a heavy-tailed (i.e.,
student’s t) noise prior?
To investigate the latter question, we ran BiG-AMP under

,
(13)

i.e., a possibly incomplete additive white Laplacian noise
(PIAWLN) model, and used the EM-based approach from [1,
Sec. V-A] to learn the rate parameter . Fig. 6 shows that,
under the PIAWLN model, EM-BiG-AMP essentially matches
the NMAE performance of VSBL and even improves on it
at very low training fractions. Meanwhile, its estimated rank
remains low for all training fractions, suggesting that the

use of a heavy-tailed noise model was the key to achieving
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Fig. 6. Median NMAE (top) and estimated rank (bottom) for movie-rating
prediction versus fraction of training data over 10 trials for the 100k
MovieLens data set.

low NMAE in this experiment. Fortunately, the generality and
modularity of BiG-AMP made this an easy task.
5) Summary: In summary, the known-rank synthetic-data

results above showed the EM-BiG-AMP methods yielding
phase-transition curves superior to all other algorithms under
test. In addition, they showed BiG-AMP-Lite to be the second
fastest algorithm (behind LMaFit) for most combinations of
sampling ratio and rank , although it was the fastest for small
and relatively high . Also, they showed EM-BiG-AMP

was about 3 to 5 times slower than BiG-AMP-Lite but still
much faster than IALM and VSBL at high ranks. Mean-
while, the unknown-rank synthetic-data results above showed
EM-BiG-AMP yielding excellent NMSE performance in both
noiseless and noisy scenarios. For example, in the noisy exper-
iment, EM-BiG-AMP uniformly outperformed its competitors
(LMaFit and VSBL).
In the image completion experiment, EM-BiG-AMP again

outperformed all competitors, beating the second best algorithm
(Matrix ALPS) by more than 1 dB and the third best algorithm
(LMaFit) by more than 2.5 dB. Finally, in the collaborative
filtering experiment, EM-BiG-AMP (with the PIAWLN like-
lihood model) matched the best competitor (VSBL) in terms
of NMAE, and significantly outperformed the second best
(LMaFit).

III. ROBUST PCA

A. Problem Setup

In robust principal components analysis (RPCA) [21], one
seeks to estimate a low-rank matrix observed in the presence
of noise and large outliers. The data model for RPCA can be
written as

(14)

where —the product of tall and wide —is the
low-rank matrix of interest, is a sparse outlier matrix, and

is a dense noise matrix. We now suggest two ways of applying
BiG-AMP to the RPCA problem, both of which treat the ele-
ments of as iid similar to (4), the elements of
as iid similar to (5), the non-zero elements of as iid

, and the elements of as iid , with .
In the first approach, is treated as additive noise on
, leading to the likelihood model

(15)

where models outlier density.
In the second approach, is treated as additive noise but

is treated as an additional estimand. In this case, by multiplying
both sides of (14) by any (known) unitary matrix ,
we can write

(16)

and apply BiG-AMP to the “augmented” model .
Here, remains iid , thus giving the likelihood

(17)

Meanwhile, we choose the following separable priors on and
:

(18)

.

(19)

Essentially, the first columns of and first rows of
model the factors of the low-rank matrix , and thus their
elements are assigned iid Gaussian priors, similar to (4), (5) in
the case of matrix completion.Meanwhile, the last rows in
are used to represent the sparse outlier matrix , and thus their
elements are assigned a Bernoulli-Gaussian prior. Finally, the
last columns of are used to represent the designed matrix
, and thus their elements are assigned zero-variance priors.

Since we find that BiG-AMP is numerically more stable when
is chosen as a dense matrix, we set it equal to the singular-vector
matrix of an iid matrix. After running BiG-AMP, we
can recover an estimate of by left multiplying the estimate of
by .

B. Initialization

We recommend initializing using a random draw
from its prior and initializing at the mean of its prior,
i.e., . The latter tends to perform better than ini-
tializing randomly, because it allows the measurements
to determine the initial locations of the outliers in . As in

Section II-B, we suggest initializing and at 10
times the variance of their respective priors to emphasize the
role of the measurements during the first few iterations.
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C. EM-BiG-AMP

The EM approach from [1, Sec. V-A] can be straightfor-
wardly applied to BiG-AMP for RPCA: after fixing ,
EM can be used to tune the remaining distributional parameters,

. To avoid initializing and with overly
large values in the presence of large outliers , we suggest the

following procedure. First, define the set
and its complement . Then initialize

(20)

(21)

(22)

where, as in Section II-D, we suggest setting in the
absence of prior knowledge. This approach uses the median to
avoid including outliers among the samples used to estimate the
variances of the dense-noise and low-rank components. Under
these rules, the initialization was found to work well
for most problems.

D. Rank Selection

In many applications of RPCA, such as video separation, the
singular-value profile of exhibits a sharp cutoff, in which
case it is recommended to perform rank-selection using the con-
traction strategy from [1, Sec. V-B2].

E. Avoiding Local Minima

Sometimes, when is very small, BiG-AMP may converge
to a local solution that mistakes entire rows or columns of
for outliers. Fortunately, this situation is easy to remedy with
a simple heuristic procedure: the posterior probability that
is outlier-corrupted can be computed for each at conver-
gence, and if any of the row-wise sums exceeds or any of
the column-wise sums exceeds , then BiG-AMP is restarted
from a new random initialization. Experimentally, we found that
one or two of such restarts is generally sufficient to avoid local
minima.

F. Robust PCA Experiments

In this section, we present a numerical study of the two
BiG-AMP formulations of RPCA proposed in Section III, in-
cluding a comparison to the state-of-the-art IALM [18], LMaFit
[13], GRASTA [22], and VSBL [14] algorithms. In the sequel,
we use “BiG-AMP-1” when referring to the formulation that
treats the outliers as noise, and “BiG-AMP-2” when referring
to the formulation that explicitly estimates the outliers.
1) Phase Transition Behavior: We first study the behavior of

the proposed BiG-AMP algorithms for RPCA on noise-free syn-
thetic problems. For this, we generated problem realizations of
the form , where the low-rank component

was generated from and with iid entries, andwhere
the sparse corruption matrix had a fraction of non-zero
entries that were located uniformly at random with amplitudes
drawn iid uniform on . The dimensions of
were fixed at , the rank (of ) was varied
from 10 to 90, and the outlier fraction was varied from 0.05 to
0.45. We note that, under these settings, the outlier magnitudes
are on the same order as the magnitudes of , which is the most
challenging case: much larger outliers would be easier to detect,
after which the corrupted elements of could be safely treated
as incomplete, whereas much smaller outliers could be treated
like AWGN.
All algorithms under test were run to a convergence toler-

ance of and forced to use the true rank . GRASTA,
LMaFit, and VSBL were run under their recommended settings.
14 Two versions of IALM were tested: “IALM-1,” which uses
the universal penalty parameter , and “IALM-2,”
which tries 50 hypotheses of , logarithmically spaced from

to and uses an oracle to choose the MSE-mini-
mizing hypothesis. BiG-AMP-1 and BiG-AMP-2 were given
perfect knowledge of the mean and variance of the entries of
, , and (although their Bernoulli-Gaussian model of
did not match the data generation process) as well as the outlier
density , while EM-BiG-AMP-2 learned all model parameters
from the data. BiG-AMP-1 was run under a fixed damping of

, while BiG-AMP-2 was run under adaptive damping
with and . Both variants used
a maximum of 5 restarts to avoid local minima.
Fig. 7 shows the empirical success rate achieved by each al-

gorithm as a function of corruption-rate and rank , averaged
over 10 trials, where a “success” was defined as attaining an
NMSE of 80 dB or better in the estimation of the low-rank
component . The red curves in Fig. 7 delineate the problem
feasibility boundary: for points above the curve,

, the degrees-of-freedom in , exceeds , the
number of uncorrupted observations, making it impossible to
recover without additional information.
Fig. 7 shows that all algorithms exhibit a relatively sharp

phase-transition curve (PTC) separating success and failure
regions, and that the BiG-AMP algorithms achieve substan-
tially better PTCs than the other algorithms. The PTCs of
BiG-AMP-1 and BiG-AMP-2 are similar (but not identical),
suggesting that both formulations are equally effective. Mean-
while, the PTCs of BiG-AMP-2 and EM-BiG-AMP-2 are
nearly identical, demonstrating that the EM procedure was able
to successfully learn the statistical model parameters used by
BiG-AMP. Fig. 7 also shows that all RPCA phase transitions
remain relatively far from the feasibility boundary, unlike those
for matrix completion (MC) shown in Fig. 1. This behavior,
also observed in [21], is explained by the relative difficulty
of RPCA over MC: the locations of RPCA outliers (which
in this case effectively render the corrupted observations as
incomplete) are unknown, whereas in MC they are known.
Fig. 8 plots runtime to as a function of

rank for various outlier fractions. The results suggest that
the BiG-AMP algorithms are moderate in terms of speed, being

14For LMaFit, however, we increased the maximum number of allowed iter-
ations, since this improved its performance.
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Fig. 7. Empirical success rates for RPCA with a 200 200 matrix of rank corrupted by a fraction of outliers with amplitudes uniformly distributed on
. Here, “success” is defined as , and success rates were averaged over 10 problem realizations. Points above the red curve are

infeasible, as described in the text.

Fig. 8. Runtime to for RPCA with a 200 200 matrix of rank corrupted by a fraction of outliers with amplitudes
uniformly distributed on . All results represent median performance over 10 trials. Missing values indicate that the algorithm did not achieve the required
NMSE before termination and correspond to the black regions in Fig. 7.

faster than GRASTA15 and much faster than the grid-tuned
IALM-2, but slower than IALM-1, VSBL, and LMaFit. No-
tably, among the non-BiG-AMP algorithms, LMaFit offers
both the fastest runtime and the best phase-transition curve on
this synthetic test problem.
In summary, the results presented here suggest that BiG-AMP

achieves state-of-the-art PTCs while maintaining runtimes that
are competitive with existing approaches.
2) Rank Estimation: We now investigate the ability to

estimate the underlying rank, , for EM-BiG-AMP-2 (using
the rank-contraction strategy from [1, Sec. V-B2])16 IALM-1,
IALM-2, LMaFit, and VSBL, all of which include either
explicit or implicit rank-selection mechanisms. For this, we
generated problem realizations of the form ,
where the 200 200 rank- matrix and -sparse

15We note that, for this experiment, GRASTA was run as a Matlab M-file and
not a MEX file, because the MEX file would not compile on the supercomputer
used for the numerical results. That said, since BiG-AMP was also run as an
unoptimized M-file, the comparison could be considered “fair.”
16The rank-selection rule [1, Eq. 114] was used with , up to 50 EM

iterations, and a minimum of 30 and maximum of 500 BiG-AMP iterations per
EM iteration.

outlier matrix were generated as described in Section III-F-1
and the noise matrix was constructed with iid
elements. The algorithms under test were not provided with
knowledge of the true rank , which was varied between 5 and
90. LMaFit, VSBL, and EM-BiG-AMP, were given an initial
rank estimate of , which enforces an upper bound on
the final estimates that they report.
Fig. 9 reports RPCA performance versus (unknown) true

rank in terms of the estimated rank and the NMSE on the
estimate . All results represent median performance over 10
Monte-Carlo trials. The figure shows that EM-BiG-AMP-2 and
LMaFit returned accurate rank estimates over the full range
of true rank , whereas VSBL returned accurate rank
estimates only for , and both IALM-1 and IALM-2
greatly overestimated the rank at all . Meanwhile, Fig. 9
shows that EM-BiG-AMP-2 and LMaFit returned accurate
estimates of for all (with EM-BiG-AMP-2 outper-
forming LMaFit by several dB throughout this range), whereas
VSBL and IALM-1 and IALM-2 returned accurate estimates
of only for small values of . We note that the relatively
poor MSE performance of LMaFit and EM-BiG-AMP-2 for
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Fig. 9. NMSE (top) and estimated rank (bottom) versus true rank for
several algorithms performing RPCA on a 200 200 matrix in the presence of
additive noise and a fraction of outliers with amplitudes
uniformly distributed on . All results represent the median over 10
trials.

true rank is not due to poor rank estimation but rather
due to the fact that, at , these operating points lie above
the PTCs shown in Fig. 7.
3) Application to Video Surveillance: We now apply

EM-BiG-AMP-2 to a video surveillance problem, where the
goal is to separate a video sequence into a static “background”
component and a dynamic “foreground” component. To do
this, we stack each frame of the video sequence into a single
column of the matrix , run EM-BiG-AMP-2 as described in
Section III, extract the background frames from the estimate of
the low-rank component , and extract the foreground
frames from the estimate of the (sparse) outlier component
. We note that a perfectly time-invariant background would

correspond to a rank-one and that the noise term in (14)
can be used to account for small perturbations that are neither
low-rank nor sparse.
We tested EM-BiG-AMP17 on the popular “mall” video se-

quence,18 processing 200 frames (of 256 320 pixels each)
using an initial rank estimate of . Fig. 10 shows the result,
with original frames in the left column and EM-BiG-AMP-2 es-
timated background and foreground frames in the middle and
right columns, respectively. We note that, for this sequence, the
rank-contraction strategy reduced the rank of the background
component to 1 after the first EM iteration. Similar results (not
shown here for reasons of space) were obtained with other video
sequences.

IV. DICTIONARY LEARNING

A. Problem Setup

In dictionary learning (DL) [23], one seeks a dictionary
that allows the training samples to be en-

coded as for some sparse coefficient matrix

17The maximum allowed damping was reduced to for this
experiment. To reduce runtime, a relatively loose tolerance of was
used to establish EM and BiG-AMP convergence.
18See http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

Fig. 10. Three example frames from the “mall” video sequence. The left
column shows original frames, the middle column EM-BiG-AMP-2 estimated
background, and the right column EM-BiG-AMP-2 estimated foreground.

and small perturbation . One chooses to learn a
square dictionary or (where is often a small mul-
tiple of ) to learn an overcomplete dictionary. In general, one
must have a sufficient number of training examples, , to
avoid over-fitting.19

The BiG-AMP methodology is particularly well-suited to the
DL problem, since both are inherently bilinear. In this work,
for simplicity, we model the entries of using the iid standard
normal prior (4) and the entries of using the iid zero-mean
Bernoulli-Gaussian (BG) prior

(23)

where represents the activity rate and the active-component
variance. However, other priors could be considered, such as
truncated Gaussian mixtures with column-dependent prior pa-
rameters in the case of non-negative matrix factorization [25].
For the likelihood , we again select the PIAWGN model
(6), but note that in most applications of DL the observations
are completely observed.

B. Initialization

In general, we advocate initializing at the mean of the
assumed prior on , and initializing the variances and

at 10 times the variance of and , respectively.
We now discuss several strategies for initializing the dictionary
estimates . One option is to draw randomly from
the assumed prior on , as suggested for MC and RPCA.
Although this approach works reasonably well, the prevalence
of local minima in the DL problem motivates us to propose
two alternative strategies. The first alternative is to exploit prior
knowledge of a “good” sparsifying dictionary , in the case that
such knowledge exists. With natural images, for example, the
discrete cosine transform (DCT) and discrete wavelet transform
(DWT) are known to yield reasonably sparse transform coeffi-
cients, and so the DCT and DWT matrices make appropriate
initializations of .

19See [24] for a discussion of sample-size requirements for exact recovery of
square dictionaries.
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The second alternative is to initialize using an appro-
priately chosen subset of the columns of , which is well mo-
tivated in the case that there exists a very sparse representation
. For example, if there existed a decomposition in

which had 1-sparse columns, then the columns of would
indeed match a subset of the columns of (up to a scale factor).
In the general case, however, it is not apriori obvious which
columns of to choose, and so we suggest the following greedy
heuristic, which aims for a well-conditioned : select (nor-
malized) columns from sequentially, in random order, ac-
cepting each candidate if the mutual coherences with the pre-
viously selected columns and the condition number of the re-
sulting submatrix are all sufficiently small. If all columns of
are examined before finding acceptable candidates, then the
process is repeated using a different random order. If repeated
re-orderings fail, then is initialized using a random draw
from .

C. EM-BiG-AMP

To tune the distributional parameters ,
we can straightforwardly apply the EM approach from [1,
Sec. V-A]. For this, we suggest initializing (since
Section IV-E shows that this works well over a wide range of
problems) and initializing and using a variation on the
procedure suggested for MC that accounts for the sparsity of
:

(24)

(25)

D. Avoiding Local Minima

The DL problem is fraught with local minima (see, e.g., [24]),
and so it is common to run iterative algorithms several times
from different random initializations. For BiG-AMP, we sug-
gest keeping the result of one initialization over the previous if
both20 the residual error and the average sparsity (as
measured by ) decrease.

E. Dictionary Learning Experiments

In this section, we numerically investigate the performance
of EM-BiG-AMP for DL, as described in Section IV. Com-
parisons are made with the greedy K-SVD algorithm [26], the
SPAMS implementation of the online approach [27], and the
ER-SpUD(proj) approach for square dictionaries [24].
1) Noiseless Square Dictionary Recovery: We first investi-

gate recovery of square (i.e., ) dictionaries from noise-
free observations, repeating the experiment from [24]. For this,
realizations of the true dictionary were created by drawing
elements independently from the standard normal distribution
and subsequently scaling the columns to unit norm. Mean-
while, realizations of the true were created by selecting
entries in each column uniformly at random and drawing their

20As an alternative, if both the previous and current solutions achieve suffi-
ciently small residual error, then only the average sparsity is considered in the
comparison.

Fig. 11. Mean NMSE (over 10 trials) for recovery of an dictionary
from training samples, each of sparsity , in the noiseless case
(left) and under AWGN of 40 dB SNR (right), for several algorithms.

values from the standard normal distribution, while setting all
other entries to zero. Finally, the observations were constructed
as , from which the algorithms estimated and
(up to a permutation and scale). The accuracy of the dictionary
estimate was quantified using the relative NMSE metric [24]

(26)

where is a generalized permutation matrix used to resolve the
permutation and scale ambiguities.
The subplots on the left of Fig. 11 show the mean NMSE

achieved by K-SVD, SPAMS, ER-SpUD(proj), and EM-BiG-
AMP,21 respectively, over 50 problem realizations, for various

21EM-BiG-AMP was allowed up to 20 EM iterations, with each EM itera-
tion allowed a minimum of 30 and a maximum of 1500 BiG-AMP iterations.
K-SVD was allowed up to 100 iterations and provided with knowledge of the
true sparsity . SPAMS was allowed 1000 iterations and run using the hand-
tuned penalty . The non-iterative ER-SpUD(proj) was run using
code provided by the authors without modification.
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Fig. 12. Median runtime until termination (over 10 trials) versus dictionary size , for noiseless recovery of a square dictionary from -sparse
samples, for several values of training sparsity . Missing values indicate that the algorithm did not achieve the required NMSE before termination and correspond
to the black regions in the panes on the left of Fig. 11.

combinations of dictionary size and data
sparsity , using training ex-
amples. K-SVD, SPAMS, and EM-BiG-AMP were run with 10
different random initializations for each problem realization. To
choose among these initializations, EM-BiG-AMP used the pro-
cedure from Section IV-D, while K-SVD and SPAMS used or-
acle knowledge to choose the NMSE-minimizing initialization.
The left column in Fig. 11 shows that the K-SVD,

ER-SpUD(proj), and EM-BiG-AMP algorithms all exhibit
a relatively sharp phase-transition curve (PTC) separating suc-
cess and failure regions, and that ER-SpUD(proj)’s PTC is the
best, while EM-BiG-AMP’s PTC is very similar. Meanwhile,
K-SVD’s PTC is much worse and SPAMS performance is not
good enough to yield a sharp phase transition,22 despite the fact
that both use oracle knowledge. EM-BiG-AMP, by contrast,
was not provided with any knowledge of the DL problem
parameters, such as the true sparsity or noise variance (in this
case, zero).
For the same problem realizations, Fig. 12 shows the run-

time to (measured using MATLAB’s tic
and toc) versus dictionary size . The results show that
EM-BG-AMP runs within an order-of-magnitude of the fastest
algorithm (SPAMS) and more than two orders-of-magnitude
faster than ER-SpUD(proj)23 for larger dictionaries.
2) Noisy Square Dictionary Recovery: Next we exam-

ined the recovery of square dictionaries from AWGN-cor-
rupted observations. For this, we repeated the experiment
from the previous section, but constructed the observa-
tions as , where and con-
tained AWGN samples with variance adjusted to achieve an

of 40 dB.
The right subplots in Fig. 11 show the mean value (over 10

trials) of the relative NMSE from (26) when recovering an
dictionary from training samples of sparsity
, for various combinations of and . These subplots show

that ER-SpUD(proj) falls apart in the noisy case, which is per-
haps not surprising given that it is intended only for noiseless
problems.Meanwhile, the K-SVD, SPAMS, and EM-BiG-AMP

22Our results for SPAMS and ER-SPUD(proj) in the left column of Fig. 11
are nearly identical to those in [24, Fig. 1], while our results for K-SVD are
noticeably better.
23The simpler “SC” variant of ER-SpUD reduces the computational cost rel-

ative to the “proj” variant, but results in a significantly worse PTC (see [24, Fig.
1]) and remains slower than EM-BiG-AMP for larger problems.

Fig. 13. Mean NMSE (over 10 trials) for recovery of an dictionary
from training samples, each of sparsity , in the noiseless
case (left) and under AWGN of 40 dB SNR (right), for several algorithms.

algorithms appear to degrade gracefully in the presence of noise,
yielding at points below the noiseless PTCs.
3) Recovery of Overcomplete Dictionaries: Finally, we con-

sider recovery of overcomplete dictionaries, i.e., the
case where . In particular, we investigated the twice
overcomplete case, . For this, random problem real-
izations were constructed in the same manner as described ear-
lier, except for the dictionary dimensions.
The left column of Fig. 13 shows the mean value (over 10

trials) of the relative NMSE for noiseless recovery, while the
right column shows the corresponding results for noisy re-
covery. In all cases, training
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samples were provided. EM-BiG-AMP, K-SVD, and SPAMS
all give very similar results to Fig. 11 for the square-dictionary
case, verifying that these techniques are equally suited to
the recovery of over-complete dictionaries. ER-SpUD(proj),
however, only applies to square dictionaries and hence was not
tested here.
4) Summary: In summary, Figs. 11–13 show that, for

noiseless square dictionary learning, EM-BiG-AMP yields an
empirical PTC that is nearly as good as the state-of-the-art
ER-SpUD(proj) algorithm and much better than those of
(genie-aided) K-SVD and SPAMS. However, the figures show
that, in comparison to ER-SpUD(proj), EM-BiG-AMP is fast
for large (square) dictionaries, robust to AWGN, and applicable
to non-square dictionaries.
We recall that Krzakala,Mézard, and Zdeborová recently pro-

posed an AMP-based approach to blind calibration and dic-
tionary learning [28] that bears similarity to our scalar-vari-
ance BiG-AMP under AWGN-corrupted observations (recall
[1, footnote 6]). Although their approach gave good results for
blind calibration, they report that it was “not able to solve” the
DL problem [28]. We attribute EM-BiG-AMP’s success with
DL (as evidenced by Figs. 11–13) to the adaptive damping pro-
cedure proposed in [1, Sec. IV-B], the initialization procedure
proposed in Section IV-B, the EM-learning procedure proposed
in Section IV-C, and the re-initialization procedure proposed in
Section IV-D.

V. CONCLUSION

This manuscript is the second part in a two-part work on
BiG-AMP, an extension of the G-AMP algorithm [7] originally
proposed for high-dimensional generalized-linear regression in
the context of compressive sensing, to generalized-bilinear re-
gression, with applications in matrix completion, robust PCA,
dictionary learning, and related matrix-factorization problems.
In Part I [1], we proposed and derived the BiG-AMP algo-
rithm, as well as an adaptive damping mechanism to aid conver-
gence under realistic problem sizes, an expectation-maximiza-
tion (EM)-based method to automatically tune the parameters
of the assumed priors, and two rank-selection strategies. Here,
in Part II, we detailed the application of BiG-AMP to matrix
completion, robust PCA, and dictionary learning, and we pre-
sented the results of an extensive numerical investigation into
the performance of BiG-AMP on both synthetic and real-world
datasets. These results demonstrate that BiG-AMP yields excel-
lent reconstruction accuracy (often best in class) while main-
taining competitive runtimes, and that the proposed EM and
rank-selection strategies successfully avoid the need to tune al-
gorithmic parameters.
The excellent empirical results reported here motivate future

work on the analysis of EM-BiG-AMP, on the extension of
EM-BiG-AMP to, e.g., structured-sparse or parametric models,
and on the application of EM-BiG-AMP to practical prob-
lems in high-dimensional inference. For example, preliminary
results on the application of EM-BiG-AMP to hyperspectral
unmixing (a form of non-negative matrix factorization) have
been reported in [25] and are very encouraging.
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