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BILINEAR RESTRICTION ESTIMATES FOR SURFACES
WITH CURVATURES OF DIFFERENT SIGNS

SANGHYUK LEE

Abstract. Recently, the sharp L2-bilinear (adjoint) restriction estimates for
the cone and the paraboloid were established by Wolff and Tao, respectively.
Their results rely on the fact that for the cone and the paraboloid, the nonzero

principal curvatures have the same sign. We generalize those bilinear restric-
tion estimates to surfaces with curvatures of different signs.

1. Introduction and the statement of results

Let S be a smooth compact hypersurface with boundary in Rn+1, n ≥ 2, with
Lebesgue measure dσ. The Fourier restriction problem for S is to determine (p, q)
for which the (linear) adjoint restriction estimate

‖f̂dσ‖q ≤ C‖f‖Lp(dσ)

holds for all f ∈ C∞
c (S). Although many works were devoted to this problem, it

remains widely open. However, some significant progress has been recently made in
the restriction estimate for the cone [21], the paraboloid and the sphere [13]. These
results were obtained by studying a bilinear version of their (adjoint) restriction
operators. In this note we aim to generalize the known bilinear restriction estimates
([13, 21]) to more general surfaces.

Let φ1, φ2 be smooth functions on [−1, 1]n. For i = 1, 2, let us define extension
(adjoint of restriction) operators by

(1.1) Eif(x, t) =
∫

Vi

e2πi(x·ξ−tφi(ξ))f(ξ)dξ, (x, t) ∈ Rn × R,

where V1, V2 are subcubes in [−1, 1]n. Possibly, V1, V2 can be the same sets. The
bilinear approach to the restriction problem is an attempt to obtain the estimate
of the form

(1.2) ‖E1f · E2g‖Lq(Rn+1) ≤ C‖f‖Lp(Rn)‖g‖Lp(Rn).

Obviously, if φ1 = φ2 and V1 = V2, it is equivalent to the linear adjoint restriction
estimate. The advantage of the bilinear estimate is that if one imposes some addi-
tional conditions (e.g. transversality) on the surfaces Si = {(ξ,−φi(ξ)) : ξ ∈ Vi},
i = 1, 2, then the bilinear restriction estimate may have the wider range (p, q) of
boundedness than that of the linear one. As shown in [17], [21], for some specific
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surfaces (e.g. the sphere or the cone) it is possible to deduce the corresponding
linear estimate from bilinear one. So, the bilinear restriction estimate (1.2) can
be thought of as a generalization of the linear restriction estimate. For more and
related materials, we refer the reader to [13, 14, 15, 16, 17].

The problem is relatively easier on L2, where Plancherel’s theorem can be used
freely. Letting p = 2, one may try to obtain the best possible q for which

(1.3) ‖E1f · E2g‖Lq(Rn+1) ≤ C‖f‖L2(Rn)‖g‖L2(Rn)

holds. This type of estimate was used not only for the restriction problem but it
also has applications for a variety of related problems (see [14, 16] and references
therein, and also [4, 7, 8, 9]). The estimate (1.3) was first formulated by Bourgain
[4] with φ1 = φ2 = |ξ|, n = 2 and separation condition (1.4), and he showed it for
some p > 2 − ε for some ε > 0. Klainerman and Machedon conjectured that when
φ1 = φ2 = |ξ| or φ1 = φ2 = |ξ|2, (1.3) holds for q ≥ n+3

n+1 under the condition

(1.4) dist (∇φ1(V1),∇φ2(V2)) ∼ 1.

Here A ∼ B (A, B > 0) means C−1A ≤ B ≤ CA for some C > 0. In [15, 17],
a systematical study on this problem was carried out and some partial results
were obtained. For φ1 = φ2 = |ξ|, the conjecture was later settled by Wolff [21]
(q > n+3

n+1 ) and Tao [12] (q = n+3
n+1 ). Recently, Tao [13] obtained the sharp estimate

for φ1 = φ2 = |ξ|2 except for the endpoint estimate (q = n+3
n+1 ). His result also

includes the positively curved surfaces, namely, the elliptic surfaces all of which
principal curvatures are positive (see [17]).

Both of the results in [13, 21] rely on the fact that for the cone and the parabo-
loid, the nonzero principal curvatures have the same sign. We try to generalize the
bilinear restriction estimates for the cone and the paraboloid to surfaces with cur-
vatures of different signs. The possibility of this kind of generalization was already
indicated in [13]. Let us denote by Hφ the Hessian matrix of φ. Our first result is
the following.

Theorem 1.1. Suppose for ξ ∈ [−1, 1]n,

(1.5) detHφi(ξ) �= 0, i = 1, 2.

Additionally, suppose for all ξ, ξ′, ξ′′ ∈ V1 and ζ, ζ ′, ζ ′′ ∈ V2,

|〈(Hφ1)−1(ξ′′)(∇φ1(ξ) −∇φ2(ζ)),∇φ1(ξ′) −∇φ2(ζ ′)〉| ≥ c > 0,(1.6)

|〈(Hφ2)−1(ζ ′′)(∇φ1(ξ) −∇φ2(ζ)),∇φ1(ξ′) −∇φ2(ζ ′)〉| ≥ c > 0.(1.7)

Then (1.3) holds for q > n+3
n+1 .

One can see (1.3) is no longer valid for q < n+3
n+1 by using the squashed cap

functions in [17]. If φ1 and φ2 are elliptic functions, condition (1.4) implies (1.6)
and (1.7) provided V1 and V2 are sufficiently small since the eigenvalues of Hφi have
the same sign. So, Theorem 1.1 contains Tao’s result for paraboloid and elliptic
surfaces.

The conditions (1.6), (1.7) are related to the rotational curvature conditions of
the functions Φx

1 , Φw
2 given by

Φx
1(y, w) = φ1(x) + φ2(y) − φ1(x + y − w) − φ2(w),

Φw
2 (x, z) = φ1(x) + φ2(z + w − x) − φ1(z) − φ2(w).
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Since we are assuming detHφi(ξ) �= 0, (1.6) and (1.7) are equivalent to

det
(

0 ∂wΦx
1(y, w)

∂yΦx
1(y, w) ∂2

wyΦx
1(y, w)

)
�= 0, det

(
0 ∂zΦw

2 (x, z)
∂w

x Φ2(x, z) ∂2
zxΦw

2 (x, z)

)
�= 0,

respectively, if x ∈ V1, y ∈ V2, z ∈ V1, w ∈ V2, x+y−w ∈ V1 and z+w−x ∈ V2. It
is easy to see, using the fact that for a nonsingular n× n matrix M and v, u ∈ Rn,

det
(

0 ut

v M

)
= −(detM)〈M−1v, u〉.

Hence, Φx
1 , Φw

2 satisfy the rotational curvature condition. Therefore, following the
same lines of argument in [15, 17], one can see

‖E1f · E2g‖2 ≤ C‖f‖ 4(n+1)
3n+1

‖g‖ 4(n+1)
3n+1

which is corresponding to Theorem 2.3 of [17] where elliptic φ1, φ2 were considered.
When the eigenvalues of Hφi have different signs, to get (1.3) for q ≥ n+3

n+1 , it
is insufficient to impose (1.4) simply. If (1.6) and (1.7) are replaced by the weaker
(1.4), then (1.3) fails for n+2

n > q. More precisely, under condition (1.4), (1.2) is
valid only for p, q satisfying

(1.8) n

(
1 − 1

p

)
≥ n + 2

2q
.

This is also the necessary condition for the (linear) adjoint restriction Lp-L2q es-
timate for the surfaces with nonvanishing Gaussian curvature in Rn+1. Under the
separation condition (1.4) (dist (V1, V2) ∼ 1), the bilinear restriction estimate for
hyperboloid has no better boundedness than the linear estimate.

To see (1.8), we consider

φ1(ξ) = φ2(ξ) = (ξ2
1 + · · · + ξ2

k−1 − ξ2
k − · · · − ξ2

n−2 + 2ξn−1ξn) =
1
2
〈Mξ, ξ〉,

where M is the symmetric matrix which makes the last equality hold. Note that
Hφ1 and Hφ2 have k positive and n − k negative eigenvalues. In this case the
conditions (1.6) and (1.7) read as follows: For all ξ, ξ′ ∈ V1 and ζ, ζ ′ ∈ V2,

(1.9) |〈M(ξ − ζ), ξ′ − ζ ′〉| ≥ c > 0.

Also, (1.4) is equivalent to dist (V1, V2) ∼ 1. Let f , g be the characteristic functions
of the balls B(−en−1, 1/4), B(en−1, 1/4) ⊂ Rn, respectively. Then ‖E1fE2g‖q ≥
c > 0 because (E1fE2g)(0) �= 0. For λ � 1 set

fλ = f(λ1/2ξ1, . . . , λ
1/2ξn−2, ξn−1, λξn)

and similarly define gλ. Observe that the supports of fλ, gλ are in small neigh-
borhoods of −en−1, en−1, respectively. Obviously, (1.4) is satisfied but (1.6), (1.7)
(namely (1.9)) are not valid. Then by re-scaling ξ → (λ−1/2ξ1, . . . , λ−1/2ξn−2,
ξn−1, λ

−1ξn),

E1fλE2gλ(x, t) = λ−n(E1fE2g)(λ−1/2x′, xn−1, λ
−1xn, λ−1t),

where x′ = (x1, . . . , xn−2). Suppose (1.2) holds; then we have

Cλ−n
p ‖f‖p‖g‖p ≥ ‖E1fλE2gλ‖q = λ−nλ

n+2
2q ‖E1fE2g‖q.

Letting λ → ∞ we obtain (1.8).
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Theorem 1.1 can be used to improve the known restriction estimate for hyper-
boloid in R3. Let us set

H = {(ξ1, ξ2, ξ
2
1 − ξ2

2) : ξ ∈ [−1, 1]2}.

Corollary 1.2. Let dσH be the Lebesgue measure on H. Then for 4 > q > 10
3 and

2
q < (1 − 1

p ), there is a constant C such that

‖f̂dσH‖Lq(R3) ≤ C‖f‖Lp(dσH).

The sharp estimate for q ≥ 4 (2/q = (1−1/p)) is due to Stein [10]. Unfortunately
the argument in [17] using the bilinear estimate (1.3) to derive a linear estimate
does not seem to be directly applicable for hyperboloids in higher dimensions n ≥ 3.
To get a linear estimate in the higher dimensions, one may need to prove a stronger
estimate than Theorem 1.1. However, we do not know at this point whether it is
possible to get a linear estimate from a bilinear estimate such as Theorem 1.1.

Now we consider the bilinear restriction estimates for some conic surfaces. Let
N be a nonsingular (n−1)× (n−1) symmetric matrix and let V 1, V 2 be subcubes
of [−1, 1]n−1. For i = 1, 2, we define extension operators by

(1.10) Eif(x, t) =
∫ 2

1

∫
V i

e2πi(x′·η+xnρ−t〈η,Nη/ρ〉)f(η, ρ)dηdρ,

where (x′, xn, t) ∈ Rn−1 × R × R. These can be viewed as the adjoint of Fourier
restriction to the conic surfaces

Γi(N) = {(η, ρ, τ) ∈ Rn−1 × R × R : τ = −〈η, Nη/ρ〉), η ∈ V i, 1 ≤ ρ ≤ 2}, i = 1, 2.

By a linear transform on η, N may always be assumed to be a matrix having
nonzero entries 1,−1 only on its diagonal. When N is the identity matrix, Γi(N) is
a subset of the light cone. For this the bilinear estimate (1.12) under the condition
(1.4) was obtained by Wolff [21]. But for other conic type surfaces, especially with
curvature of different signs, similar results were unknown. For this we have the
following.

Theorem 1.3. Let N be a diagonal matrix having 1,−1 only on its diagonal. For
i = 1, 2, set

Θi = {(η/ρ) : (η, ρ) ∈ V i × [1, 2]}.
Suppose for all (θ1, θ2), (θ′1, θ′2) ∈ Θ1 × Θ2,

(1.11) |〈θ1 − θ2, N(θ′1 − θ′2)〉| ∼ 1.

Then, for q > n+3
n+1 , there is a constant C such that

(1.12) ‖E1fE2g‖q ≤ C‖f‖2‖g‖2.

If N = id, condition (1.11) is equivalent to (1.4) (to say, dist (Θ1, Θ2) ∼ 1)
provided Θ1, Θ2 are small enough. Using the similar argument as before, one can
see that if (1.11) is replaced by (1.4), then (1.12) holds only for n+1

n−1 ≤ q whenever
the eigenvalues of N have different signs. It is possible to replace 〈η, Nη/ρ〉 in (1.10)
by a more general function ρh(η/ρ) with some condition on h, which are similar to
(1.6), (1.7) but more complicated. The argument in [12] seems likely to give the
endpoint estimate (q = n+3

n+1 ).
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As an application of Theorem 1.3, we obtain the almost optimal restriction
estimate for a conic surface with negative curvature in R4. Let us set

C = {(η, ρ, (η2
1 − η2

2)/ρ) ∈ R2 × R × R : η ∈ [−1, 1]2, 1 ≤ ρ ≤ 2}.
The following can be compared with the restriction estimate for the cone obtained
by Wolff [21].

Corollary 1.4. Let dσC be the Leqesgue measure on C. Then, for 4 > q > 3 and
2
q < (1 − 1

p ), there is a constant C such that

‖f̂dσC‖Lq(R4) ≤ C‖f‖Lp(dσC).

Therefore, this solves the restriction problem for C except for the endpoint esti-
mates at the critical line 2/q = (1 − 2/p), 4 > q > 3. The sharp estimate for q ≥ 4
(2/q = (1 − 2/p)) was obtained by Greenleaf [6]. As observed in [21] (Corollary
1), a little strong estimate is possible if one use the mixed norm ‖ · ‖Lp(dη)(L2(dρ))

instead of ‖ · ‖Lp(dC).
After this paper was written, the author was informed that A. Vargas [18] inde-

pendently obtained Corollary 1.2 establishing (1.3) for q > 5
3 with φ1 = φ2 = ξ1ξ2

on R3. Also, the author thanks T. Tao for personal communications about this.

2. Proof of Theorem 1.1

The proofs of both Theorem 1.1 and Theorem 1.3 are based on Tao’s proof of
the bilinear restriction estimates for paraboloids ([13]), which is a variant of the
induction on scales argument due to Wolff [21].

By the ε− removal argument in [15] it is sufficient for the proof of Theorem 1.1
to show that for any α > 0, there is a constant C = C(α) such that for R � 1,

(2.1) ‖E1f1 · E2f2‖
L

n+3
n+1 (QR)

≤ CRα‖f1‖2‖f2‖2,

where QR = {(x, t) ∈ Rn × R : |t|, |xi| ≤ R}.
A bound with large α is easy to obtain using Hölder’s inequality and ‖Eif‖∞ ≤

‖f‖2. The main idea of the induction on scales argument is to establish an iterative
estimate which enables us to suppress the exponent α as small as possible.

Proposition 2.1. Suppose (2.1) holds for some α > 0. Then, for all 0 < δ, ε � 1,
there is constant C, independent of R, such that for R � 1,

(2.2) ‖E1f1 · E2f2‖
L

n+3
n+1 (QR)

≤ CRmax(α(1−δ),cδ)+ε‖f1‖2‖f2‖2

holds for some constant c, independent of R, δ, ε.

This gives (2.1). Indeed, by choosing δ = α/(α+c), we have max(α(1−δ), cδ) =
cα/(α+c). Repeated uses of Proposition 2.1 produce a sequence of exponents {αj}
for which (2.1) is valid with α = αj . This is given by the recursive relation

αj+1 = cαj/(αj + c) + ε, α0 = C,

where C is a large constant. Then it is easy to see that {αj} monotonically converges
to (ε +

√
ε2 + 4cε)/2. Since ε can be chosen arbitrarily small, we get (2.1) for all

α > 0.
The last of this section is devoted to showing Proposition 2.1. Fixing R � 1,

we show (2.1) implies (2.2). In the following, by C, c we denote positive constants
which may vary from line to line.
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First, we decompose Eifi into a sum of wave packets which was introduced in
[13] (also, see [21]). The wave packets have good localization property in both
Fourier transform side and (x, t)-space. The wave packet decomposition at scale R
makes the support of functions be expanded by O(R−1/2) (see Lemma 2.2). So, we
need to consider a little bit larger sets than V1, V2. For CR−1/2 < ε � 1, let us set

Ṽi = Vi + O(ε),

where for d > 0 and A ⊂ Rn, A+O(d) denotes the set {x ∈ Rn : dist (x, A) < Cd}.
By continuity, we may assume conditions (1.5), (1.6) and (1.7) are still valid if V1,
V2 are replaced by Ṽ1, Ṽ2, respectively, and ε is sufficiently small.

2.1. Wave packet decomposition at scale R. For a fixed R � 1, we define the
space grid Y by

Y = R1/2Zn

and the frequency grids V1, V2, respectively, by setting

Vi = R−1/2Zn ∩ Ṽi, i = 1, 2.

Let us set
Wi = {(y, v) : (y, v) ∈ Y × Vi}.

For each wi = (yi, vi) ∈ Wi, we define (R1/2)n × R tube Twi
by

Twi
= {(x, t) ∈ Rn × R : |t| ≤ R, |x − (yi + t∇φi(vi))| ≤ R1/2}.

Obviously Tyi,vi
meets (yi, 0) and its major direction is parallel to (∇φi(vi), 1) ∈

Rn × R. The following is a simple modification of Lemma 4.1 in [13].

Lemma 2.2 (Wave packet decomposition). Suppose f1, f2 are supported in V1, V2,
respectively. If |t| ≤ R, we can write Eifi as

Eifi(x, t) =
∑

wi∈Wi

Cwi
pwi

(x, t), (x, t) ∈ Rn × R,

such that pwi
= Ei( ̂pwi

(·, 0)) and Cwi
, pwi

satisfy the following:

(P1) For i = 1, 2, (
∑

wi∈Wi
|Cwi

|2)1/2 ≤ C‖fi‖2.

(P2) If wi = (yi, vi), supp ̂pwi
(·, t) ⊂ {ξ : ξ = vi + O(R−1/2)}.

(P3) If dist ((x, t), Tyi,vi
) ≥ Rδ+1/2, then |pyi,vi

(x, t)| ≤ CR−100n. More
precisely,

|pyi,vi
(x, t)| ≤ CR−n/4

(
1 +

|x − (yi + t∇φi(vi))|
R1/2

)−N

for any N.

(P4) For any S ⊂ Wi, ‖
∑

wi∈S pwi
(·, t)‖2

2 ≤ C#S.

Proof of Lemma 2.2. Using the Poisson summation formula, one can find an η sat-
isfying supp η̂ ⊂ B(0, 1) and

∑
k∈Zn η(· − k) = 1. Here B(a, r) ⊂ Rn denotes the

ball centered at a with radius r. Let ψ ∈ C∞
0 (B(0, 1)) with

∑
k∈Zn ψ(· − k) = 1.

For y ∈ Y and vi ∈ Vi, let us set

ηy(x) = η(
x + y

R1/2
), ψvi

(ξ) = ψ(R1/2(ξ − vi)).
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Note that fi =
∑

vi∈Vi,y∈Y F−1(ψ̂vi
fiηy) since fi is supported in Vi and F−1(ψ̂vi

fiηy)
is supported in the (CR−1)-neighborhood of vi. Here F−1 denotes the inverse
Fourier transform. Then it follows that

Eifi(x, t) =
∑

v∈Vi,y∈Y
qy,vi

(x, t),

where

(2.3) qy,vi
(x, t) =

∫
e2πi(x·ξ−tφi(ξ))F−1(ψ̂vi

fiηy)dξ.

Now we show

Lemma 2.3. If |t| ≤ R, for any N

|qy,vi
(x, t)| ≤ CM(ψ̂vi

fi)(−y)
(

1 +
|x − (y + t∇φi(vi))|

R1/2

)−N

,

where M denotes the Hardy-Littlewood maximal function.

Proof of Lemma 2.3. Since F−1(ψ̂vi
fiηy) is supported in vi + O(R−1/2), we can

find a smooth cutoff function ψ̃ so that ψ̃vi
= 1 on the support of F−1(ψ̂vi

fiηy).
(Here ψ̃vi

is defined from ψ̃ by the same way as ψvi
.)

For simplicity we set Fvi
= ψ̂vi

fi. By putting ψ̃vi
into the integral in (2.3),

translation and re-scaling, we have

qy,vi
(x, t) = R−n/2

∫
K(x + z, t)η(

z + y

R1/2
)Fvi

(z)dz,

where

K(x, t) =
∫

e2πi(R−1/2x·ξ+x·vi−tφi(R
−1/2ξ+vi))ψ̃(ξ)dξ.

Note that R−1/2t(∇φi(R−1/2ξ + vi) −∇φi(vi)) = O(1) if |t| ≤ R. From this, if
|t| ≤ R and |x − tφi(vi)| ≥ CR1/2,

R−1/2|x − t∇φi(vi)| ≤ C|∇ξ(R−1/2x · ξ + x · vi − tφi(R−1/2ξ + vi)|.
By integration by parts, we see that if |t| ≤ R,

|K(x, t)| ≤ C

(
1 +

|x − t∇φi(vi)|
R1/2

)−N

for any N . We translate z → z − y and set a = x − (y + t∇φi(vi)). Then

|qy,vi
(x, t)| ≤ CR−n/2

∫ (
1 +

|a + z|
R1/2

)−N

|η(
z

R1/2
)Fvi

(z − y)|dz.

Therefore it is sufficient to show that for λ � 1

(2.4) I = λ−n

∫ (
1 +

|a + z|
λ

)−N

|η(
z

λ
)F (z)|dz ≤ C(1 + |a|/λ)−NMF (0)

for any N . If |a| ≤ λ, there is nothing to prove. We may assume |a| � λ. We
divide the integral I into {Ij} so that I =

∑∞
0 Ij and

∞∑
0

Ij ≤ Cλ−n

⎛⎝∫
|z|≤λ/2

+
∞∑

j=1

∫
|z|∼λ2j

⎞⎠ (
1 +

|a + z|
λ

)−N

|η(
z

λ
)F (z)|dz.
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Then, if |a| ∼ λ2j , by the rapid decay of η, Ij ≤ C(|a|/λ)−MMF (0) for any M .
If |a| �∼ λ2j , Ij ≤ C2−Mj(|a|/λ)−NMF (0) for any M because C|a + z| ≥ |a| if
|a| �∼ |z|. Summation with respect to j gives (2.4). �

Now we turn to the proof of Lemma 2.2. For wi = (yi, vi) ∈ Wi, let us set

Cyi,vi
= Rn/4M(ψ̂vi

fi)(−yi), pyi,vi
= qyi,vi

/Cyi,vi
.

Then, pwi
= Ei( ̂pwi

(·, 0)) is obvious from (2.3), and using Lemma 2.3 we see (P3).
By the support property of ψvi

, ηyi
, it is easy to see

supp ̂qyi,vi
(·, t) ⊂ {ξ : ξ = vi + O(R−1/2)}

for each t, yi. So we get (P2). By Plancherel’s theorem we have

‖
∑

vi∈Vi,yi∈Y
pyi,vi

(·, t)‖2 ≤ C(
∑
v∈Vi

‖
∑
yi∈Y

pyi,vi
(·, t)‖2

2)
1/2.

Using this and ‖pyi,vi
(·, t)‖2 ≤ C, one can easily see (P4) since for fixed vi,

{pyi,vi
(·, t)}yi

are essentially disjoint (see (P3)).
Since ψvi

fi is supported in a ball of radius about R−1/2, if |x − x′| ≤ CR1/2,
M(ψ̂vi

fi)(x) ∼ M(ψ̂vi
fi)(x′) (see [13]). This can be shown using a bump function

adapted to the ball where ψvi
fi is supported. Hence,∑

wi∈Wi

|Cwi
|2 ≤ C

∑
vi

∫
|M(ψ̂vi

fi)(y)|2dy ≤ C
∑
vi

∫
|ψ̂vi

fi|2dy ≤ C

∫
|fi(y)|2dy.

The second inequality is from the Hardy-Littlewood maximal theorem and the third
from Plancherel’s theorem. So we get (P1). �

2.2. Reduction. We normalize ‖f1‖2 = ‖f2‖2 = 1 and fix a small δ > 0. Then,
using Lemma 2.2, we have for i = 1, 2,

Eifi =
∑

wi∈Wi

Cwi
pwi

.

For Proposition 2.1 it is sufficient to show that (2.1) implies

(2.5) ‖
∑

w1∈W1

∑
w2∈W2

Cw1Cw2pw1pw2‖
L

n+3
n+1 (QR)

� (Rα(1−δ) + Rcδ).

Here, A � B means there is a constant Cε such that A ≤ CεR
εB for any ε > 0,

R � 1. For each cube Q, we denote by CQ the cube which has the same center as
Q and side length C-times as long as that of Q.

Since pwi
is essentially supported on the tubes Twi

(see (P3) in Lemma 2.2), we
may always assume that if wi ∈ Wi, i = 1, 2, then for some large C > 0,

(2.6) Tw1 ∩ CQR �= ∅, Tw2 ∩ CQR �= ∅
because the contribution from the others is O(R−100n). Indeed, since |Cw1 |, |Cw1 | ≤
C by (P1), using (P3) in Lemma 2.2, it is easy to see that for some large C > 0,

‖
∑

Tw1∩CQR=∅ or Tw2∩CQR=∅
Cw1Cw2pw1pw2‖

L
n+3
n+1 (QR)

� R−100n.

Discarding these, from (2.6) we see that both the numbers of the remaining w1, w2

(also the tubes) are O(R50n). Then one can easily see from a rough estimate
that the contribution from the terms with |Cw1 | ≤ R−200n or |Cw2 | ≤ R−200n are
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O(R−30n). Hence we may also assume C ≥ |Cw1 |, |Cw2 | ≥ R−200n. Therefore, by
the pigeonhole principle, there are dyadic numbers R−200n ≤ µ1, µ2 ≤ C such that

LHS of (2.5) ≤ C(log R)2‖
∑

µ1≤|Cw1 |<2µ1

∑
µ2≤|Cw2 |<2µ2

Cw1Cw2pw1pw2‖
L

n+3
n+1 (QR)

.

This kind of pigeonhole argument which fixes an involved quantity at the expense
of C(log R)c in the bound will be used several times.

Since (#{wi : |Cwi
| ∼ µi})

1
2 ≤ C/µi from (P1), for (2.5) it is sufficient to show

that for any subset W1 ⊂ W1, W2 ⊂ W2,

(2.7) ‖
∑

w1∈W1

∑
w2∈W2

pw1pw2‖
L

n+3
n+1 (QR)

� C(Rα(1−δ) + Rcδ)(#W1#W2)1/2.

In fact, since |Cw1 |/µ1, |Cw2 |/µ2 ∼ 1, we may absorb harmless constants Cw1/µ1,
Cw2/µ2 into pw1 , pw2 , respectively, because this does not affect the properties (P1)-
(P4) in Lemma 2.2.

Now we decompose QR into essentially disjoint cubes b of side length R1−δ and
denote by B the collection of these cubes. By triangle inequality

‖
∑

w1∈W1

∑
w2∈W2

pw1pw2‖
L

n+3
n+1 (QR)

≤ C
∑
b∈B

‖
∑

w1∈W1

∑
w2∈W2

pw1pw2‖
L

n+3
n+1 (b)

.

Suppose given a relation ≈ between wi, i = 1, 2 and b, which will be defined in the
next subsection. We break the right-hand side of the above into two parts so that

‖
∑

w1∈W1

∑
w2∈W2

pw1pw2‖
L

n+3
n+1 (QR)

≤
∑
b∈B

‖
∑

w1≈b

∑
w2≈b

pw1pw2‖
L

n+3
n+1 (b)

(2.8)

+
∑
b∈B

‖
∑

w1 
≈b, or w2 
≈b

pw1pw2‖
L

n+3
n+1 (b)

.

Roughly, w1 ≈ b means Tw1 is one of highly concentrating tubes on b. The division
in (2.8) gives the high concentration part and the low concentration part according
to the overlapping degree of tubes on b. As to be seen later, the low concentration
part can be directly handled by utilizing orthogonality among wave packets and the
geometry of concentrating tubes. However it is hard to get estimate for the high
concentration part, as one might expect. Instead, the induction assumption (2.1)
is to be used for ‖

∑
w1≈b

∑
w2≈b pw1pw2‖

L
n+3
n+1 (b)

. This gives O(Rα(1−δ)) bound

because b are cubes of side length R1−δ. Since there are many b, the number of
w1, w2 ≈ b should be controlled to get the required bound.

2.3. The relation ≈ between wi ∈ Wi and b. Now we divide QR into essentially
disjoint cubes q of side length R1/2. Let us denote by Q this collection of q. For
q ∈ Q, let us define

Wi(q) = {wi ∈ Wi : Twi
∩ Rδq �= ∅}.

For dyadic numbers 1 ≤ µ1, µ2 ≤ R100n, we set

Q(µ1, µ2) = {q ∈ Q : µ1 ≤ #W1(q) < 2µ1, µ2 ≤ #W2(q) < 2µ2}.
For wi ∈ Wi and dyadic numbers 1 ≤ µ1, µ2 ≤ R100n, let us set

λ(wi, µ1, µ2) = #{q ∈ Q(µ1, µ2) : Rδq ∩ Twi
�= ∅}

and for dyadic numbers 1 ≤ λ ≤ R100n,

Wi(λ, µ1, µ2) = {wi ∈ Wi : λ ≤ λ(wi, µ1, µ2) < 2λ}.
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For each dyadic number 1 ≤ λ, µ1, µ2 ≤ R100n and wi ∈ Wi(λ, µ1, µ2), we define
b(wi, λ, µ1, µ2) ∈ B to be a ball which maximizes the quantity

#{q ∈ Q(µ1, µ2) : Rδq ∩ Twi
�= ∅, q ∩ b �= ∅}.

Possibly there may be many candidates for b(wi, λ, µ1, µ2). Then we simply choose
one among them. Since #B ∼ R(n+1)δ, it follows that

(2.9) #{q ∈ Q(µ1, µ2) : Rδq ∩ Twi
�= ∅, q ∩ b(wi, λ, µ1, µ2) �= ∅} � λR−(n+1)δ.

We define a relation ≈λ,µ1,µ2 between wi ∈ Wi(λ, µ1, µ2) and b ∈ B by

wi ≈λ,µ1,µ2 b if b ∩ 10b(wi, λ, µ1, µ2) �= ∅.
From this we define a relation ≈ between wi ∈ Wi and b by saying

wi ≈ b if wi ≈λ,µ1,µ2 b for some dyadic 1 ≤ λ, µ1, µ2 ≤ R100n.

Clearly for each wi, there are O((log R)3) balls b in B for which wi ≈ b since there
are O((log R)3) dyadic triples (λ, µ1, µ2). So it follows that for all wi ∈ Wi,

(2.10) #{b ∈ B : wi ≈ b} � 1.

Since
∑

wi≈b pwi
= Ei(

∑
wi≈b

̂pwi
(·, 0)) from Lemma 2.2 and b is a R1−δ-cube,

the hypothesis (2.1), (P4) in Lemma 2.2 and Plancherel’s theorem give∑
b∈B

‖
∑

w1≈b

∑
w2≈b

pw1pw2‖
L

n+3
n+1 (b)

≤ CRα(1−δ)
∑
b∈B

#{w1 : w1 ≈ b} 1
2 #{w2 : w2 ≈ b} 1

2 .

By Schwarz’s inequality, changing the order of summation and (2.10), we see∑
b∈B

‖
∑

w1≈b

∑
w2≈b

pw1pw2‖
L

n+3
n+1 (b)

≤ CRα(1−δ)

( ∑
w1∈W1

#{b ∈ B : w1 ≈ b}
)1/2 ( ∑

w2∈W2

#{b ∈ B : w2 ≈ b}
)1/2

� Rα(1−δ)(#W1)1/2(#W2)1/2.

2.4. R1/2-scale decomposition. For (2.7) we need to show∑
b∈B

‖
∑

w1 
≈b or w2 
≈b

pw1pw2‖
L

n+3
n+1 (b)

� Rcδ(#W1)1/2(#W2)1/2.

Since #B ∼ R(n+1)δ, it suffices to show that for all b ∈ B,

(2.11) ‖
∑

w1 
≈b or w2 
≈b

pw1pw2‖
L

n+3
n+1 (b)

� Rcδ(#W1)1/2(#W2)1/2.

Here, we are assuming the sum is always taken over some subset of W1×W2. Since
pwi

= Ei( ̂pwi
(·, 0)), using the local restriction estimate ‖Eif‖L2(QR) ≤ CR

1
2 ‖f‖2

(see [17]), Schwarz’s inequality and (P4) in Lemma 2.2, we obtain

‖
∑

w1 
≈b or w2 
≈b

pw1pw2‖L1(b) � R1−δ(#W1)1/2(#W2)1/2.

Hence, in view of interpolation it suffices for (2.11) to show

(2.12) ‖
∑

w1 
≈b or w2 
≈b

pw1pw2‖L2(b) � RcδR−(n−1)/4(#W1)1/2(#W2)1/2.
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Since L2-norm is taken in the left-hand side of (2.12), the orthogonality among
pw1 , pw2 can be effectively exploited in their Fourier transforms via Plancherel’s
theorem. For this, we decompose b into R1/2-cubes q ∈ Q. Obviously, (2.12)
follows from

(2.13)
∑

q∈Q,q⊂2b

‖
∑

w1 
≈b or w2 
≈b

pw1pw2‖2
L2(q) � RcδR−(n−1)/2#W1#W2.

Now, we make several obvious reductions by pigeonholing. Since |pwi
|≤CR−100n

on q if Twi
∩ Rδq = ∅ by (P3), in the left-hand side of (2.13) we may replace∑

w1 
≈b or w2 
≈b by
∑

w1∈W1(q),w1 
≈b

∑
w2∈W2(q),w2 
≈b discarding some O(R−30n)

terms. Since all the q appearing in (2.13) are contained in
⋃

µ1,µ2
Q(µ1, µ2), by

pigeonholing on dyadic numbers 1 ≤ µ1, µ2 ≤ R100n, the Q in the outer sum of
(2.13) can also be replaced by Q(µ1, µ2) for some µ1, µ2. Therefore, the matters
are reduced to showing∑

q∈Q(µ1,µ2),q⊂2b

‖
∑

(w1,w2)∈W1(q)×W2(q),w1 
≈b or w2 
≈b

pw1pw2‖2
L2(q)(2.14)

� RcδR−(n−1)/2#W1#W2.

Clearly,
⋃

q∈Q(µ1,µ2)
Wi(q) =

⋃
λ Wi(λ, µ1, µ2), i = 1, 2. Hence, by pigeonholing

over dyadic numbers 1 ≤ λ1, λ2 ≤ R100n, we may replace W1(q), W2(q) in the inner
sum of (2.14) by W1(q) ∩W1(λ1, µ1, µ2), W2(q) ∩W2(λ2, µ1, µ2), respectively. To
simplify the notation, we set

(2.15) W 
≈b
i (q, µ1, µ2, λi) = {wi ∈ Wi(q) ∩Wi(λi, µ1, µ2) : wi �≈ b}.

Let Ui ⊂ Wi and define Ui(q) by

Ui(q) = {wi ⊂ Ui : Twi
∩ Rδq �= ∅}.

Breaking
∑

w1 
≈b or w2 
≈b into
∑

w1 
≈b,w2 
≈b +
∑

w1≈b,w2 
≈b +
∑

w1 
≈b,w2≈b, by symme-
try it is sufficient for (2.14) to show that for any U2 ⊂ W2 and dyadic numbers
1 ≤ λ1, µ1, µ2 ≤ R100n,∑

q∈Q(µ1,µ2),q⊂2b

‖
∑

w1∈W �≈b
1 (q,µ1,µ2,λ1)

∑
w2∈U2(q)

pw1pw2‖2
L2(q)(2.16)

� RcδR−(n−1)/2#W1#W2.

2.5. Orthogonality among wave packets. In this subsection we work on the
Fourier transform side and we utilize the frequency localization property of the
wave packet decomposition (see (P2) in Lemma 2.2).

For ξ1 ∈ Ṽ1, ξ′2 ∈ Ṽ2, let us define a function Φξ1,ξ′
2

: Ṽ1 → R by

Φξ1,ξ′
2
(ξ′1) = φ1(ξ1) + φ2(ξ′1 + ξ′2 − ξ1) − φ1(ξ′1) − φ2(ξ′2).

We also define a set Πξ1,ξ′
2

by

(2.17) Πξ1,ξ′
2

= {ξ′1 ∈ Ṽ1 : Φξ1,ξ′
2
(ξ′1) = 0, ξ′1 + ξ′2 − ξ1 ∈ Ṽ2}.
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From (1.6) and (1.7) which imply (1.4), we see

(2.18) |∇Φξ1,ξ′
2
(ξ′1)| = |∇φ2(ξ′1 + ξ′2 − ξ1) −∇φ1(ξ′1)| ≥ c > 0

provided ξ′1 + ξ′2− ξ1 ∈ Ṽ2. So, dividing Ṽ1, Ṽ2 into sufficiently small cubes, we may
assume the sets Πξ1,ξ′

2
are smooth hyper-surfaces for all ξ1 ∈ Ṽ1, ξ′2 ∈ Ṽ2 because

E1fE2g is written as a finite sum of operators satisfying this assumption.
For U1 ⊂ W1, we define

N (U1) = sup
ξ1∈Ṽ1,ξ′

2∈Ṽ2

#{w′
1 ∈ U1 : v′1 ∈ Πξ1,ξ′

2
+ O(R−1/2)}.

Lemma 2.4. For q ∈ Q and Ui ⊂ Wi(q), i = 1, 2,

‖
∑

w1∈U1

∑
w2∈U2

pw1pw2‖2
L2 � RcδR−(n−1)/2N (U1)#U1#U2.

Proof of Lemma 2.4. We write

(2.19) ‖
∑

w1∈U1

∑
w2∈U2

pw1pw2‖2
L2 =

∑
w1∈U1

∑
w′

2∈U2

∑
w′

1∈U1

Iw1,w′
2,w′

1

where
Iw1,w′

2,w′
1

=
∑

w2∈U2

〈pw1pw2 , pw′
1
pw′

2
〉.

By recalling w = (y, v) and using (P2), we see 〈pw1pw2 , pw′
1
pw′

2
〉 = 0 unless v1, v

′
1 ∈

V1 + O(R−1/2), v2, v
′
2 ∈ V2 + O(R−1/2),

v1 + v2 = v′1 + v′2 + O(R−1/2) and(2.20)

φ1(v1) + φ2(v2) = φ1(v′1) + φ2(v′2) + O(R−1/2)(2.21)

because p̂wi
are supported in the O(R−1/2)-neighborhood of the point (vi, φ(vi)).

From (2.20) we see 〈pw1pw2 , pw′
1
pw′

2
〉 = 0 if v′1 + v′2 − v1 �∈ Ṽ2. So we may always

assume v′1 + v′2 − v1 ∈ Ṽ2. If Iw1,w′
2,w′

1
�= 0 for some fixed w1, w

′
2, then both (2.20)

and (2.21) should be satisfied by some v2 ∈ V2. Hence, if Iw1,w′
2,w′

1
�= 0 for fixed w1

and w′
2, then v′1 satisfies

φ1(v1) + φ2(v′1 + v′2 − v1) = φ1(v′1) + φ2(v′2) + O(R−1/2).

Therefore, from (2.18) it is obvious that v′1 satisfying the above is contained in
Πv1,v′

2
+ O(R−1/2).

Therefore, the left-hand side of (2.19) is equal to∑
w1∈U1

∑
w′

2∈U2

∑
{w′

1∈U1:v′
1∈Πv1,v′

2
+O(R−1/2)}

(2.22)

⎛⎝ ∑
{w2∈U2:v2=v′

1+v′
2−v1+O(R−1/2)}

〈pw1pw2 , pw′
1
pw2′〉

⎞⎠ .

If w1, w
′
2, w

′
1 are given, then there are at most O(1)-v2 because these are determined

by (2.20). Since all the tubes Tw2 (Tw1 resp.) are passing through Rδq, there are at
most O(Rcδ)-w2 (w1 resp.) if v2 (v1 resp.) is determined because y2 ∈ Y (y1 resp.)
are R1/2-separated. Using (P3) and the transversality between the tubes Tw1 and
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Tw2 (by (1.4)), it is easy to see that |〈pw1pw2 , pw′
1
pw′

2
〉| � R−(n−1)/2. Therefore, we

see that for fixed w1, w
′
2, w

′
1,∑

{w2∈U2:v2=v′
1+v′

2−v1+O(R−1/2)}

|〈pw1pw2 , pw′
1
pw2′〉| � RcδR−(n−1)/2.

From this and (2.22) we conclude the proof of Lemma 2.4. �

2.6. Proving Theorem 1.1. By showing (2.16), we prove Theorem 1.1 using the
following which will be shown in the next subsection.

Lemma 2.5 (Combinatorial estimates). For dyadic numbers 1 ≤ µ1, µ2, λ1 ≤
R100n and q ∈ Q(µ1, µ2), q ⊂ 2b,

N (W 
≈b
1 (q, µ1, µ2, λ1)) � Rcδ #W2

λ1µ2
.

Using Lemma 2.4, we see∑
q∈Q(µ1,µ2),q⊂2b

‖
∑

w1∈W �≈b
1 (q,µ1,µ2,λ1)

∑
w2∈U2(q)

pw1pw2‖2
L2(q)

� RcδR−n−1
2

∑
q∈Q(µ1,µ2),q⊂2b

N (W 
≈b
1 (q, µ1, µ2, λ1))#W 
≈b

1 (q, µ1, µ2, λ1)#U2(q).

Using Lemma 2.5, for (2.16) it suffices to show

#W2

λ1µ2

∑
q∈Q(µ1,µ2),q⊂2b

#W 
≈b
1 (q, µ1, µ2, λ1)#U2(q) � #W1#W2.

Since q ∈ Q(µ1, µ2) and U2 ⊂ W2, #U2(q) ≤ µ2. So we need to show

(2.23)
1
λ1

∑
q∈Q(µ1,µ2),q⊂2b

#W 
≈b
1 (q, µ1, µ2, λ1) � #W1.

Recalling (2.15) and changing the order of summation,∑
q∈Q(µ1,µ2),q⊂2b

#W 
≈b
1 (q, µ1, µ2, λ1)

≤
∑

w1∈W1(λ1,µ1,µ2)

#{q ∈ Q(µ1, µ2) : Tw1 ∩ Rδq �= ∅, w1 �≈ b}

≤
∑

w1∈W1(λ1,µ1,µ2)

#{q ∈ Q(µ1, µ2) : Tw1 ∩ Rδq �= ∅}.

Since w1 ∈ W1(λ1, µ1, µ2), #{q ∈ Q(µ1, µ2) : Tw1 ∩ Rδq �= ∅} ≤ λ1. Therefore, we
get (2.23) and hence prove Theorem 1.1.

2.7. Proof of Lemma 2.5. We need to show that for dyadic numbers 1 ≤ µ1, µ2, λ1

≤ R100n, ξ1 ∈ Ṽ1, ξ
′
2 ∈ Ṽ2, and q0 ∈ Q(µ1, µ2), q0 ⊂ 2b,

(2.24) #{w′
1 ∈ W 
≈b

1 (q0, µ1, µ2, λ1) : v′1 ∈ Πξ1,ξ′
2

+ O(R−1/2)} � Rcδ #W2

λ1µ2
.

For simplicity we set

W 
≈b
1 (Πξ1,ξ′

2
) = {w′

1 ∈ W 
≈b
1 (q0, µ1, µ2, λ1) : v′1 ∈ Πξ1,ξ′

2
+ O(R−1/2)}.
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Let w1 ∈ W 
≈b
1 (Πξ1,ξ′

2
). Then Tw1 ∩ Rδq0 �= ∅ and b ∩ 10b(w1, λ1, µ1, µ2) = ∅.

Since q0 ⊂ 2b, dist (q0, 2b(w1, λ1, µ1, µ2)) ≥ R1−δ. So, by (2.9) we see

(2.25) #{q ∈ Q(µ1, µ2) : Rδq ∩ Tw1 �= ∅, dist (q0, q) ≥ R1−δ} � λ1R
−(n+1)δ.

By the definition of Q(µ1, µ2), #W2(q) ∼ µ2 for each q ∈ Q(µ1, µ2). From (2.25)
and summation in w1, w2, we get

#{(q,w1, w2) ∈ Q(µ1, µ2) ×W 
≈b
1 (Πξ1,ξ′

2
) ×W2 : Rδq ∩ Tw1 �= ∅,(2.26)

dist (q0, q) ≥ R1−δ, Rδq ∩ Tw2 �= ∅} � R−cδλ1#W 
≈b
1 (Πξ1,ξ′

2
)µ2.

Now we try to obtain an upper bound for the left-hand side of the above to
obtain (2.24) by a simple arithmetic manipulation. It will be done by the following.

Lemma 2.6. For each w2 ∈ W2, set

S = {(q, w1) ∈ Q(µ1, µ2) ×W 
≈b
1 (Πξ1,ξ′

2
) : Rδq ∩ Tw1 �= ∅,

dist (q0, q) ≥ R1−δ, Rδq ∩ Tw2 �= ∅}.

Then, #S = O(Rcδ) for some c > 0, independent of R.

Using Lemma 2.6, the left-hand side of (2.26) is bounded by Rcδ#W2. Therefore,

λ1#W 
≈b
1 (Πξ1,ξ′

2
)µ2 � Rcδ#W2.

From this (2.24) follows. It remains to show Lemma 2.6. For this we use the
following elementary lemma.

Lemma 2.7. Let Π be a smooth compact hypersurface with boundary in B(0, 1) ⊂
Rn and let Pp(Π) ⊂ Rn be the hyperplane tangent to Π at p. For δε ≤ λ ≤ µ ≤ 1,
0 < ε � 1, set

C(Π, λ, µ) = {s(u, 1) ∈ Rn × R : λ ≤ s ≤ µ, u ∈ Π},
C(Π, λ, µ, δ) = {(x, t) ∈ Rn × R : dist ((x, t), C(Π, λ, µ)) ≤ δ}.

For y, v ∈ Rn, let lvy ⊂ Rn+1 be the line in the direction (v, 1) passing through
(y, 0), that is, lvy = {(x, t) ∈ Rn × R : x = y + vt}. And for 0 < δ � 1, let
T v

y (δ) = {(x, t) ∈ Rn × R : dist (lvy , (x, t)) ≤ δ}. Suppose for some v ∈ B(0, 1),

(2.27) dist (Pp(Π), v) ∼ 1 for all p ∈ Π.

Then for any y ∈ Rn, T v
y (δ) ∩ C(Π, λ, 1, δ) ⊂ B(y0, Cδ/λ) for some y0 ∈ Rn+1.

Proof. Since C(Π, λ, δ) ⊂
⋃

k,1≥2k≥λ C(Π, 2k−1, 2k, δ), by re-scaling it is sufficient to
show

(2.28) T v
y (δ) ∩ C(Π, 1/2, 1, δ) ⊂ B(y0, Cδ)

for some y0 ∈ Rn+1. For simplicity we set C(Π) = C(Π, 1/2, 1). We claim for all
q ∈ C(Π),

(2.29) dist (Tq(C(Π)), (v, 1)) ∼ 1,

where Tq(C(Π)) ⊂ Rn×R is the tangent space of C(Π) at q, namely, (Pq(C(Π))−q).
This means lvy intersects C(Π) transversally if it meets C(Π). Hence, it is easy to
see (2.28). This proves Lemma 2.7.

It remains to show our claim. Suppose for some q = (sp, s) ∈ C(Π), s ∈ [1/2, 1],

dist (Tq(C(Π)), (v, 1)) ≤ ε
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with small ε > 0 (much smaller than the implicit lower bound in (2.29)). Note that

Tq(C(Π)) = span ({(u, 0) : u ∈ Tp(Π)}) ⊕ span ({(p, 1)}).
Hence, |(v, 1) − (c1u1 + · · · + cnun + cn+1p, cn+1)| ≤ ε for some c1, . . . , cn+1 ∈ R

and u1, . . . , un ∈ Tp(Π). Since |cn+1 − 1| ≤ ε, |v − c1u1 − · · · − cnun − p| ≤ ε. So
dist (Pp(Π), v) ≤ 2ε. This contradicts (2.27). �

Proof of Lemma 2.6. To begin with, we may assume the sets Ṽ1, Ṽ2 are small
enough so that ∇φ1, ∇φ2 are diffeomorphisms on Ṽ1, Ṽ2, respectively, since Hφ1,
Hφ2 �= 0.

Note that the major directions (∇φ1(v), 1) of tubes Tw1 with w1 = (y1, v1) ∈
W 
≈b

1 (Πξ1,ξ′
2
) are contained in the set

{(∇φ1(v), 1) ∈ Rn × R : v ∈ Πξ1,ξ′
2

+ O(R−1/2)}.
Since ξ → ∇φ1(ξ) is a diffeomorphism, ∇φ1(Πξ1,ξ′

2
) is also a smooth surface. Let

us define a conic surface Cξ1,ξ′
2

by

Cξ1,ξ′
2

= {(su, s) ∈ Rn × R : u ∈ ∇φ1(Πξ1,ξ′
2
), |s| ≤ 2R}.

Since Tw1 with w1 ∈ W 
≈b
1 (Πξ1,ξ′

2
) meets Rδq0,⋃

w1∈W �≈b
1 (Πξ1,ξ′2

)

Tw1 ⊂ Cξ1,ξ′
2
(R1/2+δ) + q0

where Cξ1,ξ′
2
(A) = Cξ1,ξ′

2
+ O(A).

If (q, w1) ∈ S, then Rδq meets Tw1 . So, q is contained in Cξ1,ξ′
2
(R1/2+δ) + q0 if

(q, w1) ∈ S for some w1. Since dist (q0, q) ≥ R1−δ if (q, w1) ∈ S, it follows that

q ⊂ Cξ1,ξ′
2
(R1/2+δ, R1−δ, R, q0)

whenever (q, w1) ∈ S for some w1 where

Cξ1,ξ′
2
(R1/2+δ, R1−δ, R, q0) = Cξ1,ξ′

2
(R1/2+δ) ∩ {(x, t) : R1−δ ≤ |t| ≤ R} + q0.

Furthermore, Rδq ∩ Tw2 �= ∅ if (q, w1) ∈ S. Therefore, we see

(2.30)
⋃

q:(q,w1)∈S for some w1

q ⊂ RδTw2 ∩ Cξ1,ξ′
2
(R1/2+δ, R1−δ, R, q0)

where

(2.31) RδTw2 = {(x, t) : |t| ≤ R, |x − (y2 + t∇φi(v2))| ≤ CR1/2+δ}.
Now we claim that

(2.32) RδTw2 ∩ Cξ1,ξ′
2
(R1/2+δ, R1−δ, R, q0) ⊂ B(y0, R

1/2+cδ)

for some c > 0, y0 ∈ Rn+1. By rescaling it is sufficient to show that for δε ≤ λ ≤ 1,
0 < ε � 1,

(2.33) T∇φ2(v2)
y2

(δ) ∩ C(∇φ1(Πξ1,ξ′
2
), λ, 1, δ) ⊂ B(y0, Cδ/λ)

for some y0 where w2 = (y2, v2) ∈ W2.
The normal vector of the surface ∇φ1(Πξ1,ξ′

2
) at ∇φ1(ξ′1) is parallel to

Nξ1,ξ′
2
(ξ′1) = (φ1)′′ξξ|−1

ξ=ξ′
1
[∇φ2(ξ′1 + ξ′2 − ξ1) −∇φ1(ξ′1)]
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with ξ′1 + ξ′2 − ξ1 ∈ Ṽ2 because ∇φ1(Πξ1,ξ′
2
) is contained in

{η ∈ ∇φ1(Ṽ1) : φ1(ξ1) + φ2(∇φ−1
1 (η) + ξ′2 − ξ1) − φ1(∇φ−1

1 (η)) − φ2(ξ′2) = 0}.

Hence, the tangent plane Pξ1,ξ′
2
(ξ′1) of ∇φ1(Πξ1,ξ′

2
) at ∇φ1(ξ′1) is given by the

relation 〈Nξ1,ξ′
2
(ξ′1), x − ∇φ1(ξ′1)〉 = 0. So, dist (Pξ1,ξ′

2
(ξ′1), y) ∼ |〈Nξ1,ξ′

2
(ξ′1),

y −∇φ1(ξ′1)〉| since |Nξ1,ξ′
2
(ξ′1)| ∼ 1. Therefore, (1.6) implies for all ξ1, ξ

′
1 ∈ Ṽ1,

ξ2, ξ
′
2 ∈ Ṽ2,

dist (Pξ1,ξ′
2
(ξ′1),∇φ2(ξ′2)) ∼ 1.

In particular, dist (Pξ1,ξ′
2
(ξ′1),∇φ2(v2)) ∼ 1 for all ξ′1 ∈ Πξ1,ξ′

2
. Using Lemma 2.7,

we see (2.33) and hence (2.32).
Since q ∈ Q are R1/2-separated cubes, from (2.32) and (2.30) it follows that

(2.34) #{q ∈ Q : (q, w1) ∈ S for some w1} = O(Rcδ).

Since dist (q, q0) ≥ R1−δ if (q, w1) ∈ S, for each fixed q the number of possible Tw1

passing through both Rδq and Rδq0 is also O(Rcδ), because the major directions
(∇φ1(v), 1), v ∈ V1 of tubes are separated by ∼ R−1/2. This and (2.34) give #S =
O(Rcδ). �

3. Proof of Theorem 1.3

For the proof of Theorem 1.3 we do not rely an orthogonality lemma such as
Lemma 2.1 in [21], which was crucial to prove the sharp bilinear restriction estimate
for the cone. Instead, we prove Theorem 1.3 by making some additional observation
for conic surfaces upon the same lines of argument as in the previous section.

The arguments in Section 2 (the proof of Theorem 1.1) can be repeated with

φ1 = φ2 = 〈η, Nη/ρ〉, Vi = V i × [1, 2], i = 1, 2,

which define the extension operators E1, E2. From these we define Vi, Wi, Twi

by following the same procedure as in the previous section. We keep the same
notations Wi(q), Q(µ1, µ2), W 
≈b

1 (q0, µ1, µ2, λ1), . . . , etc.
Since ∇η,ρφ1 = ∇η,ρφ2 = (2Nη/ρ,−〈η, Nη〉/ρ2), the major directions (∇φi, 1)

of the tubes Twi
, wi ∈ Wi are contained in the set

(3.1) {(2Nθ,−〈θ, Nθ〉, 1) ∈ Rn−1 × R × R : θ ∈ Θi}.

The transversality between tubes Tw1 and Tw2 , w1 ∈ W1, w2 ∈ W2 is easy to see
from (1.11) which implies dist (Θ1, Θ2) ∼ 1. The set Πξ1,ξ′

2
given by (2.17) is also

a smooth n−1-dimensional hypersurface because dist (∇φ1(V1),∇φ2(V2)) ∼ 1 (see
(2.18)). Without difficulty one can see that all the arguments in Section 2 work
except Lemma 2.6. Therefore the proof of Theorem 1.3 is to be completed if one
shows the following combinatorial estimate (see Lemma 2.5).

Lemma 3.1. Let W 
≈b
1 (Πξ1,ξ′

2
) be defined by the same way as in Section 2 with

φ1 = φ2 = 〈η, Nη/ρ〉, Vi = V i × [1, 2], i = 1, 2. For each w2 ∈ W2, set

S = {(q, w1) ∈ Q(µ1, µ2) ×W 
≈b
1 (Πξ1,ξ′

2
) :

Rδq ∩ Tw1 �= ∅, dist (q0, q) ≥ R1−δ, Rδq ∩ Tw2 �= ∅}.

Then, #S � O(Rcδ).
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Unlike the previous case, ∇φ1 and ∇φ2 are no longer diffeomorphisms. So, the
argument for the proof of Lemma 2.6 is not directly applicable. To prove Lemma
3.1, we need to modify the proof of Lemma 2.6.

Proof of Lemma 3.1. As before, we claim for some c > 0,

(3.2) #{q ∈ Q : (q, w1) ∈ S for some w1} = O(Rcδ).

We define a conic surface C1 by

C1 = {s(2Nθ,−〈θ, Nθ〉, 1) ∈ Rn−1 × R × R : θ ∈ Θ1, |s| ≤ 2R}.

Since Tw1 meets with Rδq0 if (q, w1) ∈ S, from (3.1) it follows that⋃
w1∈W �≈b

1 (Πξ1,ξ′2
)

Tw1 ⊂ C1(R1/2+δ) + q0

where C1(A) = C1 + O(A). If (q, w1) ∈ S, Rδq ∩ Tw2 �= ∅ and dist (q, q0) ≥ R1−δ.
Hence,

(3.3)
⋃

q:(q,w1)∈S for some w1

q ⊂ RδTw2 ∩ C1(R1/2+δ, R1−δ, R, q0),

where RδTw2 is given by (2.31) and

C1(R1/2+δ, R1−δ, R, q0) = C1(R1/2+δ) ∩ {(x, t) : R1−δ ≤ |t| ≤ R} + q0.

Let us set
Π = {(2Nθ,−θ · Nθ) : θ ∈ Θ1}.

Then the normal vector Np(Π) of Π at p = (2Nθ1,−θ1 · Nθ1) ∈ Π is parallel to
(θ1, 1) since Π is parameterized as ρ + η/2 ·Nη/2 = 0. (Here we use N2 = id.) So,
the tangent plane Pp(Π) is given by

{(z, s) ∈ Rn−1 × R : 〈(θ1, 1), (z − 2Nθ1, s + θ1 · Nθ1)〉 = 0}.

From (3.1), ∇φ2(v2) = (2Nθ2,−θ2 · Nθ2) for some θ2 ∈ Θ2. Therefore,

dist (Pp(Π),∇φ2(v2)) ∼ |(θ1, 1) · ((2Nθ2 − 2Nθ1),−θ2 · Nθ2 + θ1 · Nθ1)|(3.4)

= |(θ1 − θ2) · N(θ1 − θ2)| ∼ 1

for all θ1 ∈ Θ1 by the hypothesis (1.11). By the same argument in the proof
of Lemma 2.6 (rescaling and applying Lemma 2.7 to T

∇φ2(v2)
y2 (δ), C1(Π, λ, 1, δ) as

before), we see

RδTw2 ∩ C1(R1/2+δ, R1−δ, R, q0) ⊂ B(y0, R
1/2+cδ)

for some c > 0, y0. Therefore, we get (3.2) from (3.3) and the above because q are
R1/2-separated.

Now we claim that for each fixed q there are O(Rcδ)-w1s for which (q, w1) ∈ S.
This and (3.2) prove Lemma 3.1. It remains to show the claim.

Fix a q and let c(q), c(q0) denote the the centers of cubes q, q0, respectively. Let
u ∈ Rn be given by

(u, 1)//
c(q0) − c(q)
|c(q0) − c(q)| .
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If (q, w1) ∈ S with w1 = (y1, v1), then dist (q0, q) ≥ R1−δ and Tw1 passes through
both Rδq0 and Rδq. So, the major direction (φ1(v1), 1) of Tw1 is contained in the
O(R−1/2+cδ)-neighborhood of (u, 1). Therefore if (q, (y1, v1)) ∈ S, then

(3.5) ∇φ1(v1) = u + O(R−1/2+cδ).

However, there may be possibly more than O(Rcδ)-v1’s satisfying (3.5) since ∇φ1

is not a diffeomorphism.
To get around this, we make three simple observations: (i) if (q, w1) ∈ S with

w1 = (y1, v1), then v1 is contained in Πξ1,ξ′
2
(R−1/2) = Πξ1,ξ′

2
+ O(R−1/2) (see

(2.24)), (ii) ∇φ1(η, ρ) = ∇φ1(η′, ρ′) if and only if η/ρ = η′/ρ′ and (iii) V1 and V2

are assumed to be as small as we like since Ei are written as finite sum of operators
with small V1, V2.

Let θ̃ ∈ Θ1 be the point satisfying (2Nθ̃,−〈θ̃, Nθ̃〉) = u. Then the v1’s satisfying
(3.5) are contained in

L(θ̃, R−1/2+cδ) = {ρ(θ̃, 1) ∈ Ṽ1 : 1 ≤ ρ ≤ 2} + O(R−1/2+cδ)

since (ii) means ∇φ1 fails to be one to one only along the line ρ(θ1, 1), 1 ≤ ρ ≤ 2,
for θ1 ∈ Θ1. If (θ̃1, 1) is transversal to Πξ1,ξ′

2
(namely, the angle (θ̃1, 1) between

all the tangent plane of Πξ1,ξ′
2

is bounded away from zero), then L(θ̃, R−1/2+cδ) ∩
Πξ1,ξ′

2
(R−1/2) is contained in a ball of radius O(R−1/2+cδ). Therefore, from (i) and

(iii), we see that if all the null direction {(θ1, 1)}θ1∈Θ1 for ∇φ1 is transversal to
Πξ1,ξ′

2
, there are O(Rcδ)-v1 satisfying (3.5) since v1 ∈ V1 are (R−1/2)-separated.

We recall from (2.17) that the normal vector of Πξ1,ξ′
2

at (η1, ρ1) with η1 = θ1ρ1,
θ1 ∈ Θ1 is parallel to

Nθ1,θ2 = ∇φ1(η1, ρ1) −∇φ2(η2, ρ2) = (2Nθ1 − 2Nθ2,−θ1 · Nθ1 + θ2 · Nθ2)

for some θ2 ∈ Θ2 (see (2.18)) where (η2, ρ2) ∈ V2 and η2 = θ2ρ2. Then the null
direction (θ′1, 1), θ′1 ∈ Θ1 at (η, ρ), η = θ′1ρ is transversal to Πξ1,ξ′

2
if and only if

(3.6) |Nθ1,θ2 · (θ′1, 1)| ∼ 1

because |Nθ1,θ2| ∼ 1. Since V1 and V2 are assumed to be as small as pleased, we
may also assume Θ1, Θ2 to be small enough. So, |Nθ1,θ2 ·(θ′1, 1)| ∼ |Nθ1,θ2 ·(θ1, 1)| =
|(θ1 − θ2) · N(θ1 − θ2)|. By the hypothesis (1.11), (3.6) is valid for all θ1, θ

′
1 ∈ Θ1,

θ2 ∈ Θ2. This shows the transverality between the null direction {(θ1, 1)}θ1∈Θ1 and
Πξ1,ξ′

2
for all ξ1 ∈ Ṽ1, ξ

′
2 ∈ Ṽ2.

Therefore, from the discussion in the above we see that there are at most O(Rcδ)-
v1 such that (q, y1, v1) ∈ S for some y1. Once the direction v1 is determined,
obviously there are at most O(Rcδ)-y1 because Tw1 passes through Rδq0. This
proves our claim. �

4. Application to restriction estimates

In this section we prove Corollary 1.2 and Corollary 1.4. These will be derived
from Theorems 1.1 and 1.3 by adapting the argument in [17].

4.1. Proof of Corollary 1.2. By making the change of variables (η1 − η2, η1 +
η2) → (ξ1, ξ2), instead of f̂dσH we may consider

Ef(x, t) =
∫

[−2,2]2
e2πi(x·ξ+tξ1ξ2)f(ξ)dξ.
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To obtain linear estimate from Theorem 1.1, we begin by stating some bilinear
restriction estimates for E. From Theorem 1.1 and interpolation (with the trivial
estimates, e.g. ‖EfEg‖∞ ≤ C‖f‖1‖g‖1) one can easily see the following:

Let V1, V2 be subcubes of [−2, 2]2. Suppose for (a, b) ∈ V1 × V2,

(4.1) |(a1 − b1)(a2 − b2)| ∼ 1

(see (1.9)). Then if supp f ⊂ V1 and supp g ⊂ V2, there is a constant C such that

(4.2) ‖EfEg‖Lq(R2×R) ≤ C‖f‖Lp(R2)‖g‖Lp(R2)

provided (1/p, 1/q) is contained in the interior of the quadrangle Q with vertices
(0, 0), (0, 3/5), (1/2, 3/5), (1, 0).

Proposition 4.1. Let V1, V2 be subcubes of [−2, 2]2. If dist (V1, V2) ∼ 1, supp f ⊂
V1 and supp g ⊂ V2, then ‖EfEg‖p ≤ C‖f‖p‖g‖p provided q > 5/3 and 1/p+1/q <
1.

To prove Corollary 1.2, we need to remove the separation condition dist (V1,V2)∼1
from the above. It can be done by the argument in [17] without modification.
However, readers have no difficulty in obtaining Corollary 1.2 by making use of
(4.14) and following the argument in the proof of Proposition 4.1 below.

Proof of Proposition 4.1. Decomposing both V1 and V2 into small subcubes, we
may assume that V1 = Q(c1, ε) and V2 = Q(c2, ε) with |c1 − c2| ∼ 1, 0 < ε � 1,
where Q(c, r) is the cube centered at c with side length r. If (c1 − c2)/|c1 − c2| is
away from ±e1 and ±e2, then Proposition 4.1 follows from Theorem 1.1 because
(4.1) is satisfied. So we may also assume (c1 − c2)/|c1 − c2| is close to ±e1 or
±e2. Hence by harmless affine transformation it is sufficient for Proposition 4.1 to
consider the case V1 = Q(−e1, ε), V2 = Q(e1, ε).

Let I = [−2, 2]. We use the decomposition in [17]. For each j ≥ 1, we dyadically
decompose I into dyadic subintervals Ij

k of side length 2−(j+1) in the usual way. We
say Ij

k ≈ Ij
k′ to mean that Ij

k, Ij
k′ are not adjacent but have adjacent parent intervals

of length 2−j . So, dist (Ij
k, Ij

k′) ∼ 2−j if Ij
k ≈ Ij

k′ . By a Whitney decomposition of
I × I away from its diagonal D, we have

(4.3) I × I \ D =
⋃
j≥1

⋃
Ij

k≈Ij

k′

Ij
k × Ij

k′ .

Let us set
f j

k(ξ) = χIj
k
(ξ2)f(ξ), gj

k(ξ) = χIj
k
(ξ2)g(ξ).

Since
∑

j≥1

∑
Ij

k≈Ij

k′
χIj

k
χIj

k′
= 1 almost everywhere in I × I,

(4.4) Ef(x)Eg(x) =
∑
j≥1

Bj(f, g)(x),

where
Bj(f, g)(x) =

∑
k,k′:Ij

k≈Ij

k′

Ef j
k(x)Egj

k′(x).

If Ij
k ≈ Ij

k′ , the Fourier support of Ef j
kEgj

k′ is contained in the rectangle

{(ξ1, ξ2, τ ) : |ξ2 − cj
k| ≤ 23−j , |ξ1| ≤ C, |τ | ≤ C},

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3530 SANGHYUK LEE

where cj
k is the center of Ij

k. Hence one can easily see that for fixed j the Fourier sup-
ports of {Ef j

kEgj
k′}k,k′:Ij

k≈Ij

k′
are contained in boundedly (at most 24) overlapping

rectangles. Using Lemma 4.2 below, we have for 1 ≤ q ≤ ∞,

(4.5) ‖Bj(f, g)‖q ≤ C

⎛⎜⎝ ∑
k,k′:Ij

k≈Ij

k′

‖Ef j
kEgj

k′‖q∗
q

⎞⎟⎠
q∗

.

Lemma 4.2 ([16], Lemma 7.1). Let {Rk} be a collection of rectangles in frequency
space such that the dilates {2Rk} are essentially disjoint, and suppose that {Fk}
are a collection of functions whose Fourier supports are contained in {Rk}. Then
for 1 ≤ p ≤ ∞ we have

(
∑

k

‖Fk‖p∗

p )1/p∗ � ‖
∑

k

Fk‖p � (
∑

k

‖Fk‖p∗
p )1/p∗ ,

where p∗ = min(p, p′) and p∗ = max(p, p′).

Now we show that if Ij
k ≈ Ij

k′ and (1/p, 1/q) is contained in the interior of Q,

(4.6) ‖Ef j
kEgj

k′‖q ≤ C2−2j+ 2j
p + 2j

q ‖f j
k‖p‖gj

k′‖p.

By translation we may assume Ij
k = [−2−j ,−2−j−1] and Ij

k′ = [2−j−1, 2−j ], or
Ij
k = [2−j−1, 2−j ] and Ij

k′ = [−2−j ,−2−j−1]. It suffices to consider the first case
because the arguments for both cases are similar.

Re-scaling (ξ1, ξ2) → (ξ1, 2−jξ2) gives

[Ef j
kEgj

k′ ](x, t) = 2−2j [E(f j
k)jE(gj

k′)j ](x1, 2−jx2, 2−jt),

where (f j
k)j = f j

k(ξ1, 2−jξ2) and (gj
k′)j = gj

k′(ξ1, 2−jξ2). Then (f j
k)j , (gj

k′)j are
supported in Q(−(1, 1), 1

2 ), Q((1, 1), 1
2 ), respectively, because f j

k , gj
k′ are supported

in [−1− ε,−1 + ε]× [−2−j ,−2−j−1], [1− ε, 1 + ε]× [2−j−1, 2−j ], respectively. Since
(4.1) holds for all (a, b) ∈ Q(−(1, 1), 1

2 )×Q((1, 1), 1
2 ), (4.2) and rescaling give (4.6).

Now putting (4.6) into (4.5), we have

(4.7) ‖Bj(f, g)‖q ≤ C2−2j+ 2j
p + 2j

q (
∑

Ij
k≈Ij

k′

‖f j
k‖q∗

p ‖gj
k′‖q∗

p )1/q∗ .

Since the number of Ij
k′ with Ij

k ≈ Ij
k′ is O(1), the left-hand side of the above is

bounded by C2−2j+ 2j
p + 2j

q (
∑

k ‖f
j
k‖2q∗

p )1/2q∗(
∑

k ‖g
j
k‖q∗

p )1/2q∗ . Since Ij
k are disjoint

dyadic intervals, (
∑

k‖f j
k‖2q∗

p )1/2q∗ ≤ C‖f‖p if 2q∗ ≥ p. Hence we get

(4.8) ‖Bj(f, g)‖q ≤ C2−2j+ 2j
p + 2j

q ‖f‖p‖g‖p

provided (1/p, 1/q) is contained in the interior of Q and 2q∗ ≥ p. Since f, g are
supported in [−2, 2]2, using Hölder’s inequality, from (4.8) one can easily see that
‖Bj(f, g)‖q ≤ C2−εj‖f‖p‖g‖p for some ε > 0 if q > 5/3 and 1/p + 1/q < 1.
Therefore, by (4.4) summation in j completes the proof. �
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4.2. Proof of Corollary 1.4. As before, instead of f̂dσC it suffices to consider

Ef(x, t) =
∫ 2

1

∫
[−2,2]2

e2πi(x′·ξ+x3ρ+tξ1ξ2/ρ)f(ξ, ρ)dξdρ, x′ ∈ R2,

by a linear transformation. Using Theorem 1.3, it is easy to see the following:
Let V 1, V 2 be subcubes of [−1, 1]2. Suppose (4.1) holds for all a ∈ Θ1 and

b ∈ Θ2 (see Theorem 1.3 for the definitions of Θ1, Θ2). Then if supp f ⊂ V 1× [1, 2]
and supp g ⊂ V 2 × [1, 2], there is a constant C such that

(4.9) ‖EfEg‖Lq(R3×R) ≤ C‖f‖Lp(R3)‖g‖Lp(R3)

provided (1/p, 1/q) is contained in the interior of the quadrangle Q0 with vertices
(0, 0), (1, 0) (1/2, 2/3) (0, 2/3).

Proposition 4.3. Let V 1, V 2 be subcubes of [−1, 1]2. If dist (Θ1, Θ2) ∼ 1, then
for q > 3

2 and 1/p + 1/q < 1, ‖E1fE2g‖q ≤ C‖f‖p‖g‖p.

Proof of Proposition 4.3. Decomposing both V 1 × [1, 2] and V 2 × [1, 2] into small
subcubes, we may assume Θ1 = Q(c1, ε) and Θ2 = Q(c2, ε) with |c1 − c2| ∼ 1,
0 < ε � 1. As we did in the proof of Proposition 4.1, by Theorem 1.3 we may also
assume (c1 − c2)/|c1 − c2| is close to ±e1 or ±e2.

Observe that the change of variables (ξ, ρ) → (ξ + cρ, ρ) for Ef gives

(4.10) Ef(x, t) =
∫ 2

1

∫
e2πi(L(x,t)·(ξ1,ξ2,ρ)+tξ1ξ2/ρ)χΘ1(

ξ

ρ
+ c)f(ξ + cρ, ρ)dξdρ,

where L(x, t) = (x1 + tc2, x2 + tc1, x3 +x1c1 +x2c2 + tc1c2). Since detL = 1, we can
move Θ1, Θ2 to Θ1 − c, Θ2 − c, respectively, without affecting the estimate (4.9).
Hence, by an linear transform it is sufficient consider the case Θ1 = Q(−e1, ε),
Θ2 = Q(e1, ε) .

Using the decomposition (4.3), we set f j
k(ξ, ρ) = χIj

k
(ξ2/ρ)f(ξ, ρ), gj

k(ξ, ρ) =
χIj

k
(ξ2/ρ)g(ξ, ρ). Then, it follows that

Ef(x)Eg(x) =
∑
j≥1

Bj(f, g)(x),

where Bj(f, g)(x) =
∑

k,k′:Ij
k≈Ij

k′
Ef j

k(x)Egj
k′(x). Hence it is sufficient to show that

if q > 3
2 and 1/p + 1/q < 1, for some ε > 0,

(4.11) ‖Bj(f, g)‖q ≤ C2−εj‖f‖p‖g‖q.

If Ij
k ≈ Ij

k′ , the Fourier support of Ef j
kEgj

k′ is contained in the set

{(ξ1, ξ2, ρ, τ) : |ξ2 − c0ρ| ≤ 23−j , 1 ≤ ρ < 2, |ξ1| ≤ C, |τ | ≤ C},

where c0 is the center of the smallest interval containing both Ij
k, Ij

k′ . So we see
that the Fourier supports of {Ef j

kEgj
k′}Ij

k≈Ij

k′
are contained in boundedly (at most

26) overlapping rectangles. Hence, using Lemma 4.2, we have for 1 ≤ q ≤ ∞,

(4.12) ‖Bj(f, g)‖q ≤ C

⎛⎜⎝ ∑
Ij

k≈Ij

k′

‖Ef j
kEgj

k′‖q∗
q

⎞⎟⎠
1/q∗

.
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Now we claim that if Ij
k ≈ Ij

k′ and (1/p, 1/q) is contained in the interior of Q0,

(4.13) ‖Ef j
kEgj

k′‖q ≤ C2−2j+ 2j
p + 2j

q ‖f j
k‖p‖gj

k′‖p.

Once this is established, by the same argument used before (see (4.7)), (4.12) and
(4.13) give ‖Bj(f, g)‖q ≤ C2−2j+ 2j

p + 2j
q ‖f‖p‖g‖p provided (1/p, 1/q) is contained in

the interior of Q0 and 2q∗ ≥ p. From this, using Hölder’s inequality, one can easily
see (4.11).

Finally we show (4.13). By the linear transformation ξ2 → ξ2 + c0ρ for both Ef j
k

and Egj
k′ (see (4.10)), we may assume Ij

k = [−2−j ,−2−j−1] and Ij
k = [2−j−1, 2−j ],

or Ij
k = [2−j−1, 2−j ] and Ij

k′ = [−2−j ,−2−j−1]. It suffices to consider the first case.
By re-scaling (ξ1, ξ2) → (ξ1, 2−jξ2) we see that

[Ef j
kEgj

k′ ](x, t) = 2−2j [E(f j
k)jE(gj

k′)j ](x1, 2−jx2, x3, 2−jt),

where (f j
k)j(ξ1, ξ2, ρ)=f j

k(ξ1, 2−jξ2, ρ) and (gj
k′)j(ξ1, ξ2, ρ)=gj

k′(ξ1, 2−jξ2, ρ). Then
(f j

k)j , (gj
k′)j are supported in

V 1 = {(ξ, ρ) : ξ/ρ ∈ [−1 − ε,−1 + ε] × [−1,−1/2], 1 ≤ ρ ≤ 2},
V 2 = {(ξ, ρ) : ξ/ρ ∈ [1 − ε, 1 + ε] × [1/2, 1], 1 ≤ ρ ≤ 2},

respectively. So, (4.1) holds for all a ∈ Θ1 and b ∈ Θ2. Therefore by (4.9) and
rescaling we get (4.13). �

To finish the proof of Corollary 1.4, we need to remove the separation condition
dist (Θ1, Θ2) ∼ 1 from Proposition 4.3. As before, we decompose [−2, 2]2× [−2, 2]2

away from its diagonal D (see (4.3)) by a Whitney decomposition. Ignoring some
harmless measure zero set, we have

(4.14) [−2, 2]2 × [−2, 2]2 \ D =
⋃
j≥1

⋃
Qj

k≈Qj

k′

Qj
k × Qj

k′ ,

where Qj
k are dyadic squares of side length 2−(j+1) and Qj

k ≈ Qj
k′ means that Qj

k,
Qj

k′ are not adjacent but have adjacent parent squares of side length 2−j .
Set

B̃j(f, g)(x) =
∑

k,k′:Qj
k≈Qj

k′

E [f j
k ](x)E [gj

k′ ](x),

where [f j
k ](ξ, ρ) = χQj

k
(ξ/ρ)f(ξ, ρ). Since EfEf =

∑
j≥1B̃j(f, f) from (4.14), it

follows that ‖Ef‖2
q ≤ C

∑
j≥1‖B̃j(f, f)‖q/2. Hence, it is sufficient to show that if

q > 3 and 1/p + 2/q < 1, for some ε > 0

(4.15) ‖B̃j(f, g)‖q/2 ≤ C2−εj‖f‖p‖g‖p.

By repeating the argument used in the proofs of Proposition 4.1, 4.3 and using the
orthogonality among {E [f j

k ]E [gj
k′ ]}Qj

k≈Qj

k′
(see (4.12)), for (4.15) it is sufficient to

show that if Qj
k ≈ Qj

k′ , for q > 3
2 and 1/p + 1/q < 1,

(4.16) ‖E [f j
k ]E [gj

k′ ]‖q ≤ C2−4j+ 4j
p + 4j

q ‖[f j
k ]‖p‖[gj

k′ ]‖p.
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By linear transformation Qj
k, Qj

k′ can be assumed to be contained in Q(0, 21−j)
(see (4.10)). Re-scaling ξ → 2−jξ, the squares Qj

k, Qj
k′ with Qj

k ≈ Qj
k′ are moved

to cubes in [−2, 2]2 with distance ∼ 1. Therefore by Proposition 4.3 (following the
same lines of argument as in the proof of Proposition 4.3), we get (4.16).
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