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Abstract. This paper proves that the self-similar set satisfying the strong
separation condition can be bilipschitz embedded into self-similar set with

larger Hausdorff dimension, and it can be embedded into a self-similar set
with the same Hausdorff dimension if and only if these two self-similar sets are

bilipschitz equivalent.

1. Introduction

For metric spaces (A, dA) and (B, dB), a bijection f : (A, dA) → (B, dB) is said
to be bilipschitz, if there is a bilipschitz constant C > 0 such that for all x, y ∈ A,

C−1dA(x, y) ≤ dB(f(x), f(y)) ≤ CdA(x, y).

We say that (A, dA) and (B, dB) are bilipschitz equivalent, if there is a bilipschitz
bijection from (A, dA) to (B, dB). We say that (A, dA) can be bilipschitz embed-
ded into (B, dB), if there is a subset B1 of B such that (A, dA) and (B1, dB) are
bilipschitz equivalent.

As in [6], “topology” may be regarded as the study of equivalence classes of
sets under homeomorphism, and “fractal geometry” is sometimes thought of as
the study of equivalence classes of fractals under bilipschitz mappings. Another
interesting motivation of studying bilipschitz equivalence of fractals comes from
geometry group theory ([1], [7]).

Many works have been devoted to the related topics. For example, Cooper and
Pignataro [2], Falconer and Marsh [5, 6], David and Semmes [3] and Xi [19, 20]
studied the shape of Cantor set, nearly Lipschitz equivalence, BPI equivalence and
quasi-Lipschitz equivalence respectively. Xi et al. ([15]-[16], [21]-[25]) also discussed
the bilipschitz equivalence between self-similar sets.

Example 1. For two self-similar sets with the same dimension, they may be not
bilipschitz equivalent. For example, let 3rlog 2/ log 3 = 1, suppose a self-similar set
is generated by similitudes rx, rx + (1− r)/2 and rx + 1− r, then this self-similar
set and the Cantor ternary set have the same Hausdorff dimension log 2/ log 3, but
they are not bilipschitz equivalent ([6]).

On the bilipschitz equivalence of self-similar sets, the following results are known.
1) Self-similar sets satisfying the strong separation condition (SSC

in short). Falconer and Marsh [6] gave a necessary condition such that they are
bilipschitz equivalent. A necessary and sufficient condition was also obtained by
Xi [21].
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2) Self-similar sets satisfying open set condition (OSC in short).
Define two self-similar sets respectively by Fi = Fi/5∪ ((i+1)/5+Fi/5)∪ (4/5+

Fi/5)(i = 1, 2). Then both F1 and F2 satisfy OSC and have the same Hausdorff
dimension. David and Semmes [3] asked whether they are bilipschitz equivalence,
and the question is called “{1, 3, 5}-{1, 4, 5} problem.”

Rao, Ruan and Xi [15] gave an affirmative answer to the problem, then Xi et al
[16, 22, 23] studied some generalizations, recently Xi and Xiong [25] dealt with the
problem in high dimension.

3) Connected self-similar sets.
Wen and Xi [18] discussed the geometric condition for self-similar arcs to be

bilipschitz equivalent. They also constructed two self-similar arcs γ1, γ2 with the
same Hausdorff dimension but γ1 and γ2 are not bilipschitz equivalent.

4) Bilipschitz embedding between regular set and self-similar set.
Mattila and Saaranen [12] discussed the bilipschitz embedding for Ahlfors regular

sets, and proved that for any t-regular set F with t > s that there exists a self-similar
set E, generated by similitudes of the same ratio, such that E can be bilipschitz
embedded into F.

Here we recall the notion of s-regular set.

Definition 1. Let E ⊂ X and s > 0. We say that E is s-regular, if E is closed
and if there exists a Borel measure µ on X and a constant CE ≥ 1 such that
µ(X\E) = 0 and rs ≤ µ(B(x, r)) ≤ CErs for all x ∈ E, 0 < r ≤ |E| and r < ∞,
where B(x, r) is the closed ball centered at x with radius r.

Remark 1. A self-similar set with OSC of Hausdorff dimension t is t-regular ([9]).
But if the self-similar set without OSC, the conclusion may be false. For example,
let Eλ be self-similar set generalized by S1(x) = x/3, Sλ(x) = x/3 + λ and S3(x) =
x/3 + 2/3, then by [10], dimH Eλ = 1 and H1(Eλ) = 0 for some λ, and Eλ is not
1-regular in this case.

Recall that a self-similar set E = ∪m
i=1Si(E) satisfies the strong separation con-

dition (SSC), if Si(E) ∩ Sj(E) = ∅ for any i 6= j.
We will state our results as follows.

Theorem 1. Suppose E1 and E2 are self-similar sets with dimH E1 < dimH E2.
If E1 satisfies the strong separation condition, then there is a bilipschitz map g :
E1 → g(E1) ⊂ E2.

Remark 2. We stress that in this theorem, the condition OSC is not required for
E2.

Theorem 2. Suppose F and F ′ are self-similar sets satisfying the strong separation
condition, and dimH F = dimH F ′ = s. Then there is a bilipschitz map h : F →
h(F ) ⊂ F ′ if and only if F and F ′ are bilipschitz equivalent.

In fact, Theorem 2 is the consequence of the following stronger result.

Theorem 3. Preserve the assumption in Theorem 2. If there are K ⊂ F , K ′ ⊂ F ′

such that K and K ′ are bilipschitz equivalent with Hs(K),Hs(K ′) > 0, then F and
F ′ are bilipschitz equivalent.

Remark 3. David and Semmes introduced the BPI (big pieces of itself ) equiva-
lence, which is a few weaker than bilipschitz equivalence, and discussed some prop-
erties [3]. In particular, they proved that self-similar sets F and F ′ with OSC are
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BPI equivalent, if and only if there are K ⊂ F , K ′ ⊂ F ′ such that K and K ′ are
bilipschitz equivalent with Hs(K),Hs(K ′) > 0 (Proposition 7.1 of [3]). Then The-
orem 3 shows that self-similar sets satisfying SSC are bilipschitz equivalent if and
only if they are BPI equivalent. Here is an open problem: under what condition,
BPI equivalence implies bilipschitz equivalence for self-similar sets.

Given a metric space (X, d), let |X1| denote the diameter of set X1(⊂ X), and
d(X1, X2) is the distance between subsets X1 and X2 of X.

Definition 2. Let C, δ, s be positive numbers. A sequence {Φk}k≥0 consisting of
finite index is called controlled by (C, δ, s) provided

(a) For any k ≥ 1, Φk is a collection of words with length k, by convention,
Φ0 = {∅}, where ∅ is the empty word;

(b) If i1 · · · ik−1ik ∈ Φk, then i1 · · · ik−1 ∈ Φk−1;
(c) For any k2 > k1 ≥ 0 and any i1i2 · · · ik1 ∈ Φk1 ,

card{i1i2 · · · ik1 · · · ik2 ∈ Φk2) ≤ C(δ−s)k2−k1 .

Definition 3. Let (X, d) be a metric space, C > 1, 0 < δ < 1, s > 0, and let
{Φk}k≥1 be a sequence controlled by (C, δ, s). Suppose E ⊂ X and for any k ∈ N,
there is a decomposition of E with respect to the sequence {Φk}k≥0:

E =
⋃

i1i2···ik∈Φk

Ei1i2···ik .

We say that the set E has s-structure if for any i1i2 · · · ik ∈ Φk, we have
1) Ei1i2···ik =

⋃
i1i2···ikj∈Φk+1

Ei1i2···ikj ;
2) |Ei1i2···ik | ≤ Cδk;
3) d(Ei1i2···ik , Ej1j2···jk) ≥ C−1δk whenever i1 · · · ik 6= j1 · · · jk.

The following proposition shows that many typical fractals, including self-similar
sets with SSC, have s-structure. Some self-similar sets with OSC (but without SSC)
can be regarded as graph-directed sets or homogeneous Moran sets, and thus also
have s-structure as shown below.

Proposition 1. Let s > 0, then the following sets have s-structure:
(1) Bounded s-regular set with s ∈ (0, 1);
(2) C1+α(α > 0) self-conformal set with dimension s (in particular self-similar

set satisfying SSC);
(3) Graph-directed sets (on a transitive graph) satisfying SSC with dimension s;
(4) Homogeneous Moran set in M(J, n̄, c̄) (n̄c̄ < 1) with dimension s.

The fractal classes (2)-(4) will be introduced in Section 3.

Remark 4. In Section 6, we will prove that: let E ⊂ [0, 1], if E has positive Lebesgue
measure, then E has no s-structure for any s.

Proposition 2. If E ⊂ X has s-structure and F ⊂ Y is t-regular with s < t, then
there is a bilipschitz map f : E → f(E) ⊂ F .

The above proposition establishes the bilipschitz embedding from a set having
s-structure to a regular set. Notice that s-dimensional self-similar sets with SSC
have s-structure, this proposition is the complementarity of the result of Mattila
and Saaranen mentioned above [12]. It is also proved in [12] that any s-regular set
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with s ∈ (0, 1) can be embedded into any t-regular set F with t > s. This result is
exactly a consequence of Proposition 2 and Proposition 1.(1).

As shown in Remark 1, self-similar set of dimension t maybe not t-regular, how-
ever the following proposition shows that it can contain a t′-regular subset with
t′(< t) close to t.

Proposition 3. If F is a self-similar set with dimH F = t. For any ε > 0, there
is a self-similar set Fε satisfying the strong separation condition such that Fε ⊂ F
and dimH Fε ∈ (t− ε, t]. Here Fε is tε-regular with tε ∈ (t− ε, t].

The paper is organized as follows. Sections 2, 3 and 4 are devoted mainly to
the proofs of Propositions 1, 2 and 3 respectively. Then Theorem 1 follows from
Proposition 1.(2), Proposition 2 and Proposition 3. In Section 5, we prove Theorem
3 on the technique of [21]. In the last section, we show that any subset of [0, 1] with
positive Lebesgue measure cannot be embedded into any self-similar set with SSC.

2. Proof of Proposition 1

2.1. Finite Words.
Given integer n ≥ 2, let Σ∗n be the collection of finite words composed of 1, · · · , n,

that means

Σ∗n = ∪k≥0{1, · · · , n}k

= {∅} ∪ {j1 · · · jk : k ≥ 1 and jt ∈ N ∩ [1, n] for 1 ≤ t ≤ k},

where ∅ is the empty word.
For word i = i1 · · · ik and j = j1 · · · jl, set i ∗ j = i1 · · · ikj1 · · · jl. For word

i = i1 · · · ik, its length |i| is defined to be k.

2.2. Self-conformal Set.
We say that a mapping f : U(⊂ Rl) → Rl is C1+α conformal with α > 0, if U is

open, Df(x) is a contracting similarity for any x ∈ U, and there is a constant Cf

such that for all x, y ∈ U,

|Df(x)−Df(y)| ≤ Cf |x− y|α.

We say that a set E is a C1+α self-conformal set, if there are C1+α contracting and
conformal mappings {f1, · · · , fm} such that

E = ∪m
i=1fi(E)

is a disjoint union, that is fi(E) ∩ fj(E) = ∅ whenever i 6= j.
Notice that for C1+α self-conformal set E of Hausdorff dimension s,

0 < Hs(E) < ∞.

In [6], [19] and [20], it is proved that C1+α self-conformal sets with the same Haus-
dorff dimension are both nearly Lipschitz equivalent and quasi-Lipschitz equivalent.
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2.3. Graph-directed Sets.
Suppose G is a directed graph, which contains n vertexes {1, · · · , n} and directed

edges {e : e ∈ G} among these vertexes. For each edge e, there is a contracting
similitude Se : Rl → Rl. Let Ei,j be the set of all the edges from vertex i to vertex
j. By [14] there is a family {K1, · · · ,Kn} of compact sets in Rl such that

Ki =
⋃

j

⋃

e∈Ei,j

Se(Kj). (2.1)

We say {Ki}i satisfies SSC, if the right hand of (2.1) is a disjoint union. The graph
is said to be transitive, if for any vertexes i, j, there is a path starting at i and
ending at j. For graph-directed sets {Ki}i satisfying SSC on a transitive graph,

0 < Hs(Ki) < ∞ with s = dimH(K1) = · · · = dimH(Kn).

2.4. Homogeneous Moran Set.
Given integer n̄ ≥ 2 and c̄ > 0 with n̄c̄ < 1, we recall some notions of homoge-

neous Moran class M(J, n̄, c̄).

Definition 4. Suppose that J ⊂ R1 is a closed interval. For a collection F =
{Ji : i ∈ Σ∗(n̄)} of closed subintervals of J = J∅, we say F has homogeneous Moran
structure (J, n̄, c̄), if for any word i, Ji∗1, Ji∗2, · · · , Ji∗n̄ are subsets of Ji such that

intJi∗i ∩ intJi∗j = ∅ whenever i 6= j,

and for each j,

|Ji∗j |/|Ji| = c̄.

A homogeneous Moran set determined by F is defined by

E(F) =
⋂

k≥1

⋃
|i|=k

Ji,

where any interval Ji in F is called a basic element of E. Let M(J, n̄, c̄) be the
collection of all the homogeneous Moran sets with structure (J, n̄, c̄).

Remark 5. By the definition above, we see that two Moran sets having the same
Moran structure only differ from the relative positions of the basic elements of same
order. In particular, the basic elements Ji∗i, Ji∗j can share one endpoint.

Example 2. Let n̄ = 3 and c̄ = 1/5. Suppose J = [0, 1] and F = {Ji : i ∈ Σ∗3} is
given by

Ji1···ik
= [

∑k

t=1
θ(it)/5t, 1/5k +

∑k

t=1
θ(it)/5t],

where θ(1) = 0, θ(2) = 3, θ(3) = 4. Then the corresponding homogeneous Moran
set is called {1,4,5}-set. Here Ji1···ik2 ∩ Ji1···ik3 6= ∅.

In fact, for any E ∈M(J, n̄, c̄), we have dimH E = − log n̄/ log c̄. For the results
on the dimensions of Moran sets, we refer to [8, 13, 17].

2.5. Proof of Proposition 1.
(1) Bounded s-regular set F with s ∈ (0, 1) :
Since F (⊂ X) is s-regular, there exists a Borel measure µ, supported on F, such

that for x ∈ F , 0 < r ≤ |F | < ∞,

rs ≤ µ(B(x, r) ∩ F ) ≤ CF rs (2.2)

where the constant CF > 0. Let DF = (3CF 2s)1/(1−s) + 1.
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Lemma 1. [12] Let 0 < s < 1, R > 0, let E ⊂ X be closed and bounded and let
µ0 be a Borel measure on X such that µ0(X\E) = 0 and that µ0(B(x, r)) ≤ CF rs

for all x ∈ E, r > 0, and µ0(B(x, r)) ≥ rs for all x ∈ E, 0 < r < R. For
every 0 < r < R/(2DF ) there exist disjoint closed balls B(xi, r), i = 1, · · · ,m,
and positive numbers ρi, r ≤ ρi ≤ (DF )r, such that m ≤ CF |E|s/rs, xi ∈ E,
xj /∈ B(xi, ρi) for i < j,

E ⊂ ∪m
i=1B(xi, ρi) and E ∩ [B(xi, ρi + r)\B(xi, ρi)] = ∅.

Fix x∗ ∈ F and take δ small enough.
Without loss generality, we assume that |F | ≤ 1 = δ0, then F ⊂ B(x∗, δ0). By

convention, x∅ = x∗ and C∅ = 1, then we get xi1···ik
= x∗ and Ci1···ik

= 1 for k = 0.
By induction on k, assume that we get closed balls

B(xi1···ik
, Ci1···ik

δk) with 1 ≤ Ci1···ik
≤ DF (2.3)

and
F ∩ [B(xi1···ik

, Ci1···ik
δk + δk)\B(xi1···ik

, Ci1···ik
δk)] = ∅, (2.4)

where it ≤ [CF 2sDs
F ]δ−s for all t.

Let µ0 = µ|B(xi1···ik
, Ci1···ik

δk), then µ0 = µ|B(xi1···ik
, Ci1···ik

δk+δk) by (2.4). Ap-
plying Lemma 1 to the case

E = B(xi1···ik
, Ci1···ik

δk) ∩ F, R = δk, r = δk+1 and µ0 = µ|B(xi1···ik
, Ci1···ik

δk),

we get mi1···ik
closed balls {B(xi1···ikik+1 , Ci1···ikik+1δ

k+1)}mi1···ik
ik+1=1 such that

B(xi1···ik
, Ci1···ik

δk) ∩ F = ∪mi1···ik
ik+1=1 [B(xi1···ikik+1 , Ci1···ikik+1δ

k+1) ∩ F ], (2.5)

and for ik+1 6= i′k+1,

d((B(xi1···ikik+1 , Ci1···ikik+1δ
k+1), B(xi1···iki′k+1

, Ci1···iki′k+1
δk+1)) ≥ δk+1, (2.6)

where
mi1···ik

≤ CF |E|s/rs ≤ [CF 2sDs
F ]δ−s and Ci1···ikik+1 ≤ DF .

Then the inductive assumptions (2.3) and (2.4) are true for every k.
Let F i1···ik = B(xi1···ik

, Ci1···ik
δk) ∩ F, then

|F i1···ik | ≤ (2DF )δk. (2.7)

For any F i1···ik1 , we are going to estimate the cardinality of its subset in the form
F i1···ik1 ···ik2 . Since

F i1···ik1 =
⋃

i1···ik1 ···ik2

F i1···ik1 ···ik2 ,

by (2.2), we have

µ(F i1···ik1 ) ≤ CF (Ci1···ik1
δk1)s ≤ (CF Ds

F )δk1s,

and
µ(F i1···ik1 ···ik2 ) ≥ δk2s.

Therefore, for i1 · · · ik1 fixed, we have

card{i1 · · · ik1ik1+1 · · · ik2} ≤ (CF Ds
F )(δ−s)k2−k1 . (2.8)

It follows from (2.5)-(2.8) that F has s-structure.

(2) C1+α(α > 0) self-conformal set (in particular, self-similar set satisfying SSC):
Let E be the invariant of the contracting conformal mappings {f1, ..., fn} with

dimH E = s. We will show that E has s-structure.



BILIPSCHITZ EMBEDDING OF SELF-SIMILAR SETS 7

Write fi1···im
= fi1 ◦ · · · ◦ fim

and Ei1i2...im
= fi1···im

(E), 1 ≤ ij ≤ n (j =
1, · · · ,m).

Fix a point x ∈ E. By [4], it is known that there is constant λ > 0 such that for
any i1i2 · · · im and any y ∈ E,

λ−1 ≤ |Ei1i2···im
|/|f ′i1i2···im

(x)| ≤ λ,

λ−1 ≤ Hs(Ei1i2...im
)/|f ′i1i2...im

(x)|s ≤ λ,

λ−1 ≤ |f ′i1i2···im
(y)|/|f ′i1i2···im

(x)| ≤ λ.

Taking δ small enough, for any infinite sequence i1i2 · · · im · · · and any k ≥ 1, we can
choose the least integer l(k) such that |f ′i1i2···il(k)

(x)| < δk, then |f ′i1···il(k)−1
(x)| ≥ δk,

and

|f ′i1i2···il(k)
(x)|/|f ′i1i2···il(k)−1

(x)|
= |f ′il(k)

(x)| ·
(
|f ′i1i2···il(k)−1

(fil(k)(x))|/|f ′i1i2···il(k)−1
(x)|

)

≥ ( min
1≤i≤n

inf
z
|f ′i(z)|)λ−1.

Therefore,
( min
1≤i≤n

inf
z
|f ′i(z)|)λ−1δk ≤ |f ′i1i2···il(k)

(x)| < δk. (2.9)

Let Πk be the collection of all the words i1i2...il(k) defined above. Then

E = ∪i1···ip∈Πk
Ei1···ip .

The strong separation condition implies that there is a constant C1 > 0 such that

d(Ei1i2...ip , E\Ei1i2...ip) ≥ C1|f ′i1i2···ip
(x)| for all i1 · · · ip.

Then for any i1i2 · · · ip ∈ Πk, we have

Ei1···ip = ∪i1···ip···iq∈Πk+1Ei1···ip···iq ,

and
|Ei1···ip

| ≤ λ|f ′i1i2···ip
(x)| < λδk. (2.10)

d(Ei1i2...ip
, E\Ei1i2...ip

) ≥ [C1( min
1≤i≤n

inf
z
|f ′i(z)|)λ−1]δk. (2.11)

Fix any i1i2 · · · ip ∈ Πk1 and k1 < k2, we estimate the cardinality of the set

{i1 · · · ip · · · iq : i1 · · · ip · · · iq ∈ Πk2}.
In fact,

Hs(Ei1···ip
) =

∑

i1···ip···iq∈Πk2

Hs(Ei1···ip···iq
),

where
Hs(Ei1···ip

) ≤ λ|f ′i1i2···ip
(x)|s ≤ λδk1s,

and by (2.9),

Hs(Ei1···ip···iq
) ≥ (λ−1)|f ′i1i2···ip···iq

(x)|s

≥ (λ−1)[( min
1≤i≤n

inf
z
|f ′i(z)|)λ−1]sδk2s.

Therefore, for any i1i2 · · · ip ∈ Πk1 fixed,

card{i1 · · · ip · · · iq ∈ Πk2} ≤ [λ2+s( min
1≤i≤n

inf
z
|f ′i(z)|)−s] · (δ−s)k2−k1 . (2.12)
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Let
C2 = max[λ,C−1

1 ( min
1≤i≤n

inf
z
|f ′i(z)|)−1λ, λ2+s( min

1≤i≤n
inf
z
|f ′i(z)|)−s].

Then by (2.10)-(2.12), we have shown that E has s-structure with constants (C2, δ, s).

(3) Directed-graph sets on a transitive graph satisfying SSC:
Let {Ki}n

i=1 be the graph-directed sets on a transitive graph G = (V, E), where
V = {1, · · · , n}. Let Ei,j denote the set of edges from vertex i to vertex j, and Ek

i,j

the set of sequences of k edges (e1, . . . , ek) which form a directed path from vertex
i to vertex j. Let Ei = ∪k ∪j Ek

i,j , all the paths starting at vertex i.
By the symmetry, we only need to prove that K1 has s-structure.
Write re the contracting ratio of Se for e ∈ E . Let r∗ = mine∈E re and

D∗ = min
1≤i≤n

min{d(Se(Kj), Se′(Kj′)) : e 6= e′ with e ∈ Ei,j and e′ ∈ Ei,j′}.

Take δ small enough such that δ < r∗.
For any infinite admissible path (e1, e2, · · · , em, · · · ) starting at vertex 1, and

any k ≥ 1, we can take the least integer l(k) satisfying re1 · · · rel(k) < δk. In the
same way as above, we have

r∗δk ≤ re1 · · · rel(k) < δk.

Let Πk be the collection of all the paths (e1, · · · , el(k))(∈ E1) defined above.
Then we have

K1 =
⋃

(e1,··· ,ep)∈Πk

Ee1···ep ,

where Ee1···ep = Se1 ◦ · · · ◦ Sep(Kj) with edge ep ending at some vertex j.

By the strong separation condition, we have D∗ > 0 and for (e1, · · · , ep) ∈ Πk,

d(Ee1···ep ,K1 \ Ee1···ep) ≥ D∗r∗δk and |Ee1···ep | ≤ δk · max
1≤i≤n

|Ki|.

Fix a path (e1, · · · , ep) ∈ Πk1 and k1 < k2, we estimate the cardinality of the set

{(e1, · · · , ep, · · · , eq) ∈ Πk2}.
In fact, let s be the Hausdorff dimension of Ki, we have

Hs(Ee1···ep) =
∑

(e1,··· ,ep,··· ,eq)∈Πk2

Hs(Ee1...ep...eq ),

where

Hs(Ee1···ep
) ≤ δk1s · max

1≤i≤n
Hs(Ki),

Hs(Ee1···ep···eq
) ≥ rs

∗δ
k2s · min

1≤i≤n
Hs(Ki).

Therefore, for (e1, · · · , ep) ∈ Πk1 fixed,

card{(e1, . . . , ep, . . . , eq) ∈ Πk2} ≤ (δ−s)k2−k1

(
r−s
∗ max

1≤i≤n
Hs(Ki)/ min

1≤i≤n
Hs(Ki)

)
.

Let
C3 = max(D−1

∗ r−1
∗ , max

1≤i≤n
|Ki|, r−s

∗ max
1≤i≤n

Hs(Ki)/ min
1≤i≤n

Hs(Ki)),

then K1 has the s-structure with constants (C3, δ, s).

(4) Homogeneous Moran set in M(J, n̄, c̄)
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Suppose E ∈ M(J, n̄, c̄) with dimension s = − log n̄/ log c̄. Since n̄c̄ < 1, we can
take ε > 0 small enough such that

n̄c̄ + (n̄ + 1)ε < 1.

Given k ≥ 1, ∪t
i=1Ii is called a ε-block of order k, if

(1) I1, I2, · · · , It are basic elements of order k, having length (c̄)k;
(2) I1, I2, · · · , It are intervals arranged from left to right such that

d(Ip, Ip+1) ≤ ε(c̄)k for every p;

(3) d(∪t
i=1Ii, E\ ∪t

i=1 Ii) > ε(c̄)k.
Since n̄c̄ + (n̄ + 1)ε < 1, for any ε-block ∪t

i=1Ii, we have

t ≤ 2n̄. (2.13)

For each ε-block ∪t
i=1Ii of order k1, the number of ε-block of order k2 contained in

∪t
i=1Ii is less than or equal to

t · (n̄)k2−k1 ≤ (2n̄)[(c̄)−s]k2−k1 . (2.14)

Notice that the diameter

| ∪t
i=1 Ii| ≤ [t + (t− 1)ε](c̄)k ≤ (2t) · (c̄)k ≤ (4n̄)(c̄)k. (2.15)

On the other hand, for distinct ε-blocks of order k, their distance is greater than
ε(c̄)k. Then the decomposition with respect to ε-blocks implies that this Moran set
has s-structure with constants (max(4n̄, ε−1), c̄, s), where s = − log n̄/ log c̄.

3. Proof of Proposition 2

Let s(C, δ) be the collection of all the sets having s-structure with constants
(C, δ, s) as in Definition 3.

Lemma 2. Suppose E ∈ s(C, δ). Then E ∈ s(C, δn) for any n ≥ 1.

Proof. For any k, n ≥ 1, given a word i1 · · · ikn, of length kn, construct a new word
by the following way

(i1 · · · in)(in+1 · · · i2n) · · · (i(k−1)n+1 · · · ikn),

where each segment (ijn+1 · · · i(j+1)n) (0 ≤ j ≤ k − 1) is regarded as a new letter.
Then this new word has length k. It follows from the definition that E ∈ s(C, δn)
for any n ≥ 1. ¤

Now we are turn to the proof of Proposition 2. Without loss of generality, we
assume |F | ≥ 1. Suppose E ∈ s(C, δ). Fixing C, by Lemma 2, we can choose δ
small enough such that

Cδt−s < (20tCF )−1,

where CF is the constant such that for any y ∈ F and r < |F |,
rt ≤ µ(B(y, r)) ≤ CF rt.

Without loss of generality, for each k ≥ 0 and each i1 · · · ik ∈ Φk, let ni1···ik
(≤ Cδ−s)

be the integer such that

[1, ni1···ik
] ∩ N = {j : i1 · · · ikj ∈ Φk+1}.
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Fix y∗ ∈ F. As in Lemma 2.1 of [12], using 5r-covering theorem [11], we can find
m0 disjoint balls B(yi, 2δ) ⊂ B(y∗, 1/2) = B(y∗, δ0/2) with yi ∈ F (i = 1, 2, ..., m)
such that

B(y∗, 1/2) ⊂ ∪m0
i=1B(yi, 10δ).

Therefore,

m0 · (10tCF )δt ≥
m∑

i=1

µ[B(yi, 10δ)] ≥ µ[B(y∗, 1/2)] ≥ (1/2)t,

which yields
m0 ≥ (20tCF )−1δ−t > Cδ−s.

Since Φ1 = {1, · · · , n∅} with n∅ = card(Φ1) ≤ Cδ−s, from the family of balls
{B(yi, δ)}m0

i=1, we may select balls {B(yi1 , δ)}i1∈Φ1 with yi1 ∈ F.
By induction on k, assume that we get a ball B(yi1···ik

, δk) with i1 · · · ik ∈ Φk

and yi1···ik
∈ F. Using 5r-covering theorem again, we have mi1···ik

disjoint balls
B(yi1···ikj , 2δk+1) ⊂ B(yi1···ik

, δk/2) with yi1···ikj ∈ F (j = 1, 2, ..., mi1···ik
) such

that
B(yi1···ik

, δk/2) ⊂ ∪mi1···ik
j=1 B(yi1···ikj , 10δk+1).

As in the discussion above, we have

mi1···ik
≥ (20tCF )−1δ−t > Cδ−s ≥ ni1···ik

.

Thus we can choose a family {B(yi1··· .ikj , δ
k+1)}i1···ikj∈Φk+1 of balls such that

B(yi1···ikj , δ
k+1) ⊂ B(yi1··· .ik

, δk),

and for any ik+1 6= i′k+1 with i1 · · · ikik+1, i1 · · · iki′k+1 ∈ Φk+1,

d(B(yi1i2...ikik+1 , δ
k+1), B(yi1i2...iki′k+1

, δk+1)) ≥ δk+1.

Setting

F ′ =
∞⋂

k=1

⋃

i1i2...ik∈Φk

[B(yi1i2...ik
, δk) ∩ F ],

then F ′ ⊂ F .
For any x ∈ E, there is a unique infinite sequence i1(x) · · · ik(x) · · · satisfying

i1(x) · · · ik(x) ∈ Φk for each k, and

{x} = ∩k≥1E
i1(x)···ik(x).

Then a bijection f from E to F ′ is defined by

{f(x)} = ∩k≥1[B(yi1(x)···ik(x), δ
k) ∩ F ],

where B(yi1···ikik+1 , δ
k+1) ⊂ B(yi1··· .ik

, δk) for every k.
It suffices to show f is a bilipschitz mapping. Suppose x, x′ are distinct points

of E and
x ∈ Ei1···ikik+1 and x′ ∈ Ei1···iki′k+1with ik+1 6= i′k+1.

Then

C−1δk+1 ≤ d(Ei1···ikik+1 , Ei1···iki′k+1) ≤ |x− x′| ≤ |Ei1···ik | ≤ Cδk.
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On the other hand,

δk+1 ≤ d(B(yi1···ikik+1 , δ
k+1), B(yi1···iki′k+1

, δk+1))

≤ |f(x)− f(x′)|
≤ |B(yi1···ik

, δk)| ≤ 2δk,

which concludes
C−1δ ≤ |f(x)− f(x′)|/|x− x′| ≤ 2Cδ−1.

4. Proofs of Theorem 1 and Proposition 3

To prove Theorem 1, it suffices to prove Proposition 3. In fact, let t = dimH E2 >
dimH E1, since E1 satisfies SSC, applying Proposition 2 and Proposition 1.(2),
we only need to show that for any ε > 0, E2 includes a t′-regular subset with
t′ ∈ (t− ε, t].

Proof of Proposition 3:
Since F is a self-similar set, we have

dimH F = dimB F = t,

where dimB(·) is the Box dimension.
Without loss of generality, we assume |F | = 1 and F ⊂ Rn.
Let Qk be the collection of all 2-adic cubes with sidelength 2−k, i.e.,

Qk = {Q : Q =
n∏

i=1

[
ai

2k
,
ai + 1

2k
] with ai ∈ Z for all i}.

Let
Nk = card{Q ∈ Qk : F ∩Q 6= ∅}.

By the definition of Box dimension, we have

lim
k→∞

log Nk

log 2k
= t.

For any fixed k, we get a collection of cubes with sidelength 2−k which intersect
F. Therefore there is a constant C(n) only depending on n such that we can select
a subset Υk of {Q ∈ Qk : F ∩Q 6= ∅} such that

card(Υk) ≥ Nk/C(n)

and
Q1 ∩Q2 = ∅ (4.1)

for any distinct elements Q1, Q2 in Υk. Then (4.1) implies

d(Q1, Q2) ≥ 2−k.

For any Q ∈ Υk, take a point xQ ∈ F ∩ Q and an infinite sequence j1 · · · jt · · ·
satisfying

{xQ} = ∩t≥1Sj1···jt
(F ).

Find an index tQ such that the ratio of Sj1···jtQ
belongs to

[r · 2−k/3, 2−k/3],

where r is the least ratio of similitudes with respect to F. Write SjQ = Sj1···jtQ
,

and let rQ denote the ratio of SjQ , then rQ ∈ [r · 2−k/3, 2−k/3].
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We shall verify {SjQ}Q∈Υk
can generate a self-similar set Fk satisfying SSC.

In fact, the corresponding invariant set Fk is contained in F, since

SjQ(F ) ⊂ F for any Q ∈ Υk.

That means the diameter |Fk| ≤ 1, and thus

|SjQ(Fk)| ≤ rQ|Fk| ≤ 2−k/3.

Therefore, for any distinct elements Q1, Q2 in Υk,

d(SjQ1
(Fk), SjQ1

(Fk)) ≥ d(Q1, Q2)− |SjQ1
(Fk)| − |SjQ2

(Fk)|
≥ 2−k − 2(2−k/3) = 2−k/3.

Then Fk = ∪Q∈Υk
SjQ(Fk) satisfies SSC, which implies that the Hausdorff dimen-

sion tk of Fk is determined by
∑

Q∈Υk

(rQ)tk = 1,

where rQ ∈ [r · 2−k/3, 2−k/3].
Therefore,

[Nk/C(n)](r2−k/3)tk ≤ card(Υk)(r2−k/3)tk ≤
∑

Q∈Υk

(rQ)tk = 1.

As a result,

tk ≥ log[Nk/C(n)]
log[2k(3/r)]

.

Take k large enough, we have
tk > t− ε.

Now, we get a self-similar set Fk satisfying SSC such that Fk ⊂ F. Here Fk is
tk-regular with tk ∈ (t− ε, t].

The proof of Proposition 3 is finished.

5. Proof of Theorem 3

5.1. Bilipschitz Equivalence of Self-similar Sets with SSC.
Let E, F be self-similar sets satisfying SSC, with ratios sets {ri}n

i=1 and {tj}m
j=1

respectively, satisfying ∑n

i=1
rs
i =

∑m

j=1
tsj = 1.

Write ρj = tsj for j = 1, · · · ,m.
Recall that Σ∗m is the set of all finite words composed of 1, · · · ,m. Let Σm =

{1, · · · ,m}∞ be a symbolic system equipped with the Bernoulli measure υ =
(ρ1, · · · , ρm). The cylinder [i1 · · · il] generated by the word i1 · · · il is defined by
[i1 · · · il] = {j1 · · · jl · · · ∈ Σm : j1 · · · jl = i1 · · · il}. Then for each cylinder [i1 · · · il],

υ([i1 · · · il]) = Πl
t=1ρit

.

Given a word i1 · · · ik and a subset B of Σm, let

A = i1 · · · ikB = {i1 · · · ikj1 · · · jl · · · : j1 · · · jl · · · ∈ B}
and denote by A ≺ B.
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Lemma 3. [21] Suppose E, F are self-similar sets satisfying SSC, with ratios
sets {ri}n

i=1 and {tj}m
j=1 respectively, where

∑n
i=1 rs

i =
∑m

j=1 tsj = 1. Let υ be the
Bernoulli measure (ts1, · · · , tsm) on Σm. Then E and F are bilipschitz equivalent if
and only if there are Ω1,Ω2, · · · ,Ωk, {∆i,j}1≤i≤k,1≤j≤n, which are unions of finitely
many cylinders in Σm, satisfying

Ω1 = ∆1,1 ∪∆2,1 · · · ∪∆1,n,
Ω2 = ∆2,1 ∪∆2,2 · · · ∪∆2,n,
...

...
...

...
. . .

...
Ωk = ∆k,1 ∪∆k,2 · · · ∪∆k,n,

where
(1) right side of every equality above is a disjoint union;
(2) for every (i, j), there exist β ∈ Σ∗m and γ ∈ N ∩ [1, k] such that ∆i,j = βΩγ ;
(3) for every (i, j),

υ(∆i,j)
υ(Ωi)

= rs
j .

5.2. Proof of Theorem 3.
We assume that F, F ′ are self-similar sets satisfying SSC and dimH F = dimH F ′ =

s. Let {ri}n
i=1, {tj}m

j=1 be the corresponding ratio sets for F and F ′ respectively.
Let K ⊂ F , K ′ ⊂ F ′ withHs(K),Hs(K ′) > 0 such that K and K ′ are bilipschitz

equivalent with the corresponding bilipschitz bijection f : K → K ′ satisfying

C−1|x− y| ≤ |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ K.

We will show that F and F ′ are bilipschitz equivalent.
Suppose H = ∪n

i=1Si(H) is a self-similar set satisfying SSC. For j∗ = j1 · · · jk ∈
Σ∗n, write Sj∗ = Sj1 ◦ · · · ◦ Sjk

and Hj∗ = Sj∗(H). Hj∗ is called a fine copy of H.

Lemma 4. Suppose F ′ is generated by m similitudes with ratios {tj}m
j=1. Then

there is an integer N such that for any fine copy F̄ of F , there exists a subset
Λ ⊂ {1, · · · ,m}N so that

f(F̄ ∩K) =
⋃

j∗∈Λ
(F ′j1···jkj∗ ∩K ′),

where F ′j1···jk
is the smallest fine copy containing f(F̄ ∩K).

Proof. Take N large enough such that

(max
j

tj)N < [min
i1 6=i2

d(Fi1 , Fi2)/|F |] · [min
l1 6=l2

d(F ′l1 , F
′
l2)/|F ′|]/C2. (5.1)

We will show N is the integer desired.
Suppose on the contrary, there exist y1, y2 and a fine copy F ′j1···jkj∗ (|j∗| = N)

containing y1, y2 such that y1 ∈ f(F̄ ∩K), y2 ∈ K ′\f(F̄ ∩K). Thus

(max
j

tj)N |F ′j1···jk
| ≥ |F ′j1···jkj∗ | ≥ |y1 − y2|

≥ C−1d(F̄ ∩K, K\F̄ ) ≥ C−1d(F̄ , F\F̄ )
≥ C−1[min

i1 6=i2
d(Fi1 , Fi2)/|F |]|F̄ |.
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Since F ′j1···jk
is the smallest fine copy containing f(F̄ ∩K), there are distinct j

and j′ such that f(F̄ ∩K) ∩ F ′j1···jkj 6= ∅, f(F̄ ∩K) ∩ F ′j1···jkj′ 6= ∅. Therefore,

|F̄ | ≥ |F̄ ∩K| ≥ C−1|f(F̄ ∩K)|
≥ C−1 minjk+1 6=j′k+1

d(F ′j1···jkjk+1
, F ′j1···jkj′k+1

)

≥ C−1(|F ′j1···jk
|/|F ′|)minl1 6=l2 d(F ′l1 , F

′
l2).

Therefore,

(max
j

tj)N |F ′j1···jk
| ≥ [min

i1 6=i2
d(Fi1 , Fi2)/|F |][min

l1 6=l2
d(F ′l1 , F

′
l2)/|F ′|]|F ′j1···jk

|/C2,

which implies

(max
j

tj)N ≥ [min
i1 6=i2

d(Fi1 , Fi2)/|F |][min
l1 6=l2

d(F ′l1 , F
′
l2)/|F ′|]/C2,

which contradicts (5.1). ¤

Let N be the integer defined in Lemma 4.
For a fine copy Fi with Fi ∩K 6= ∅, we get a decomposition

Fi = ∪n
u=1Fi∗u.

Then by Lemma 4, there is a subset Λi ⊂ {1, · · · ,m}N such that

f(Fi ∩K) =
⋃

j∗∈Λi

(F ′j(i)∗j∗ ∩K ′) (5.2)

where F ′j(i) is the smallest fine copy containing f(Fi ∩K). Let

Ω̄i = ∪j∗∈Λi
[j∗], (5.3)

where [j∗] is the cylinder.
Notice that⋃

j∗∈Λi

(F ′j(i)∗j∗ ∩K ′) = f(Fi ∩K) = ∪n
u=1f(Fi∗u ∩K). (5.4)

Suppose that F ′
j(i)∗β̄(i,u)

is the smallest fine copy containing f(Fi∗u ∩ K) with
β̄(i, u) ∈ Σ∗m. Then by Lemma 4 and (5.2), we have

∪n
u=1f(Fi∗u ∩K) = ∪n

u=1[
⋃

v∗∈Λi∗u

F ′j(i)∗β̄(i,u)∗v∗ ∩K ′]. (5.5)

It follows from (5.4) and (5.5) that
⋃

j∗∈Λi

(F ′j(i)∗j∗ ∩K ′) = ∪n
u=1[

⋃
v∗∈Λi∗u

F ′j(i)∗β̄(i,u)∗v∗ ∩K ′]. (5.6)

Let ∆̄i,u = ∪v∗∈Λi∗u
[β̄(i, u) ∗ v∗], then

∆̄i,u = β̄(i, u)(∪v∗∈Λi∗u
[v∗]) = β̄(i, u)Ω̄i∗u. (5.7)

By (5.6), we have
⋃

j∗∈Λi

[j(i) ∗ j∗] = ∪n
u=1

⋃
v∗∈Λi∗u

[j(i) ∗ β̄(i, u) ∗ v∗],

i.e., ⋃
j∗∈Λi

[j∗] = ∪n
u=1

⋃
v∗∈Λi∗u

[β̄(i, u) ∗ v∗],

which implies
Ω̄i = ∪n

u=1∆̄i,u. (5.8)
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Notice that (5.8) is a disjoint union, and

∆̄i,u ≺ Ω̄i∗u for all u. (5.9)

Let ῡ be Borel measure defined by

ῡ(A) = Hs(f(A)) for all A ⊂ K.

Since f : K → K ′ is bilipschitz, ῡ is an absolutely continuous measure with respect
to Hs|K . Therefore, there exists Radon-Nikodym derivative

Df(x) = lim
r→0

Hs(f(K ∩B(x, r))
Hs(K ∩B(x, r))

for Hs-almost all x ∈ K,

such that for any Borel set A ⊂ K,

Hs(f(A)) =
∫

A

Df(x)dHs|K(x).

Let a > 0 be the essential supremum of Df, i.e.,

a := inf{b : Hs{x ∈ K : Df(x) ≥ b} = 0}.
Then for any Borel set A ⊂ K,

Hs(f(A)) ≤ aHs(A). (5.10)

Recall that C is the bilipschitz constant of f , by the property of the Hausdorff
measure, Hs(f(K ∩B(x, r)) ≤ Cs ·Hs(K ∩B(x, r)), so Df(x) ≤ Cs for Hs-almost
all x ∈ K. It follows that a ≤ Cs < ∞.

Lemma 5. Let c > 0 and suppose D is a fine copy of F, satisfying

D ⊂ B(x, r) and |D| ≥ c · r,
where the ball B(x, r) satisfies

(
1− Hs(B(x, r) ∩K)

Hs(B(x, r) ∩ F )

)
≤ ς and

(
a− Hs(f(B(x, r) ∩K))

Hs(B(x, r) ∩K)

)
≤ ε.

Then there is a constant c∗ > 0 only depending on c and F such that(
1− Hs(D ∩K)

Hs(D)

)
≤ c∗ς, (5.11)

(
a− Hs(f(D ∩K))

Hs(D ∩K)

)
≤ c∗[1− c∗ς]−1ε. (5.12)

Proof. The self-similar set F with SSC, equipped with Hausdorff measure Hs|F , is
s-regular. That means for any x ∈ F and r ≤ |F |,

Hs(B(x, r) ∩ F ) ≤ CF rs

for some constant CF > 0. Suppose D = S(F ), where S is a similitude with ratio
rD. Then Hs(D) = rs

DHs(F ), |D| = rD|F |, which implies

Hs(D) = [|D|sHs(F )]/|F |s ≥ [csHs(F )/|F |s]rs

≥ [csHs(F )/(|F |sCF )]Hs(B(x, r) ∩ F ).

Let c∗ = (|F |sCF )/(csHs(F )), where c∗ only depends on c and F. Then

Hs(D) ≥ (c∗)−1Hs(B(x, r) ∩ F ), (5.13)
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Notice that

[1− Hs(D ∩K)
Hs(D)

] · Hs(D)

= Hs(D\K)
≤ Hs((B(x, r) ∩ F )\K)
= Hs(B(x, r) ∩ F )−Hs(B(x, r) ∩K)

≤ [1− Hs(B(x, r) ∩K)
Hs(B(x, r) ∩ F )

] · Hs(B(x, r) ∩ F ).

Then (5.11) follows from (5.13).
Notice that
Hs(f(D ∩K)) +Hs(f [B(x, r) ∩ (K\D)])
Hs(D ∩K) +Hs(B(x, r) ∩ (K\D))

=
Hs(f(B(x, r) ∩K))
Hs(B(x, r) ∩K)

. (5.14)

By (5.10), we have

Hs(f [B(x, r) ∩ (K\D)]) ≤ a · Hs[B(x, r) ∩ (K\D)]. (5.15)

From (5.11), we also have

Hs(D ∩K) ≥ [1− c∗ς]Hs(D) (5.16)
≥ [1− c∗ς](c∗)−1Hs(B(x, r) ∩ F )
≥ [1− c∗ς](c∗)−1Hs(B(x, r) ∩K).

It follows from (5.14) and (5.15) that

a− Hs(f(D ∩K))
Hs(D ∩K)

≤
(

a− Hs(f(B(x, r) ∩K))
Hs(B(x, r) ∩K)

) Hs(B(x, r) ∩K)
Hs(D ∩K)

≤ c∗[1− c∗ς]−1ε, (using estimation (5.16))

which yields estimation (5.12). ¤

We can get an estimation similar to (5.11) for fine copy of F ′.

Lemma 6. Let D′ be a fine copy of F ′, satisfying

D′ ⊂ B(x′, r′) and |D′| ≥ d · r′ with d > 0.

Then there is a constant d∗ > 0 only depending on d and F ′ such that(
1− Hs(D′ ∩K ′)

Hs(D′)

)
≤ d∗

(
1− Hs(B(x′, r′) ∩K ′)

Hs(B(x′, r′) ∩ F ′)

)
. (5.17)

As shown above, for a fine copy Fi with Fi ∩K 6= ∅, we have

f(Fi ∩K) =
⋃

j∗∈Λi

(F ′j(i)∗j∗ ∩K ′), (5.18)

= ∪n
u=1[

⋃
v∗∈Λi∗u

F ′j(i)∗β̄(i,u)∗v∗ ∩K ′].

Given c > 0, let c∗ be the constant mentioned in Lemma 5. Recall that C ≥ 1
is the bilipschitz constant of f : K → K ′. We denote αt ³ βt, if there is a constant
κ > 0 independent of t such that for any index t,

κβt ≤ αt ≤ κ−1βt.

Keep the notations of (5.18) in the following lemma.
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Lemma 7. Suppose x ∈ K, Fi ⊂ B(x, r) with |Fi| ≥ |Fi∗u| ≥ cr for every u, and
(

1− Hs(B(x, r) ∩K)
Hs(B(x, r) ∩ F )

)
≤ (c∗)−1(1−max

i
rs
i )/2. (5.19)

Then we have

|Fi| ³ |Fi ∩K| ³ |F ′j(i)| ³ |F ′j(i)∗j∗ | ³ |F ′j(i)∗β̄(i,u)∗v∗ |. (5.20)

As a consequence, there is a constant κ > 0 independent of c such that

|F ′j(i)| ≥ |F ′j(i)∗β̄(i,u)∗v∗ | ≥ κ(cr), (5.21)

where
F ′j(i)∗β̄(i,u)∗v∗ ⊂ F ′j(i) ⊂ B(f(x), (C + 2κ−1)r). (5.22)

Proof. We conclude that there are at least two distinct letters j1 and j2 such that

Fi∗j1 ∩K 6= ∅ and Fi∗j2 ∩K 6= ∅. (5.23)

On the contrary, suppose there exists only one letter j such that Fi∗j ∩K 6= ∅,
that means

Fi ∩K ⊂ Fi∗j .
Applying (5.19) to Lemma 5, we have

(1−max
i

rs
i )/2 ≥ 1−Hs(Fi ∩K)/Hs(Fi)

= 1−Hs(Fi∗j ∩K)/Hs(Fi)
≥ 1−Hs(Fi∗j)/Hs(Fi)
≥ 1−max

i
rs
i ,

this is a contradiction. By (5.23), we have

|Fi| ≥ |Fi ∩K| ≥ d(Fi∗j1 , Fi∗j2) ≥ [(min
i 6=i′

d(Fi, Fi′))/|F |] · |Fi|. (5.24)

That means
|Fi| ³ |Fi ∩K|.

On the other hand, since f is bilipschitz, we have

|Fi ∩K| ³ |f(Fi ∩K)|.
Notice that F ′j(i) is the smallest fine copy of F ′ such that F ′j(i) contains f(Fi ∩K),
then there are distinct letters j′1 and j′2 such that

F ′j(i)∗j′1 ∩ f(Fi ∩K) 6= ∅ and F ′j(i)∗j′2 ∩ f(Fi ∩K) 6= ∅,

by an analogue discussion to (5.24), we get

|f(Fi ∩K)| ³ |F ′j(i)|.
Since |j∗| = N ,

|F ′j(i)| ³ |F ′j(i)∗j∗ |.
Here j(i) ∗ β̄(i, u) = j(i ∗ u) and |v∗| = N, by similar discussion as above, we have

|F ′j(i)∗β̄(i,u)∗v∗ | ³ |F ′j(i∗u)| ³ |Fi∗u| ³ |Fi|.

Therefore (5.20) is proved. Suppose κ is the constant of (5.20), then

|F ′j(i)|, |F ′j(i)∗β̄(i,u)∗v∗ | ≥ κ|Fi| ≥ κ(cr).
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Given f(y) ∈ F ′j(i) ∩K ′ with y ∈ Fi ⊂ B(x, r), we have

|f(y)− f(x)| ≤ C|y − x| ≤ Cr,

and thus

F ′j(i) ⊂ B(f(x), Cr + |F ′j(i)|) ⊂ B(f(x), (Cr + κ−1|Fi|)) ⊂ B(f(x), (C + 2κ−1)r).

Therefore, F ′
j(i)∗β̄(i,u)∗v∗ ⊂ F ′j(i) ⊂ B(f(x), (C + 2κ−1)r). ¤

Remark 6. By (5.20), we have |F ′j(i)| ³ |F ′
j(i)∗β̄(i,u)∗v∗ |, which implies that the length

of β̄(i, u) is uniformly bounded, i.e., there exists a constant ϑ independent of i, u
such that

|β̄(i, u)| ≤ ϑ.

Given B(x, r) with x ∈ K, we can take a largest fine copy Fi such that

x ∈ Fi ⊂ B(x, r).

Then |Fi| ≥ c1r, where constant c1 = mini ri. Let

c = c1(min
i

ri)2
(mN )

= (min
i

ri)2
(mN )+1, (5.25)

and
d = [κ/(C + 2κ−1)]c. (5.26)

Suppose c∗ and d∗ are the corresponding constants as in Lemmas 5 and 6.

Assume that {εk}k, {ςk}k and {rk}k are sequences of positive numbers such that

lim
k

εk = lim
k

ςk = lim
k

rk = 0.

Here we assume that supk ςk < (c∗)−1(1−maxi rs
i )/2.

Let
δk =

a

a− c∗(1− c∗ςk)−1εk
− 1.

Then limk δk = 0, and
|z1/z2 − 1| ≤ δk, (5.27)

for any z1, z2 ∈ [a− c∗(1− c∗ςk)−1εk, a].

Since Hs(K), Hs(K ′) > 0, by Corollary 2.14 of [11], for Hs-almost all x ∈ K,
we have

lim
r→0

Hs(B(x, r) ∩K)
Hs(B(x, r) ∩ F )

= lim
r→0

Hs(B(f(x), r) ∩K ′)
Hs(B(f(x), r) ∩ F ′)

= 1.

Furthermore, considering the point x such that D(f)(x) is close to a, we can take
points xk ∈ K and x′k ∈ K ′ such that f(xk) = x′k and

1− Hs(B(xk, rk) ∩K)
Hs(B(xk, rk) ∩ F )

≤ ςk,

1− Hs(B(x′k, (C + 2κ−1)rk) ∩K ′)
Hs(B(x′k, (C + 2κ−1)rk) ∩ F ′)

≤ ςk,

a− Hs(f(B(xk, rk) ∩K))
Hs(B(xk, rk) ∩K)

≤ εk.

We can take a largest fine copy Fik such that

xk ∈ Fik ⊂ B(xk, rk).
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Then |Fik | ≥ c1rk with c1 = mini ri. Since {1, · · · ,m}N contains (2(mN ) − 1) non-
empty subsets, we have the following result.

Lemma 8. There is an integer Mk ≤ 2(mN )−1 such that for any word u1 · · ·uMk+1

with length Mk + 1, there exists word v1 · · · vt with 0 ≤ t ≤ Mk satisfying

Ω̄ik∗(u1···uMk+1) = Ω̄ik∗(v1···vt),

Proof. Fix k. For any M ≥ 1, we consider the set

ΞM = ∪M
l=1{Ω̄ik∗(u1···ul) : u1 · · ·ul ∈ {1, · · · , n}l}.

Then we have card(ΞM ) ≤ 2(mN ) − 1 and

Ξ1 ⊂ Ξ2 ⊂ · · · ⊂ ΞM−1 ⊂ ΞM ⊂ · · · ⊂ Ξ2(mN )−1 ⊂ Ξ2(mN ) .

If ΞM = ΞM+1 for some M ≤ 2(mN ) − 1, then M is the integer desired.
Otherwise, for any M ≤ 2(mN ) − 1,

card(ΞM+1)− card(ΞM ) ≥ 1,

which implies

2(mN ) − 1 ≥ card(Ξ2(mN ))

≥ card(Ξ1) +
∑2(mN )−1

i=1
[card(ΞM+1)− card(ΞM )]

≥ 1 + (2(mN ) − 1) = 2(mN ).

This is a contradiction. ¤

Since Mk ≤ 2(mN )− 1, for any word u1 · · ·us with 0 ≤ s ≤ Mk + 1(≤ 2(mN )), we
have

|Fik∗(u1···us)| ≥ |Fik |(min
i

ri)2
(mN ) ≥ rk(min

i
ri)2

(mN )+1.

Therefore, for any u1 · · ·us with s ≤ Mk + 1(≤ 2(mN )),

|Fik∗(u1···us)| ≥ crk and Fik∗(u1···us) ⊂ B(xk, rk), (5.28)

where c = (mini ri)2
(mN )+1 defined as above. For any word j with length |j| =

(Mk + 1), there exists j′ with length |j′| ≤ Mk such that

Ω̄ik∗j = Ω̄ik∗j′ . (5.29)

By Lemma 4, Remark 6 and (5.7), the following sets are finite:
{

Ω̄ik∗(u1···us) : k ≥ 1, u1 · · ·us ∈ {1, · · · ,m}s with s ≤ Mk + 1
}

,
{

β̄(ik ∗ (u1 · · ·us), u) : k ≥ 1, u1 · · ·us ∈ {1, · · · ,m}s with s ≤ Mk, 1 ≤ u ≤ n
}

,
{

∆̄ik∗(u1···us), u : k ≥ 1, u1 · · ·us ∈ {1, · · · ,m}s with s ≤ Mk, 1 ≤ u ≤ n
}

.
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Therefore, we can select a subsequence k1 < k2 < · · · < kt < · · · with limt→∞ kt =
∞ such that for all t,

Mkt
= Mkt+1 ≡ M,

Ω̄ikt∗(u1···us) = Ω̄ikt+1∗(u1···us),

∆̄ikt∗(u1···us), u = ∆̄ikt+1∗(u1···us), u,

β̄(ikt
∗ (u1 · · ·us), u) = β̄(ikt+1 ∗ (u1 · · ·us), u),

for any word u1 · · ·us with 0 ≤ s ≤ M and any u with 1 ≤ u ≤ n. Denote

Ωu1···us
= Ω̄ikt∗(u1···us),

∆u1···us, u = ∆̄ikt∗(u1···us), u,

β((u1 · · ·us), u) = β̄(ikt
∗ (u1 · · ·us), u).

Then
Ωu1···us

= ∪n
u=1∆u1···us, u, (5.30)

Notice that
∆u1···us, us+1 ≺ Ωu1···usus+1 for 0 ≤ s ≤ M − 1. (5.31)

For word u1 · · ·uMuM+1, there exists v1 · · · vs with 0 ≤ s ≤ M such that

∆u1···uM , uM+1 = β(u1 · · ·uM , uM+1)Ωv1···vs ,

that is
∆u1···uM , uM+1 ≺ Ωv1···vs

. (5.32)

According to Lemma 3, we shall verify that for all u and u1 · · ·us with s ≤ M,

υ(∆u1···us,u)
υ(Ωu1···us

)
= rs

u, (5.33)

where υ is defined in Subsection 5.1.
Let i = ikt

∗ (u1 · · ·us). Then it follows from (5.28) and Lemma 5 that

Hs(f(Fi∗u ∩K))
Hs(Fi∗u ∩K)

,
Hs(f(Fi ∩K))
Hs(Fi ∩K)

≥ a− c∗[1− c∗ςkt ]
−1εkt .

By (5.27), we have∣∣∣∣[
Hs(f(Fi ∩K))
Hs(Fi ∩K)

]/[
Hs(f(Fi∗u ∩K))
Hs(Fi∗u ∩K)

]− 1
∣∣∣∣ ≤ δkt , (5.34)

That means ∣∣∣∣[
Hs(Fi∗u ∩K)
Hs(Fi ∩K)

]/[
Hs(f(Fi∗u ∩K))
Hs(f(Fi ∩K))

]− 1
∣∣∣∣ ≤ δkt

. (5.35)

It follows from (5.28) and Lemma 5,

Hs(Fi ∩K)
Hs(Fi)

,
Hs(Fi∗u ∩K)
Hs(Fi∗u)

≥ 1− c∗ςkt .

Therefore, ∣∣∣∣[
Hs(Fi∗u ∩K)
Hs(Fi ∩K)

]/[
Hs(Fi∗u)
Hs(Fi)

]− 1
∣∣∣∣ ≤

1
1− c∗ςkt

− 1. (5.36)

On the other hand,
Hs(Fi∗u)
Hs(Fi)

= rs
u. (5.37)
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Suppose F ′j(i) is the smallest fine copy containing f(Fi ∩K), and
⋃

j∗∈Λi

(F ′j(i)∗j∗ ∩K ′) = ∪n
u=1[

⋃
v∗∈Λi∗u

F ′j(i)∗β̄(i,u)∗v∗ ∩K ′].

In fact, for i = ikt
∗ (u1 · · ·us), we have

υ(∆u1···us,u)
υ(Ωu1···us)

=

∑
v∗∈Λi∗u

Hs(F ′
j(i)∗β̄(i,u)∗v∗)∑

j∗∈Λi
Hs(F ′j(i)∗j∗)

. (5.38)

Applying (5.21), (5.22), (5.26) to Lemmas 6, we obtain a constant d∗ such that for
j∗ ∈ Λi and v∗ ∈ Λi∗u,

max

(
1−

Hs(F ′j(i)∗j∗ ∩K)

Hs(F ′j(i)∗j∗)
, 1−

Hs(F ′
j(i)∗β̄(i,u)∗v∗ ∩K)

Hs(F ′
j(i)∗β̄(i,u)∗v∗)

)
(5.39)

≤ d∗[1− Hs(B(x′kt
, (C + 2κ−1)rkt

) ∩K ′)
Hs(B(x′kt

, (C + 2κ−1)rkt
) ∩ F ′)

]

≤ d∗ςkt
.

For i = ikt
∗ (u1 · · ·us), by (5.38) and (5.39), we have∣∣∣∣[
Hs(f(Fi∗u ∩K))
Hs(f(Fi ∩K))

]/[
υ(∆u1···us,u)
υ(Ωu1···us

)
]− 1

∣∣∣∣ (5.40)

=

∣∣∣∣∣[
∑

v∗∈Λi∗u
Hs(F ′

j(i)∗β̄(i,u)∗v∗ ∩K)
∑

v∗∈Λi∗u
Hs(F ′

j(i)∗β̄(i,u)∗v∗)
]/[

∑
j∗∈Λi

Hs(F ′j(i)∗j∗ ∩K)∑
j∗∈Λi

Hs(F ′j(i)∗j∗)
]− 1

∣∣∣∣∣

≤ 1
1− d∗ςkt

− 1.

Letting t →∞, we get (5.33) from (5.35), (5.36), (5.37) and (5.40).

Finally, Theorem 3 follows from (5.30)-(5.33) and Lemma 3.

6. Bilipschitz Embedding about 1-regular Set

Given s-regular set E and t-regular set F with s < t, [12] proved that for any
s1 < s, there is a s1-regular subset of E, which can be bilipschitz embedded into
F. How about s1 = s? Investigate the following question:

Can we find a subset of E with positive s-dimensional Hausdorff
measure, such that E can be bilipschitz embedded into F?

In fact, this is true for s < 1 ([12]), but this is false for s = 1 by Proposition 4.

Proposition 4. Suppose B is a subset of [0, 1] with positive Lebesgue measure.
Then B can not be bilipschitz embedded into any self-similar set satisfying SSC.

Proof. Suppose there is a bilipschitz mapping f : B → f(B) ⊂ E, where E is a
self-similar set satisfying SSC. Let C be the bilipschitz constant of f. Denote by L
the Lebesgue measure on R1.

Assume x ∈ B is a Lebesgue point, i.e.,

L[(x− ε, x + ε) ∩B]/2ε → 1, as ε → 0,

which implies that

L[(x− ε, x + ε)\B]/2ε → 0, as ε → 0.
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Suppose
L[(x− ε, x + ε)\B]/2ε < ς.

Let Ei1···ik
be the smallest fine copy of E which contains f((x−ε, x+ε)∩B). Hence

|Ei1···ik
| ≥ |f((x− ε, x + ε) ∩B)|
≥ C−1|(x− ε, x + ε) ∩B|
≥ C−12ε(1− ς).

There are two distinct points

f(x), f(y) ∈ E with x, y ∈ (x− ε, x + ε) ∩B,

such that

f(x) ∈ f [(x− ε, x + ε) ∩B)] ∩ Ei1···ikik+1 ,

f(y) ∈ f [(x− ε, x + ε) ∩B)] ∩ Ei1···iki′k+1
,

with ik+1 6= i′k+1.
However, since x, y ∈ (x− ε, x + ε) ∩B, there is a sequence of points in B,

(x =)z0, z1, · · · , zk−1, zk(= y) ∈ B

such that for every i,

|zi − zi+1| ≤ 2ςε.

Then there is a sequence of points in f(B),

(f(x) =)f(z0), f(z1), · · · , f(zk−1), f(zk)(= f(y)) ∈ B,

such that for every i,

|f(zi)− f(zi+1)| ≤ (2Cε)ς . (6.1)

Since ik+1 6= i′k+1, there is an index i∗ such that f(zi∗), f(zi∗+1) belong to the
different pieces in {Ei1···ikj}j .

Let {ri}i be the ratios set of E. Then we have

|f(zi∗)− f(zi∗+1)|
≥ min

j 6=j′
d(Ei1···ikj , Ei1···ikj′)

≥ (min
i

ri)|Ei1···ik
|

≥ (min
i

ri)C−1(2ε(1− ς)),

which contradicts (6.1) when ς is taken small enough. ¤

Example 3. Let E = [0, 1]× {0} is a self-similar set of R2 generated by

T1(x, y) = (x, y)/3, T2(x, y) = (x, y)/3 + (1/3, 0), T3(x, y) = (x, y)/3 + (2/3, 0).

Let E′ be a self-similar set of R2 generated by

T ′1(x, y) = (x, y)/3, T ′2(x, y) = (x, y)/3 + (2/3, 0), T ′3(x, y) = (x, y)/3 + (0, 2/3).

Then E′ satisfies SSC. By Proposition 4, any subset of E with positive H1 measure
cannot be bilipschitz embedded into F.
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