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Billiards and Teichmüller curves on

Hilbert modular surfaces

Curtis T. McMullen

31 March, 2002

Abstract

This paper exhibits an infinite collection of algebraic curves iso-
metrically embedded in the moduli space of Riemann surfaces of genus
two. These Teichmüller curves lie on Hilbert modular surfaces param-
eterizing Abelian varieties with real multiplication. Explicit examples,
constructed from L-shaped polygons, give billiard tables with optimal
dynamical properties.
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1 Introduction

As a projective variety, the moduli space Mg of Riemann surfaces of genus
g is swept out by algebraic curves. Only rarely, however, are these curves
isometrically embedded for the Teichmüller metric.

In this paper we address the classification of isometrically embedded
curves in M2. In addition to the curves inherited from M1, we find an infi-
nite collection lying on Hilbert modular surfaces parameterizing Jacobians
with real multiplication. Explicit examples, constructed from L-shaped
polygons, give billiard tables with optimal dynamical properties.

Complex geodesics. Let f : H → Mg be a holomorphic map from the
hyperbolic plane of constant curvature −4 to the moduli space of Riemann
surfaces of genus g with the Teichmüller metric.

A theorem of Royden asserts that f is either an isometry or a contraction.
When f is an isometry, it parameterizes a complex geodesic in moduli space.
A typical complex geodesic is dense and uniformly distributed.

On rare occasions, a complex geodesic may cover an algebraic curve in
moduli space. Then the stabilizer Γ of f is a lattice in Aut(H); passing to
the quotient, we obtain a Teichmüller curve

f : V = H/Γ → Mg.

Every complex geodesic yields a Teichmüller curve when g = 1, since M1 is
itself a curve. By taking branched coverings of tori, one obtains Teichmüller
curves in Mg for all g.

A Teichmüller curve is primitive if it does not arise from a curve in a
moduli space of lower genus via a branched covering construction. To date
only a finite number of primitive Teichmüller curves have been found in each
Mg.

In this paper we undertake the classification of Teichmüller curves in
genus two, and obtain an infinite family of primitive examples.

Jacobians. We approach Teichmüller curves via the families of Jacobians
they determine.

Every complex geodesic is generated by a pair (X, q), where q is a
quadratic differential on X ∈ Mg. We concentrate on the case where q = ω2

is the square of a holomorphic 1-form; then we have (§4, [Kra]):

Theorem 1.1 For any complex geodesic f : H → Mg generated by (X,ω2),
the composed map

H
f→ Mg → Ag
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is an isometry for the Kobayashi metric.

Here Ag denotes the moduli space of principally polarized Abelian varieties,
and the map Mg → Ag sends a curve to its Jacobian.

This result suggests the classification of Teichmüller curves will benefit
from an analysis of isometrically embedded curves on Ag, which unlike Mg

is covered by a symmetric space.

Hilbert modular surfaces. Recall that A ∈ Ag admits real multiplication
if End(A) ⊗ Q contains a totally real field with deg(K/Q) = g. The space
of Abelian varieties with a given action of an order in K is parameterized
by a Hilbert modular variety.

In §7 we show Teichmüller curves and real multiplication are closely
connected in the case of genus two.

Theorem 1.2 Let f : V → M2 be a primitive Teichmüller curve gener-
ated by (X,ω2). Then the projection of V to A2 lies in the locus of real
multiplication, yielding a commutative diagram

V
f−−−−→ M2"

"

Σ −−−−→ A2,

where Σ is a Hilbert modular surface.

Weierstrass forms. In §8 we give a synthetic description of an infinite
collection of Teichmüller curves in M2. A Weierstrass form is a holomorphic
1-form whose zero divisor is concentrated at a single point.

Theorem 1.3 The locus

W2 = {X ∈ M2 : Jac(X) admits real multiplication with

a Weierstrass eigenform}

is a union of infinitely many primitive Teichmüller curves.

Let SL(X,ω) denote the linear parts of automorphisms of X preserv-
ing the oriented real-affine structure determined by ω. The pair (X,ω2)
generates a Teichmüller curve iff SL(X,ω) is a lattice. The results above
imply:
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Corollary 1.4 In genus two, a Weierstrass form generates a primitive Te-
ichmüller curve if and only if there is a T ∈ SL(X,ω) with irrational trace.

This Corollary yields a complete classification of the finite-volume SL2(R)-
orbits in ΩM2(2), the Weierstrass stratum of the bundle of all holomorphic
1-forms over M2.

Corresponding results break down in higher genus; for example, the locus
of eigenforms for real multiplication Eg ⊂ ΩMg is SL2(R)-invariant for g = 2
but not for g = 3 (see §7).

b

1

1
a

Figure 1. The L-shaped polygon P (a, b).

Billiards. Using L-shaped polygons we obtain explicit examples of Te-
ichmüller curves as above, as well as billiard tables with optimal dynamical
properties.

Let P ⊂ C be a polygon whose angles are rational multiplies of π. Via
an unfolding construction, the polygon P determines a holomorphic 1-form
ω on a compact Riemann surface X. Billiard paths on P transform into
geodesics on X for the singular flat metric |ω|.

If (X,ω2) generates a Teichmüller curve, then P is a lattice polygon.
Veech showed that the billiard flow in a lattice polygon exhibits sharp dy-
namical features; for example, every billiard path is periodic or uniformly
distributed, and the number of closed trajectory types of length ≤ L is
asymptotic to c(P )L2.

Using the results above, we obtain a new infinite family of lattice poly-
gons of the type P (a, b) shown in Figure 1.

Theorem 1.5 The L-shaped billiard table P (a, b) is a lattice polygon iff a
and b are rational or

a = x + z
√

d and b = y + z
√

d

for some x, y, z ∈ Q with x + y = 1 and d ≥ 0 in Z.
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We also determine the uniformizations of the Teichmüller curves V = H/Γ
generated by P (a, a) explicitly, for many values of a. In particular we find
the first examples of Teichmüller curves such that Γ is not commensurable
to a triangle group. See §9.

In the final section we observe that a primitive Teichmüller curve V =
H/Γ on a Hilbert modular surface Σ is covered by the graph of a remarkable
holomorphic map F : H → H, intertwining the action of the discrete group
Γ ⊂ SL2(K) with its indiscrete Galois conjugate Γ

′.

Notes and references. Veech gave the first examples of Teichmüller curves
beyond those arising from tori, by showing that the regular polygons and
the isosceles triangles that tile them are lattice polygons [V1], [V3]. In
these cases SL(X,ω) is commensurable to the (2, n,∞) triangular group.
Additional triangular lattice polygons appear in [Wa] and [KS], and the
classification of acute lattice triangles, begun in [KS], is completed in [Pu];
see also [V3], [Vo], [GJ]. General references for billiards include [Tab] and
[MT]. The application of Teichmüller theory to billiards dates from the work
of Kerckhoff, Masur and Smillie [KMS].

Another classification of Teichmüller curves in M2, using different meth-
ods (such as the Kenyon-Smillie invariant [KS]), is announced by K. Calta
in [Ca].

To set the stage for the discussion that follows, we have included back-
ground on the moduli space of holomorphic 1-forms and on Hilbert modular
varieties, as well as the trace field of the Fuchsian group uniformizing a
Teichmüller curve.

I would like to thank B. Gross and H. Masur for useful conversations.

2 Teichmüller curves

In this section we introduce Teichmüller curves and recall their connection
to the dynamics of foliations, established in [V1].

Teichmüller space. Let Zg denote an oriented smooth surface of genus
g. Let Tg denote the Teichmüller space of marked Riemann surfaces X
of genus g, each equipped with an orientation-preserving homeomorphism
h : Zg → X up to isotopy. For g > 1, Tg can be realized as a bounded
domain of holomorphy in C3g−3.

The Teichmüller metric is defined by

d(X,Y ) =
1

2
inf
φ

log K(φ : X → Y ),
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where φ ranges over all quasiconformal maps from X to Y compatible with
their markings, and K(φ) is the dilatation of φ. The Teichmüller metric
coincides with the Kobayashi metric; in genus 1, it gives the metric of cur-
vature −4 on T1

∼= H.
The moduli space Mg = Tg/Mod(Zg) is the quotient of Tg by the action

of the mapping-class group of Zg; it is a complex orbifold as well as an
algebraic variety.

Complex geodesics. Let Q(X) denote the space of holomorphic quadratic
differentials on X ∈ Mg. We have dimQ(X) = 3g − 3 for g > 1.

A pair (X, q) with q ∈ Q(X), q += 0, generates a holomorphic embedding
f̃ : H → Tg which is an isometry for the Kobayashi metrics on domain and
range. Passing to the quotient by the action of the mapping-class group, we
obtain a complex geodesic

f : H → Mg.

We can regard f as the complexification of the real geodesic f(ie2s), s ∈ R.
The surface Xt = f̃(t) is characterized by the property that the extremal

quasiconformal map φt : X → Xt has complex dilatation

µt =
dφt/dz

dφt/dz
=

(
i − t

i + t

)
·

q

|q|
· (2.1)

Note that µt maps H to the unit disk in the complex line of Beltrami differ-
entials spanned by q/|q|.

Teichmüller curves. Let f : H → Mg be a complex geodesic generated by
(X, q). Then f factors through the quotient space V = H/Stab(f), where

Stab(f) = {A ∈ Aut(H) : f(A · t) = f(t) ∀t}.

If V has finite hyperbolic area (that is, if Stab(f) is a lattice), then the
quotient map

f : V → Mg

is a Teichmüller curve on Mg. The map f is proper and generically injective.
Its image V ′ = f(V ) ⊂ Mg is an algebraic curve, whose normalization is V .

We will informally refer to V ′ itself as a Teichmüller curve, its normal-
ization by f being implicitly understood.

Dynamics of foliations. A quadratic differential q += 0 determines a foli-
ation F(q) of X, tangent to the vectors with q(v) > 0 and with singularities
at the zeros of q. This foliation has a tight dynamical structure when (X, q)
generates a Teichmüller curve.
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To describe this structure, define a leaf of F(q) to be a maximal con-
nected immersed 1-manifold L ⊂ X with TL ⊂ TF(q) and with no zeros
of q in its interior. A compact leaf is either a loop L ∼= S1 or an interval
L ∼= [0, 1] joining a pair of zeros (a saddle connection). A noncompact leaf is
an immersed copy of R or of [0,∞); in the latter case, L is a ray emanating
from a zero of q.

A noncompact leaf L is uniformly distributed on X if, for any immersion
γ : [0,∞) → L moving at constant speed in the metric |q|, and any open set
U ⊂ X, we have

lim
T→∞

|{t ∈ [0, T ] : γ(t) ∈ U}|

T
=

∫
U |q|∫
X |q|

·

A simple closed geodesic for the flat metric |q| is an embedded loop
L ⊂ X that coincides with a leaf of F(eiθq) for some θ. Its length is given
by

∫
L |q|1/2. Let N(T, q) denote the number of isotopy classes of loops on

X represented by simple closed geodesics of length ≤ T .
We can now state a central result from [V1, 2.11 and 3.10].

Theorem 2.1 (Veech) Let (X, q) generate a Teichmüller curve. Then for
any θ either:

1. All leaves of F(eiθq) are compact, or

2. All leaves of F(eiθq) are noncompact and uniformly distributed on X.

Moreover the number of isotopy classes of simple closed geodesics satisfies
N(T, q) ∼ c T 2 for some constant c(X, q) > 0.

To put the dichotomy of Theorem 2.1 in context, we note that for any
q += 0 in Q(X):

(1) above holds for at most a countable set of θ, while
(2) holds for almost all θ in the sense of measure [KMS], [Mas3].

We also have 0 < aT 2 < N(T, q) < bT 2 for some a, b [Mas2].
On the other hand, it is easy to give examples of quadratic differentials

such that F(q) has both compact and noncompact leaves; in general, neither
condition (1) nor (2) holds. There are also examples where F(q) has dense
leaves that are not uniformly distributed; see [CFS, Chapter 5.4], [MT, §3].
(The former example is given as an interval exchange transformation.)

Using the existence of a saddle connection, one finds [V1]:
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Proposition 2.2 If f : V → Mg is a Teichmüller curve, then V has at
least one cusp.

Remarks. The proof of Theorem 2.1 in [V1] has a gap (Prop. B on p.561 is
false) that can easily be bridged using the criterion for non-unique ergodicity
given in [Mas3]. See [GJ] for more on the constant c(X, q).

3 Holomorphic 1-forms

In the sequel we will focus on Teichmüller curves generated by the squares
of holomorphic 1-forms. This section summarizes the connection between
complex geodesics and the action of SL2(R) on the space of 1-forms. It also
presents the construction of Teichmüller curves via branched coverings.

Affine maps. A map B : C → C is real-affine if, after identifying C with
R2, it has the form B(v) = Av + b with A ∈ GL2(R) and b ∈ R2.

Given X ∈ Mg, let Ω(X) denote the g-dimensional space of holomorphic
1-forms on X. A nonzero form ω ∈ Ω(X) provides, away from its zeros, a
flat metric |ω| on X and local charts

∫
ω : U → C whose transition functions

are translations.
Given a pair of Riemann surfaces (X,ω) and (Y, η), each equipped with

a nonzero holomorphic 1-form, we say a homeomorphism φ : (X,ω) → (Y, η)
is affine if the following equivalent conditions are satisfied.

1. The map φ has the form of a real-affine map in the charts determined
by ω and η.

2. The map φ is smooth outside the zeros of ω, and the vector space of 1-
forms spanned by (Reω, Im ω) is the same as the span of φ∗(Re η, Im η).

3. Given a lift φ̃ : X̃ → Ỹ of φ to the universal covers of X and Y , there
is a real-affine map B such that the diagram

X̃
eφ−−−−→ Ỹ

Iω

" Iη

"

C
B−−−−→ C

(3.1)

commutes. Here Iω(q) =
∫ q
p ω̃ is obtained by integrating the lift of ω,

and similarly for Iη.
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We denote the linear part of an affine map by Dφ ∈ GL2(R); it agrees with
the linear part of B in (3.1).

Action of GL+

2 (R) on 1-forms. The spaces Ω(X) assemble to form a
vector bundle over Tg. Let

ΩTg → Tg

denote the complement of the zero section. A point (X,ω) ∈ ΩTg is a marked
Riemann surface together with a nonzero holomorphic 1-form.

Let GL+
2 (R) ⊂ GL2(R) be the connected component of the identity,

defined by det(A) > 0.
There is a natural action of GL+

2 (R) on ΩTg, defined as follows. Given
A =

(
a b
c d

)
∈ GL+

2 (R) and (X,ω) ∈ ΩTg, consider the harmonic 1-form

η =
(
1 i

) (
a b

c d

)(
Reω

Im ω

)
(3.2)

on X. There is a unique complex structure with respect to which η is
holomorphic; its charts yield a new Riemann surface Y , and we define

A · (X,ω) = (Y, η).

The natural affine map φ : (X,ω) → (Y, η) with Dφ = A, coming from the
change of structure, is the extremal quasiconformal map in its isotopy class.
The condition det(A) > 0 insures that φ preserves orientation.

The fibers of the projection ΩTg → Tg are stabilized by the group of
similarities, R∗ · SO2(R) ⊂ GL+

2 (R). The action of GL+
2 (R) commutes with

the action of Mod(Zg), so it passes to an action on the quotient bundle
ΩMg → Mg.

Periods and strata. Using (3.2) it is easy to see how the periods of 1-forms
vary. Namely if (Y, η) = A · (X,ω) in ΩTg, then

∫

c
η = A

(∫

c
ω

)
(3.3)

for any cycle c ∈ H1(Zg, R). Here the markings are used to identify H1(Zg)
with H1(X) and H1(Y ), and we regard A as acting linearly on C = R2.

The zeros of ω determine a divisor (ω) =
∑

niPi on X, and hence an
(unordered) partition n = (n1, . . . , nr) of 2g − 2. The space ΩTg breaks up
into strata

ΩTg =
⋃

ΩTg(n1, . . . , nr)
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along which the partition (ni) is fixed. Each stratum is invariant under
GL+

2 (R) and Mod(S).
It is a general principle that a geometric structure is locally determined

by its holonomy. In the case at hand, the holonomy can be described by
fixing a finite set Dr ⊂ Zg with |Dr| = r, and refining the marking of
(X,ω) ∈ ΩTg(n1, . . . , nr) so that φ sends Dr to the zeros of (ω). The marking
allows one to transfer the closed form ω to a relative cohomology class in
H1(Zg,Dr; C). By [V2] we then have:

Theorem 3.1 Each stratum ΩTg(n) is a complex manifold, and the period
mapping ΩTg(n1, . . . , nr) → H1(Zg,Dr; C) is a holomorphic local homeo-
morphism.

P

-P

a

b

c

a

b

c

d

d

Figure 2. A pentagon determines a surface of genus two.

Pentagons. As an example, we describe part of the stratum ΩT2(2). Let
P ⊂ C be a pentagon. Translate P so z = 0 is the midpoint of an edge;
then P ∪ (−P ) is an octagon. Identifying its opposite sides by translation
as in Figure 2, we obtain a Riemann surface X of genus two. The form dz
on C descends to a holomorphic 1-form ω on X, with a double zero at the
single point of X coming from the vertices of P .

A pentagon is determined by 5 complex numbers satisfying
∑

vi = 0.
The parameters (vi) are just the periods of ω along the loops in X coming
from edges of P . By varying the shape of the pentagon P , we obtain a local
holomorphic map of C4 into ΩT2, providing a chart for ΩT2(2) near (X,ω).

The action of A ∈ GL+
2 (R) is transparent in this construction: if we

start with the pentagon A(P ) instead of P , the resulting point in ΩT2 is
A · (X,ω).

Complex geodesics. Now consider the complex geodesic

f : H → Mg
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generated by (X, q), where q = ω2 is the square of a holomorphic 1-form.
Then f is simply the projection of the orbit of (X,ω) under SL2(R); it is
the unique map making the diagram

SL2(R)
F−−−−→ ΩMg" π

"

SO2(R)\SL2(R)
f−−−−→ Mg

(3.4)

commute, where F (A) = A · (X,ω).
In more concrete terms, for any t ∈ H define

f(t) = π(At · (X,ω)),

where At : C → C is the real-linear map given by

At(x + iy) = x + ty =

(
1 Re t

0 Im t

)(
x

y

)
.

Then Xt = f(t) is the Riemann surface obtained by pulling the complex
structure on C back to X̃ via the map

X̃
Iω−→ C

At−→ C,

and letting it descend to a new complex structure on X. The complex
dilatation of the natural affine map φt : X → Xt is given by

µ(φt) =
dAt/dz

dAt/dz
·
ω

ω
=

(
i − t

i + t

)
·
ω

ω
, (3.5)

in accordance with (2.1).

Affine automorphisms of (X, ω). For 1-forms, we can also describe
Stab(f) directly in terms of the affine geometry of (X,ω).

Let Aff(X,ω) denote the group of affine automorphisms φ : (X,ω) →
(X,ω), and GL(X,ω) its image under φ .→ Dφ. Since

∫
X |ω|2 is preserved,

we have detDφ = ±1.
Let SL(X,ω) denote the image of the orientation-preserving subgroup

Aff
+(X,ω) in SL2(R). We have an exact sequence:

0 → Aut(X,ω) → Aff
+(X,ω) → SL(X,ω) → 0,

10



where Aut(X,ω) is the finite group of conformal automorphisms of X pre-
serving ω. The image of the inclusion

Aff
+(X,ω) ⊂ Mod(Zg)

is the stabilizer of f̃(H) ⊂ Tg, while Aut(X,ω) maps to the finite subgroup

of Mod(Zg) fixing f̃(H) pointwise.

Proposition 3.2 The complex geodesic generated by (X,ω2) satisfies

Stab(f) = R · SL(X,ω) · R (3.6)

in PSL2(R), where R ∈ GL2(R) is the involution
(−1 0

0 1

)
.

Proof. The map f : H → Mg has a natural lift

f̃ : H → PΩMg = (R∗ · SO2(R))\ΩMg

with the same stabilizer, given by f̃(t) = [At · (X,ω)]. This map satis-
fies f̃(t) = f̃(s) iff there is a B ∈ SL(X,ω) such that [AtB] = [As] in
SO2(R)\SL2(R). By a direct computation (using the fact that A−1

t (i) = −t),
we find [AtB] = [As] iff t = (RBR)(s), which gives (3.6).

Corollary 3.3 (X,ω2) generates a Teichmüller curve iff SL(X,ω) is a lat-
tice in SL2(R).

Primitivity. A Teichmüller curve in Mh generated by (Y, η2) gives rise to
Teichmüller curves in Mg for infinitely many g > h, as follows. Suppose
SL(Y, η) is a lattice. Choose a finite SL(Y, η)-invariant set B ⊂ Y , and
a subgroup of finite index in π1(Y − B). This information determines a
Riemann surface X with a proper map π : X → Y branched over B. Let
ω = π∗η. Then a finite index subgroup of Aff(Y, η) lifts to X, so SL(X,ω) is
also a lattice, commensurable to SL(Y, η). In this case we say that the pair
(X,ω) and (Y, η), as well as the pair of Teichmüller curves they generate,
are commensurable.

A Teichmüller curve in Mg is primitive if it is not commensurable to a
Teichmüller curve in Mh, h < g.

Example: branched covers of tori. The simplest Teichmüller curves
arise in genus 1. Indeed, for any complex torus E = C/L, we have

SL(E, dz) = SL2(Z);
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thus (E, dz2) generates a Teichmüller curve V mapping bijectively to M1.
We say (X,ω) arises via a torus if it is commensurable to (E, dz) for some
complex torus E; equivalently, if ω = π∗(dz) where π : X → E is branched
over torsion points on E.

We will be mostly interested in primitive Teichmüller curves, so it is
useful to be able to recognize those arising via tori. For example, such
curves are characterized by the property that the trace field of SL(X,ω) is
Q (see §5).

Note. The reflection in (3.6) arises from the following fact. Let K =
SO2(R) ⊂ G = SL2(R). There are two natural complex structures on G/K.
One arises from the map G/K ∼= H sending g to g(i). The other arises
from the map G/K ∼= ∆ sending g to µ(g−1), the Beltrami coefficient of
g−1 : R2 → R2. These two structures are different; the map H → ∆ they
determine is anti-holomorphic.

For more on spaces of holomorphic 1-forms and quadratic differentials,
see for example [Mas1], [V2], [Ko], [EO] and [KZ].

4 Abelian varieties

In this section we show the complex geodesic generated by a 1-form maps
isometrically not just to Mg but to Ag.

Abelian varieties. Let Hg denote the Siegel upper half-space of g× g com-
plex matrices τ with Im(τ) positive-definite. The quotient Ag = Hg/Sp2g(Z)
is the moduli space of principally polarized Abelian varieties.

There is a natural injective holomorphic map Mg → Ag sending X to
its Jacobian variety,

Jac(X) = Ω(X)∗/H1(X, Z).

To describe this map concretely, choose a symplectic basis (ai, bi)
g
1 for H1(Zg, Z)

(such that ai ·bi = −bi ·ai = 1 and all other products vanish). Given X ∈ Tg,
let ωi be a basis for Ω(X) normalized so that

∫
ai

ωj = δij , using the marking
to identify H1(Zg, Z) and H1(X, Z). Then the period matrix

τij(X) =

∫

bj

ωi

lies in the Siegel upper half-space, and we have

Jac(X) ∼= Cg/(Zg ⊕ τZg).
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The map Tg → Hg given by X .→ τ(X) covers the natural inclusion Mg →
Ag.

Theorem 4.1 Let H → Mg be the complex geodesic generated by (X,ω2),
ω ∈ Ω(X). Then the composed map

H → Mg → Ag

is an isometry for the Kobayashi metrics on domain and range.

Proof. Let f̃ : H → Tg denote a lift of the complex geodesic generated by
(X,ω2). Then

τ ◦ f̃ : H → Hg

is a lift of the map H → Mg → Ag, so it suffices to check that τ ◦ f̃ is an
isometry.

Choose a symplectic basis (a′i, b
′
i) for H1(Zg, R) such that

∫
a′

i
ω = δi1.

Define a map σ : Tg → H by

σij(Y ) =

∫

b′

i

ωj , (4.1)

where ωj ∈ Ω(Y ) are normalized so that
∫
a′

i
ωj = δij . Since (ai, bi) and

(a′i, b
′
i) are related by a symplectic automorphism of H1(Zg, R), there is a

matrix T ∈ Sp2g(R) = Aut(Hg) such that

σ(Y ) = T · τ(Y ).

In particular, σ is holomorphic.
Let (Xt,ωt) = At · (X,ω), so that Xt = f̃(t); and let σ11(X) = x + iy.

By equation (3.3) we have

σ11(Xt) =

∫
b′

1

ωt∫
a′

1

ωt
=

At(x + iy)

At(1)
= x + ty.

Let τ11 : Hg → H be the coordinate function giving the first diagonal entry
of τ ∈ Hg. It takes values in H because Im(τ) is positive-definite. The
composed mapping

H
ef−→ Tg

σ−→ Hg
τ11−→ H

is then an isometry from H to H, since it is given by

τ11 ◦ σ ◦ f̃(t) = σ11(Xt) = x + ty.

13



Now a composition of holomorphic maps is a Kobayashi isometry if and
only if each factor is. Thus σ ◦ f̃ : H → Hg is also a Kobayashi isometry.

Since σ◦f̃ and τ ◦f̃ differ by an isometry of Hg, the latter map is an isometry
as well.

Contraction. Although the map τ ◦ f : H → Hg generated by (X,ω2) is
an isometry, the periods of differentials other than ω move at speed strictly
less than one.

To make this precise, let Xt = f̃(t) ∈ Tg be the complex geodesic gener-
ated by (X,ω2). Let (a′i, b

′
i) be a symplectic basis for H1(Zg, R), and as in

(4.1) define σij(Y ) =
∫
b′

j
ωi where ωi ∈ Ω(Y ) satisfy

∫
a′

i
ωj = δij .

Theorem 4.2 The holomorphic map F : H → H given by

F (t) = σii(Xt)

is an isometry if ωi ∈ Ω(X) is proportional to ω, and a strict contraction
otherwise.

The proof will use Ahlfors’ variational formula [Ah, §5], [Roy]. Let ν =
ν(z)dz/dz be an L∞ Beltrami differential on X, representing a tangent
vector to Tg at X. We then have:

dσij(ν) = −2i

∫

X
ωi ωj ν. (4.2)

Here the integrand is a symmetric tensor locally of the form ωi(z)ωj(z)ν(z)|dz|2.

Proof of Theorem 4.2. By (3.5) we have

ν =
dXt

dt

∣∣∣∣
t=i

=
i

2

ω

ω
,

and thus by Ahlfors’ formula,

dF

dt

∣∣∣∣
t=i

=

∫

X
ω2

i ·
ω

ω
·

By Riemann’s bilinear relations we also have Im(σii(X)) =
∫
X |ωi|

2. Thus
the norm of DF at t = i, using the hyperbolic metric |dz|/ Im z on the
domain and range, is given by

‖DF‖ =

∣∣∣∣
∫

X
ω2

i ·
ω

ω

∣∣∣∣
/∫

X
|ωi|

2 .

Since |ω/ω| = 1, we clearly have ‖DF‖ ≤ 1, with equality iff ωi is propor-
tional to ω. By the Schwarz lemma, F is an isometry if ‖DF‖ = 1, and a
strict contraction otherwise.

14



Note. Theorem 4.1 was proved earlier in [Kra]; I am grateful to H. Miyachi
for this reference.

5 Trace fields

In this section we indicate some general properties of the trace field of
SL(X,ω).

Algebraic properties. The trace field of a group Γ ⊂ SL2(R) is the
subfield of R generated by tr(A), A ∈ Γ.

Fix (X,ω) ∈ ΩMg. The group Aff(X,ω) acts by pullback on H1(X, R),
preserving H1(X, Z) as well as the real subspace S ⊂ H1(X, R) spanned by
(Re ω, Im ω).

Let K ⊂ R be the algebra generated over Q by traces of elements of
SL(X,ω). Any t ∈ K has the form of a finite sum,

t =
∑

ai tr(Dφi), ai ∈ Q, φi ∈ Aff(X,ω). (5.1)

Since tr(Dφ) = tr(φ∗|S), we see K is a quotient of the Q-algebra of en-
domorphisms of H1(X, Q) generated by Aff(X,ω). The latter algebra is
finite-dimensional over Q, so K is as well. Thus K is a number field, coin-
ciding with the trace field of SL(X,ω).

Theorem 5.1 The trace field of SL(X,ω) has degree at most g over Q,
where g is the genus of X.

Proof. By the theorem of the primitive element, K = Q(t) for some t =∑
ai tr(Dφi). Consider the endomorphism of H1(X, Q) given by

T =
∑

ai(φ
∗
i + (φ−1

i )∗).

Since A + A−1 = (tr A)I for A ∈ SL2(R), we have T |S = tI. Thus t is an
eigenvalue of T of multiplicity at least 2. It follows that the square of the
characteristic polynomial for t divides the degree 2g polynomial det(xI−T ).
Thus deg(K/Q) = deg(t/Q) ≤ g.

Since the spectrum of A = Dφ is contained in the spectrum of φ∗|H1(X, Z),
we have:

Theorem 5.2 The traces of elements of SL(X,ω) are algebraic integers.
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Spectral radius. We next observe that the eigenvalues of A = Dφ are
extremal among their Galois conjugates and among the eigenvalues of φ∗.

Theorem 5.3 Suppose A = Dφ ∈ SL(X,ω) is hyperbolic. Then:

1. The map φ∗|H1(X, R) has a simple eigenvalue λ ∈ R such that |λ| >
|λ′| for all other eigenvalues λ′; and

2. The eigenvalues of A are λ±1.

Proof. These results follow from basic results in the theory of pseudo-
Anosov maps; cf. [FLP], [Pen].

Let λ±1 ∈ R be the eigenvalues of A, where |λ| > 1. Since A is hy-
perbolic, φ is pseudo-Anosov. Since φ is real-affine with respect to ω, its
expanding and contracting measured foliations represent cohomology classes

µ± ∈ S ⊂ H1(X, R),

where S is the span of Re ω and Imω. These classes are eigenvectors: they
satisfy φ∗µ± = λ±1µ±.

Now consider any cohomology class C += 0 in H1(X, Z), Poincaré dual
to a simple closed curve. Under iteration, this curve is stretched along the
expanding foliation of φ and contracted in other directions, so as n → ∞
we have λ−n(φn)∗C → tµ+ for some t += 0. Thus tµ+ is the only eigencom-
ponent of C with an eigenvalue satisfying |λ′| ≥ |λ|. Since the classes C
dual to simple closed curves span H1(X, Z), we conclude that λ is a simple
eigenvalue dominating all others.

A Perron number is an algebraic integer λ ≥ 1 whose other conjugates
satisfy |λ′| < λ. These are exactly the numbers that arise as the leading
eigenvalues of Perron-Frobenius matrices [Li].

Theorem 5.4 The spectral radius of any A = Dφ ∈ SL(X,ω) satisfies

ρ(A) = ρ(φ∗|H1(X, Z)),

and ρ(A)2 is a Perron number.

Proof. When A is hyperbolic this theorem is immediate from the preceding
result, using the fact that the spectrum of φ∗|H1(X, Z) is closed under Galois
conjugation and contains the eigenvalues of A. The elliptic and parabolic
cases are also straightforward: in these cases, ρ(A) = 1.
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Recognizing branched covers. Finally we note that branched covers of
tori can be detected via the trace field.

Theorem 5.5 (Gutkin-Judge) A lattice SL(X,ω) arises via a torus if
and only if its trace field is Q.

This result follows from Theorems 5.5 and 7.1 of [GJ].

6 Hilbert modular varieties

In this section we discuss the connection between Hilbert modular varieties
and real multiplication, summarized by:

Theorem 6.1 The set of principally polarized Abelian varieties admitting
real multiplication is parameterized by a countable set of Hilbert modular
varieties Σ → Ag.

These Hilbert modular varieties can be considered as higher-dimensional
analogues of Teichmüller curves.

We also examine curves whose Jacobians admit real multiplication, and
show their eigenforms are always primitive.

Real multiplication. Let K be a totally real number field of degree g over
Q.

Let A = Cg/L be a complex torus, and let End(A) denote its ring of
endomorphisms. We regard T ∈ End(A) as a homomorphism T : L →
L that extends to a complex-linear map under the embedding L →֒ Cg.
Similarly End(A) ⊗ Q consists of complex-linear endomorphisms of L ⊗ Q.

A polarization for A is a choice of a symplectic form E : L × L →
Z, compatible with the complex structure. Extending E to L ⊗ R ∼= Cg,
this compatibility means E(z,w) = E(iz, iw) and E(z, iz) > 0 if z += 0;
equivalently, E gives a Kähler metric on A.

A polarized Abelian variety A admits real multiplication by K if there
is an inclusion of Q-algebras

K → End(A) ⊗ Q

such that
E(kx, y) = E(x, ky)

for all k ∈ K and x, y ∈ L ⊗ Q. Equivalently, End(A) contains a copy of
an order o ⊂ K acting by self-adjoint endomorphisms. Compare [Rap, Def.
1.8].
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From a dynamical perspective, the elements of o (other than 0,±1) act
on A by Anosov endomorphisms, preserving a system of g orthogonal 1-
dimensional complex foliations. These foliations come from the eigenspaces
Si of K we will consider below.

Note that if S is a symplectic vector space with dimR S = 2, then the
only self-adjoint endomorphisms of S are multiples of the identity.

Hilbert modular varieties. Using the g embeddings of K into R, we can
regard SL2(K) as a subgroup of SL2(R)g ⊂ Aut(Hg).

A Hilbert modular variety Σ = Hg/Γ is a quotient of Hg by a lattice
Γ ⊂ SL2(K). A typical example is provided by Γ = SL2(OK), where OK is
the ring of integers in K.

These varieties arise naturally in connection with real multiplication, as
follows. Let E0 denote the standard symplectic form on L0 = Z2g, satisfying
E0(ai, bj) = δij . Choose an embedding

ι : K → End(L0) ⊗ Q (6.1)

such that E0(kx, y) = E0(x, ky) for all k ∈ K. Because of this self-
adjointness, we can find a K-linear isomorphism

L0 ⊗ Q ∼= K2 (6.2)

sending E0 to the standard symplectic form E1 on K2, given by

E1(k, ℓ) = TrK
Q det

(
k1 k2

ℓ1 ℓ2

)
·

Since SL2(K) stabilizes the form above, we obtain an inclusion

j : SL2(K) → Sp(L0 ⊗ Q) ∼= Sp2g(Q). (6.3)

Let Γ ⊂ SL2(K) be the preimage of Sp2g(Z) under j. It can be shown
that Γ is commensurable to SL2(OK); in particular, it is a lattice. Let
Σ = Hg/Γ be the corresponding Hilbert modular variety.

Maps to Ag. We now construct a natural map f : Σ → Ag parameterizing
certain Abelian varieties with real multiplication by K.

Let (k1, . . . , kg) ∈ Rg denote the image of k ∈ K under the g field embed-
dings K →֒ R. The isomorphism (6.2) between L0 ⊗ Q and K2 determines
a splitting

L0 ⊗ R ∼= K2 ⊗Q R ∼= ⊕g
1Si
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such that k · (s1, . . . , sg) = (k1s1, . . . , kgsg). Since the action of K is self-
adjoint, the subspaces Si

∼= R2 are orthogonal with respect to the symplectic
form E0. If we now choose isomorphisms Si

∼= C, preserving orientation, we
obtain an embedding

L0 ⊂ ⊕g
1Si

∼= Cg

such that K acts complex-linearly; thus A = Cg/L0 admits real multiplica-
tion by K.

To connect this construction with the Siegel space, define δ : Hg → Hg

by sending t to the diagonal matrix

δ(t) = δ(t1, . . . , tg) =




t1 0
. . .

0 tg


 ∈ Hg.

The basis a = (1, 0), b = (0, 1) for K2 (satisfying E1(a, b) = g) determines a
symplectic basis (a′i, b

′
i) for each Si (satisfying E1(a

′
i, b

′
i) = 1), and hence a

symplectic basis for L0 ⊗ R. Let T ∈ Sp(L0 ⊗ R) ∼= Sp2g(R) be the unique
transformation sending (a′i, b

′
i) to the standard integral basis (ai, bi), and

define
f̃ : Hg → Hg

by f̃(t) = T · δ(t) · T−1.

Proposition 6.2 For any t ∈ Hg, the Abelian variety

A = Cg/(Zg ⊕ τZg),

τ = f̃(t), admits real multiplication by K.

Proof. Since τ becomes δ(t) when expressed with respect to the basis
(a′i, b

′
i), it determines the unique complex structure on R2g = L0 ⊗ R such

that b′i = tia
′
i. With respect to this structure, each subspace Si of L0 ⊗ R

is a complex line. Since K acts on Si by a real scalar, its action on L0 ⊗ R

is complex-linear. Thus the map ι : K → End(L0) ⊗ Q sends K into
End(A) ⊗ Q, giving an action of K by real multiplication on A.

Taking the quotient of the target of f̃ by Sp2g(Z), we obtain a map

f : Hg → Ag
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satisfying f(γ(t)) = f(t) for all γ ∈ Γ. Indeed, we have f̃(γ(t)) = j(γ) · f̃(t)
for γ ∈ SL2(K) by (6.3), and j(γ) ∈ Sp2g(Z) if γ ∈ Γ. Thus f descends to
a map

f : Σ → Ag

on the Hilbert modular variety Σ = Hg/Γ.
Like a Teichmüller curve, f is an isometry for the Kobayashi metrics on

its domain and range.1 Since Γ is a lattice, it has finite index in Stab(f)
and thus f is finite-to-one.

Proof of Theorem 6.1. Let A = Cg/L be a principally polarized Abelian
variety with real multiplication by K. Choose a symplectic isomorphism
between L and L0. Then we obtain an inclusion

ι : K → End(L0) ⊗ Q ∼= M2g(Q)

as in (6.1). Since the eigenspaces of K are complex-linear subspaces of
Cg ∼= L⊗R, we have [A] ∈ f(Σ) for the map f : Σ → Ag constructed above.

There are only countably many fields K of degree g over Q, and only
countably many possibilities for ι : K → M2g(Q) given K. Hence the set
of Abelian varieties with real multiplication by K is parameterized by a
countable collection of Hilbert modular surfaces.

For more details, see [Rap], [HG], [vG].

Eigenforms. Now let Jac(X) = Ω(X)∗/H1(X, Z) be the Jacobian of a
curve with real multiplication by K. From the complex-linear action of K
on Ω(X)∗ we obtain a dual action on Ω(X). A holomorphic 1-form ω += 0
satisfying K · ω ⊂ C · ω is an eigenform for real multiplication by K.

We define the eigenform locus by

Eg = {(X,ω) ∈ ΩMg : Jac(X) admits real multiplication

with ω as an eigenform}.

Theorem 6.3 Let ω be an eigenform for real multiplication by K on Jac(X).
Then ω does not arise as the pullback of a holomorphic 1-form from a Rie-
mann surface of lower genus.

In particular, ω is primitive (in the sense of §3).

Proof. Let X have genus g. Choose an endomorphism T : H1(X, Q) →
H1(X, Q) generating the action of K over Q. Then the characteristic poly-
nomial P (x) = det(xI−T ) ∈ Q[x] is the square of an irreducible polynomial
of degree g.

1See [Roy] for the Kobayashi metric on Hg.
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Now suppose ω is the pullback of a form on a surface Y of genus h, under
a map π : X → Y . We will show g = h.

Via π∗ we can regard H1(Y, Q) as a subspace of H1(X, Q). Let

S =
∞⋂

−∞
T n(H1(Y, Q))

be the largest T -invariant subspace contained in H1(Y, Q). Since the eigen-
vectors ω and ω for T are contained in H1(Y, Q)⊗C, we have 2 ≤ dimS ≤ 2h.

Because S is T -invariant, Q(x) = det(xI − T |S) divides P (x). Since
H1(Y, Q) is invariant under complex conjugation, the eigenvalues of T |S all
have multiplicity two; thus Q(X) = R(X)2, where 1 ≤ deg R ≤ h. But P is
irreducible, so we have degR = g = h.

7 Curves of genus two

Affine automorphisms of X and real multiplication on Jac(X) are closely
related when X has genus two. In this section we will show:

Theorem 7.1 Let X have genus two and let K be the trace field of SL(X,ω).
If K += Q, then Jac(X) admits real multiplication by K with ω as an eigen-
form.

Theorem 7.2 The eigenform locus E2 ⊂ ΩM2 is SL2(R)-invariant.

In fact E2 is a countable union of 3-dimensional invariant submanifolds, lying
over a countable union of Hilbert modular surfaces in A2.

Corollary 7.3 Let (X,ω2) generate a primitive Teichmüller curve

f : V → M2

Then we have (X,ω) ∈ E2, and the projection of V to A2 factors through a
Hilbert modular surface Σ, yielding the commutative diagram:

H −−−−→ V
f−−−−→ M2

σ

"
"

"

H2 −−−−→ Σ −−−−→ A2.
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At the end of the section we show these results break down in genus
three; for example, E3 is not SL2(R)-invariant.

Genus two. The proofs of the Theorems above use genus two in the
following way.

Lemma 7.4 Let A = C2/L be a polarized Abelian variety, and let T : L →
L be a group homomorphism, self-adjoint with respect to the symplectic form.
If T leaves invariant a complex line

C ∼= S ⊂ L ⊗ R ∼= C2,

then we have T ∈ End(A).

Proof. Since T is self-adjoint, it leaves invariant the splitting C2 = S ⊕
S⊥ and acts by a real scalar on each factor. Since the symplectic form is
compatible with the complex structure, S⊥ is also a complex line. Thus T
is C-linear, and therefore we have T ∈ End(A).

Proof of Theorem 7.1. Choose A = Dφ ∈ SL(X,ω) such that tr(A) =
t +∈ Q. Let

T = φ∗ + φ−1
∗ : H1(X, Z) → H1(X, Z).

We claim T is self-adjoint and T ∈ EndJac(X).
To see T is self-adjoint, just note that φ∗ preserves the intersection pair-

ing E on H1(X, Z). That is,

E(φ∗x, y) = E(x,φ−1
∗ y),

and therefore E(Tx, y) = E(x, Ty).
To see T ∈ End(A), recall that φ∗ leaves invariant the subspace S ⊂

H1(X, R) spanned by (Reω, Im ω). Thus φ∗ leaves invariant the subspace
Ann(S) ⊂ H1(X, R) of cycles C such that

∫

C
Re ω =

∫

C
Imω = 0.

Under the identification of H1(X, R) with Ω(X)∗, Ann(S) is the complex line
of linear functionals vanishing on ω. Thus T leaves a complex line invariant,
and therefore we have T ∈ End(Jac(X)) by the Lemma above.

Passing to the dual, we obtain a self-adjoint complex linear endomor-
phism T ∗ of Ω(X), satisfying T ∗(ω) = tω. In fact, with respect to an
orthogonal basis (ω, η) for Ω(X), we obtain T ∗ =

(
t 0
0 t′

)
where t′ is the Ga-

lois conjugate of t. Thus T generates a subalgebra K of End(Jac(X)) ⊗ Q

isomorphic to the real quadratic field K = Q[t], and hence Jac(X) admits
real multiplication with ω as an eigenform.
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Proof of Theorem 7.2. Let (Y, η) = A · (X,ω) with A ∈ SL2(R) and
(X,ω) ∈ E2. Choose T : H1(X, Z) → H1(X, Z) representing an element of
End(Jac(X)) with eigenform ω, such that K = Q[T ] is a real quadratic field.

Let Sω be the span of (Re ω, Im ω) in H1(X, R), and similarly for Sη.
We have a natural affine map φ : (X,ω) → (Y, η) sending Sω to Sη.

Since ω is an eigenform, T leaves invariant the subspace Ann(Sω) ⊂
H1(X, R) of cycles pairing trivially with ω. Consequently the self-adjoint
transformation

U = φ∗ ◦ T ◦ φ−1
∗

of H1(Y, Z) leaves invariant the complex line Ann(Sη) in H1(Y, R) ∼= Ω(Y )∗.
Thus we have U ∈ End(Jac(Y )) by the Lemma above; and clearly η is an
eigenform of U . Since Q[T ] ∼= Q[U ], we have (Y, η) ∈ E2.

Proof of Corollary 7.3. Since (X,ω) is primitive, it does not arise via a
torus, and thus the trace field K of SL(X,ω) is real quadratic by Theorem
5.5. By the preceding results, the projection of V to A2 lies in the locus of
Abelian varieties with real multiplication by K. The Corollary then follows
by the discussion of §6, observing that a point in V gives a Riemann surface
X together with a distinguished eigenform.

Instability of real multiplication. We conclude this section by showing
the results above are special to genus two.

Theorem 7.5 The eigenform locus Eg is not SL2(R)-invariant for g = 3.

Proof. Let ζ = exp(2πi/7) be a primitive 7th root of unity. Consider the
hyperelliptic curve X of genus g = 3 defined in affine coordinates by

y2 = x7 − 1. (7.1)

Because of the automorphism x .→ ζx, Jac(X) admits complex multiplica-
tion by Q(ζ). It therefore admits real multiplication by K = Q(ζ + ζ−1). A
basis of holomorphic eigenforms is given by

ωi = xi−1 dx/y,

i = 1, 2, 3. Note that ω1ω3 = ω2
2. In a symplectic basis adapted to the action

of K, the period matrix σij(X) is diagonal.
Now consider the map f : H → ΩM3 given by f(t) = (Xt,ωt) = At ·

(X,ω2). By Ahlfors’ variational formula (4.2), we have

dσ13(Xt)

dt

∣∣∣∣
t=i

=

∫

X
ω1ω3 ·

ω2

ω2
=

∫

X
ω2 ω2 += 0.
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Thus for t near i ∈ H, σij(Xt) is no longer diagonal and (Xt,ωt) is no
longer an eigenform for the given action of K. This shows some irreducible
component of E3 fails to be SL2(R)-invariant. But if E3 as a whole is SL2(R)
invariant, the action must preserve components.

The same example shows Theorem 7.1 also fails in genus three. The
curve (7.1) above arises in a family of quotients of Fermat curves studied
in [GR]. For more on families of Jacobians with endomorphisms, see [CV],
[CVT].

8 Weierstrass forms

A Weierstrass form is a holomorphic 1-form ω ∈ Ω(X) whose zero divisor
is concentrated at a single point. When X has genus two there are 6 such
forms up to scale, one for each Weierstrass point. Let

W2 = {X ∈ M2 : Jac(X) admits real multiplication with

a Weierstrass eigenform}.

In this section we show:

Theorem 8.1 The locus W2 ⊂ M2 is a countable union of primitive Te-
ichmüller curves.

In the next section we will show W2 has in fact infinitely many irreducible
components (see Corollary 9.5).

Corollary 8.2 Let K be the trace field of SL(X,ω), where ω is a Weier-
strass form and X has genus two. If K += Q then SL(X,ω) is a lattice.

Corollary 8.3 In genus two, a Weierstrass form generates a Teichmüller
curve iff

• (X,ω) arises via a torus, or

• (X,ω) admits an affine automorphism with irrational trace.

We proceed to the proof of Theorem 8.1.

Lemma 8.4 The locus W2 ⊂ M2 is a countable union of algebraic subva-
rieties of M2.
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Proof. We will cover W2 by the projections of countably many subvarieties
of the algebraic P1-bundle P ΩM2 over M2.

Fix a real quadratic field K and a self-adjoint embedding

ι : K → End(H1(Z2, Z)) ∼= M4(Q).

Let f : Σι → A2 be the Hilbert modular surface constructed in §6, parame-
terizing Abelian varieties with real multiplication by K via ι. Then the map
f is finite and proper, and f(Σι) ⊂ A2 is an algebraic subvariety. Indeed,
f extends compatibly to compactifications of Σι and A2, and f(Σι) is a
component of a Humbert surface; see [vG, §IX], [HG, Ch. 7-9].

The natural map π : Mg → Ag is algebraic, so Rι = π−1(f(Σι)) is an
algebraic subvariety of M2. Let E ι

2 ⊂ E2 be the set of pairs (X,ω) such
that Jac(X) ∈ f(Σι) and ω is an eigenvector for real multiplication by K
compatible with ι. Projectivizing, we obtain a 2-sheeted covering space of
Rι, making the diagram

PE ι
2 ⊂ P ΩM2"

"

Rι ⊂ M2

commute.
Similarly, P ΩM2(2) → M2 is a 6-sheeted covering space, whose fibers

are the projective equivalence classes of Weierstrass forms. The algebraic
structure on this bundle can be made explicit, using the fact that curves of
genus two are hyperelliptic: namely the fiber over the curve y2 =

∏6
1(x−ai)

consists of the forms ωi = (x − ai)dx/y, i = 1, . . . , 6.
The locus of pairs (X, [ω]) ∈ P ΩM2 such that ω is a Weierstrass eigen-

form for the given action of K is simply the intersection

Pι = PE ι
2 ∩ P ΩM2(2).

Since the projection P ΩM2 → M2 is proper, the image Wι
2 of Pι is a

subvariety of M2. Taking the union of all possible actions of real quadratic
fields, we find that W2 =

⋃
ι W

ι
2 is a countable union of algebraic varieties.

Lemma 8.5 The locus W2 contains no 2-dimensional subvariety.

Proof. Continuing with the notation above, we will showPι is 1-dimensional.
Choose t ∈ K such that K = Q(t) and we have

T = ι(t) ∈ End(H1(Z2, Z)).
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Then there is a symplectic splitting

H1(Z2, R) = S1 ⊕ S2

such that T |Si = tiI, i = 1, 2. The eigenvalues (t1, t2) of T are the images
of t under the two embeddings K → R. Let (a′i, b

′
i) be a symplectic basis for

Si.
By assumption ω is an eigenform. Let us number the eigenvalues so that

T ∗(ω) = t1ω. Since t1 += t2, the form ω pairs trivially with cycles in S2. On
the other hand, by Theorem 3.1 the pair (X,ω) is locally determined by the
periods of ω. Thus the map

F (X, [ω]) =

[∫

a′

1

ω :

∫

b′

1

ω

]

gives a local homeomorphism from Pι to P1. It follows that Pι and its
projection Wι

2 are at most 1-dimensional, so the same is true of W2.

Proof of Theorem 8.1. The locus W2 is the projection to M2 of the
intersection E2∩ΩM2(2) of the eigenform locus and the Weierstrass stratum.
By Theorem 7.2, both E2 and ΩM2(2) are SL2(R)-invariant, so W2 is a union
of complex geodesics.

The image of any such geodesic f : H → W2 must be contained in an
single irreducible subvariety V ′ of W2. By the preceding Lemma, V ′ is a
curve. Thus f factors through a map to the normalization V of V ′, and
hence V ′ is a Teichmüller curve. By Theorem 6.3 V ′ is primitive, since it is
generated by an eigenform. Since W2 has only countably many irreducible
components, it is covered by countably many such curves.

Proof of Corollary 8.2. Let (Xt,ωt) = At · (X,ω) so that f(t) = [Xt]
gives the complex geodesic

f : H → M2

generated by (X,ω2). Clearly ωt is a Weierstrass differential for all t, and
it is also an eigenform by Theorem 7.2. Thus f maps H into W2. Since W2

is a union of countably many algebraic curves, the map f must cover one of
them, and thus SL(X,ω) is a lattice.

Proof of Corollary 8.3. Combine Corollary 8.2 with Theorem 5.5.
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Remark. Smillie has shown that a complex geodesic f : H → Mg is a
Teichmüller curve iff f(H) is a closed subset of moduli space. The proof,
sketched in [V4, p.226], uses Ratner’s theorem.

Using this result, one can prove Theorem 8.1 without appealing to the
algebraic structure of moduli space. Indeed, the arguments above show that
any irreducible component V of W2 is a closed complex geodesic, and hence
a Teichmüller curve by Smillie’s theorem.

9 Billiards

In this section we recall the connection between billiard tables and Te-
ichmüller curves. Using L-shaped tables, we then construct infinitely many
Teichmüller curves in M2, none of which arise via tori. Finally we present
an algorithm to find SL(X,ω) explicitly in many of these examples.

Billiards. Let P ⊂ R2 ∼= C be a compact polygon whose interior angles are
rational multiplies of π. One can associate to P a point (X,ω) ∈ ΩMg, as
follows.

Let G ⊂ O2(R) be the finite group generated by the linear parts of
reflections in the sides of P . Take |G| disjoint copies of P , each rotated
by an element of G. Glue each edge E of gP to the edge rE of rgP by a
translation, where r ∈ G is reflection through E. The result is a compact
Riemann surface

X =

(
⊔

G

g · P

)
/ ∼ .

The holomorphic 1-form dz on C is translation-invariant, so it descends to
a natural 1-form ω on X. The zeros of ω, if any, come from the vertices of
P .

By construction, billiard paths reflecting off the sides of P unfold to form
geodesics on X for the flat metric |ω|.

We define the trace field of P to be the trace field of SL(X,ω).

Lattice polygons. We say P is a lattice polygon if SL(X,ω) is a lattice in
SL2(R); equivalently, if (X,ω2) generates a Teichmüller curve. In this case:

• Every billiard path in P that does not meet a vertex is either closed
or uniformly distributed in P ; and

• The number of side patterns of closed billiard paths of length ≤ L
satisfies N(L) ∼ cL2 for some constant c(P ) > 0.
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These results are restatements of Veech’s Theorem (§2). The side pattern of
a closed billiard path is the cyclically ordered sequence of edges of P it hits,
and one should restrict attention to paths hitting an even number of sides.

The small surface. When the polygon P has symmetries, it is often useful
to consider the small surface (X ′,ω′), obtained by further identifying gP and
hP if they are equal up to translation in C. There is a natural branched
covering map (X,ω) → (X ′,ω′).

The affine group SL(X ′,ω′) of the small surface is often commensurable
to that of the large surface, in which case either can be studied to test if P
is a lattice polygon.

The regular pentagon. It is known that regular polygons are lattice
polygons [V1]. To illustrate our methods, we give a new proof of:

Theorem 9.1 The regular pentagon is a lattice polygon.

Proof. Let (X,ω) be the small surface associated to a regular pentagon
P ⊂ R2. Then (X,ω) is obtained by gluing together the opposite edges of
P and −P , as in Figure 2 of §3. The vertices of P descend to a single point
on X, so ω is a Weierstrass form. (In fact X is isomorphic to the curve
y2 = x5 − 1, and ω is a multiple of the form dx/y.)

By rotating P , we obtain an order 5 symmetry of (X,ω) with trDφ =
2cos(2π/5). Thus the trace field of SL(X,ω) is irrational, and therefore
SL(X,ω) is a lattice, by Corollary 8.2.

a
1

1

b

P(a,b) X

Figure 3. An L-shaped billiard table and the Riemann surface it determines.

L-shaped billiard tables. We now determine all the L-shaped lattice
polygons.

An L-shaped polygon P is obtained by removing a small rectangle from
the corner of a larger rectangle. By applying a linear transformation A ∈
GL+

2 (R), any L-shaped polygon can be normalized so it takes the form
P (a, b) shown in Figure 3, with a, b ≥ 1. The associated Riemann surface
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X is obtained by forming a Swiss cross from 4 copies of P (a, b) as shown at
the right, then gluing opposite edges by horizontal and vertical translations.
The natural 1-form ω on X is a Weierstrass form; its unique zero comes
from the vertex of P with interior angle 3π/2.

Theorem 9.2 The L-shaped polygon P (a, b) is a lattice polygon iff a and b
are rational or

a = x + z
√

d and b = y + z
√

d

for some x, y, z ∈ Q with x + y = 1 and d ≥ 0 in Z. In the latter case the
trace field of P (a, b) is Q(

√
d).

Corollary 9.3 P (a, a) is a lattice polygon iff a is rational or a = (1±
√

d)/2
for some d ∈ Q.

Corollary 9.4 Every real quadratic field arises as the trace field of a Te-
ichmüller curve in M2.

Corollary 9.5 There are infinitely many primitive Teichmüller curves in
M2.

Since only finite many real quadratic fields (those of the form K = Q(cos(2π/n)),
n = 5, 8, 10, 12) arise as trace fields of triangle groups, we have:

Corollary 9.6 There exist Teichmüller curves V = H/Γ in M2 such that
Γ is not commensurable to a triangle group.

Lemma 9.7 Given (X,ω) ∈ ΩMg, suppose X decomposes into a finite
number of annuli Ui foliated by the closed leaves of F(ω2). Then either:

• The moduli mi = mod(Ui) have rational ratios, and we have A =
( 1 0

t 1 ) ∈ SL(X,ω) where t = lcm(m−1
1 , . . . ,m−1

n ); or

• The moduli mi have irrational ratios and SL(X,ω) is not a lattice.

Proof. The first case follows by taking A = Dφ where φ is a product of
suitable Dehn twists in the annuli Ui.

For the second case, note that the real Teichmüller geodesic f(iy) tends
to infinity in Mg as y → ∞; indeed, the hyperbolic lengths of the cores
of the annuli Ui tend to zero. If V = H/SL(X,ω) has finite volume, then
[iy] must also exit a cusp of V . But then a horocycle around the cusp of V
gives rise to an affine automorphism φ of (X,ω) shearing along the leaves of
F(ω2). A suitable power of φ effects Dehn twists on each Ui, so their moduli
have rational ratios. Compare [V1, 2.4].
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Proof of Theorem 9.2. We claim that P (a, b) is a lattice polygon iff ab−a
and ab − b are rational.

To see this, let (X,ω) be the Riemann surface associated to P (a, b).
Then X has genus two and ω is a Weierstrass form.

The foliation F(ω2), whose leaves are vertical lines in the Swiss cross,
decomposes X into a pair of annuli with moduli b − 1 and 1/a. By the
Lemma, for SL(X,ω) to be a lattice we must have ab−a ∈ Q. Applying the
same reasoning to the vertical foliation F(−ω2), we find ab− b ∈ Q as well.

For the converse, assume ab − a and ab − b are rational. Then a − b is
rational. If a is rational then so is b. In this case P (a, b) can be tiled by
squares, (X,ω) arises via a torus and SL(X,ω) is a lattice commensurable
to SL2(Z).

Now assume ab − a and ab − b are rational but a is irrational. By
assumption, the reciprocal moduli a and 1/(b − 1) of the vertical foliation
have a rational ratio ab− a, and similarly for the horizontal foliation. Thus
by the Lemma we have

(
1 0

ma 1

)
,

(
1 nb

0 1

)
∈ SL(X,ω)

for some nonzero m,n ∈ Z. Taking the trace of the product, we find that
2 + mnab lies in the trace field K of SL(X,ω). But ab− a is rational, so we
have a ∈ K and thus K += Q. By Corollary 8.2, SL(X,ω) is a lattice in this
case as well.

To complete the proof, note that if a and b have the form given in the
Theorem, then ab−a and ab−b are rational. Conversely, if ab−a and ab−b
are rational, then a satisfies the quadratic equation

a2 + a(b − a − 1) + (a − ab) = 0

with rational coefficients. Thus a = x + z
√

d for some x, z ∈ Q and d ≥ 0
in Z. Since a − b is rational we have b = y + z

√
d for some y ∈ Q. If d is

a square then we have a, b ∈ Q; otherwise the condition ab − a ∈ Q implies
that x + y = 1.

The golden table. We remark that the regular pentagon and the golden
L-shaped table P (γ, γ), γ = (1 +

√
5)/2, generate the same Teichmüller

curve f : V → M2. In fact, as we will see below, V is isomorphic to the
(2, 5,∞)-orbifold. The map f sends the singular points of orders 2 and 5 to
the Riemann surfaces for P (γ, γ) and for the regular pentagon, respectively.
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Figure 4. The golden L-shaped table can be reassembled and then stretched

to obtain a pair of regular pentagons.

The relationship between the two polygons can be seen directly, as indicated
in Figure 4.

Explicit uniformization. The proof that SL(X,ω) is a lattice when its
trace field is irrational is rather indirect. To conclude this section, we de-
scribe a direct algorithm to generate elements in SL(X,ω). This algorithm
allows one to verify:

Theorem 9.8 The Teichmüller curve generated by P (a, a), a = (1+
√

d)/2,
has genus 0 for d = 2, 3, 5, 7, 13, 17, 21, 29 and 33.

To describe the algorithm, assume (X,ω2) generates a Teichmüller curve
V = H/SL(X,ω). Let GL(X,ω) denote the image of the full affine group
Aff(X,ω) under the map φ .→ Dφ. Note that GL(X,ω) contains SL(X,ω)
with index at most two.

To begin the algorithm, we must first choose an initial reflection R0 ∈
GL(X,ω). Then the geodesic γ0 ⊂ H fixed by R0 either covers a closed
geodesic on V , or it joins a pair of cusps. Assume we are in the latter case,
and let c0 be one of the cusps fixed by R0.

From the data (R0, c0) we inductively generate a chain of cusps and
reflections (Ri, ci), as follows.

1. Choose a parabolic element Ai ∈ SL(X,ω) stabilizing ci.

2. Set Ri+1 = AiRi.

3. Let γi+1 ⊂ H be the axis of Ri+1.

4. Let ci+1 be the cusp joined to ci by γi+1.

Note that Ri+1 is indeed a reflection, since AiRi = RiA
−1
i .
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d = 2 d = 3

d = 5 d = 7

d = 13 d = 17

d = 21 d = 29

d = 33

Figure 5. A sampling of Teichmüller curves.
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In terms of the affine surface (X,ω), each cusp ci determines an angle
θ = tan−1(1/ci) such that the foliation F(e2iθω2) has closed leaves. The
parabolic element Ai can be computed in terms of ci by decomposing X
into annuli and taking the least common multiple of their reciprocal moduli,
as in Lemma 9.7.

If the chain of axes 〈γi〉 ever closes or crosses itself, it then bounds a
polygon of finite volume F ⊂ H. Then the reflections found so far generate
a lattice Γ, and Γ ∩ SL2(R) gives an explicit subgroup of finite index in
SL(X,ω). In this case the Teichmüller curve V has genus 0, since it is
covered by the double of F .

We apply the algorithm to the surface (X,ω) associated to the polygon
P (a, a) as follows. Because the Swiss cross is symmetric under horizontal,
vertical and diagonal Euclidean reflections, the hyperbolic reflections R0 =(

1 0
0 −1

)
and R̃0 = ( 0 1

1 0 ) both belong to GL(X,ω). Starting with R0, R̃0, and
the corresponding cusps c0 = ∞, c̃0 = 1, we generate two chains of axes
as described above. If these chains happen to meet or cross, we obtain the
desired lattice in SL(X,ω).

Concretely, starting with (R0, c0), the algorithm proceeds as follows.
The cusp c0 = ∞ determines a decomposition of X into horizontal annuli of
moduli a− 1 and 1/a, corresponding to the two rectangles that are stacked
to make P (a, a). Let t = lcm(a, (a − 1)−1). By Lemma 9.7, the shear
A0 = ( 1 t

0 1 ) belongs to GL(X,ω), as does the reflection R1 = A0R0 through
the line Re(z) = t/2. From R1 we obtain the next cusp, c1 = t/2, and so
on.

A sampler. Figure 5 shows the reflection groups found in this way for the
values of d given in Theorem 9.8.

When d = 5, we obtain the (2, 5,∞) triangle group. In this case a = γ

is the golden mean, so 1/a = a − 1 and R1 is reflection through the line
Re(z) = γ/2. The axes Re(z) = 0, Re(z) = γ/2 and |z| = 1 of R0, R1 and
R̃0 bound a (2, 5,∞) triangle F ⊂ H, providing a fundamental domain for
the group generate by these three reflections.

When d = 17, the fundamental domain F is an ideal quadrilateral with
vertices (i, 1, (1 +

√
17)/4,∞).

The algorithm works best when d = 1mod 4, since then the cusp c1 =
(1 +

√
d)/4 adjacent to infinity is fairly close to 1. For d += 1mod 4, the

corresponding cusp is at (1 +
√

d)/2 or at 1 +
√

d.
It would be interesting to design an algorithm to compute the full group

SL(X,ω), especially when H/SL(X,ω) has higher genus.
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10 Holomorphic Galois conjugation

Let V ⊂ Σ ⊂ A2 be a Teichmüller curve on a Hilbert modular surface. In
this final section we observe that V is covered by the graph of a remarkable
holomorphic map F : H → H intertwining the action of a discrete group
G ⊂ SL2(R) and its indiscrete Galois conjugate G′.

F

Figure 6. A holomorphic map from an ideal pentagon to an ideal star.

Curves on surfaces. Let f : V → M2 be a Teichmüller curve generated
by (X,ω2). Assume that SL(X,ω) has real quadratic trace field K ⊂ R. Let
k .→ k′ denote the Galois involution of K/Q, sending a + b

√
d to a − b

√
d,

and let g .→ g′ denote the corresponding involution on SL2(K).
We have seen that Jac(Xt), t = f(t), admits real multiplication by K

for all t. Let Σ = H/Γ, Γ ⊂ SL2(K), be the Hilbert modular surface
parameterizing all Abelian varieties with the given action of K, as in §6.
Then we obtain a commutative diagram

H −−−−→ V
f−−−−→ M2

σ

"
"

"

H2 −−−−→ Σ −−−−→ A2

(10.1)

as in Corollary 7.3.
If we make a change of basepoint for V , by replacing (X,ω) with A·(X,ω),

A ∈ SL2(R), then f(V ) ⊂ M2 does not change and GL(X,ω) varies only by
conjugation by A. The main observation of this section is:

Theorem 10.1 After a suitable change of basepoint, we have GL(X,ω) ⊂
GL2(K) and σ(t) = (t, F (t)), where F : H → H satisfies

F (g · t) = g′ · F (t)
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for all g ∈ GL(X,ω). The holomorphic map F is a contraction for the
hyperbolic metric.

The Hilbert modular surface Σ is abundantly populated by modular curves
(Shimura curves), parameterizing Abelian varieties with an action of a quater-
nion algebra [vG, §V]. However these curves are covered by the graphs of
isometries, so we have:

Corollary 10.2 The Teichmüller curve V ⊂ Σ is not a modular curve.

Since F is a contraction, the spectral radius of every hyperbolic element
g ∈ GL(X,ω) must decrease under Galois conjugation. This shows:

Corollary 10.3 The trace of every hyperbolic element in GL(X,ω) is irra-
tional.

Example: K = Q(
√

5). Here is an example where the equivariant map
F provided by Theorem 10.1 can be seen directly.

Consider the Teichmüller curve generated by the regular pentagon, or
equivalently by the golden table. Then G = GL(X,ω) is the group generated
by reflections in the edges of the (2, 5,∞) triangle, as we saw in §9.

Changing coordinates from the upper halfplane to the unit disk ∆, we
can assume G contains the reflections in the edges of the ideal pentagon P
with vertices at the 5th roots of unity. Under the action of Gal(K/Q), the
edge joining (ζi, ζi+1) is sent to the edge joining (ζ2i, ζ2i+2). Thus G′ is the
indiscrete group generated by the reflections in the edges of an ideal star P ′

(see Figure 6).
There is a unique holomorphic map F : P → P ′ sending edges to cor-

responding edges. This map has a simple critical point at the origin. By
repeated Schwarz reflection, F can be analytically continued to the entire
disk. The continuation F : ∆ → ∆ intertwines the actions of G and G′, and
its graph covers the Teichmüller curve generated by the regular pentagon.
In fact F is determined by its equivariance properties, since its boundary
values depend only on the isomorphism G ∼= G′.

Proof of Theorem 10.1. Let (Xt,ωt) = At · (X,ω), so Xt = f(t). Then
the map σ : H → H2 in the diagram (10.1) has the form

σ(t) = (σ11(t),σ22(t)) =

(∫
b′

1

η1(t)∫
a′

1

η1(t)
,

∫
b′

2

η2(t)∫
a′

2

η2(t)

)
,
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where (a′i, b
′
i), i = 1, 2 is a symplectic basis for H1(Z2, R) adapted to the

action of K, and (η1(t), η2(t)) is a dual eigenbasis for Ω(Xt).
Interchanging coordinates if necessary, we can assume η1(t) = ωt. By

Theorem 4.2, the map σ11 : H → H is an isometry. Therefore after a
change of basepoint we can assume σ11(t) = t and write σ(t) = (t, F (t)). By
Theorem 4.2, F (t) = σ22(t) is a contraction for the hyperbolic metric.

The action of the Aff
+(X,ω) on H1(X, Q) ∼= K2 commutes with the

action of K, so we have a natural inclusion

E : Aff
+(X,ω) →֒ SL2(K).

Similarly the derivative gives a natural map

D : Aff
+(X,ω) → SL(X,ω) ⊂ SL2(R).

The corresponding actions on the universal covers of V and Σ are compatible;
that is, if A = Dφ and g = Eφ, then

σ(A · t) = g · σ(t) = (g · t, g′ · F (t)).

But in fact A = g (under the inclusion SL2(K) ⊂ SL2(R)), since both matri-
ces describe the action of φ on the space of 1-forms with basis {Re ω, Im ω}
(compare equation 3.3). Therefore D is an isomorphism, we have SL(X,ω) ⊂
SL2(K), and F (g · t) = g′ · F (t) for all g ∈ SL(X,ω).

Notes. The above example of a curve V ∼= H/Γ(2, 5,∞) on the Hilbert
modular surface for SL2(OQ(

√
5)) is also discussed in [CW] and [Sch]. See

[SW] for other work on ‘modular embeddings’ of Fuchsian groups. Another
proof of Corollary 10.3 is given in [Mc, Cor. 9.6].
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[KS] R. Kenyon and J. Smillie. Billiards on rational-angled triangles.
Comment. Math. Helv. 75(2000), 65–108.

[KMS] S. Kerckhoff, H. Masur, and J. Smillie. Ergodicity of billiard flows
and quadratic differentials. Ann. of Math. 124(1986), 293–311.

[Ko] M. Kontsevich. Lyapunov exponents and Hodge theory. In The
Mathematical Beauty of Physics (Saclay, 1996), pages 318–332.
World Sci. Publishing, 1997.

[KZ] M. Kontsevich and A. Zorich. Connected components of the moduli
spaces of Abelian differentials with prescribed singularities. Invent.
math. 153(2003), 631–678.

[Kra] I. Kra. The Carathéodory metric on abelian Teichmüller disks. J.
Analyse Math. 40(1981), 129–143.

37



[Li] D. Lind. The entropies of topological Markov shifts and a related
class of algebraic integers. Ergod. Th. & Dynam. Sys. 4(1984), 283–
300.

[Mas1] H. Masur. Transitivity properties of the horocyclic and geodesic
flows on moduli space. J. Analyse Math. 39(1981), 1–10.

[Mas2] H. Masur. Lower bounds for the number of saddle connections and
closed trajectories of a quadratic differential. In Holomorphic Func-
tions and Moduli I, pages 215–228. Springer-Verlag: MSRI publica-
tions volume 10, 1988.

[Mas3] H. Masur. Hausdorff dimension of the set of nonergodic foliations of
a quadratic differential. Duke Math. J. 66(1992), 387–442.

[MT] H. Masur and S. Tabachnikov. Rational billiards and flat struc-
tures. In Handbook of Dynamical Systems, Vol. 1A, pages 1015–1089.
North–Holland, 2002.

[Mc] C. McMullen. Teichmüller geodesics of infinite complexity. Acta
Math. 191(2003), 191–223.

[Pen] R. Penner. Bounds on least dilatations. Proc. Amer. Math. Soc.
113(1991), 443–450.

[Pu] J.-C. Puchta. On triangular billiards. Comment. Math. Helv.
76(2001), 501–505.

[Rap] M. Rapoport. Compactifications de l’espace de modules de Hilbert-
Blumenthal. Compositio Math. 36(1978), 255–335.

[Roy] H. L. Royden. Invariant metrics on Teichmüller space. In Contribu-
tions to Analysis, pages 393–399. Academic Press, 1974.

[SW] P. S. Schaller and J. Wolfart. Semi-arithmetic Fuchsian groups and
modular embeddings. J. London Math. Soc. 61(2000), 13–24.

[Sch] T. A. Schmidt. Klein’s cubic surface and a ‘non-arithmetic’ curve.
Math. Ann. 309(1997), 533–539.

[Tab] S. Tabachnikov. Billiards. Société Mathématique de France, 1995.
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