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Theorem 2.8 is incorrect as stated in the general case. The proof works only in
the case d = 2 and Conv D′ ⊂ D, since otherwise one cannot guarantee that any
chord of D that intersects Conv D′ has to intersect D′as well. This makes wrong the
statement between dashes on line 12 of page 535 in the proof. Below, we give the
corrected versions of Theorem 2.8, the paragraph immediately after it, and its proof.

Theorem 2.8. Let D′ ⊂ D be with the Lipschitz condition and an almost every-
where continuously differentiable boundary. For every Borel subset C of ∂D′×∂D′,
we have

E

[
ι∑
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1
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�′
1,k, �

′
2,k

) ∈ C
}] = |∂D′|

|∂D| × |∂D′|−1
∫

C
K̃ (x, y)dx dy. (16)

In particular,

E[ι] = |∂D′|
|∂D| . (17)

Hence, the relation (16) has the following interpretation: the expected value of the
measure giving unit weight to each chord induced on D′ by the D-random chord,
is the product of the expected number of induced chords and the probability dis-
tribution for the (ordered) endpoints of the random chord of D′. Another comment
on this theorem is that the number ι of induced chords is integrable, a property
which does not seem easy to prove directly. The formula (17) could remind the
reader of the following fact concerning the so-called Poisson line process (see e.g.
Section 8.4.2 of [27]): if D is compact and convex, then the number of lines hitting
D has Poisson distribution with the mean proportional to the perimeter of D.
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Proof of Theorem 2.8. Let y ∈ ∂D′ where ∂D′ has a locally C1 parametrization,
δ > 0 and a Borel set B ⊂ Sn(y). Similarly to (46), we get

P
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cos ϕx (v)dx dv.

(48)

Note that, for small δ, the left-hand side can be written as
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Then, for A1, A2 ∈ ∂D′ such that A1 ∩ A2 = ∅ and x ↔ y in D′ for all x ∈ A1,
y ∈ A2, we get
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This is enough to ensure that, for C ⊂ ∂D′ × ∂D′, we have
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which proves (16). Taking C = ∂D′ × ∂D′ in (16), we obtain (17). 	


UFR de Mathématiques, Université Paris 7,
case 7012, 2, place Jussieu, 75251 Paris Cedex 05, France.

e-mail: comets@math.jussieu.fr
URL: http://www.proba.jussieu.fr/~comets

and

Instituto de Matemática e Estatística,
Universidade de São Paulo, rua do Matão 1010,

São Paulo, SP CEP 05508-090, Brazil.
e-mail: popov@ime.usp.br

URL: http://www.ime.usp.br/~popov

and

Institut für Festkörperforschung,
Forschungszentrum Jülich GmbH, 52425 Jülich, Deutschland.

e-mail: G.Schuetz@fz-juelich.de
URL: http://www.fz-juelich.de/iff/staff/Schuetz_G/

and

Instituto de Matemática, Estatística e Computação Científica,
Universidade de Campinas,

Caixa Postal 6065, Campinas, SP CEP 13083-970, Brazil.
e-mail: marinav@ime.unicamp.br

URL: http://www.ime.unicamp.br/~marinav

Published online June 11, 2009 – © Springer-Verlag (2009)


	Erratum:Billiards in a General Domain with Random Reflections

