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Entanglement swapping is a process by which two initially independent quantum systems can become entangled

and generate nonlocal correlations. To characterize such correlations, we compare them to those predicted by

bilocal models, where systems that are initially independent are described by uncorrelated states. We extend in

this paper the analysis of bilocal correlations initiated in [Phys. Rev. Lett. 104, 170401 (2010)]. In particular, we

derive new Bell-type inequalities based on the bilocality assumption in different scenarios, we study their possible

quantum violations, and we analyze their resistance to experimental imperfections. The bilocality assumption,

being stronger than Bell’s standard local causality assumption, lowers the requirements for the demonstration of

quantumness in entanglement-swapping experiments.
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I. INTRODUCTION

The study of correlations between the outcomes of mea-

surements performed on several quantum systems has led

to remarkable progresses, both on fundamental aspects of

quantum theory and on potential applications in quantum

information technologies. Particularly intriguing are the cases

where the various quantum systems are all at a distance from

each other. From a fundamental point of view this situation led

to the discovery of quantum nonlocality, that is, of the existence

of correlations that cannot be described by a locally causal

model [1]. From an applied point of view, these studies led,

quite recently, to the understanding of the power of nonlocal

correlations for quantum information processing, in particular

for reducing communication complexity [2], for quantum key

distribution (QKD) [3,4], private randomness generation [5,6],

or device-independent entanglement witnesses [7]. Interest-

ingly, in such examples nonlocal correlations can be exploited

directly, in a device-independent manner, independently of the

Hilbert space machinery of the quantum theory. This applied

side led, in turn, to a better understanding of some fundamental

aspects of quantum theory and quantum information, such

as for instance hidden assumptions in the abstract security

analyses of QKD [8].

The usual starting point in such works on nonlocality are

limitations—such as, for example, Bell inequalities [9]—on

the possible correlations between the measurement results on

distant systems, following from the principle of local causality.

Formally, the different systems measured in the experiment are

considered to be all in an initial joint “hidden”1 state λ, where

λ is arbitrary and could even describe the state of the entire

universe prior to the measurement choices. The measurement

outcome of any particular system can depend arbitrarily on

the global state λ and on the type of measurement performed

on that system, but not on the measurements performed on

distant systems. This last condition is Bell’s local causality

1We keep the terminology “hidden” to describe the states λ for

historical reasons [1]. Note that these states λ need not actually be

hidden (i.e., inaccessible to the observer).

assumption [1] (or Bell’s “locality assumption,” simply),

which implies, for example, in the case of three parties, that

the measurement outcome probabilities can be written as

P (a,b,c|x,y,z) =
∫

dλ ρ(λ)P (a|x,λ)P (b|y,λ)P (c|z,λ), (1)

where x,y,z denote the measurement settings (“inputs”)

chosen by the three parties, a,b,c denote the corresponding

measurement outcomes (“outputs”), where ρ(λ) is a probabil-

ity distribution over the set of all possible joint hidden states λ,

and where it has implicitly been assumed that the measurement

choices x,y,z are independent of λ.

Nowadays, fast progress toward advanced demonstrations

of quantum communication networks, involving quantum

repeaters [10] based on entanglement swappings [11] and

quantum memories [12], are underway in many labs around the

world. In these future quantum networks, several independent

sources of entangled qubit pairs will distribute entanglement to

partners who will then connect their neighbors by performing

joint measurements on two (or more) qubits, each entangled

with one neighboring qubit, as illustrated for the simple case of

three partners in Fig. 1. Such experiments have an interesting

feature that has so far received little attention in previous

works on nonlocality: The multipartite correlations between

the measurement results at each site do not originate from a

single multipartite entangled state, but from a series of bipartite

entangled states that are initially independent and uncorrelated

from each other; that is, there is not a unique initial joint state

(the analog of λ in a locally causal model) that is responsible

for the observed correlations, but these are instead created

from smaller systems through joint measurements.

To understand and characterize the nonlocal properties

exhibited in such experiments, it is natural to compare them

to models where independent systems are characterized by

different, uncorrelated hidden states λ. In the case, for example,

of the experiment of Fig. 1, one would thus replace Bell’s

locality condition (1) by

P (a,b,c|x,y,z) =
∫ ∫

dλ1dλ2 ρ1(λ1) ρ2(λ2)

×P (a|x,λ1)P (b|y,λ1,λ2)P (c|z,λ2), (2)
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FIG. 1. Typical entanglement swapping scenario where three

parties, Alice, Bob, and Charlie, share two sources S1 and S2 that

each emit independent pairs of particles in some quantum states ̺1

and ̺2. Bob performs a joint measurement y on the two particles

he receives from each source and obtains an output b. Depending

on Bob’s outcome, Alice and Charlie’s systems end up in one out

of different possible entangled states. Alice and Charlie apply some

measurements x and z on their particle and obtain outputs a and c.

Such an experiment is characterized by a joint probability distribution

P (a,b,c|x,y,z).

where λ1 characterizes the joint state of the systems produced

by the source S1 and λ2 for the source S2; see Fig. 2. Of

course, one can never exclude on pure logical grounds that

systems that appear independent to us, such as pairs of particles

produced by different sources, are not in fact correlated in

some hidden way. But, quoting Bell, “this way of arranging

quantum mechanical correlations would be even more mind-

boggling than one in which causal chains go faster than light.

Apparently separate parts of the world would be deeply and

conspiratorially entangled” [1].

Motivated by the earlier works [13,14], the study of

correlations between the results of measurements performed

in quantum networks was initiated in a recent letter [15] from

the point of view just introduced. This leads to interesting

new scenarios: because of the assumption that independent

sources are characterized by different and independent λ’s, this

lowers the requirements on experiments for the demonstration

of quantumness of a network and, to start with the simplest

case, the demonstration of quantumness of an entanglement

swapping process. Such studies may lead to new applications,

in the spirit of device-independent quantum information

processing [3–7].

The general approach considered here should also con-

tribute to the characterization of the nonlocal properties

associated with joint measurements, a question that has
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FIG. 2. The natural counterpart of the entanglement swapping

scenario of Fig. 1 in terms of a locally causal model with two

independent sources of hidden states: The systems produced by the

source S1 are characterized by hidden states λ1, while those from

the source S2 are characterized by hidden states λ2. The two sources

are assumed to be independent, hence the joint distribution ρ(λ1,λ2)

of hidden states has the product form ρ(λ1,λ2) = ρ1(λ1)ρ2(λ2), as in

Eq. (2).

received little attention in traditional works on nonlocality

(see, however, Refs. [16,17]). Indeed, the joint measurements

needed to connect neighboring qubits in quantum networks are

necessarily entangling, that is, entanglement between remote

parties appears through joint measurements and not from a

joint state of distant systems—formally, the eigenvectors of

the operators that describe joint measurement are entangled.

Recall that a joint measurement, the so-called Bell-state

analyzer, is also at the core of the celebrated quantum

teleportation protocol [18]. Entanglement, the characteristic

property of quantum mechanics in Schrödinger’s words [19],

thus plays a dual role, once allowing joint states of several

systems and once allowing joint measurements.

Before discussing in more detail the results presented in this

paper, let us finally stress how natural the assumption of inde-

pendent λ’s is. Actually, an equivalent assumption is already

implicit in all standard tests of Bell inequalities. Indeed, in

such tests one needs to assume that the measurement settings

are random and independent of the entanglement source [1];

this is achieved, for example, by having a local quantum

random number generator (QRNG) determining the random

settings [20]. But this makes sense only if one assumes that

the sources in the QRNG are independent of the entanglement

source and that they are characterized by independent and

uncorrelated λ’s. Consequently, our assumption is actually not

new, but merely formalizes a usually tacit assumption and

extends its scope to more advanced topologies of quantum

networks.

A. Structure of the paper

In this article, we develop and formalize the approach

introduced above for the simplest case: three partners on

a line, with two independent sources of entangled qubits,

as illustrated in Fig. 1. Following [15], we call bilocal
the correlations that can be described as resulting from

measurements of two independent hidden states λ1 and λ2,

each produced by one of the two sources. Conversely, a

correlation that cannot be described in such a way is called

nonbilocal.
We first introduce more formally the concept of bilocality

in Sec. II, and show how the bilocality assumption can be

tested. A first approach, developed in Sec. II C, is to look

for explicit bilocal decompositions; we introduce efficient

representations for (bi-)local models, which help the search for

explicit decompositions, and where the bilocality assumption

takes a very simple form. Another approach is to test Bell-like

inequalities, which are satisfied by bilocal correlations but can

be violated by nonbilocal correlations; in Sec. II D we derive

such (nonlinear) bilocal inequalities [Eqs. (20), (23), and (27)],

which typically take the form,

√

|I | +
√

|J | � 1, (3)

where I and J are linear combinations of probabilities

P (a,b,c|x,y,z) [see Eqs. (18)–(19), (21)–(22), and (25)–(26)].

Section III is devoted to the study of how the correlations

produced in quantum entanglement swapping experiments

violate our bilocal inequalities. We analyze the situations

where Bob performs a complete Bell-state measurement

in Sec. III A, and where he performs partial Bell-state
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measurements that allow him to distinguish different pairs

of Bell states (Sec. III B 1), or to distinguish two Bell states,

while the other two give the same outcome (Sec. III B 2).

In all cases we study the resistance to white noise of the

quantum violations, and find that the required visibilities for

demonstrating nonbilocality are significantly lower than for

demonstrating Bell nonlocality. The resistance to detection

inefficiencies is also analyzed in some simple cases for the

complete Bell-state measurement in Sec. III C.

In Sec. IV, we address further issues on quantum nonbilo-

cality. We study a trade-off between the resistance to noise

of nonlocality and nonbilocality for quantum correlations

(Sec. IV A), and show that the two are not necessarily

correlated but that the maximization of one is made at the

expense of the other. We then investigate possible violations

of the bilocality assumption using nonmaximally entangled

states (Sec. IV B). We also address the question of classically

simulating noisy entanglement-swapping correlations, and

introduce two protocols (with and without communication)

for that in Sec. IV C.

Finally, in Sec. V we come back to our justification for the

assumption of independent sources, and to the idea that it is

actually already implicitly used in standard Bell experiments.

We illustrate this claim by showing that the assumption of

local causality with independent sources in a bipartite Bell test

is equivalent to an assumption of trilocality in a four-partite

experiment.

II. CHARACTERIZING BILOCAL CORRELATIONS

A. The bilocality assumption

We consider the scenario depicted in Fig. 2, with three

parties sharing two sources of independent hidden states; this is

the simplest case where our assumption of independent sources

of hidden states makes sense.

In such a tripartite scenario, Bell’s locality assumption [1]

reads [as we recalled in Eq. (1)]

P (a,b,c|x,y,z) =
∫

dλ ρ(λ) P (a|x,λ)P (b|y,λ)P (c|z,λ). (4)

Here given the state λ, the outputs a, b, and c of the three

parties, for inputs x, y, and z, are determined, respectively, by

the local distributions P (a|x,λ), P (b|y,λ), and P (c|z,λ). The

hidden states λ follow the distribution ρ(λ), normalized such

that
∫

dλ ρ(λ) = 1.

If we now assume that the response of the three parties

depends only on the states λ1 or λ2 characterizing the systems

that they receive from the sources S1 or S2, respectively, we

write

P (a,b,c|x,y,z) =
∫ ∫

dλ1dλ2 ρ(λ1,λ2)

×P (a|x,λ1)P (b|y,λ1,λ2)P (c|z,λ2). (5)

Note that without making any further assumption, Eq. (5) is

equivalent to (4); indeed, ρ(λ1,λ2) could be different from zero

only when λ1 = λ2 = λ to recover (4).

Now we introduce our crucial assumption: Since the two

quantum sources S1 and S2 are supposed to be independent,

we assume that this property carries over to the local model,

and therefore the distribution of the hidden states λ1 and λ2

should factorize, in the form,

ρ(λ1,λ2) = ρ1(λ1) ρ2(λ2). (6)

Together with (5), this defines our assumption of bilocality, as

already expressed in Eq. (2). The hidden states λ1 and λ2 now

follow independent distributions ρ1(λ1) and ρ2(λ2), such that
∫

dλ1 ρ1(λ1) =
∫

dλ2 ρ2(λ2) = 1.

Note that, as in the standard case of Bell locality, no

restrictions are made on the sets on which λ1, λ2 are distributed

(apart from the fact that they must be measurable). Expanding

the results of [15], we show in Secs. II C and II D below that

for finite numbers of inputs and outputs, Eqs. (5) and (6) lead

nonetheless to implementable tests of bilocality, by looking

for explicit bilocal decompositions or by testing (nonlinear)

Bell-like inequalities. Before that, let us briefly mention some

general properties of the set of bilocal correlations.

B. Topology of the bilocal set

Any bilocal correlation is by construction also local; the set

of bilocal correlations (“bilocal set”, B) is therefore included

in the set of local correlations (“local set,” L): B ⊆ L.

It is well known, and clear from the definition (4), that

the local set is convex. On the other hand, because of the

nonlinear constraint (6), a mixture of bilocal correlations is not

necessarily bilocal: The bilocal set is not convex. Deterministic

local correlations are bilocal; since they are the extremal points

of the local set, L is actually the convex hull of B.

One can further show (see Appendix A) that the bilocal set

is connected, and that its restriction to subspaces where the

marginal probability distribution of Alice (or Charlie) is fixed

is star-convex; star-convexity does not, however, hold for the

whole bilocal set.

C. Explicit bilocal decompositions

From now on we consider scenarios with finite numbers of

possible inputs and outputs.

In that case, the local set L forms a convex polytope [21].

The description of the local polytope as the convex hull of a

finite set of extremal points—corresponding to deterministic

local correlations—allows one to use efficient numerical

approaches based on linear programming to determine if

a correlation P is local. Alternatively, the local polytope

can be described in terms of its facets—corresponding to

(possibly trivial) Bell inequalities—which can be enumerated

algorithmically for a small enough number of inputs and

outputs. Hence, in order to determine whether a correlation

P is local or not, one can either solve a linear programming

problem, or check that all Bell inequalities are satisfied.

Because the bilocal set is not convex, one cannot use

standard Bell inequalities to distinguish the bilocal and the

nonbilocal correlations. The bilocal set is significantly more

difficult to characterize than the local set. Still, similar

approaches can be used: One can describe the question whether

a given correlation P is bilocal or not as a nonconvex feasibility

problem, or alternatively (as we will see in the next Sec. II D),

one can derive nonlinear inequalities that are satisfied by any

bilocal point. However, we do not have a systematic practical
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approach to obtain such “bilocal inequalities”; even in the

simplest case we consider, we do not have a complete set of

inequalities that would be sufficient to define the set B.

We start here by giving alternative formulations for the

bilocality assumption [(5) and (6)], which will prove more

handy to use for practical purposes, in particular when looking

for explicit bilocal decompositions.

1. Bilocal decompositions onto deterministic correlations,

with weights qᾱβ̄γ̄

Consider a local correlation P , written in the form (5).

It is well known [22] that Alice’s local response function

P (a|x,λ1) can (without any loss of generality) be taken to be

deterministic, that is, such that it assigns a unique measurement

output a to every input x: any randomness used locally by

Alice can indeed always be thought of as being included in

the shared random variable λ1. For a finite number of possible

measurement inputs and outputs, there is a finite number of

such deterministic strategies corresponding to an assignment

of an output αx to each of Alice’s N possible inputs x. We

label each of these strategies with the string ᾱ = α1 . . . αN and

denote the corresponding response function Pᾱ(a|x) = δa,αx

(with δm,n = 1 if m = n, δm,n = 0 otherwise). Similarly, the

response functions P (b|y,λ1,λ2) and P (c|z,λ2) can also be

taken deterministic; we label the associated strategies β̄ and γ̄

and the corresponding response functions are Pβ̄(b|y) = δb,βy

and Pγ̄ (c|z) = δc,γz
.

Integrating over the set 	12
ᾱβ̄γ̄

of all pairs (λ1,λ2) that

specify the strategies ᾱ, β̄, and γ̄ for Alice, Bob, and Charlie,

respectively, we can write (5) as

P (a,b,c|x,y,z) =
∑

ᾱ,β̄,γ̄

qᾱβ̄γ̄ Pᾱ(a|x)Pβ̄(b|y)Pγ̄ (c|z), (7)

with qᾱβ̄γ̄ =
∫ ∫

	12
ᾱβ̄γ̄

dλ1dλ2 ρ(λ1,λ2) � 0 and
∑

ᾱβ̄γ̄ qᾱβ̄γ̄ =
1. Equation (7) corresponds to the well-known decomposi-

tion of local correlations as a convex sum of deterministic

strategies, where the weights qᾱβ̄γ̄ can be understood as the

probabilities assigned by the source to the strategies ᾱ, β̄,

and γ̄ .

Since ᾱ is specified here by λ1 and γ̄ is specified by λ2, then

(with obvious notations) ∪β̄	12
ᾱβ̄γ̄

= 	12
ᾱγ̄ = 	1

ᾱ × 	2
γ̄ , and

qᾱγ̄ =
∑

β̄

qᾱβ̄γ̄ =
∫∫

	1
ᾱ×	2

γ̄

dλ1dλ2 ρ(λ1,λ2), (8)

qᾱ =
∑

γ̄

qᾱγ̄ =
∫∫

	1
ᾱ×	2

dλ1dλ2 ρ(λ1,λ2), (9)

qγ̄ =
∑

ᾱ

qᾱγ̄ =
∫∫

	1×	2
γ̄

dλ1dλ2 ρ(λ1,λ2), (10)

where 	1 = ∪ᾱ	1
ᾱ and 	2 = ∪γ̄ 	2

γ̄ are the state spaces of the

variables λ1 and λ2.

Let us now assume that P is bilocal. One can see from

(8)–(10) that the independence condition (6) implies that

for all ᾱ,γ̄ , qᾱγ̄ = qᾱ qγ̄ . (11)

The interpretation is clear: The strategies ᾱ and γ̄ being

determined by two independent sources, their probabilities

should be independent.

Conversely, any correlation P (a,b,c|x,y,z) satisfying

(7) and (11) can be written in the form (5). Indeed,

since qᾱγ̄ = qᾱqγ̄ , we can write qᾱβ̄γ̄ = qᾱqγ̄ qβ̄|ᾱγ̄ . In-

serting this expression in (7) and defining Pᾱ,γ̄ (b|y) =
∑

β̄ qβ̄|ᾱγ̄ Pβ̄(b|y), we then find that P (a,b,c|x,y,z) =
∑

ᾱ,γ̄ qᾱqγ̄ Pᾱ(a|x)Pᾱγ̄ (b|y)Pγ̄ (c|z), which is clearly of the

form (5). We thus conclude that a tripartite correlation is

bilocal if and only if it admits the decomposition (7) with

the restriction (11).

Such a description of bilocal correlations is easier to deal

with than the defining assumptions (5) and (6), as it involves

only a finite number of coefficients qᾱβ̄γ̄ . One can thus now

determine whether a correlation P is bilocal by searching

such weights qᾱβ̄γ̄ � 0, with the linear constraints that they

must reproduce the correlation P as in (7), and the quadratic

constraints of bilocality (11).

An even more compact representation of bilocal decompo-

sitions can, however, be given in the following way.

2. Decompositions in terms of “correlators” eī j̄ k̄

For a given local (or bilocal) correlation P , the decom-

position (7) is in general not unique; Eq. (7) only imposes

a limited number of constraints on the weights qᾱβ̄γ̄ , which

are not enough to fix all of them. When dealing with a local

decomposition, it is convenient to use a parametrization that

clearly separates the parameters that are fixed, and those that

are internal degrees of freedom of the local model. A nice way

to do it is to transform the weights qᾱβ̄γ̄ into “correlators” eī j̄ k̄ .

Since we will use this approach in the context of bilocality,

we present it here in the three-partite case; note, however,

that this representation can be useful in more general studies

of (non)locality—not only of bilocality—and it can easily be

generalized to any N -partite case. Furthermore, for simplicity

we consider here a scenario with binary inputs and outputs;

the generalization to other scenarios can be cumbersome but

is rather straightforward (see Sec. II D 3 and Appendix B, for

instance, for the case where Bob has only one possible input,

and four or three outputs).

For binary inputs and outputs, Alice, Bob, and Charlie’s

strategies ᾱ,β̄,γ̄ simply contain two bits: ᾱ = α0α1, etc. Let us

then define, for a particular local decomposition of P in terms

of weights qᾱβ̄γ̄ , and for ī = i0i1,j̄ = j0j1 and k̄ = k0k1 ∈
{00,01,10,11}, the coefficients,

eī j̄ k̄ =
∑

ᾱβ̄γ̄

(−1)ᾱ·ī+β̄·j̄+γ̄ ·k̄qᾱβ̄γ̄ , (12)

where ᾱ · ī = α0i0 + α1i1, etc. The set of coefficients {eī j̄ k̄} is

equivalent to the set of weights {qᾱβ̄γ̄ } [Eq. (12) is actually

a discrete Fourier transformation], and (12) can easily be

inverted to obtain

qᾱβ̄γ̄ = 2−6
∑

ī j̄ k̄

(−1)ᾱ·ī+β̄·j̄+γ̄ ·k̄eī j̄ k̄. (13)

Thus, both representations (in terms of coefficients qᾱβ̄γ̄

or eī j̄ k̄) can be used to unambiguously define the local

decomposition.
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We call the coefficients eī j̄ k̄ “correlators,” for the following

reason: defining2, for a strategy ᾱβ̄γ̄ , Ax = (−1)αx , By =
(−1)βy , and Cz = (−1)γz , we have

eī j̄ k̄ =
〈

Ai0

0 A
i1

1 B
j0

0 Bj1

1 Ck0

0 Ck1

1

〉

{qᾱβ̄γ̄ }, (14)

where the average value is computed with the weights qᾱβ̄γ̄

(note that for a deterministic strategy, all values Ax , By , and

Cz are defined simultaneously).

Now, when ī �= 1̄, j̄ �= 1̄ and k̄ �= 1̄ (with the notation

1̄ = 11), at most one term Ax , By , and Cz per party appears

nontrivially in the average above. Hence, this average value

can be obtained directly from the correlation P , and the

corresponding correlators3 eī j̄ k̄ are therefore fixed by P :

for ī �= 1̄,j̄ �= 1̄, and k̄ �= 1̄,

eī j̄ k̄ =
〈

A
i0

0 A
i1

1 B
j0

0 B
j1

1 C
k0

0 C
k1

1

〉

P
, (15)

with now Ax = (−1)ax , where ax ∈ {0,1} is Alice’s output for

the input x, and similarly for the other two parties. The average

is now computed from the correlation P . For instance, one

gets e10,10,10 = 〈A0B0C0〉P , and e01,00,00 = 〈A1〉P . Note that

in particular with 0̄ = 00, one has e0̄0̄0̄ = 1 by normalization.

On the other hand, when ī = 1̄, j̄ = 1̄ or k̄ = 1̄, the

average value in (14) cannot be obtained from P , since the

measurement results A0 and A1, B0 and B1, C0 and C1

are incompatible; the corresponding correlators are internal
degrees of freedom of the local model, only constrained by the

nonnegativity of qᾱβ̄γ̄ , that is,

for all ᾱ,β̄,γ̄ ,
∑

ī j̄ k̄

(−1)ᾱ·ī+β̄·j̄+γ̄ ·k̄ eī j̄ k̄ � 0. (16)

Coming back to the bilocality constraint, in the correlators

representation, one can easily check that the condition (11)

translates into the following constraints:

for all ī,k̄, eī0̄k̄ = eī0̄0̄ e0̄0̄k̄ . (17)

Now, when ī �= 1̄ and k̄ �= 1̄, the correlators that appear in (17)

are already fixed according to (15), and the constraint is indeed

satisfied, as a consequence of the fact that for bilocal correla-

tions, P (a,c|x,z) = P (a|x)P (c|z)4 (or 〈AxCz〉 = 〈Ax〉〈Cz〉).

2When expressing correlations, it is often more convenient to con-

sider ±1-valued outputs. Throughout the paper, we’ll use lowercase

variables for bit values 0 and 1, and uppercase variables for the

corresponding bit values ±1, as, for instance, in Ax = (−1)αx .
3More generally, for more than two inputs per party, the fixed

correlators are those where the corresponding product averaged in

(14) only contains terms that refer to at most one input per party.
4P (a,c|x,z) = P (a|x)P (c|z) directly follows from the bilocality

condition (2): After summing over Bob’s outputs b, the two integrals

over λ1 and λ2 factorize. Note that this equality also holds for quantum

correlations established from independent sources, as in Fig. 1.

When ī = 1̄ and k̄ �= 1̄, or vice versa, (17) gives linear

constraints on the free correlators e1̄0̄k̄ and eī0̄1̄. There finally

remains only one5 quadratic constraint in the case where

ī = k̄ = 1̄: e1̄0̄1̄ = e1̄0̄0̄ e0̄0̄1̄.

Because the representation in terms of correlators nicely

separates the fixed and free parameters of the (bi)local

decomposition, it simplifies the search for explicit bilocal

decompositions quite significantly. We now present how this

problem can be tackled in practice.

3. Looking for explicit bilocal decompositions

To determine whether a given correlation P is bilocal or

not, one can now look whether there exist correlators eī j̄ k̄—

some of which are fixed by (15)—that satisfy the nonnegativity

constraint (16) and the bilocality assumption (17).

This nonconvex feasibility problem can be addressed from

two different perspectives. First, one can try a heuristic search

that will provide an explicit bilocal model if successful,

thus proving P ∈ B—unless an exhaustive search can be

undergone, a negative result will however be inconclusive.

Secondly, one can try to solve a convex relaxation [23] of

the quadratic constraints (17) in the nonconvex problem—a

negative result proving P /∈ B. Both approaches lead naturally

to the usage of numerical algorithms to solve the nonconvex

problem or its convex relaxations.6

In practice, one may be interested in the robustness of a

nonbilocal correlation to experimental imperfections, such as

noise (see, in particular, Secs. III A 1 and III B) or detection

inefficiencies (see Sec. III C). One can then transform the

above feasibility problem into an optimization problem;

for instance, one may want to maximize the noise that is

tolerated by a correlation (or minimize the visibility of a noisy

correlation of the form P (V ) = V P + (1 − V )P0; see Eq. (33)

below) before it becomes bilocal. The brute force search will

give an upper bound on the tolerated noise (a lower bound on

the visibility threshold Vbiloc, as defined in Sec. III A 1 below),

while the convex relaxation will give a lower bound on the

tolerated noise (an upper bound on Vbiloc).

Examples of explicit bilocal decompositions, for the

quantum correlations studied in Sec. III, are given in

Tables I–V below.

D. Nonlinear inequalities for bilocal correlations

As mentioned earlier, another approach to study the

(non)bilocality of given correlations is to test Bell-type

inequalities. Indeed, one can derive in some cases analytical

constraints satisfied by all bilocal correlations; if a correlation

5For more than two inputs for Alice and Charlie, there will remain

more than one quadratic constraint, but the correlator representation

will still significantly simplify the search for explicit bilocal decom-

positions.
6In our numerical tests, we used the standard optimization toolbox

of MATLAB, which implements the algorithms described in [24], and

the BMIBNB solver of YALMIP for convex relaxations.
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is found to violate these constraints, then this implies that the

correlation is nonbilocal. These nonlinear bilocal inequalities
thus provide convenient tests of nonbilocality, which are

directly implementable in experimental demonstrations.

We start by deriving such a bilocal inequality for the case

where the three parties all have binary inputs and outputs. We

then show that our first inequality implies similar inequalities

for the case where Bob now has only one possible input, with

four or three possible outputs (while Alice and Charlie still

have binary inputs and outputs). These cases will be relevant

for entanglement swapping experiments, as we will later see

in Sec. III.

1. A bilocal inequality for binary inputs and outputs

We thus consider first the scenario where Alice, Bob, and

Charlie have binary inputs and outputs x,y,z,a,b,c ∈ {0,1}.
Let us define, for a given correlation P 22, the tripartite

correlation terms,

〈AxByCz〉P 22 =
∑

a,b,c

(−1)a+b+c P 22(a,b,c|x,y,z),

and the following linear combinations I 22,J 22:

I 22 = 1

4

∑

x,z=0,1

〈AxB0Cz〉P 22 , (18)

J 22 = 1

4

∑

x,z=0,1

(−1)x+z〈AxB1Cz〉P 22 . (19)

As we show below, if P 22 is bilocal, then the following

nonlinear inequality necessarily holds:

√

|I 22| +
√

|J 22| � 1. (20)

Proof. By assumption, P 22 has a bilocal decomposition of

the form (2). Defining 〈Ax〉λ1
= ∑

a(−1)aP 22(a|x,λ1), and

with similar definitions for 〈By〉λ1,λ2
and 〈Cz〉λ2

, one gets

I 22 = 1

4

∫ ∫

dλ1dλ2 ρ1(λ1) ρ2(λ2)

× (〈A0〉λ1
+ 〈A1〉λ1

)〈B0〉λ1,λ2
(〈C0〉λ2

+ 〈C1〉λ2
).

Using the fact that |〈B0〉λ1,λ2
| � 1,

|I 22| �
1

4

∫ ∫

dλ1dλ2ρ1(λ1)ρ2(λ2)

× |〈A0〉λ1
+ 〈A1〉λ1

||〈C0〉λ2
+ 〈C1〉λ2

|

�

∫

dλ1ρ1(λ1)

∣

∣〈A0〉λ1
+ 〈A1〉λ1

∣

∣

2

×
∫

dλ2ρ2(λ2)

∣

∣〈C0〉λ2
+ 〈C1〉λ2

∣

∣

2
,

and one can show similarly, that

|J 22| �

∫

dλ1ρ1(λ1)

∣

∣〈A0〉λ1
− 〈A1〉λ1

∣

∣

2

×
∫

dλ2ρ2(λ2)

∣

∣〈C0〉λ2
− 〈C1〉λ2

∣

∣

2
.

Now, for any r,s,r ′,s ′ � 0, the inequality
√

rs +
√

r ′s ′ �√
r + r ′√s + s ′ holds. Applied to the above two bounds on

|I 22| and |J 22|, we obtain

√

|I 22| +
√

|J 22|

�

√

√

√

√

∫

dλ1ρ1(λ1)

(∣

∣〈A0〉λ1
+

〈

A1

〉

λ1

∣

∣

2
+

∣

∣〈A0〉λ1
− 〈A1〉λ1

∣

∣

2

)

×

√

√

√

√

∫

dλ2ρ2(λ2)

(
∣

∣〈C0〉λ2
+〈C1〉λ2

∣

∣

2
+

∣

∣〈C0〉λ2
− 〈C1〉λ2

∣

∣

2

)

.

Furthermore, |〈A0〉λ1
+ 〈A1〉λ1

|/2 + |〈A0〉λ1
− 〈A1〉λ1

|/2 =
max(|〈A0〉λ1

|,|〈A1〉λ1
|) � 1 and similarly, |〈C0〉λ2

+
〈C1〉λ2

|/2 + |〈C0〉λ2
− 〈C1〉λ2

|/2 � 1. After integrating

over λ1 and λ2 in the previous expressions, we obtain

inequality (20). �

A projection of the correlation space onto the (I 22,J 22)

plane is shown in Fig. 3. Note that the bilocal inequality (20)

is tight in this plane, that is, any values of I 22 and J 22 such that
√

|I 22| +
√

|J 22| � 1 can be obtained by a bilocal correlation;

see Table I for an explicit bilocal decomposition. One can

show on the other hand that the local correlations satisfy

|I 22| + |J 22| � 1 (recall that L is the convex hull of B), which

can be understood as Bell inequalities.7 Finally, nonsignaling

correlations—such that their marginal probability distributions

when one discards some parties do not depend on the settings

of the discarded parties—also form a polytope, bounded by

max(|I 22|,|J 22|) � 1; in particular, a nonsignaling correlation

such that8 a + b + c = xy + yz (mod 2), which can easily

be realized with two Popescu-Rohrlich (PR) boxes [26] (one

shared by Alice and Bob, one shared by Bob and Charlie [27]),

reaches the values I 22 = J 22 = 1.

2. Scenario with one input, four outputs for Bob

We now consider the case where Bob has only one possible

input and four possible outputs, while Alice and Charlie still

have binary inputs and outputs; this could in practice corre-

spond to the case where Bob performs a complete Bell-state

measurement, in an entanglement-swapping experiment—see

Sec. III A below.

Let us denote Bob’s outputs by two bits9 b = b0b1 =
00,01,10 or 11, and by P 14(a,b0b1,c|x,z) the correlation

7For instance, the inequality I 22 + J 22 � 1 can be written

as (a quarter of) the sum of two equivalent facet inequal-

ities of the tripartite local polytope (it is therefore not a

facet itself): 〈A0B0C0 + A1B1C1 + A1B0C0 − A0B1C1〉 � 2 and

〈A1B0C1 + A0B1C0 + A0B0C1 − A1B1C0〉 � 2, which are facets of

the “Class 3” type as defined in [25].
8More precisely, P 22(a,b,c|x,y,z) = 1

8
[1 + (−1)a+b+c+xy+yz].

9To clarify the notations, note that we use superscripts on Bob’s

output bits b0 and b1, to distinguish the case where they form one

single output (b = b0b1), from the previous case where b0 and b1 were

Bob’s outputs for two different inputs (y = 0 and 1, respectively).

Note also that since Bob has only one possible input y, we do not

need to specify it in P 14(a,b0b1,c|x,z).
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TABLE I. Any values of I 22 and J 22 such that
√

|I 22| +
√

|J 22| � 1 can be obtained by a bilocal correlation P 22, for instance, by the one

defined by the explicit decomposition below, with K22 =
√

|I 22| −
√

|J 22|; see Appendix B for details on how to read the tables. For this

decomposition, the constraint
√

|I 22| +
√

|J 22| � 1 comes from the non-negativity condition (B1). For I 22 = J 22 = 1

2
V (and hence K22 = 0),

the table gives a bilocal decomposition for P 22
Q (V ) (see Sec. III B 1), valid for V ∈ [0, 1

2
].

shared by Alice, Bob, and Charlie. Similarly to the previous

case, we now define the tripartite correlation terms,

〈AxB
yCz〉P 14 =

∑

a,b0b1,c

(−1)a+by+c P 14(a,b0b1,c|x,z),

−1 −1/2 0 1/2 1

−1

−1/2

0

1/2

1

 

 

 

 

FIG. 3. Projection of the tripartite correlation space in the (I,J )

plane, for I = I 22 or I 14 and J = J 22 or J 14, as defined in Eqs. (18)–

(19) or (21)–(22), for the “22” and “14” cases, respectively The

nonconvex bilocal setB is delimited by the four portions of parabolas,

corresponding to the inequality
√|I | + √|J | � 1 [Eqs. (20) or

(23)]. It is included in the local set L delimited by the dashed

lines, for which |I | + |J | � 1. The set Q of quantum correlations

is also limited in this plane by |I | + |J | � 1. In the 22 case, the

nonsignaling polytope NS22 is delimited by the outer dotted square,

defined by max(|I 22|,|J 22|) � 1; in the 14 case, the projection of

the nonsignaling polytope NS14 coincides with that of the local and

quantum sets. The figure can also be understood as a two-dimensional

slice of the correlation space, containing the quantum correlation

PQ = P 22
Q (34) or P 14

Q (30), the fully random correlation P0 = P 22
0

or P 14
0 , and the bilocal correlations PI = P 22

I or P 14
I and PJ = P 22

J

or P 14
J , as defined in footnotes 13 and 17. In this slice, the bilocal

set is star-convex. One can see that the quantum correlation PQ =
1

2
PI + 1

2
PJ is local, but not bilocal. When adding some white noise,

it enters the bilocal set for visibilities V � 1

2
(see Sec. III A 1).

and the linear combinations I 14 and J 14 as follows:

I 14 = 1

4

∑

x,z=0,1

〈AxB
0Cz〉P 14 , (21)

J 14 = 1

4

∑

x,z=0,1

(−1)x+z〈AxB
1Cz〉P 14 . (22)

As in the previous case, if P 14 is bilocal, then the following

nonlinear inequality necessarily holds:

√

|I 14| +
√

|J 14| � 1. (23)

Note that this implies in particular to the inequality previously

derived in [15] (see Appendix C).

Proof.We show that inequality (23) can directly be derived

from (20). Indeed, from the correlation P 14, the three parties

can obtain a correlation P 22(a,b,c|x,y,z), with now binary

inputs and outputs for Bob, if, for a given input y ∈ {0,1}, Bob

simply outputs the corresponding bit by . Formally,

P 22(a,b,c|x,y,z) = P 14(a,by = b,c|x,z)

=
∑

b0,b1

δb,by P 14(a,b0b1,c|x,z). (24)

One can easily check that for the correlation P 22 thus obtained,

〈AxByCz〉P 22 = 〈AxB
yCz〉P 14 and the values of I 22 and J 22 as

defined in Eqs. (18) and (19) coincide with the values of I 14

and J 14 obtained from Eqs. (21) and (22).

Suppose now that P 14 is bilocal. Since the processing from

P 14 to P 22 is made locally by Bob, then P 22 is also bilocal,

and therefore it satisfies (20). Since I 22 = I 14 and J 22 = J 14,

then (23) also holds. �

The projection of the correlation space onto the (I 14,J 14)

plane can also be seen in Fig. 3. As before, the bilocal

inequality (23) is tight in this plane (see Table II). On the

other hand, local correlations satisfy the Bell inequalities

|I 14| + |J 14| � 1. Interestingly, it turns out that nonsignaling

correlations in this scenario are now also bounded by10

|I 14| + |J 14| � 1.

10For instance, the nonsignaling assumption implies I 14 + J 14 =
1 − ∑

P 14(a,b0b1,c|x,z) � 1, where the sum is over all indices

x,z,a,b0b1,c such that b0 �= a ⊕ c and b1 �= a ⊕ c ⊕ x ⊕ z, and

where ⊕ denotes the addition modulo 2.
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TABLE II. Similarly as in the 22 case of Table I, any values of I 14 and J 14 such that
√

|I 14| +
√

|J 14| � 1 can be obtained by a bilocal

correlation P 14, for instance, by the one defined by the explicit decomposition below, with K14 =
√

|I 14| −
√

|J 14|. Note the strong similarities

of this decomposition with that of Table I; the main difference being that the correlators eī,11,k̄ with ī �= 11 and k̄ �= 11 (in the fourth subtable)

are no longer internal degrees of freedom of the decomposition; we now display them in nonshaded cells. For I 14 = J 14 = 1

2
V (and K14 = 0),

the table gives a bilocal decomposition for P 14
Q (V ) (Sec. III A 1), valid for V ∈ [0, 1

2
].

3. On the difference between the case with one input / four

outputs and the case with two inputs / two outputs for Bob

We observe a quite strong similarity between the cases

where Bob has binary inputs and outputs (the “22 case”),

and where he has one input with four possible outputs (the

“14 case”). As we have just seen in the proof of Eq. (23), a

scenario of the first kind can easily be obtained from a scenario

of the second kind, and constraints on the correlations in the

22 case imply constraints in the 14 case. However, this is

only a one-way procedure. From a correlation with binary

inputs and outputs, one cannot simply obtain a correlation

with four outputs: indeed, b0 and b1 in the binary case are

incompatible measurement results, and can in general not

be outputted simultaneously to define a single four-valued

outcome b = b0b1.

From a more technical point of view, when looking for

explicit (bi)local decompositions, the definitions of weights

qᾱβ̄γ̄ or of correlators eī j̄ k̄ , for instance, will be formally the

same, the only difference being in the interpretation: in the 22

case, β0 and β1 are different single-bit outputs, corresponding

to different inputs, while in the 14 case, β0 and β1 form a single

two-bit output, for a single input. Since the outputs β0 and β1

in the 14 case are compatible, the bilocal models are more

constrained in that case than in the 22 case: Correlators of the

form eī,11,k̄ (with ī,k̄ �= 11) are fixed by correlations P 14, but

not by correlations P 22. Although our bilocal inequality does

not illustrate this fact, it might be the case that more severe

constraints on bilocal correlations can be derived in the 14

case than in the 22 case. What can be seen, however, when

looking only at the linear combinations I 22/14 and J 22/14 is

that, as already mentioned, the Bell inequalities of the form

|I 22| + |J 22| � 1 for local correlations can be violated by

nonsignaling correlations; but interestingly, their counterpart

|I 14| + |J 14| � 1 cannot (see Fig. 3).

4. Scenario with one input, three outputs for Bob

Let us finally consider the “13 case,” where Bob has only

one input and three possible outputs (again, Alice and Charlie

still have binary inputs and outputs); in practice, this could

correspond to an incomplete Bell-state measurement—see

Sec. III B 2 below.

To compare with the case with four outputs for Bob, we

still use two bits to denote Bob’s outputs, b = b0b1 = 00, 01

or {10 or 11}: Here, Bob does not distinguish his outcomes

10 and 11, that is, [b0b1 = 10] ≡ [b0b1 = 11]. We denote

by P 13(a,b,c|x,z) the correlation shared by Alice, Bob, and

Charlie.

By analogy with the previous cases, let us now define the

following tripartite correlators:

〈AxB
0Cz〉P13

=
∑

a,c

(−1)a+c [P 13(a,00,c|x,z) + P 13(a,01,c|x,z)

−P 13(a,{10 or 11},c|x,z)],

〈AxB
1Cz〉P13,b0=0

=
∑

a,c

(−1)a+c [P 13(a,00,c|x,z) − P 13(a,01,c|x,z)],

and, in a similar way again as before, the following linear

combinations:

I 13 = 1

4

∑

x,z=0,1

〈AxB
0Cz〉P 13 , (25)

J 13 = 1

4

∑

x,z=0,1

(−1)x+z〈AxB
1Cz〉P 13,b0=0. (26)

Once again, all bilocal correlations P 13 necessarily satisfy

√

|I 13| +
√

|J 13| � 1, (27)

and this inequality is tight in the (I 13,J 13) plane.

Proof. We show here that inequality [Eq. (27)] can directly

be derived from Eq. (23). Indeed, from the correlation P 13,

the three parties can obtain a correlation P 14(a,b,c|x,y,z),

with now four possible outputs for Bob, in the following very

simple way: When Bob gets an outcome b = 0b1, he outputs it

directly; when he gets the outcome b = {10 or 11}, he outputs

b = 10 or b = 11 at random. Formally,

P 14(a,0b1,c|x,z) = P 13(a,0b1,c|x,z),

P 14(a,1b1,c|x,z) = 1
2
P 13(a,{10 or 11},c|x,z).

(28)

One can again check that for the correlation P 14 thus

obtained, 〈AxB
0Cz〉P 14 = 〈AxB

0Cz〉P13 and 〈AxB
1Cz〉P 14 =

〈AxB
1Cz〉P13,b0=0; therefore the values of I 14 and J 14 as defined

in Eqs. (21) and (22) coincide with the values of I 13 and J 13

obtained from (25) and (26).
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TABLE III. Any values of I 13 and J 13 such that
√

|I 13| +
√

|J 13| � 1 can be obtained by a bilocal correlation P 13, for instance, by

the one defined by the explicit decomposition below, with K13,L13, and M13 such that |L13+M13| � 1

2
(1−K13)2, |L13−M13| � 1−(K13)2,

4|I 13| � (1+K13)2, and 4|J 13| � 1

2
(1−K13)2 + L13+M13 � (1−K13)2; see Appendix B for clarifications on how the correlators are defined

in the 13 case. For I 13 = 2

3
V , J 13 = 1

6
V , K13 =

√

|I 13| −
√

|J 13| =
√

V

6
, L13 = 0, and M13 = 1

3
V , the table gives a bilocal decomposition

for P 13
Q (V ) (Sec. III B 2), valid for V ∈ [0, 2

3
].

Suppose now that P 13 is bilocal. Then so is P 14, which

therefore satisfies (23). Since I 14 = I 13 and J 14 = J 13, then

P 13 satisfies (27). �

The projection of the correlation space onto the (I 13,J 13)

plane is shown on Fig. 4. As in the 14 case, the local and

nonsignaling sets are delimited in this plane by |I 13| + |J 13| �

1, while the bilocal correlations satisfy
√

|I 13| +
√

|J 13| � 1

(which is tight in this plane; see Table III).

It is also relevant to restrict ourselves to correlations with

random marginals 〈B0〉P 13 = 0 for Bob (with an obvious

−1 −1/2 0 1/2 1

−1

−1/2

0

1/2

1

 

 

 

 

2
3

FIG. 4. Projection of the tripartite correlation space in the

(I 13,J 13) plane, as defined in Eqs. (25) and (26), for the “13 case”.

The projections of the bilocal set B13, of the local polytope L13,

of the quantum set Q13 and of the nonsignaling polytope NS13

are similar to those of Fig. 3. When restricting to correlations

with a random marginal 〈B0〉P 13 for Bob and random bipartite

marginals 〈AxCz〉P 13 for Alice-Charlie, the local (L13
RND), quantum

(Q13
RND), and nonsignaling (NS13

RND) sets are instead delimited by

|I 13| + 2|J 13| � 1 (dashed diamond). The restriction of the figure to

the dashed diamond can also be understood as a two-dimensional slice

of the correlation space, containing the quantum correlation P 13
Q (36),

the random correlation P 13
0 , and the bilocal correlations P 13

I and P 13
J ,

as defined in footnote 18. One can see that the quantum correlation

P 13
Q = 2

3
P 13

I + 1

3
P 13

J is local, but not bilocal. When adding some

noise, it enters the bilocal set for visibilities V � 2

3
(see Sec. III B 2).

notation) and random bipartite marginals 〈AxCz〉P 13 = 0 for

Alice-Charlie, such as the quantum correlation P 13
Q (36)

studied in Sec. III B 2 below. With these additional constraints,

the local and nonsignaling sets are delimited in the (I 13,J 13)

plane by11 |I 13| + 2|J 13| � 1; see Fig. 4.

5. Do our bilocal inequalities fully characterize the bilocal set?

Note that one can of course also derive many equivalent

versions of inequalities [Eqs. (20), (23), and (27)], where the

inputs and/or outputs are permuted. One may wonder whether

these inequalities are enough to delimit the bilocal set, as it is

the case, for instance, with the Clauser-Horne-Shimony-Holt

(CHSH) inequality [28] and its equivalent versions for two

parties with binary inputs and outputs, which—together with

trivial inequalities of the form P � 0—fully characterize the

corresponding local set [22]. The answer is negative: There

exist nonbilocal correlations that satisfy (23), for instance, and

all its equivalent versions. Although in most practical cases we

study in the next sections, considering inequalities [Eqs. (20),

(23), or (27)] will be enough to demonstrate nonbilocality, the

study of the detection loophole in Sec. III C will provide an

example where these are not sufficient; we will then resort to

convex relaxation methods.

Fully characterizing the bilocal set, in the scenarios con-

sidered here, by a simple list of inequalities remains an open

problem.

III. QUANTUM VIOLATIONS OF BILOCALITY IN

ENTANGLEMENT-SWAPPING EXPERIMENTS

Since John Bell’s work in the 1960s [1], it is well understood

that his locality assumption can be falsified by quantum

correlations. Hence, our bilocality assumption can a fortiori
also be falsified quantum mechanically. Since the latter is a

stronger assumption than the former, one may wonder whether

it can lead to stronger tests of quantumness; we show now that

this is indeed the case.

11The nonsignaling assumption indeed implies, for instance, I 13 +
2J 13 = 1 + 〈B0〉 − 1

4

∑

x,z〈AxCz〉 − 2
∑

P 13(a,0b1,c|x,z), where

the last sum is over all indices x,z,a,b1,c such that a �= c and

b1 = x ⊕ z. If Bob’s marginal 〈B0〉 and all Alice-Charlie’s bipartite

marginals 〈AxCz〉 are zero, it follows that I 13 + 2J 13 � 1.
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To justify the use of the bilocality assumption, we consider

below scenarios where two independent quantum sources S1

and S2 send particles to Alice and Bob in the state ̺1, and to

Bob and Charlie in the state ̺2, respectively, so that the overall

quantum state is

̺ABC = ̺1 ⊗ ̺2 . (29)

This typically corresponds to entanglement-swapping experi-

ments [11], as depicted in Fig. 1.

We always assume below that Alice and Charlie have binary

inputs and outputs. As for Bob, we consider the case where

he can perform a full Bell-state measurement (he has only one

possible input, with four possible outputs), the case where his

measurement results group the Bell states two by two, and

he can choose among two possible pairings (he has binary

inputs and outputs), and the case where his partial Bell-state

measurement distinguishes two Bell states, but groups the

other two together (he has again only one possible input, with

now three possible outputs).

In most cases (with the notable exception of Sec. III C 2

below), our bilocal inequalities derived in the previous section

will be sufficient to demonstrate the nonbilocality of the

quantum correlations thus obtained.

A. Entanglement-swapping experiment with a complete

Bell-state measurement

We start by considering a typical standard entanglement-

swapping experiment, where the sources S1 and S2 each

produce a singlet state |
−〉, and where Bob performs a

complete Bell-state measurement on the two particles he

receives from the two sources; the four possible outcomes

b = b0b1 = 00,01,10 or 11 he can obtain correspond to the

four Bell states (with standard notations) |�+〉,|�−〉,|
+〉
or |
−〉, respectively. Alice and Charlie can each choose a

projective measurement (with binary outcomes) to perform

on their qubit, described by the observables Âx and Ĉz

(corresponding to their inputs x and z, respectively).

Suppose that Alice and Charlie can measure either

Â0 = Ĉ0 = (σ̂Z + σ̂X)/
√

2 (for x,z = 0) or Â1 = Ĉ1 = (σ̂Z −
σ̂X)/

√
2 (for x,z = 1) on their particle, where σ̂Z and σ̂X are

the Pauli matrices.12 Quantum mechanics predicts that Alice,

Bob, and Charlie will observe the following correlation:

P 14
Q (a,b0b1,c|x,z)

= 1

16

[

1 + (−1)a+c (−1)b
0 + (−1)x+z+b1

2

]

. (30)

From the definitions [Eqs. (21) and (22)], one easily obtains

I 14
(

P 14
Q

)

= J 14
(

P 14
Q

)

= 1
2
, (31)

which violates (23). One can thus conclude that the quantum

mechanical correlation P 14
Q (30) is nonbilocal.

12In order not to confuse the notations, we use the fonts X,Y,Z for the

Pauli matrices σ̂X,σ̂Y, and σ̂Z or for directions on the Bloch sphere,

and the fonts x,y,z for Alice, Bob, and Charlie’s inputs.

It turns out, however, that P 14
Q is local.13 Like local and

nonsignaling correlations, quantum correlations are bound to

satisfy14 |I 14| + |J 14| � 1 (see Fig. 3); note that this holds

even if the state ̺ABC does not have the product form (29).

1. Resistance to noise

An interesting figure of merit to quantify the non(bi-)

locality of a correlation is its resistance to noise. One way

to model noise15 is to suppose that each source Si introduces

white noise with probability 1 − vi , that is, corresponding to

a visibility vi : Instead of sending a pure (say, two-qubit) state

|ψi〉, the state it actually sends is

̺i(vi) = vi |ψi〉〈ψi | + (1 − vi) 1/4. (32)

In the case we consider here, with maximally entangled states

and random marginal probability distributions, the resulting

quantum correlation will only depend on the product V = v1v2

of the visibilities of each source, and is simply given by

P 14
Q (V ) = V P 14

Q + (1 − V )P 14
0 , (33)

where P 14
0 is the fully random probability distribution [i.e.,

P 14
0 (a,b0b1,c|x,z) = 1/16 for all a,b0b1,c,x,z]. The largest

visibility for which the correlation P 14
Q (V ) admits a bilocal

decomposition defines the bilocal visibility threshold Vbiloc,

and can be used to quantify the nonbilocality of P 14
Q : The

smallest Vbiloc is, the more resistant to noise, and hence the

more bilocal P 14
Q is.

13P 14
Q can indeed be decomposed as P 14

Q = 1

2
P 14

I + 1

2
P 14

J

(see Fig. 3), with P 14
I (a,b0b1,c|x,z) = 1

16
[1 + (−1)a+c+b0

] and

P 14
J (a,b0b1,c|x,z) = 1

16
[1 + (−1)x+z+a+c+b1

]. P 14
I and P 14

J are

bilocal (and hence, local): They can be obtained from the

explicit decompositions of Table II, for (I 14 = 1,J 14 = 0) and

(I 14=0,J 14=1), respectively. Note that P 14
I and P 14

J , as well

as the fully random correlation P 14
0 , are all invariant with

respect to the symmetries (a,b0,b1) ↔ (a⊕1,b0⊕1,b1⊕1),

(b0,b1,c) ↔ (b0⊕1,b1⊕1,c⊕1), (x,b1) ↔ (x⊕1,b1⊕1), and

(z,b1) ↔ (z⊕1,b1⊕1), which can all be applied bilocally

(i.e., independently between A–B, and B–C). When

applying each of these symmetries with probability 1

2
, any

correlation P 14 (giving values I 14,J 14) is projected onto

a correlation P 14
⊥ = I 14P 14

I + J 14P 14
J + (1−I 14−J 14)P 14

0

on the two-dimensional slice represented on Fig. 3. This

“depolarization” is similar to that introduced in Ref. [15]; similar

depolarization processes can be defined in the other (22 and 13)

cases.
14Note that all values of I 14,J 14 such that |I 14| + |J 14| � 1 can be

obtained quantum mechanically; for instance, for Alice and Charlie’s

measurement settings of the form Â0/1 = Ĉ0/1 = cos θσ̂Z ± sin θσ̂X,

we get I 14 = cos2 θ,J 14 = sin2 θ , and the full line segment I 14 +
J 14 = 1 (with 0 � I 14,J 14 � 1) is recovered.
15Note that one could also consider some additional white noise

due to the measurement apparatuses, by introducing a visibility vP

for each party P = A,B or C. In the case we consider here, the

resulting quantum correlation would then depend on the product

V = v1v2vAvBvC of the visibilities of each source and measurement

apparatus, and our argument would remain unchanged.
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Noting that I 14[P 14
Q (V )] = J 14[P 14

Q (V )] = 1
2
V , we con-

clude from our bilocal inequality (23) that P 14
Q (V ) is nonbilocal

for all visibilities V > 50% (see Fig. 3). On the other hand, for

visibilities V � 50%, one can find an explicit decomposition

that proves that P 14
Q (V ) is bilocal (see Table II); our inequality

thus detects optimally the resistance to noise of the correlation

P 14
Q , for which Vbiloc = 50%.

The visibility V can be understood as the visibility of the

maximally entangled state that results from the entanglement-

swapping process. In order to check the nonlocality of that

state in the standard locality scenario, one could test the

CHSH inequality [28]: This would require the use of different

measurement settings for Alice or Charlie, and would require

a visibility V > 1√
2

≃ 70.7% for the CHSH inequality to

be violated. Actually, no Bell inequality can be violated

(using Von Neumann measurements) for visibilities smaller

than V ≃ 66% [29]. Our assumption allows one, however, to

exhibit nonbilocal correlations for visibilities as low as 50%.

This illustrates the advantage of the bilocality assumption,

which simplifies the requirements for the demonstration of

quantumness in entanglement-swapping experiments [30,31].

2. On our choice of measurement settings

The measurement settings we chose for Alice and Charlie

above (and which were already introduced before in [15]) are

the ones giving the bilocal quantum correlation P 14
Q (30) that is

the most resistant to noise we could find (i.e., with the smallest

bilocal visibility threshold Vbiloc).

These measurement settings were first obtained numeri-

cally, following the approach introduced in Sec. II C. Our

extensive numerical tests convince us that we have found

the optimal settings for the case where the sources send two

singlet states, where Alice and Charlie can choose among two

projective measurements, and where Bob performs a complete

Bell-state measurement. The symmetries of the quantum

correlation P 14
Q (30) then actually inspired our definitions

(21) and (22) for I 14 and J 14, and the whole analysis of

Sec. II D; interestingly, our bilocal inequality (23) is sufficient

to demonstrate the nonbilocality of P 14
Q (V ) down to V = Vbiloc.

B. Partial Bell-state measurements

An ideal entanglement-swapping experiment requires Bob

to perform a complete Bell-state measurement. This might not

be a trivial thing to do; actually, it is known to be impossible

to perform this ideal joint measurement with linear quantum

optics [32].

From an experimental perspective, it is therefore interesting

to study the consequences of the bilocality assumption in

scenarios where Bob does not perform a complete Bell-state

measurement, but only a partial one. We thus consider below

cases where Bob’s measurement does not allow him to

discriminate the four Bell states, but only subsets of the Bell

states.

For instance, he may perform a measurement that allows

him to discriminate one Bell states versus the other three. In

that case, however, we found no advantage with the bilocality

assumption, over a test of standard locality (for instance, a

test of CHSH between Alice and Charlie, conditioned on Bob

having observed the Bell state he can distinguish), even if

Bob may have different possible inputs that allow him to

choose which of the four Bell states he wants to discriminate:

We always found Vloc = Vbiloc = 1/
√

2. Another possibility

would be for Bob to distinguish pairs of Bell states. If he

can only distinguish two states versus the other two, the

correlation shared by the three parties will be bilocal16; if

he can choose among two different pairwise groupings of the

same four Bell states (when he has two possible inputs), they

will obtain nonbilocal correlations, with a visibility threshold

Vbiloc = 50% (see Sec. III B 1 below); the case where he can

choose among the three possible pairwise groupings does not

provide any advantage over the case with two inputs. Finally,

Bob may be able to discriminate two Bell states perfectly, but

not to distinguish the other two. In that case, the correlation

will again be nonbilocal, with now a visibility threshold

Vbiloc = 2/3 (Sec. III B 2 below); when Bob has more than

one input that allows him to choose which two Bell states he

wants to discriminate perfectly, the situation is the same as the

previous one, with pairwise groupings.

1. Binary inputs and outputs for Bob

Let us thus start by considering the case where Bob has

two possible inputs, and he wants to distinguish either the

|�±〉 versus the |
±〉 Bell states, or the |�+〉 or |
+〉 versus

the |�−〉 or |
−〉 Bell states, that is, he measures either

B̂0 = |�+〉〈�+| + |�−〉〈�−| − |
+〉〈
+| − |
−〉〈
−| =
σ̂Z ⊗ σ̂Z or B̂1 = |�+〉〈�+| − |�−〉〈�−| + |
+〉〈
+| −
|
−〉〈
−| = σ̂X ⊗ σ̂X; note that his measurement is actually

a separable measurement.

We still assume that the two sources produce singlet states,

and that Alice and Charlie perform the same measurements

as before, in Sec. III A: Â0/1 = Ĉ0/1 = (σ̂Z ± σ̂X)/
√

2. In this

scenario where all parties have binary inputs and outputs, the

quantum correlation shared by the three parties is then

P 22
Q (a,b,c|x,y,z) = 1

8

[

1 + 1
2
(−1)a+b+c+xy+yz

]

, (34)

for which, from the definitions [Eqs. (18) and (19)], one gets

I 22
(

P 22
Q

)

= J 22
(

P 22
Q

)

= 1
2
. (35)

This violates (20), which proves that P 22
Q is not bilocal.

The bilocal visibility threshold can be defined as in the

previous section, by considering correlations of the same form

as (33) [with now P 22
0 (a,b,c|x,y,z) = 1/8 for all a,b,c,x,y,z].

We find that P 22
Q (V ) violates inequality (20) for visibilities

V > 50%, and that it admits a bilocal model for visibilities V

(see Table I), so that again, for P 22
Q , Vbiloc = 50% (see Fig. 3).

The practical consequences of this result are, however, not

as interesting as in the 14 case. Bob’s measurement being sep-

arable, we are not considering here an entanglement-swapping

experiment. In fact, the scenario here amounts to performing

two tests of the CHSH inequality, between Alice-Bob and

Bob-Charlie. The requirement V > 50% simply corresponds

to the requirement that at least one of the visibilities vi of the

16This is due to the fact that for a pairwise grouping of the Bell

states, Bob’s measurement is separable, of the form σ̂U ⊗ σ̂U, with

U = X,Y, or Z depending on the grouping (see Sec. III B 1).
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CHSH tests be larger than 1/
√

2; however, this is already a

sufficient condition to demonstrate simply Bell nonlocality.

For completeness, note that as was P 14
Q in the 14 case, P 22

Q is

local.17 Like local correlations (but unlike nonsignaling ones,

here), and as in the 14 case once again, quantum correlations

actually also satisfy |I 22| + |J 22| � 1, which is again tight

and holds even if the state ̺ABC does not have the product

form (29); this can be seen by expanding the factors of

the positive operator Ô = (Â+ − B̂0Ĉ+)2 + (Ĉ+ − Â+B̂0)2 +
(Â− − B̂1Ĉ−)2 + (Ĉ− − Â−B̂1)2, with Â± = Â0 ± Â1 and

Ĉ± = Ĉ0 ± Ĉ1 (and where tensor products are implicit, while

identity operators are omitted; e.g., B̂0Ĉ+ actually stands for

1 ⊗ B̂0 ⊗ Ĉ+).

2. One input, three possible outputs for Bob

Another interesting case is when Bob performs a single

incomplete Bell-state measurement, with now three outcomes.

We consider here, for instance, the case where his outcomes

b = b0b1 = 00, 01, {10 or 11} correspond, respectively, to

|�+〉, |�−〉 and |
±〉 (which Bob cannot discriminate, as they

give the same outcome). Such a measurement can be realized

with linear quantum optics [32], hence the practical motivation

for studying this particular case.

We consider now the following measurements for Alice

and Charlie: Â0 = Ĉ0 = (
√

2 σ̂Z + σ̂X)/
√

3 and Â1 = Ĉ1 =
(
√

2 σ̂Z − σ̂X)/
√

3. The quantum correlation P 13
Q (a,b,c|x,z)

shared by Alice, Bob, and Charlie is, then,

P 13
Q (a,0b1,c|x,z) = 1

16

[

1 + (−1)a+c 2+(−1)x+z+b1

3

]

P 13
Q (a,{10 or 11},c|x,z) = 1

8

[

1 − 2
3
(−1)a+c

]

.
(36)

One easily obtains, from the definitions (25) and (26),

I 13
(

P 13
Q

)

= 2
3
, J 13

(

P 13
Q

)

= 1
6
, (37)

which violates (27), thus proving that P 13
Q is not bilocal.

For noisy correlations of the same form as (33), with now

P 13
0 (a,0b1,c|x,z) = 1

16
and P 13

0 (a,{10 or 11},c|x,z) = 1
8
, the

above values of I 13 and J 13 are again simply to be multiplied by

V . They violate inequality (27) for all V > 2
3
. For V � 2

3
on the

other hand, one can find an explicit bilocal decomposition for

P 13
Q (V ), as in Table III. Hence, the bilocal visibility threshold

of P 13
Q is Vbiloc = 2

3
(see Fig. 4).

Even when a complete Bell-state measurement is not pos-

sible, the bilocality assumption thus provides an advantage—

compared to the standard Bell locality assumption—for practi-

cal demonstrations of quantumness in entanglement-swapping

experiments.

Let us finally note that as in the previous cases, P 13
Q is

local.18 Like local and nonsignaling correlations, quantum

17P 22
Q can indeed be decomposed as P 22

Q = 1

2
P 22

I + 1

2
P 22

J

(see Fig. 3), with P 22
I (a,b,c|x,y,z) = 1

8
[1 + δy,0(−1)a+b+c] and

P 22
J (a,b,c|x,y,z) = 1

8
[1 + δy,1(−1)x+z+a+b+c]. P 22

I and P 22
J are bilo-

cal: They can be obtained from the explicit decompositions of Table I,

for (I 22 = 1,J 22 = 0) and (I 22 = 0,J 22 = 1), respectively.
18P 13

Q can indeed be decomposed as P 13
Q = 2

3
P 13

I + 1

3
P 13

J (see Fig. 4),

with P 13
I (a,0b1,c|x,z) = 1

16
[1 + (−1)a+c], P 13

I (a,{10 or 11},c|x,z) =

correlations with random single- and bipartite marginals (as

obtained from singlet states and a partial Bell-state measure-

ment for Bob) satisfy19 |I 13| + 2|J 13| � 1; see Fig. 4.

C. Resistance to detection inefficiencies

Another experimental imperfection that is important to take

into account is the fact that Alice, Bob, and Charlie’s detectors

might not be 100% efficient. In a typical demonstration of

nonlocality, this may open the well-known detection loophole

[33], if the parties postselect their correlations on detected

events only.

Restricted classes of local models with independent sources

were actually considered before in [13,14], and were precisely

studied in the context of the detection loophole. Here we

initiate the study of the detection loophole with respect to the

general assumption of bilocality, by considering the simplest

cases, where only one party has a limited detection efficiency

η ∈ [0,1] while other parties have perfect detectors, and the

case where both Alice and Charlie have the same detection

efficiency η while Bob has 100% efficient detectors. More

complex cases, for instance, where all parties may have

imperfect detectors, are beyond the scope of this paper, and

are left for future work [34].

In the preliminary study below, we consider again binary

inputs and outputs for Alice and Charlie, and a complete Bell-

state measurement for Bob. We assume that when one party

fails to get a conclusive result, they still output a result from

their standard set of possible outcomes, either at random or

according to a specific strategy—note that when the parties

output random results, the situation is the same as for white

noise in their measurement apparatus, and as that of imperfect

visibilities studied before. The case where a no-detection result

is explicitly treated as a different outcome is left for future

work; it is an open question whether this may increase here

the resistance to detection inefficiencies.

1. Only one party has inefficient detectors

We start with the case where one party (either Alice, Bob,

or Charlie) has imperfect detectors with efficiency η, while the

other two have perfectly efficient detectors. Note that in the

case of Bob’s Bell-state measurement, if one of his detectors

does not click, he might still get some partial information (such

as on a subset of possible Bell states); we assume, however,

that he does not make use of that information—which could

possibly lead to a better resistance to detection inefficiencies—

and we leave this potential improvement as an open research

problem.

1

8
[1 − (−1)a+c] and P 13

J (a,0b1,c|x,z) = 1

16
[1 + (−1)x+z+a+c+b1

],

P 13
J (a,{10 or 11},c|x,z) = 1

8
. P 13

I and P 13
J are bilocal: They can be

obtained from the explicit decompositions of Table III, for (I 13 =
1,J 13 = 0,K13 = 1,L13 = M13 = 0) and (I 13 = 0,J 13 = 1

2
,K13 =

−1,L13 = M13 = 0), respectively.
19Note again that all values of I 13,J 13 such that |I 13| + 2|J 13| � 1

can be obtained quantum mechanically; for instance, for the same

measurement settings as in footnote 14, the full line segment I 13 +
2J 13 = 1 (with 0 � I 13,2J 13 � 1) is recovered.
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TABLE IV. Explicit bilocal decomposition for the correlations P 14
Q (V,η) of Sec. III C 2 (shown in Fig. 5), for imperfect detection

efficiencies η for Alice and Charlie. We use the notation η̄ = 1 − η. Three regimes for η must be distinguished. For η � 3

4
, we

define eη = 0, fη = 1−η, and the decomposition is valid for all V � V
η

biloc = 1

2η2 . For 2

3
� η � 3

4
, we define eη = 3−4η, fη =

min[4(1−η)2,4(1−η)(3η−2) + V η2], and the decomposition is valid for all V � V
η

biloc = 1−e2
η

2η2 = 4(1−η)(2η−1)

η2 . Finally, for η � 2

3
, we define

eη = 2η−1, fη = V η2, and the decomposition is valid for all V � V
η

biloc = 1.

We found that the best strategy is for Alice and Charlie

to use the same measurement settings as in Sec. III A, which

give the correlation P 14
Q (30), and for the party with inefficient

detectors to output a random result in case of a no-detection

event; in that case, similar to that studied previously, the

resulting correlation is nonbilocal for η > ηbiloc = 50% (where

the bilocal detection efficiency threshold ηbiloc is defined in a

similar way as the bilocal visibility threshold Vbiloc above); our

bilocal inequality (23) detects optimally its nonbilocality.

2. Alice and Charlie both have imperfect detectors

(ηA = ηC = η,ηB = 1)

The second case we consider is that where Alice and Charlie

both have imperfect detectors, with the same efficiency η,

while Bob has perfect detectors. Alice and Charlie still perform

the same measurements as before. In case of nondetections,

the best strategy is for Alice to output her input directly

(i.e., a = x), and for Charlie to always output c = 0. The

resulting correlation is found to be bilocal for all η � 2/3;

an explicit bilocal decomposition is given in Table IV. On

the other hand, convex relaxation techniques mentioned in

Sec. II C 3 allowed us to establish a numerical upper bound of

η = 2/3 + ǫ, with ǫ ≈ 10−6, above which the correlation is

nonbilocal. We conclude that in this case, ηbiloc = 2/3.

Taking also into account the noise in the state preparation,

as in the previous subsections, the correlation then depends on

η and on V = v1v2. For any fixed value of η, one can estimate

the corresponding bilocal visibility threshold V
η

biloc, as shown

on Fig. 5. This was obtained again by comparing a lower

bound on V
η

biloc given by the explicit bilocal decomposition

of Table IV (to which we refer for analytical expressions for

V
η

biloc), with a numerical upper bound derived using convex

relaxations; the two bounds match again up to ǫ ≈ 10−6.

Note that our bilocal inequality (23) can also be used to

obtain an upper bound on ηbiloc and V
η

biloc. However, this upper

bound on V
η

biloc is found to be tight only for η � 3/4 (see

Fig. 5); and for V = 1, inequality (23) is violated only for

η > 1/
√

2. This illustrates the fact that our bilocal inequality is

not always sufficient to detect the nonbilocality of a correlation

(see Sec. II D 5).

3. Open problems related to the detection loophole

A more complete study would be necessary to draw

any conclusion regarding the advantage of the bilocality

assumption compared to the locality assumption, with respect

to the detection loophole.

One should in particular consider the case where all three

parties have inefficient detectors; note that because their

measurements are inherently different, there is no reason to

assume that Alice and Charlie should have the same detection

efficiencies as Bob; rather, it would be relevant to consider

a practical (and incomplete) Bell-state measurement and see

how Bob’s efficiency would compare to that of Alice and

Charlie [34].

Many questions are left open here, including whether using

partially entangled or higher-dimensional states may lower the

required efficiencies, as it is the case in the standard scenario

of Bell nonlocality [35,36].
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FIG. 5. (Non-)bilocality of correlations obtained by the strategy

described in the main text, in the case where Alice and Charlie’s

detectors have a detection efficiency η. The correlations are bilocal

for visibilities V = v1v2 � V
η

biloc, with V
η

biloc depending on η. As

explained in the text, V
η

biloc was estimated by matching lower bounds

given by explicit bilocal decompositions (see Table IV) and upper

bounds obtained from convex relaxations of the bilocality constraint;

our inequality (23) also gives an upper bound on V
η

biloc; this bound

was found to be tight only for η � 3

4
.

032119-13



BRANCIARD, ROSSET, GISIN, AND PIRONIO PHYSICAL REVIEW A 85, 032119 (2012)

IV. FURTHER ISSUES ON QUANTUM NONBILOCALITY

We now present some additional results related to the study

of quantum nonbilocality, coming back to the case where

Bob performs a complete Bell-state measurement and where

all parties have perfect detectors. We first study the relation

between resistance to noise with respect to locality and to

bilocality. We then present quantum violations of bilocality

using partially entangled qubit states. Finally, we address

the question of simulating quantum correlations in a bilocal

manner.

A. Trade-off between Bell nonlocality and nonbilocality for

quantum correlations

We have shown that the quantum correlations P 14
Q (30), P 22

Q

(34), and P 13
Q (36) we exhibited are not bilocal. They are in

fact the most robust to noise we could find in each scenario,

and become bilocal for visibilities smaller than Vbiloc = 50%

in the first two cases, and Vbiloc = 2/3 in the last case.

However, these correlations were found to be local. In

each case, one can also, of course, obtain nonlocal quantum

correlations by rotating, for instance, the measurement settings

of Alice and/or Charlie. The nonlocality of such correlations

can also be quantified by their resistance to noise, that is, for a

given correlation one can define the local visibility threshold
Vloc below which the corresponding noisy correlation of the

form (33) becomes local. One may then wonder how the two

visibility thresholds, Vloc and Vbiloc, behave, one compared to

the other, when the measurement settings of Alice and Charlie

vary.

To illustrate the trade-off between the local and bilocal

visibility thresholds, let us consider here the first scenario

(the 14 case), where Bob performs only one measurement,

with four possible outcomes. For the correlation (30), we had

Vloc = 1 and Vbiloc = 1
2
. By changing the measurement settings

Â0,Â1,Ĉ0, and Ĉ1, while still considering a complete Bell-state

measurement for Bob, we modify the quantum correlation

P 14
Q and thus obtain different corresponding pairs of visibility

thresholds (Vloc,Vbiloc). From a numerical investigation, we

obtained the set of pairs (Vloc,Vbiloc) represented in Fig. 6.

The upper boundary illustrates the fact that, obviously,

Vbiloc � Vloc; note that the extreme left point for which

Vloc = Vbiloc = 1√
2

≃ 70.7% can be obtained, for instance,

when one uses the standard settings to test the CHSH inequality

[28] between Alice and Charlie (e.g., σ̂Z and σ̂X for Alice,

(σ̂Z ± σ̂X)/
√

2 for Charlie). One can see, however, that Vbiloc

can be lowered down to Vbiloc = 2 −
√

2 ≃ 58.6% while still

having Vloc = 1√
2
.

The lower boundary is of particular interest, as it expresses

the trade-off between optimal resistance to noise of nonlocality

and of nonbilocality; it is the result of a multiobjective opti-

mization problem. This front can, for instance, be parametrized

by considering the following measurement settings:

Â0 = Ĉ0 = cos θ
ξ

0 σ̂Z + sin θ
ξ

0 σ̂X,

Â1 = Ĉ1 = cos θ
ξ

1 σ̂Z + sin θ
ξ

1 σ̂X, (38)

with θ
ξ

i = (−1)i
π

4
− ξ

π

8
, and ξ ∈ [0,1].

Local visibility threshold

B
ilo

ca
l 
vi

si
b
ili

ty
 t

h
re

sh
o
ld

trade-off between optimal resistance to noise

of nonlocality and of non-bilocality

FIG. 6. (Shaded area) Local (Vloc) versus bilocal (Vbiloc) visibility

thresholds for quantum correlations obtainable in standard entangle-

ment swapping experiments, with binary inputs and outputs for Alice

and Charlie. For the quantum correlation P 14
Q of Eq. (30), for instance,

one has (Vloc,Vbiloc) = (1, 1

2
).

A straightforward calculation gives, for the quantum cor-

relation P 14
Q (ξ ) thus obtained and for the definitions (21)

and (22), I 14 = J 14 = 1
4
[1 + cos(ξ π

4
)]. For a given visibility

V , one just has to multiply these values of I 14 and J 14

by V ; the correlation then violates inequality (23) for all

visibilities V > 1/[1 + cos(ξ π
4

)]. For visibilities lower than

1/[1 + cos(ξ π
4

)] on the other hand, one can find an explicit

bilocal decomposition, given in Table V. Hence, this value is

precisely the bilocal visibility threshold V
ξ

biloc for the quantum

correlation obtained with the measurement settings (38).

To test for locality, we note that for a tripartite correlation

to be local, a necessary condition is that the corresponding

bipartite correlation between Alice and Charlie, conditioned

on one particular result of Bob, is local [37], and therefore

(in our case where Alice and Bob have binary inputs and

outputs) it must satisfy the CHSH inequality [28]. When

conditioned on Bob obtaining |�−〉, we find that the value of

the CHSH polynomial is CHSH = 2[cos(ξ π
4

) + sin(ξ π
4

)]. For

a given visibility V , the value of CHSH is simply multiplied

by V , and the CHSH inequality CHSH � 2 is violated for all

V > 1/[cos(ξ π
4

) + sin(ξ π
4

)]. On the other hand, one can check

that the corresponding correlation is local for visibilities lower

than 1/[cos(ξ π
4

) + sin(ξ π
4

)]; an explicit local decomposition

is given in Table V. Hence, this value is precisely the

local visibility threshold Vloc for the quantum correlation we

consider.

The lower front in Fig. 6 can thus be parametrized as

(

V
ξ

loc,V
ξ

biloc

)

=
(

1

cos(ξ π
4

) + sin(ξ π
4

)
,

1

1 + cos(ξ π
4

)

)

, (39)

with ξ ∈ [0,1]. For ξ = 0, in particular, one gets the most

nonbilocal correlations we could find, namely P 14
Q as in (30);

for ξ = 1, we obtain the point (V
ξ=1

loc ,V
ξ=1

biloc ) = ( 1√
2
,2 −

√
2)

that we briefly mentioned before.
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TABLE V. Explicit local (top subtables) and bilocal (bottom subtables) decompositions for the correlation P 14
Q (ξ ) introduced in Sec. IV A to

study the trade-off between resistance to noise of nonlocality and resistance to noise of nonbilocality. We use the notations cξ = cos(ξ π

4
),sξ =

sin(ξ π

4
), and define gξ = cξ +sξ −1

4
and hξ = cξ − sξ . The local decomposition (which is clearly not bilocal; see its first subtable) is valid [i.e.,

(B1) is satisfied] for visibilities V � Vloc = 1/[cξ + sξ ]. The bilocal decomposition is valid for visibilities V � Vbiloc = 1/[1 + cξ ].

We also looked at this relation between the locality and

bilocality visibility thresholds in other scenarios and found

similar trade-offs, although with different quantitative results.

For instance, in the 22 case we found numerically that when

Alice and Charlie’s settings vary, while Bob’s measurements

are fixed, all correlations for which Vloc = 1/
√

2 also have

Vbiloc = 1/
√

2 = Vloc; an improvement in Vbiloc can only be

obtained by increasing Vloc.

B. Nonmaximally entangled states

One might wonder whether our inequality (23) for bilocality

can be violated by nonmaximally entangled states, and how

nonbilocal the resulting correlations can be.

Let us thus consider the case where the sources S1 and S2

send two-qubit entangled states of the form,

|ψi〉 = cos
θi

2
|01〉 − sin

θi

2
|10〉, (40)

with θi ∈ [0,π
2

] (and i = 1,2). We assume that Bob performs a

complete Bell-state measurement (in the standard Bell basis),

and that Alice and Charlie can each choose among two

projective measurements to perform on their respective qubits.

The tripartite correlators that appear in the definitions (21) and

(22) of I 14 and J 14 are easily found to be

〈AxB
0Cz〉P 14 = aZ

x cZ

z, (41)

〈AxB
1Cz〉P 14 = aX

x cX

z sin θ1 sin θ2, (42)

where aZ,X
x and cZ,X

z are the Z and X components of the vectors

�ax and �cz representing Alice and Charlie’s measurements in

the Bloch sphere, respectively (for inputs x and z). We thus

obtain

I 14 = 1
4

(

aZ

0 + aZ

1

)(

cZ

0 + cZ

1

)

, (43)

J 14 = 1
4

(

aX

0 − aX

1

)(

cX

0 − cX

1

)

sin θ1 sin θ2. (44)

One can easily see that, in order to maximize
√|I | + √|J |,

the optimal settings of Alice and Charlie should be in the ZX

plane, symmetric around the Z axis. More precisely, we find

that the optimal measurements are, for both Alice and Charlie,

σ̂Z ± √
sin θ1 sin θ2 σ̂X√

1 + sin θ1 sin θ2

, (45)

leading to

I 14 = 1

1 + sin θ1 sin θ2

, J 14 = sin2 θ1 sin2 θ2

1 + sin θ1 sin θ2

, (46)

and
√

|I 14| +
√

|J 14| =
√

1 + sin θ1 sin θ2. (47)

If sin θ1 sin θ2 > 0, we have
√

|I 14| +
√

|J 14| > 1, which

proves that the quantum correlation P 14
θ1,θ2

thus obtained is

nonbilocal.

To study its resistance to noise, one can consider, as before,

the case where the source sends noisy states of the form

ρi(vi) = vi |ψi〉〈ψi | + (1 − vi)1/4. Because of the nonrandom

marginals, the noisy correlation does no longer have the simple

form of (33). However, the values of I and J , which only

involve tripartite correlation terms, are still simply multiplied

by the global visibility V = v1v2. Inequality (23) is thus

violated for all V > 1
1+sin θ1 sin θ2

.

For all values of θ1,θ2,v1, and v2, such that v1v2 �
1

1+sin θ1 sin θ2
, that we tested, we could find numerically an

explicit bilocal decomposition for the correlation P 14
θ1,θ2

. We

therefore believe that 1
1+sin θ1 sin θ2

is precisely its bilocal

visibility threshold Vbiloc, and that once again our inequality

(23) detects optimally the nonbilocality of P 14
θ1,θ2

.

Note that as expected, for θ1 = θ2 = π
2

, we recover the case

of maximally entangled states studied in Sec. III A.

C. Classical simulation of (noisy) entanglement swapping

We have shown in Sec. III A that the correlations obtained in

an entanglement swapping experiment (with a complete Bell-

state measurement) can be nonbilocal for visibilities down to

V = v1v2 > 50%. A natural question is whether this visibility

032119-15



BRANCIARD, ROSSET, GISIN, AND PIRONIO PHYSICAL REVIEW A 85, 032119 (2012)

threshold Vbiloc = 50% can be lowered, possibly by using more

measurement settings on Alice and Charlie’s sides.

Studying more complex scenarios, with more settings,

rapidly becomes very difficult, because of the nonlinearity

and nonconvexity of the bilocality assumption. We could

not find so far any scenario where Vbiloc could be lowered.

However, by trying to simulate the noisy entanglement-

swapping experiment with an explicit bilocal model, one can

obtain a lower bound on Vbiloc for all possible scenarios in

which Alice and Charlie perform projective Von Neumann

measurements on their qubits, and Bob performs a Bell-state

measurement.

1. A fully bilocal model for a visibility V = 25%

We present here a model that reproduces with a visibility

V = 25% all correlations obtained in a standard entanglement-

swapping experiment, where Alice and Charlie perform Von

Neumann measurements on their qubits. The model is inspired

by Werner’s model [38] which reproduces the noisy singlet

state (so-called Werner state) correlations for visibilities v =
50%: Intuitively, one can simulate the two singlet states with

visibilities v1 = v2 = 50%, to obtain an overall visibility V =
v1v2 = 25%; the only nontrivial question is how to simulate

Bob’s Bell-state measurement.

In Werner’s model, Alice and Bob share a random

vector �λ, uniformly distributed on the Bloch sphere S2.

After reception of a measurement setting �a ∈ S2, Alice

outputs A = −sgn(�a · �λ); after reception of a measurement

setting �b ∈ S2, Bob outputs B = ±1 with probability

p(B|�b,�λ) = 1+B �b·�λ
2

; note that this corresponds precisely

to the quantum prediction for the measurement along the

direction �b of a qubit in the pure state |�λ〉 ∈ S2.

In a similar spirit, we consider the following bilocal model:

Alice and Bob share a random vector �λ1, Bob and Charlie share

a random vector �λ2, both uniformly distributed on the Bloch

sphere S2. For measurement settings �a,�c ∈ S2, Alice and

Charlie output A = sgn(�a · �λ1), C = sgn(�c · �λ2). As for Bob,

in order to simulate his measurement, he outputs the result B =
B0B1 of a Bell-state measurement on a two-qubit pure product

state |�λ1〉|�λ2〉, with the probabilities predicted by quantum

mechanics. We show in Appendix D 1 that this model indeed

reproduces the entanglement swapping correlations, with a

visibility V = 25%; of course, one can then also simulate

smaller visibilities by introducing some additional noise.

We note that there is a significant gap between the upper

bound V = 50% and the lower bound V = 25% on the bilocal

visibility threshold, for any choice of measurement settings.

But the situation is quite similar to the case of locality, where

Werner’s model reproduces the singlet state correlations

for a visibility v = 50%, while the CHSH inequality [28]

allows one to demonstrate nonlocality only for v > 1/
√

2. It is

known, however, that there exists a local model that reproduces

the Werner state correlations for a visibility v ≃ 65.95% [29];

it would be interesting to see if that model could be adapted

to a bilocal model for entanglement-swapping correlations.

The difficulty is to define an adequate simulation of Bob’s

Bell-state measurement, with local variables that do not have

(unlike in Werner’s model) a straightforward interpretation

as quantum states. On the other hand, some inequalities have

been found that demonstrate the nonlocality of Werner states

for visibilities v slightly smaller than 1/
√

2 [39]. However,

these inequalities involve a very large number of measurement

settings. It will certainly be very hard to find better inequalities

to decrease the visibility threshold in the case of bilocality.

2. Simulation of entanglement swapping with communication?

Toner and Bacon [40], followed by Degorre et al. [41],

have shown that the use of one single bit of communication

is enough to classically simulate the quantum correlations ob-

tained from Von Neumann measurements on a singlet state. It is

quite natural to wonder whether such a result holds in our case

[i.e., whether adding some (limited) classical communication

can help to simulate the entanglement-swapping experiment

in a bilocal manner].

We present in Appendix D 2 a protocol directly inspired

from the communication protocol of [41], that uses two bits

of communication. We find that it allows one to simulate

the entanglement-swapping correlations with a visibility

V = 4/9 ≃ 44.4%; this is indeed better than the visibility of

25% obtained with the previous bilocal model, but this is still

a pretty low visibility, which does not even reach the threshold

of 50%.

Another recent work shows that it is possible to increase

this visibility—and even obtain a perfect simulation with V =
1—with a different protocol using 9 bits of communication in

total, in addition to bilocal shared randomness [42].

V. ON THE ASSUMPTION OF INDEPENDENT SOURCES

IN STANDARD BELL EXPERIMENTS

We finally come back to the justification of our bilocality

assumption. As already emphasized in the introduction, a

very similar assumption is actually needed in standard Bell

tests, namely that the sources of randomness used to choose

the measurement settings are independent from the source

emitting the states that are being measured (the “free choice”

or “measurement independence” assumption [43–45]).

To make this connection more precise, consider a standard

bipartite Bell experiment, in which a correlation P (a,b|x,y)

is observed. Bell’s local causality assumption writes

P (a,b|x,y) =
∫

dλ ρ(λ) P (a|x,λ)P (b|y,λ). (48)

Assume that the random choice of Alice’s setting depends

on the hidden state λ1 of her random number generator, so

that x is chosen with probability P (x|λ1), and λ1 follows the

distribution ρ1(λ1); similarly, assume that Bob’s setting y is

chosen with probability P (y|λ2), where the hidden state λ2 of

his random number generator follows the distribution ρ2(λ2).

The assumption that the settings can be freely chosen implies

that λ1, λ2, and λ must be independent. Together with the

local causality assumption, the overall probability distribution

P (a,b,x,y) then writes

P (a,b,x,y) = P (a,b|x,y)P (x,y)

=
∫ ∫ ∫

dλ1 dλ dλ2 ρ1(λ1) ρ(λ) ρ2(λ2)

×P (x|λ1)P (a|x,λ)P (b|y,λ)P (y|λ2). (49)
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FIG. 7. A trilocal scenario, with four parties returning outputs x,a,b,y (here they do not receive any input). Under the assumption that

P (x,y) = P (x)P (y) > 0, the four-partite correlation P (x,a,b,y) is trilocal if and only if the corresponding bipartite correlation P (a,b|x,y) is

local.

Let us now compare this situation with the four-partite

experiment depicted on Fig. 7, in which Xavier and Alice

receive particles from a source S1, Alice and Bob receive

particles from a source S, while Bob and Yolanda receive

particles from a source S2. The four parties perform some

fixed (possibly joint) measurements on their particles, and

obtain outputs x,a,b, and y, respectively. In the spirit of our

bilocality assumption, we call trilocal correlations that can be

written in the form,

P (x,a,b,y) =
∫ ∫ ∫

dλ1 dλ dλ2 ρ1(λ1) ρ(λ) ρ2(λ2)

×P (x|λ1)P (a|λ1,λ)P (b|λ,λ2)P (y|λ2). (50)

Note the similarities with Eq. (49).

Assume now that for all x,y, the marginal probabilities

P (x,y) are P (x,y) = P (x)P (y) �= 0. Under that condition,

P (x,a,b,y) is trilocal if and only if the conditional probability

distribution P (a,b|x,y), where x,y are interpreted as the inputs

of a bipartite scenario, is local.

Proof. Suppose that P (x,a,b,y) is trilocal [i.e., that

it can be decomposed as in (50), and that P (x,y) =
P (x)P (y) �= 0 for all x,y]. From Bayes’ rule, we can

write ρ1(λ1)P (x|λ1) = ρ1(λ1|x)P (x) and ρ2(λ2)P (y|λ2) =
ρ2(λ2|y)P (y). Dividing Eq. (50) by P (x)P (y), we find that

P (a,b|x,y) = P (x,a,b,y)/[P (x)P (y)] is of the form (48),

with P (a|x,λ) =
∫

dλ1ρ1(λ1|x)P (a|λ1,λ) and P (b|y,λ) =
∫

dλ2ρ2(λ2|y)P (b|λ,λ2) (which constitute properly normal-

ized probability distributions). This shows that P (a,b|x,y) is

local.

Conversely, suppose that P (a,b|x,y) is local, with a

decomposition of the form (48), and that P (x,y) = P (x)P (y).

Let then λ1 and λ2 be copies of the variables x and y, respec-

tively, so that P (x|λ1) = δx,λ1
and P (y|λ2) = δy,λ2

. By writing

P (x) = ∑

λ1
P (λ1)P (x|λ1) and P (y) = ∑

λ2
P (λ2)P (y|λ2),

and using the fact that P (x|λ1) = δx,λ1
to replace P (a|x,λ)

by P (a|λ1,λ) (and similarly for P (b|y,λ)), one gets, from the

local distribution of P (a,b|x,y), an expression of the form (50)

for P (x,a,b,y) = P (a,b|x,y)P (x)P (y): hence, P (x,a,b,y) is

trilocal. �

Hence, when Xavier and Yolanda’s measurement boxes

in Fig. 7 are interpreted as random number generators,

which determine Alice and Bob’s inputs x and y, the four-

partite scenario is tantamount to a standard Bell test; the

trilocality assumption—which naturally extends our bilocality

assumption—is formally equivalent to the assumption that

the measurement settings are chosen independently from the

source S. It is worth stressing that the trilocality assumption

can thus be tested without any choice of inputs: There is

no need for any additional “free choice” or “measurement

independence” assumption, as it is already explicitly taken

into account in (50).

To finish off, let us illustrate our claims with an explicit

example. Consider a four-partite scenario as in Fig. 7, where

the sources S1 and S2 send the (separable) states ̺1 = ̺2 =
1
2
|00〉〈00| + 1

2
|11〉〈11| to Xavier-Alice and to Bob-Yolanda,

respectively, and where the source S sends singlet states to

Alice-Bob.

Assume that Xavier and Yolanda both measure X̂ = Ŷ =
σZ, that Alice measures Â = |0〉〈0| ⊗ σ̂Z + |1〉〈1| ⊗ σ̂X while

Bob measures B̂ = σ̂Z+σ̂X√
2

⊗ |0〉〈0| + σ̂Z−σ̂X√
2

⊗ |1〉〈1|. The cor-

relation obtained by the four parties is

P (x,a,b,y) = 1

16

[

1 − 1√
2

(−1)a+b+xy

]

, (51)

leading to

P (a,b|x,y) = 1

4

[

1 − 1√
2

(−1)a+b+xy

]

, (52)

which is precisely the correlation one would get in a Bell test,

where the source sends singlet states, where Alice measures

either σ̂Z or σ̂X, and where Bob measures either σ̂Z+σ̂X√
2

or
σ̂Z−σ̂X√

2
. This can be understood as follows: The measurement

of X̂ and Ŷ reveal the inputs x and y of the Bell test;

for Alice, measuring Â = |0〉〈0| ⊗ σ̂Z + |1〉〈1| ⊗ σ̂X precisely

amounts to measuring either σ̂Z if x = 0, or σ̂X if x = 1;

similarly for Bob, measuring B̂ = σ̂Z+σ̂X√
2

⊗ |0〉〈0| + σ̂Z−σ̂X√
2

⊗
|1〉〈1| amounts to measuring either σ̂Z+σ̂X√

2
if y = 0, or σ̂Z−σ̂X√

2
if

y = 1.

VI. CONCLUSION

We have developed in this article the study of the bilo-

cality assumption in the context of entanglement-swapping

experiments. We derived new constraints on bilocal cor-

relations, in the form of nonlinear Bell-type inequalities,

for different scenarios; in particular, for the experimentally

relevant scenario where only a partial Bell-state measurement

can be performed. We found in all cases an advantage of

the bilocality assumption compared to Bell’s standard local

causality assumption, as the former lowers the requirements

for demonstrating quantumness in entanglement-swapping

experiments.
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FIG. 8. A three-locality scenario, where three parties receive

states from three sources, forming a closed loop. Characterizing the

(non)three locality of such a scenario remains an open problem.

A lot of questions are left open. For instance, one could

study scenarios with more inputs and outputs, quantum

states of higher dimensions, different kinds of measurements

performed by the three parties, etc. It is not easy to develop

an intuition about which results are to be expected; these

questions should motivate further work on the study of bilocal

correlations.

Another natural and very interesting problem is to extend

our bilocality assumption to more complex topologies of

quantum networks with independent sources. While it is

straightforward to formulate the assumption of independent

sources for the hidden states λ (the N -locality assumption) in

a similar form as Eq. (2), for instance, translating it into more

explicit constraints that can be tested numerically, as we did in

Sec. II C, is not trivial; let alone deriving Bell-type inequalities

for N -local correlations. For instance, a natural extension to

our study would be to consider the case of an (N+1)-partite

linear network with N independent sources generating singlet

states, where all N−1 parties inside the chain would perform

some Bell-state measurements, and the two parties at both

ends of the chain can choose among two possible projective

measurements; based on our numerical findings for N = 3,

we conjecture that the correlations thus obtained can be non-

N -local for overall visibilities larger than VN-loc = (1/
√

2)N

(and that this would be obtained by alternating the horizontal-

vertical and the diagonal bases for the measurements of each

party), although proving it remains an open problem.

Among the various other network topologies worth

investigating in the context of N locality, one is especially

intriguing. Consider a simple triangle with Alice, Bob, and

Charlie at the three vertices (see Fig. 8). In the quantum

scenario each of the three edges holds an entangled qubit

pair source; the three sources are assumed to be independent,

hence the global quantum state is a product of the form

ρAB ⊗ ρBC ⊗ ρAC . In the corresponding three-locality

scenario, Alice’s output depends on the hidden states (λ1,λ3),

Bob’s on (λ1,λ2), Charlie’s on (λ2,λ3), and the distribution of

the three independent states λi factorizes. One can thus again

easily formulate an adequate three-locality assumption for this

scenario in terms of general states λi ; however, it is unclear if

it is possible to discretize these as we did in Sec. II C, in order

to derive more convenient three-locality constraints. Even

in the case without any input, characterizing the (non)three

locality in this triangle configuration seems challenging.

Studying more deeply the implications of the independent

sources assumption will lead to a better understanding of the

nonlocality that quantum networks can exhibit, and of how

powerful they can be—compared to classical resources—to

perform information processing tasks. We also expect such

studies to lead to new applications, fully exploiting the non-

N -locality of quantum mechanics.
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APPENDIX A: TOPOLOGY OF THE BILOCAL SET

We prove here that although the bilocal set is nonconvex, it

keeps some weaker properties of the local set: It is connected,

and its restriction to subspaces where the marginal of Alice (or

Charlie) is fixed is star convex (which is not the case, however,

for the whole bilocal set). These properties can, for instance,

be observed in Figs. 3 and 4.

1. Connectedness

Consider a bilocal correlation P (a,b,c|x,y,z), with a

bilocal decomposition in terms of local variables λ1,λ2, and

define the correlation Pξ as follows: Each party outputs a result

according to the probability distribution P [i.e., according to

P (a|x,λ1), P (b|y,λ1,λ2), and P (c|z,λ2), respectively] with

probability ξ , and produces a random output with probability

1 − ξ . The transformation from P to Pξ is made locally (and

independently) by each party; therefore, Pξ remains bilocal.

For ξ ∈ [0,1], Pξ follows a continuous path in the bilocal

set, from P = Pξ=1 to P0 = Pξ=0, where P0 is the fully

random probability distribution. All bilocal correlations are

thus connected to P0; it follows that the bilocal set is connected.

2. Weak star convexity (in certain subspaces)

Let us consider a subspace of BP (a|x) ⊂ B where Alice’s

marginal probability distribution P (a|x) is fixed. Then BP (a|x)

is star convex, meaning there exists a point P⋆ ∈ BP (a|x) such

that the whole line segment between any P ∈ BP (a|x) and P⋆ is

in BP (a|x).

Proof. Let P⋆ be a product correlation of the

form P⋆(a,b,c|x,y,z) = P⋆(a|x)P⋆(b|y)P⋆(c|z), with

P⋆(a|x) = P (a|x), while P⋆(b|y) and P⋆(c|z) are arbitrary.

Clearly, P⋆ ∈ BP (a|x).

Consider another correlation P ∈ BP (a|x), with a bilocal

decomposition in terms of local variables λ1,λ2, and let us

provide Bob and Charlie with an additional random bit ℓ,
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such that p(ℓ = 1) = 1 − p(ℓ = 0) = ξ ∈ [0,1]. Define now

the correlation Pξ as follows: Alice always outputs a result

according to P (a|x,λ1); if ℓ = 1, Bob and Charlie output a

result according to the probability distributions P (b|y,λ1,λ2)

and P (c|z,λ2), respectively, while if ℓ = 0 they output a result

according to the probability distributions P⋆(b|y) and P⋆(c|z).

One can easily check that Pξ = ξP + (1 − ξ )P⋆. Clearly, Pξ is

also bilocal, and Alice’s marginal satisfies Pξ (a|x) = P (a|x):

hence, Pξ ∈ BP (a|x). For ξ ∈ [0,1], the full line segment

between P and P⋆ in thus in BP (a|x), which shows that BP (a|x)

is star convex, for the vantage point P⋆. �

By symmetry, any restriction BP (c|z) of the bilocal set to a

subspace where Charlie’s marginal probability distribution is

fixed, is also star convex.

The star-convexity property does not however extend to

the full bilocal set. Consider indeed two bilocal correlations

P and P ′, such that both P (a|x) �= P ′(a|x) and P (c|z) �=
P ′(c|z), and a mixture Pξ = ξP + (1 − ξ )P ′ (with again ξ ∈
[0,1]). Noting that all bilocal correlations necessarily satisfy

P (a,c|x,z) = P (a|x)P (c|z), one gets

Pξ (a,c|x,z) = ξP (a,c|x,z) + (1 − ξ )P ′(a,c|x,z)

= ξP (a|x)P (c|z) + (1 − ξ )P ′(a|x)P ′(c|z),

Pξ (a|x) = ξP (a|x) + (1 − ξ )P ′(a|x),

Pξ (c|z) = ξP (c|z) + (1 − ξ )P ′(c|z),

and therefore

Pξ (a,c|x,z) − Pξ (a|x)Pξ (c|z)

= ξ (1 − ξ )[P (a|x) − P ′(a|x)][P (c|z) − P ′(c|z)].

For 0 < ξ < 1, one thus has Pξ (a,c|x,z) �= Pξ (a|x)Pξ (c|z),

and therefore Pξ is not bilocal. For all bilocal correlation

P , there thus exists a bilocal correlation to which it is not

connected by a line segment of bilocal correlations: This

proves that the whole bilocal set is not star convex (and

therefore, in particular, that it is nonconvex).

APPENDIX B: EXPLICIT LOCAL AND BILOCAL

DECOMPOSITIONS

We have given in Tables I–V explicit (bi)local decomposi-

tion for various correlations analyzed in the main text. Exhibit-

ing these decompositions allows us to prove, precisely, that the

correlation they define is (bi)local. These explicit decomposi-

tions are given in these tables in the correlators representation,

introduced in Sec. II C 2.

For the case where all parties have binary inputs and outputs

(the 22 case), we use the definition (12) for the correlators. A

given explicit decomposition is displayed in the form of four

subtables (see Table I), each of them containing the values

of the correlators eī j̄ k̄ , for j̄ = 00,10,01 and 11; we refer to

Eq. (14) to clarify the notations on the left column and top row

of each subtable. Let us recall that the correlators eī j̄ k̄ such that

ī �= 11,j̄ �= 11, and k̄ �= 11 are fixed by the correlation P 22 we

want to reproduce; we display these in white cells (the number

of which is the dimension of the correlation space), except

for the constant normalization coefficient e0̄0̄0̄ = 1, shown in

a black cell. On the other hand, the correlators such that ī =
11,j̄ = 11, or k̄ = 11 are internal degrees of freedom of the

different possible decompositions of P 22; these are displayed

in shaded cells.

Recall also that a valid decomposition must satisfy the non-

negativity constraint (16):

for all ᾱ,β̄,γ̄ ,
∑

ī j̄ k̄

(−1)ᾱ·ī+β̄·j̄+γ̄ ·k̄ eī j̄ k̄ � 0. (B1)

This constraint will delimit the domain of validity of our

explicit decompositions. Finally, the bilocality constraint (17)

(i.e., eī0̄k̄ = eī0̄0̄ e0̄0̄k̄) can easily be checked in each case on

the first subtable: the 3 × 3 bottom-right subtable (separated

by dashed lines) must be the product of the column on its left

with the row above.

As already observed in Sec. II D 3, the 14 case, where Bob

has one input and four possible outputs, is quite similar to

the 22 case. The definitions of the correlators, and the non-

negativity and bilocality constraints on these, are formally the

same. The only difference is that the correlators eī,11,k̄ with

ī �= 11 and k̄ �= 11 are now accessible experimentally, and

therefore fixed by the correlation P 14 we want to reproduce:

The explicit decompositions have fewer internal degrees of

freedom (see Tables II, IV, and V).

The 13 case, where Bob now has one input and three

possible outputs, requires slightly different definitions for the

correlators. From a (bi)local decomposition of a correlation

P 13 in terms of weights qᾱβ̄γ̄ (with ᾱ = α0α1, γ̄ = γ0γ1 =
00,01,10 or 11, and β̄ = 00,01 or {10 or 11}), we define in

the 13 case,

eī0k̄ =
∑

ᾱγ̄

(−1)ᾱ·ī+γ̄ ·k̄[qᾱ,00,γ̄ + qᾱ,01,γ̄ + qᾱ,{10 or 11},γ̄ ],

eī1k̄ =
∑

ᾱγ̄

(−1)ᾱ·ī+γ̄ ·k̄[qᾱ,00,γ̄ + qᾱ,01,γ̄ − qᾱ,{10 or 11},γ̄ ],

eī2k̄ =
∑

ᾱγ̄

(−1)ᾱ·ī+γ̄ ·k̄[qᾱ,00,γ̄ − qᾱ,01,γ̄ ],

which can be inverted into

qᾱ,00,γ̄ = 2−6
∑

ī k̄

(−1)ᾱ·ī+γ̄ ·k̄[eī0k̄ + eī1k̄ + 2eī2k̄],

qᾱ,01,γ̄ = 2−6
∑

ī k̄

(−1)ᾱ·ī+γ̄ ·k̄[eī0k̄ + eī1k̄ − 2eī2k̄],

qᾱ,{10 or 11},γ̄ = 2−6
∑

ī k̄

(−1)ᾱ·ī+γ̄ ·k̄[2eī0k̄ − 2eī1k̄].

With these definitions, one can check that again, all correlators

of the form eīj k̄ , with ī �= 11 and k̄ �= 11, are fixed by the

correlation P 13 one wants to reproduce; in particular, one

has e00,0,00 = 1 by normalization, and the correlators eī1k̄ and

eī2k̄ with ī,k̄ = 10 or 01 correspond precisely to the tripartite

correlation terms 〈AxB
0Cz〉P13 and 〈AxB

1Cz〉P13,b0=0 defined

in Sec. II D 4. Note that for the decomposition to be valid, the

weights qᾱβ̄γ̄ must be non-negative, which (from the previous

equations) imposes some constraints on the correlators eīj k̄ .

Finally, the bilocality assumption writes again, in terms of

correlators, eī0k̄ = eī00̄ e0̄0k̄ .

In Table III, we displayed the correlators eīj k̄ in three

subtables, using similar conventions as before.
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APPENDIX C: COMPARISON OF INEQUALITY (23) WITH

THAT PREVIOUSLY PRESENTED IN REF. [15]

Here we show that the bilocal inequality previously derived

in [15] is actually implied by our inequality (23), for the case

where Bob has one input and four possible outputs.

Defining I± = 2I 14 ± 2J 14, inequality (23) implies

I+ � 1 + I 2
−
4

. (C1)

Now, from the definitions (21) and (22), we have

I+ =
∑

b0b1

∑

x⊕z=b0⊕b1

P (b0b1) Eb0b1 (xz),

I− =
∑

b0b1

∑

x⊕z �=b0⊕b1

P (b0b1) Eb0b1 (xz),

with

P (b0b1)Eb0b1 (xz) = (−1)b
0
∑

a,c

(−1)a+cP 14(a,b0b1,c|x,z).

One can see that, up to a small change of notations (b1 ↔
b0 ⊕ b1), I+ corresponds to I , and that |I−| � 2E, for I and

E as defined in [15]. Together with (C1), we thus find that

our inequality (23) implies the one (I � 1 + E2) previously

presented in [15].

It is in fact strictly stronger than the previous inequality:

There exist nonbilocal correlations (such as, e.g., the local

correlation defined by its weights q00,00,00 = q01,01,01 = 1
2
,

with all its other weights qᾱβ̄γ̄ = 0) that violate inequality

(23), but which do not violate the inequality of Ref. [15], nor

any of its equivalent versions.

APPENDIX D: CLASSICAL SIMULATION OF NOISY

ENTANGLEMENT SWAPPING

We give in this appendix the details of the simulation of

noisy entanglement-swapping correlations by bilocal models,

as presented in Sec. IV C.

1. Simulation without communication

Consider the bilocal simulation protocol presented in

Sec. IV C 1. To study the correlation P (A,B0B1,C|�a,�c)

it defines, it is sufficient to calculate the average

values,

〈A〉,〈C〉,〈B0〉,〈B1〉,〈B0B1〉,
〈AC〉,〈AB0〉,〈AB1〉,〈AB0B1〉,〈B0C〉,〈B1C〉,〈B0B1C〉,

〈AB0C〉,〈AB1C〉,〈AB0B1C〉. (D1)

For B = B0B1 ∈ {+ + , + −, − +, − −} being the result of

a Bell-state measurement, corresponding to the outcomes

|�+〉,|�−〉,|
+〉 and |
−〉, respectively, it is convenient

to note that the outcome B0 actually corresponds to the

measurement of σ̂Z ⊗ σ̂Z, the outcome B1 corresponds to the

measurement of σ̂X ⊗ σ̂X, and the product B0B1 corresponds

to the measurement of −σ̂Y ⊗ σ̂Y; therefore, the expectation

values for a given quantum state |�λ1〉|�λ2〉 are 〈B0〉�λ1
�λ2

= λZ

1λ
Z

2,

〈B1〉�λ1
�λ2

= λX

1λ
X

2 , and 〈B0B1〉�λ1
�λ2

= −λY

1λ
Y

2 (λ
X,Y,Z
i being the

X,Y,Z components of �λi).

After averaging over �λ1 and �λ2, one can easily check

that all single- and bipartite correlators in the first two lines

of (D1) vanish, as it is the case for entanglement-swapping

correlations. To calculate the tripartite correlators, one can

show that
∫

S2 d�λρ(�λ) sgn(�a · �λ) (�λ · �u) = 1
2
�a · �u [with ρ(�λ) =

1
4π

being the uniform distribution of �λ on the sphere S2], so

that we get

〈AB0C〉 =
∫

S2

d�λ1ρ(�λ1) sgn(�a · �λ1) λZ

1

×
∫

S2

d�λ2ρ(�λ2) sgn(�c · �λ2) λZ

2 = 1

4
aZ cZ, (D2)

〈AB1C〉 = 1

4
aX cX, 〈AB0B1C〉 = −1

4
aY cY,

where aX,Y,Z and cX,Y,Z are the X,Y,Z components of the

measurement settings �a and �c.

Now, for the quantum correlations in an entanglement-

swapping experiment, one has, precisely,

〈AB0C〉 = aZ cZ, 〈AB1C〉 = aX cX,

〈AB0B1C〉 = −aY cY.

Hence, our bilocal model reproduces the entanglement-

swapping correlations with a visibility V = 1
4

= 25%.

2. Simulation with two bits of communication

We have mentioned in Sec. IV C 2 that one could increase

the visibility of the simulation with the help of communication.

Inspired from the communication protocol presented in [41]

(theorem 10) that simulates the singlet state correlations, we

slightly modify the previous bilocal model in the following

way: Instead of starting with �λ1 and �λ2 uniformly distributed

on the Bloch sphere, we use one bit from Alice to Bob, and

one bit from Charlie to Bob to bias the distributions of �λ1 and
�λ2 according to (see theorem 6 of [41])

ρ�a(�λ1) = |�a · �λ1|
2π

, ρ�c(�λ2) = |�c · �λ2|
2π

.

One can still easily check that the single- and bipartite

correlators in (D1) vanish, as for the entanglement-swapping

correlations. The tripartite correlators can be calculated in

a similar way as in (D2), with the modified distribution

functions ρ�a(�λ1) and ρ�c(�λ2) above. An easy calculation

shows that
∫

S2 d�λρ�a(�λ)sgn(�a · �λ)(�λ · �u) = 1
2π

∫

S2 d�λ(�a · �λ)(�λ ·
�u) = 2

3
�a · �u, from which we now get

〈AB0C〉 = 4
9

aZ cZ, 〈AB1C〉 = 4
9

aX cX,

〈AB0B1C〉 = − 4
9

aY cY.

This shows that our bilocal model, augmented by two bits

of communication, reproduces the entanglement-swapping

correlations with a visibility V = 4
9

≃ 44.4%.
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