
RESEARCH ARTICLE Open Access

BIM based collaborative and interactive design
process using computer game engine for general
end-users
Gareth Edwards1, Haijiang Li2* and Bin Wang2

Abstract

Background: The emerging Building Information Modelling (BIM) in the Architectural, Engineering and Construction

(AEC)/Facility Management (FM) industry promotes life cycle process and collaborative way of working. Currently, many

efforts have been contributed for professional integrated design/construction/maintenance process, there are very few
practical methods that can enable a professional designer to effectively interact and collaborate with end-users/clients

on a functional level.

Method: This paper tries to address the issue via the utilisation of computer game software combined with Building

Information Modelling (BIM). Game-engine technology is used due to its intuitive controls, immersive 3D technology

and network capabilities that allow for multiple simultaneous users. BIM has been specified due to the growing trend
in industry for the adoption of the design method and the 3D nature of the models, which suit a game engine’s

capabilities.

Results: The prototype system created in this paper is based around a designer creating a structure using BIM and this
being transferred into the game engine automatically through a two-way data transferring channel. This model is then

used in the game engine across a number of network connected client ends to allow end-users to change/add elements

to the design, and those changes will be synchronized back to the original design conducted by the professional
designer. The system has been tested for its robustness and functionality against the development requirements,

and the results showed promising potential to support more collaborative and interactive design process.

Conclusion: It was concluded that this process of involving the end-user could be very useful in certain circumstances
to better elaborate the end user’s requirement to design team in real time and in an efficient way.

Keywords: Building Information Modelling (BIM); AEC/FM; Computer game engine; End user; Collaboration

Background

Building Information Modelling (BIM) is a new technol-

ogy/method emerging in AEC/FM industry. It promotes

life cycle process and collaborative way of working. The

basic concept is that all information/data are shared/up-

dated/maintained by all of the involved parties guided/

governed by the appropriate governance/management

model. BIM allows for design of a building/structure to

be completed in full 3D and also allows for a design to

be modified and updated for all parties so that they can

see the changes almost immediately and see if those

changes affect their elements of the design. Additionally,

BIM enables more specialised parts of the design to be

completed by others, other than the traditional main three

(architect, structural engineer and service engineer). For

example it facilitates conducting energy analysis or quan-

tity surveyors to look at the quantities of materials that

may be required based on the elements parametric data. It

also aids scheduling of the works, known as 4-Dimensional

(4D) design. This schedule can be used to create an anima-

tion of the construction project, which may be useful

when helping professional designer to understand the full

construction process or demonstrate it to a client. BIM

can also allow the non-technical parties to understand the

* Correspondence: lih@cardiff.ac.uk
2Cardiff School of Engineering, Cardiff University, Queen’s Building, The

Parade, Cardiff CF24 3AA, Wales

Full list of author information is available at the end of the article

© 2015 Edwards et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

Edwards et al. Visualization in Engineering (2015) 3:4

DOI 10.1186/s40327-015-0018-2

mailto:lih@cardiff.ac.uk
http://creativecommons.org/licenses/by/4.0

design at the design stage, to see the design in 3D and get

a proper visualisation of the whole project, which is not

easily possible with the more traditional methods.

Although, in theory BIM does allow for far greater col-

laboration between many of the parties involved in the

design process, the current practices and developments

mainly focus on the collaboration between the different

elements of the professional design teams. Many efforts

have been contributed for professional integrated design

/ construction / maintenance process, there are very few

practical methods that can enable a professional designer

to effectively interact and collaborate with end users

(functionally). Currently, with either BIM or traditional

design practices the client is generally only provided

with passive information on a project via the design

team preparing information in some form of formal

presentation. On a functional level BIM has not yet

allowed for a client to contribute to the design phase

(Christiansson et al. 2011). By this it is meant that all of

the data that is presented to a client is static and has to

be transferred into some sort of other form with no real

interactive element for the client. An example of this

would be that the model might be presented on paper or

on a computer to a client but the views and information

will have been pre-prepared by one of the design team

to present to the client and may not present all of the

information that a client wants to see. This also does not

allow the client to actively explore the building in its

entirety and view what they want to see not what a

designer thinks that they want/need to see.

This paper introduces a software system development

addressing the technical issue as mentioned above

regarding the involvements of end users in BIM based

design process via the utilisation of computer game

engine combined with BIM (Christiansson et al. 2011;

Eastman et al. 2008). A computer game engine is used due

to its intuitive controls (easy enough for non-professional

end users), immersive 3D technology and network cap-

abilities that allow for multiple simultaneous users. BIM

has been specified due to the growing trend in industry

for the adoption of the design method and the 3D nature

of the models, which suit a game engine’s capabilities.

The key contribution is to show a way that allows the

functional involvement of non-professional end users in

the professional design process. The core research is to

develop a two-way data transferring channel between

the end users ‘playing’ in game environment (through

Web pages or thin client end) and the professional BIM

design team. The other supporting developments include

the extraction of the necessary information from the

professional BIM model (through C# based Revit API

development), game environment development, and set-

ting up the underlying computing environment etc. The

developed prototype further extends the current BIM

implementation to cover non-professional end users. With

further improvement and development, e.g., embedded

with the appropriate governance model, it could be used

to realize a more integrated life cycle based building

design/construction/maintenance process to better address

the end user’s requirements, and hence to improve the

efficiency and productivity in the industry.

The rest of the paper is organized as follows. First, the

related work regarding computer game engine with BIM

applied in AEC/FM domain has been briefly reviewed,

including computer game engine software infrastructure

and their various applications. A comprehensive software

system development process is then explained in detail.

The software system architecture is introduced first via a

multi-layered diagram, which includes the client end,

game engine environment, BIM environment and the data

transmission among different elements. The system design

and implementation section covers the main hierarchical

system design, key classes design and implementation,

development framework selection, the implementation for

two-way data transferring, extraction of BIM data and

other development details. The system deployment and

evaluation is given next, where several testing scenarios

have been implemented to check the software deve-

lopment errors and system functionalities. Finally, the

conclusion and future work are given.

Game engine applied in AEC/FM domain with BIM

Building Information Modelling (BIM) is now approaching

to its tipping point (NBIMS 2007; BSI 2010; BuildingSmart

2010; McGraw_Hill_construction 2010) worldwide to revo-

lutionize the entire workflow for AEC industry. Like other

countries all over the world, the UK has completed several

strategic BIM implementation plans, which are going to

require BIM compatibility (level 2 of BIM in Bew &

Richards Figure (BuildingSmart 2010)) by the year of 2016.

There is a drive from the current UK AEC industry to

implement the comprehensive and advanced BIM practice

to fulfil the government requirement. While computer

game engines have been developed over the years from

simple games such as the first interactive computer game

OXO (Obituary 2011) to fully immersive 3D environments.

Games are highly profitable, thus developers are willing to

invest heavily in resources for games development. This

gives rise to a highly developed product. The net result is

that games represent a pinnacle that other simulation and

virtualisation software struggle to equal (Stuart 2011). All

of this leads to very powerful tools that can be used for

various purposes.

One of the situations that computer game engine tech-

nology is being applied to is that of simulating evacu-

ation of the population of a building in a situation such

as a fire (Rüppel & Schatz 2011). The models used in

some of these simulations are based on 3D information

Edwards et al. Visualization in Engineering (2015) 3:4 Page 2 of 17

taken from BIM applications (Yan et al. 2011). Some of

the models use agent based systems where the computer

based players are programmed using parameters gained

from research and the computer simulates the virtual

players attempting to evacuate the building (Rüppel &

Schatz 2011). This has been extended and changed from

being simply a fully computer driven simulation to one

utilising the interactivity of the game engine by human

subjects to identify how they react within the simulation

and what decisions they make in the stressful situation

of a fire. Rüppel and Schatz (2011) took this simulation

further introducing stimuli such as smoke machines and

3D optical effect screens etc. to try to bring a new dimen-

sion to the game.

Another way in which computer game engines have

been put to use when combined with BIM is that of

providing an interactive visualisation of a structure. This

has been done in (Yan et al. 2011) using a combination

of the Microsoft® XNA™ Framework as the game engine

and Autodesk® Revit® Architecture as the BIM design

application. The system allows users to go on a ‘walk-

through’ from one room to another or simply explore

the building freely as they wish. This allows for a far

more intuitive method of exploring a design before it is

built or whilst the building is under construction when

compared to the static 2D drawings produced by most

CAD based systems. The system also makes full use of

the parametric property aspect of the BIM design

process by using the properties that indicate if rooms

are linked by a door etc. to allow for path finding in the

building. A further use that game engines appear to suit

is one of visualising a simulation in a graphical way.

They suit themselves to this situation well due to their

real-time, high quality 3D graphics capabilities and also

their ability to cope with 3D geometric data.

El Nimr and Mohamed (2011) used two different sce-

narios and two different game engines to achieve visuali-

sations of the simulations that they were running. The

first example was that of a system designed to simulate

the bidding process for attaining a project from tender.

It used a map on which the simulation created jobs that

players could then bid for. The second example used a

real-life construction scenario and a system was developed

to visualise the construction process on a site where parts

of the structure were to be built off-site. These were

brought to a yard on site for further assembly into mod-

ules that were then finally constructed into the finished

structure. This system simulated the whole construction

process and visualised both the site, enabling the contrac-

tors to visualise where cranes could fit on to the site

during the construction, and also the yard where the

individual parts were to be assembled into modules. Both

of the scenarios demonstrated the merit of having a

graphical representation of the simulation, which allowed

for the developers and also the users of the systems to see

what was going on and where that fitted into the project.

Using a computer game engine as part of a design

review system may not seem the obvious choice. How-

ever, due to the nature of the game engine providing

networking features that enable real-time collaboration

and real-time 3D graphics for real-time visualisation of a

building, a game engine could perform this task well.

Currently many of the design review systems that are

available provide insufficient allowance for the inclusion

of all of the stakeholders who may sensibly contribute to

this process. Current methods generally are conducted

using peer review. An example of this is the use of a

light box to overlay drawings to facilitate discrepancies

to be identified between different elements of the design.

Due to this sort of process becoming tedious it is found

that the process is quite often not conducted efficiently and

in some cases is not conducted at all (Shiratuddin & Thabet

2011). A prototype has been created by (Shiratuddin &

Thabet 2011), where a game engine has been used to create

a game where multiple users (members of the design team)

can review a design together and interact with the design.

They can see details about the design and do basic 3D

editing. It is also possible to communicate with one

another within the game and leave notes on the design.

The authors envisaged that this sort of design review sys-

tem will help to improve the quality of the design review

that it is undertaken and make it a simpler, easier and

more satisfying process.

Another area that game engines have been used for in

AEC is that of teaching students about construction site

safety (Lin et al. 2011; Dickinson et al. 2011). In work by

Lin et al., a game was created that simulates a construc-

tion site. The user walks around the site looking for errors

or issues with health and safety. When an issue is identi-

fied the user selects the issue and then chooses what is

wrong with the situation using the games interface. It was

noted that, from the students who were test subjects in

the work, the system made the learning process more

interactive and enjoyable and that it helped them to mem-

orise the health and safety issues. In addition, such virtual

environment can enable end users to learn various design

skills (Sun et al. 2014; GU et al. 2009). Sun et al. developed

a 3D virtual space towards a synchronous distributed

design meeting system to allow end-users to sketch or

make annotations and have discussions as well as add

viewpoints to designs. Gu and Nakapan discussed the

benefits and shortcomings of virtual worlds for collabora-

tive design learning and education.

In short, computer game engine has becoming much

more advanced and mature (than it was before) to be

utilized for AEC/FM industry. In its essence, BIM is life

cycle based collaborative process, which would be much

more effective if end user gets involved in an efficient

Edwards et al. Visualization in Engineering (2015) 3:4 Page 3 of 17

manner right from the beginning stage through to build-

ing’s demolition. Due to the prompt and direct involve-

ments of end user/client (on a functional level), with

good governance model, the way of working can further

facilitate the prompt response coming from professional

designers, and to some extent it can also mitigate the

suffer for designer to repeatedly correct errors due to the

lack of effective communication between the end user/

client and designer. The development to be introduced in

this paper would serve as a good add-on to other develop-

ments focusing more on professional teams (Eastman

et al. 2008; Gu et al. 2010; Hassanien Serror et al. 2008).

Methods

System design and implementation

The use of game engines provides new and exciting

opportunities for technologies such as BIM. However,

this sort of utilisation is still in its infancy. Currently

BIM does not provide a method to involve the end-users

of the structures and promote collaboration between

them and the design team. This paper proposes to address

this issue by trying to promote collaboration between the

design teams and the end-users. The new developed sys-

tem has to be tested for its robustness and functionality

against the development requirements, and the results

showed promising potential to support more collaborative

and interactive design process between professionals and

end-users.

In order to construct a BIM based collaborative design

environment, the following steps have been identified and

concluded to guide the design of the system, and the

multi-layered system architecture is showed in Figure 1.

� Identification of the program suite the designer will

use to create their designs

� Establish how the designs will be conveyed to the

end-user

� Ascertain how to enable the user to have a simple

and intuitive process to modify designs

� Determination of a method to transfer the

information relating to these changes to the designer

� Identification of the modules, data sources and

executables that are required to support the task.

� Plan the order and structure of the implementation.

� Plan the methods used for evaluation and testing of

the system.

The multi-layered system architecture comprises four

inter-connected layers (Wang et al. 2014):

� BIM environment: Autodesk Revit can be regarded

as a comprehensive building information provider to

work with game technology to build an adaptable

immersive serious game

� The data transmission element: Revit plug-in

contains the database and FBX format converter. It

works as ‘micro’ web-server to generate semantic

and geometric data and store it in the database to

build a two-way and dynamic information flow for

collaborative and interactive design.

� Game Engine environment: Unity game includes the

Unity server and client game. A unity server

component connects Unity clients into an instance

and feeds those clients the available data which is

created in the data component. Unity clients are the

interface that helps immerse the end-user into the

virtual environment which is generated by the Unity

server (controlled by the designer).

� The client end: End-users and designers can work

together in different platforms supported by Unity

game engine with appropriate input and output

devices, i.e. Windows or Mac operating systems that

use high-resolution monitors with keyboard and

mouse; 3D stereoscopic projector with Razer Hydra

Figure 1 system overall architecture.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 4 of 17

joystick; Hand Mounted Display (HMD) with

Microsoft Kinect Sensor; Mobile platform using iOS

or Android with touch screen and built-in camera;

or Web-based environment that allows users to

connect to the server through their web browser.

Implementation framework selection

The major consideration in determining the choice of

system development framework was that of compatibility

of many of the BIM standards that have been laid down.

A further significant consideration was one of third party

support with software development kits. Taking these

factors into account, Autodesk® Revit® Architecture was

selected being fully compatible with BIM standards and

having excellent third party developer support (AEC (UK)

BIM Standard for Autodesk Revit (2010)). It should be

noted that the system would also function with Autodesk®

Revit® Structure and Autodesk® Revit® MEP (Revit 2012

API 2011) (when working with different professionals).

The method of enabling the end-user/client to be pre-

sented with and modify information contained within the

BIM model must meet the following criteria. The method

must be able to display the 3D nature of the model and

provide a simple, intuitive interface. This method must

also provide some way to facilitate the end-user/client to

collaborate with other stakeholders. A suitable system that

has been decided upon is that of a game engine. A game

engine provides powerful real-time 3D graphics, network-

ing features that allow for collaboration and a simple and

intuitive interface (Moore 2011; Petri et al. 2014). Unity

3D from Unity Technologies has been chosen as the plat-

form to interact between the professional designer and the

end user/client. This particular engine has been chosen

due to its simple object orientated and editor based design

system. It also provides many features that other engines

do not such as the ability to create executables that will

run on both Microsoft® Windows® and Apple® Mac®. It

also provides the ability to create ‘Web player’ versions of

any game produced, which will be a useful tool when pro-

viding a method of simple delivery to the end user as it

would mean that the end user could use their own web

browsers without having to download and install the

game. Currently to use the Unity web player a plug-in

must be installed into the web browser being used. This

may be negated by using the support for creating an

Adobe® Flash® Player object in the 3.5 version of Unity that

has been released recently (at the time of writing). Adobe®

Flash® Player is a common web technology is utilised on

almost all modern websites.

Key classes design

All the classes developed in the system help to deliver

the collaborative design environment. Figure 2 shows

the work flow that occurs within the game.

When the server starts up, the first procedure to im-

plement is to create an instance in the database to store

this information via the menu system. Next it waits for

the building information to load. The loading time varies

depending on the amount of information in the BIM

model. The internal process of loading data is to convert

Revit building format to FBX format. Then the FBX

model is loaded into the Unity server’s memory and con-

verted into our custom format, which buffers at the net-

work layer for incoming clients to load. The client first

needs to connect to the server by entering the server IP

address, and then receive the building information. The

two highlighted grey sections are specific for the client

version of the game and their counterparts are specific-

ally for the server version of the game. The end users

can control the avatar and toggle main menu for differ-

ent tasks in the server and clients.

The entire system development follows a sound software

engineering approach, specific activities such as applying

metrics and identifying characterisations such as design

requirements (aforementioned) and the level of details are

important in that activity. In relation to the object oriented

software development approach used, the overall system

class hierarchy to constitute menu structure and game for

collaborative and interactive design is shown in Figures 3

and 4, and the following contents show the key classes

design details.

All of the classes except ‘OBJModel’ are inherited from

‘MonoBehaviour’, which is Unity’s base class.

Main menu

The ‘MainMenu’ class which is a single script attached

to the camera object in the ‘MainMenu’ game scene in

the Unity game. As can be seen (in Figure 4) it has four

variables of which three are public to allow access to

them in the Unity editor. These three public variables

are a skin for the GUI components to use, a backdrop

for the menu and the title or name of the game to display

on the menu. These three variables are common on all

of the menu scenes as is the fourth variable ‘isLoading’,

which is private and is used for determining if the game

is changing scenes between a menu scene or the game

scene. Finally it can be seen that there is a subroutine

‘OnGUI()’ which is a Unity built in subroutine that gets

called by the game and is used to create the GUI

elements and in this case implement the logic for the

buttons of the main menu.

Start server

The ‘StartServer’ class, which is attached to the camera

object in the ‘StartServer’ scene. This being a menu has

the same variables as the main menu and they will not

be described again. It also has some other variables,

which are all for the various settings used for the server.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 5 of 17

All of the variables are all public other than the player

number as they need to be accessed by the Unity editor

to allow the default settings to be specified. The ‘Update

()’ subroutine, which is built in Unity subroutine that

executes once per frame render in the game. It is imple-

mented here to allow for capturing of input keys namely

the ‘escape’ key to get back to the main menu. The

‘PlayerName’ is included to set a default player prefer-

ence as part of the network connection starting process.

This starting of the game server is initiated in the

‘OnGUI()’ subroutine along with the other functionality

for the controls including moving to the lobby scene.

Connect to server

The ‘JoinServer’ class is attached to the main camera in

the game scene ‘JoinServer’. It also again implements all

of the previous standard menu variables and the ‘OnGUI

()’ subroutine. Other than those variables and subrou-

tines it implements two private variables that are used to

hold the value of two text input fields for use as settings

Figure 2 Activity UML model for game flow.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 6 of 17

when trying to connect to a server version of the game.

The three other subroutines that are implemented are

Unity built in subroutines that as their names suggest

deal with various situations of network connectivity and

are, in this case, only used to send messages to the

debug log. Again the ‘OnGUI()’ subroutine has been

used to implement the functionality of the controls in-

cluding initiating the connection with the server version

of the game and changing to the lobby scene.

Lobby menu

The ‘Lobby’ class is attached to the main camera object in

the ‘Lobby’ scene. It implements all of the menu variables

and the ‘OnGUI()’ subroutine. Of the four other variables

that are implemented two are used for allocating each

player (client) a unique number and the other two are

used for allocating the settings that the game server will

use to connect the building model server (Revit® plug-in).

The ‘Update()’ subroutine is implemented to capture the

‘escape’ key input to return to the main menu. The ‘Awake

()’ subroutine is another Unity built in subroutine that

initiates before any of the rest of the class starts, unlike

the ‘Start()’ subroutine where some of the class is started

before the function runs. It is used to run what is known

as a Remote Procedure Call (RPC), which is essentially a

method of allowing the same function or subroutine to be

initiated on all connect games, in different locations, at

the same time. It runs the RPC subroutine ‘GetPlayer-

Number()’, which in turn runs another RPC, namely

‘ReturnPlayerNumber’ from the clients so that they each

request a player number from the server. The functional-

ity of the controls, which are only shown on the game

server not the clients, is implemented in the ‘OnGUI()’

subroutine including executing the ‘LaunchGame()’ RPC

on all clients that makes the server and all clients change

scenes to the ‘Game’ scene.

Player in game

The ‘MovePlanar’ class is attached to the ‘Player’ prefab,

which is an object that can be instantiated (created)

across the network. There are five public variables to

allow for the editor to set the values of them before the

game is complied. These include speed factor which are

used in setting the speed of movement of the player, a

rotational sensitivity, which again is essentially a speed

factor and the Skin to use for the GUI. There are also a

number of Boolean type variables that are used to enable

and disable motion and menus depending on inputs

such as the ‘escape’ key, which is captured in the

‘Update()’ subroutine along with the input and imple-

mentation of the movement algorithm. There is also the

‘Position’, which is of Vector3 type (3D vector), is used

for maintaining the position of the player across the

network on the clients games. The ‘Awake()’ subroutine

is used to get the RigidBody component of the ‘Player’

prefab to use for enabling and disabling gravity. The

‘OnGUI()’ is again used for implementing a menu that is

only displayed after the ‘escape’ key has been pressed

with functionality such as exiting the game or enabling

motion in the Y axis plane, whilst disabling the gravity

option of the RigidBody component. Two other Unity

built in subroutines are also used in this class. ‘OnSeria-

lizeNetworkView()’ is used for sending information

about the state of gravity and position of the ‘Player’ pre-

fab across the network to the other players (clients). The

second subroutine ‘OnNetworkInstantiate()’ is used to

ensure that the camera is correctly configured to be the

one that is a child of the ‘Player’ prefab.

Figure 3 Menu structure of the game.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 7 of 17

The ‘MoveView’ class, shown in the class hierarchy is

attached to the camera object which is a child of the

‘Player’ prefab. The first three public variables are used

to set the parameters for the rotational movement in the

XY plane. The private ‘RotationY’ is used to hold the

previous value of rotation to be used to rotate the camera.

This is not sent across the network as the camera object is

not seen by the clients and hence does not require moving

on the client side. The last four variables are used to

disable and enable the motion of the camera depending

on which menus are active. All of this functionality is

implemented in the ‘Update()’ subroutine.

The ‘Spawn’ class is attached to ‘Spawn’ game object.

This class initiates the ‘spawning’ (creation) of all of the

‘Player’ prefabs (one for each connected client and one

for the server). The public variable ‘PlayerPrefab’ is used

to store a reference to the ‘Player’ prefab, which is made

using the Unity editor hence the variable being public

not private. The ‘SpawnPos’ is public due to the ‘Lobby’

class accessing it to give it the player number so that the

spawn script spawns all of the players away from one

another using the player number to give each a unique

spawn position. The ‘Awake()’ subroutine is used to

ensure that the game is connected to/is a server and

then initiates the ‘SpawnPlayer()’ subroutine, which is

not a Unity built in subroutine. The ‘SpawnPlayer()’ then

instantiates the current players ‘Player’ object for them to

use as a protagonist in the game. The ‘OnPlayerDiscon-

nected()’ and ‘OnDisconnectedFromServer()’ are Unity

built in subroutines and are used to make sure the various

players are destroyed correctly if a client leaves or if the

server disconnects the whole game.

Design in game

The ‘SelectObject’ class is attached to the ‘Camera’ game

object like the ‘MoveView’ class. The top two Boolean

types are used to tell all of the subroutines within this

class whether an object is within range and being looked

at by the camera or whether an object within range of

the camera has been selected to move it around. ‘Menu’

and ‘MenuDelay’ are used as before to indicate if the

menu is being displayed and to stop the ‘escape’ key

initiating the menu appearing an disappearing if the

‘escape’ key is held down. ‘Capture’, ‘RotationDelay’,

‘Rotation’ and ‘CurrentObject’ are all used in the move-

ment of an object that has been selected by the player,

which is implemented in the ‘Update()’ subroutine.

‘ObjectMenu’, ‘ObjectMenuDelay’, ‘ScrollViewVector’,

‘InnerText’, ‘Height’ and ‘SelectedCategory’ are all used

to implement the scroll view component implemented

as another menu that is used to create objects selected

from the menu. The objects contained within this menu

are implemented using the public variables ‘Categories’,

‘NumberInCategories’, ‘ItemThumbnails’, ‘ItemNames’ and

Figure 4 Overall system class hierarchy.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 8 of 17

‘ItemPrefabs’. These allow for the specification of categor-

ies using the ‘Categories’ variable along with the number

of items contained in that category using ‘NumberInCate-

gories’. The items three details, their names, thumbnail

images and references to their prefabs, are then placed

in the same order as the categories in the other three

variables. All of this scroll view is implemented in the

‘OnGUI()’ function up until an item is selected by pressing

a button containing the thumbnail of an object. This then

runs the ‘SpawnFurniture()’ subroutine, which creates an

instance of the selected prefab in front of the player. This

in turn runs the ‘SetPositons()’ RPC, which moves the

object on the other players games to its start position.

The ‘MoveObject()’ RPC is supposed to allow for move-

ment of the objects by sending the name of the object

to be moved and also the name of parent (player) that

will be moving the object. It then utilises these names

to find the objects and tries to move the object with the

parent object (player).

Data communication between BIM environment and

client end

The realization of BIM data extraction for computer

game engine is through using C# based Revit API devel-

opment. Figure 5 shows the class for BIM data extraction

and the extraction process. The ‘StartGameEngineViewer’

class is used to deal with all of the functionality contained

in the plug-in. It is initialised by the button on the ribbon

bar created in the ‘AddInPanel’ class. The first function

that is called in the ‘StartGameEngineViewer’ class is the

built in Revit API function ‘Execute()’. Therefore, the ‘Exe-

cute()’ function is public because the ‘AddInPanel’ class

needs to access it. The global variables in this class are

used mainly due to there being a background worker that

runs on a separate thread, which still needs access to some

of the data. The ‘OBJFile’ variable is used to hold a full

copy of the ‘.obj’ file for the current building model. The

‘uidoc’ variable is used to hold a handle to the current

document in Revit®. This is so that all of the functions and

the background worker can access the document. The

‘listener’ is object that makes up the ‘mini’ web-server

along with the background worker ‘bgWorker’. The ‘Do-

main’ and ‘PORT’ variables are used to hold variables for

the settings for the listener. The ‘CloseListener’ is used so

that the main thread can make the background worker

thread terminate. The ‘AppName’ variable is used to hold

the name of the plug-in as it may be used in the requests

to the ‘listener’ object and will need to be identified in a

requested URL and removed.

Figure 6 shows the ‘ReadBJFile’ and ‘OBJModel’

classes, which are attached to the ‘BuildingModel’ game

object. The class ‘ReadOBJFile’ allows for the creation of

the building by getting the geometric and some paramet-

ric data from the plug-in in Revit® using ‘.obj’ (Wave-

front 3D) files. The class ‘OBJModel’ is used to create an

array of the individual objects contained in the building

model within the ‘ReadOBJFile’ class. The ‘OBJModel’

class essentially is just a container for the variables it

needs to hold, which are the ID number and name of

the element. It has implemented get and set functions

for both of these variables. It also holds an array of 3D

vectors (Vector3) for the vertices and the normal’s to the

faces, which specify the direction in which a face is

visible from. ‘OBJModel’ also holds an array of 2D vec-

tors used to hold the vertex textures or UVs, which are

used to position a texture on a face of the model cor-

rectly. Finally there is an array of integers that is used to

hold a list of indexes to the vertices, normals and UVs

used to define each triangle that makes up the mesh of

the object.

Figure 5 Plugin class and data extraction process.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 9 of 17

The ‘ReadOBJFile’ class contains many different vari-

ables, functions and subroutines. The first two variables

are public so that they can be accessed through the

Unity editor. ‘Element’ is used to hold a reference to the

empty prefab only containing the correct components

such as a RigidBody to allow for physics interaction this

facilitates the building mesh to be built. An instance of

‘Element’ is used for every element contained in the

building. ‘Materials’ is used to hold an array of type

Material that are placed in the array in the editor and

are used for applying textures to the various elements of

the building. The next private variable ‘OBJModels’ is an

array of OBJModel classes and is used as described to

hold the data for the elements ready for creation in the

game. Buffer is used to act as a temporary storage loca-

tion for elements of the ‘.obj’ file that is to be sent to the

other players from the server version of the game. The

next five private variables are used to hold arrays of

strings that will contain element IDs. These are used to

apply the correct textures to those five types of elements

and to create colliders on only the elements that are not

doors so that free movement around the building is

possible. The final two variables are public and are used

to set where the web client tries to access the building

model information (‘.obj’ file and element IDs).

In ‘ReadOBJFile’ the only built in function or subrou-

tine used is that of the ‘Awake()’ subroutine, which is

used to initiate other subroutines. The sequence when

obtaining a model from the building model ‘mini’ web-

server is as shown in Figure 7. The names of many of

the functions and subroutines should be self-explanatory

except for the ‘CountItemsInGroup()’, which is used to

count the next set of vertices, vertex normals, UVs and

faces of the 3D model, where each set is an element of

the building such as a door. Another function that may not

be immediately obvious is the ‘ProcessModel()’ function

that is used for transforming the layout of the information

in the ’.obj’ file to the format that Unity uses.

Results and discussion

System deployment and evaluation

In order to fulfil the system development requirements,

the following criteria have been concluded for the finished

system to be assessed against. These criteria have been

evaluated through all stages of the implementation and

testing (developer testing) but have mainly been checked

using the two test scenarios described later (functionality

testing).

The section 4.1 and 4.2 demonstrate how to meet

criteria about information communication:

� The system must be able to import a building model

from Autodesk® Revit® into the Unity 3D based game.

� Communication between the Autodesk® Revit®

plug-in and the Unity 3D game must be possible.

� Properties of elements contained in the Revit® model

must be able to be communicated to the Unity 3D

game such as parametric properties or element type

properties.

The section 4.3 illustrates how to meet functional

criteria for end users:

� All of the aforementioned items of data (building

model, properties, etc.) must be able to be

forwarded to clients.

Figure 6 OBJModel and ReadOBJFile classes.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 10 of 17

� Models of furniture and other items must be able to

be placed by an end user on a client version of the

game or by the designer into the building model.

� Where client (end users) versions of the game place a

model in their game the information about that placed

object must be sent to the server version of the game.

� The designer must be able to transfer information

about the objects placed by the clients back to

Autodesk® Revit®. The plug-in will then load this

information into the building model.

The following sections demonstrate the collaborative

design system prototype working as intended, when

assessed against the evaluation criteria. All of these tests

throughout the testing section were carried out in a net-

worked computing environment running Microsoft®

Windows® 7 with Autodesk® Revit® 2012 and Unity 3.4

installed.

Setting up the linking between BIM modelling & game

engine

The plug-in appears in the ribbon bar of Autodesk®

Revit® as a button that will initiate the exporting of the

model and set-up the building model server. This plug-

in is shown in Figure 8 in the ‘Add-Ins’ Section of the

Revit® Ribbon Bar.

The form shown in Figure 8 at the bottom, allows for

the changing of settings for the ‘mini’ web-server. These

settings include the Internet Protocol (IP) address that

the server listens on and also the Port that the server

listens to. Finally there is a check box to indicate if the

game is to be run on the local machine. This option

launches the game in its current location on the local

machine automatically after the ‘mini’ web-server has

started. The plug-in also has another form that is

displayed, which is shown in Figure 8 on the left of the

diagram. This form is displayed due to the nature of the

Revit® Application Programming Interface (API), which is

a transaction based system. Systems of this nature do not

allow the game to retrieve the data required from Revit®

whenever it wants to since ‘mini’ web-server will be

started. Once the transaction has completed, Revit® closes

the plug-in and the ‘mini’ web-server with it. To overcome

this, the form shown in Figure 8 on the left is displayed to

keep the transaction running. This prevents the designer

from closing the form but enables the game to obtain its

information. Once the game has the information required,

the form can be closed along with the ‘mini’ web-server so

that a designer may continue to use Revit®.

Setting up the game server and game client

Figure 9 shows the process of setting up a server game

and a client game once the plug-in has been started as

shown in Figure 8.

Testing scenarios

Testing of the system has been conducted in different

ways at different points in the implementation life cycle.

Developer testing has been carried out continuously

through the implementation of the project. Both component

Figure 7 Data transferring process.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 11 of 17

tests and full system tests were undertaken so that the

code could be debugged and corrected during the course

of the implementation. Once all of the developer testing

and implementation has been completed the system was

then functionally tested with the two scenarios described

below. The first scenario utilised a block of flats created by

the designer into which the clients placed objects, which

were transferred back to Autodesk® Revit®. This process is

illustrated in Figure 10.

The second scenario employed a single storey house

design created by the designer. Within this house one of

the rooms was decided to be a kitchen. The user then

placed the kitchen of their choosing into this space. The

BIM models and Game environment for this are shown

in Figure 11, and the similar sequence modelling (to the

one showed in Figure 10) has been used.

The second example shows one new build housing

estate including many properties, it allows different

clients (end users) allocated to each of the properties to

place their respective kitchens. The two previous exam-

ples only use the example of furniture as objects to be

placed. This is not the only use of the system. It could

be used to place machinery in a factory before construction

to give a lay out, or to place other plant on a construction

site. However, in this paper furniture has been used to

demonstrate the system.

Throughout the implementation each element of the

plug-in and game has been continuously tested. For

example every one of the controls has been checked to

see if they performed and completed the expected opera-

tions. During the development process, any bugs that

were encountered were rectified before the next element

was implemented. The main way in which the system as

a whole was tested was the use of the two scenarios laid

out previously (Figures 9 and 10). These were carried out

following the procedure seen in the sequence diagrams

previously. For both scenarios it was necessary to create

test buildings in Revit. As showed in Figures 10 and 11, it

can be seen that the two test buildings in Revit® on the left

and then imported into the game on the right.

For the next part of these tests the game was started

with a client connected, to place their required objects

within the building. The placing of objects in the client,

within the block of flats model, can be seen in Figure 12.

To achieve this, the server version of the game has

successfully imported its own copy of the geometry of

the model from the plug-in and then sent this to the

client for both the server version and the client version

Figure 8 Starting the server to create the link from the game to Revit®.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 12 of 17

to build up the 3D model within their respective gaming

environments.

In Figure 12 it can be seen that the client has placed

the objects where he desired on the game screen, these

changes (objects positions and rotations) will then be

sent back to the server, which will send the changes

further back to BIM design environment. This process is

initiated on the server game, which the designer would

be in control of.

System evaluations

A total of thirty individuals took part in the test, each

using the three different Unity3D clients (including five

modes) to finish basic user-centred tasks and completed

a pre-experiment and post-experiment questionnaire.

The average response was recorded for analysis except

for situations where there was a clear bi-polar response

when the responses are illustrated individually.

The participant questionnaire responses expanded on

the differences between each interface focusing on

manoeuvrability, immersive feeling, realistic feeling, quality

of model representation and level of interest/excitement

(Figure 13). Clearly the greatest difference between the

interfaces lied in manoeuvrability. The motion sensor vir-

tual reality (VR) system (i.e. Kinect with HMD) scored a

low 2.67, equating to a median between ‘Difficult’ and ‘Very

Difficult’ on the response scale. There is then a significant

jump to public VR system (i.e. 3D Projector with Razer

Joystick) at 4.38, landing at the moderate side of ‘Difficult’

and then another significant jump to the tablet interface

which scored 6.67 on the moderate side of ‘Easy’. The two

desktop interfaces came in as clear preferences above

‘Easy’ which was noted as 7 on the response scale; the

flight mode beating its first person alternative by 0.42

points. It seems that time is needed for general end-users

to adapt to the the BIM-VE clients with ad hoc virtual

reality devices that are not present in their usual life.

There is a slight difference in results for immersive

feeling. The tablet and two desktop interfaces showed

almost zero differences in immersive feeling whereas

there is a noticeable 1.155 average increase with the two

VR interfaces, with the Kinect and HMD interface top-

ping the 3D Projector and Razer Joystick system by 0.25

points. It is clear that clients with high quality virtual

reality devices can immerse the participants into the

virtual environment although the participant requires

more time to become familiar with these client devices.

In terms of the realistic feeling and quaility of model

representation, the participants tended to give the clients

they are familar with in their usual life a higher score.

Figure 9 Process to set up a server game and connect a client game.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 13 of 17

Finally interest/excitement saw both desktop versions

achieving the worst score, with the tablet interface scor-

ing noticeably higher by 0.42 points closely led by the

3D projector with Razer Joystick system, all being rated

lower than the Kinect & HMD system. This is because

that the more accurate details a VE can map with the

real via VR devices, the more immersive effects the end

users can feel. It demonstates clearly the VR clients of

the BIM-VE hold a huge potential to be popular in the

future.

Figure 10 Testing scenario 1.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 14 of 17

Conclusions

The aim of this paper was to increase end-user involve-

ment in the design process in a collaborative manner.

The basics of a framework that could be used to achieve

this goal have been designed and constructed into a

working prototype that allows a user to interact with a

design created in a Building Information Modelling (BIM)

program, namely Autodesk® Revit® Architecture. This

interaction is achieved by the use of a game engine that

aims to provide intuitive controls and an immersive

environment to allow non-technically trained persons

to engage with the building and add to the design.

Unlike other studies that have been conducted into the

use of BIM and game engine technology, this prototype

enables the automatic import of a project that has been

designed in Revit®, directly across a network, into the

game with no intermediate design steps. The prototype

system has also utilised some of the networking

Figure 12 Placing object in the client (right) with the server observing (left) to design a room (bottom).

Figure 11 Testing scenario 2.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 15 of 17

potential of the game engine, in this case Unity created by

Unity Technologies, allowing for real-time collaboration

between persons in the gaming environment. This has

been augmented with the ability for a user to place objects

within the model to allow for them to adapt part of the

structure with items such as furniture. Objects may be

placed successfully in the server version of the game, and

similarly objects may be placed in the client version of the

game. Worthwhile progress has been made towards what

could be an exciting and useful technology framework that

the author believes could substantially improve end-users

inclusion in the design process.

Regarding future work, the most obvious improvements

are to resolve the issues that have occurred with the

clients updating the positions of the objects that they have

created/placed and relaying this same information back to

Revit®. Analysis and debugging to resolve this relaying

of information may be relatively straight forward but

potentially time consuming task. Another aspect for

improvement is to enable the placement of walls and

doors to allow for the selection of an internal layout.

This could be implemented to work in a similar man-

ner to the way that walls and doors can be placed and

used in BIM applications such as Autodesk® Revit®. This

would mean that walls and doors had parametric proper-

ties and for example a wall would use the properties of the

rest of the building such as the floor and ceiling heights to

work out where it should start and end in the vertical

direction. Likewise a door for example would only be able

to be placed on a wall rather than just in space.

Another improvement that may significantly improve

the openness of the system and enable substantial

improvements in other features would be to modify the

system to use IFC files. IFC files are an open format that

most BIM applications support and they allow for the

transfer of BIM models between different packages. If the

system was modified to use IFC files, rather than obtain-

ing the 3D geometric and category/parametric data separ-

ately, it would facilitate several improvements. The first

improvement would be that more of the parametric data

could be extracted from the model permitting uses of the

system in other areas such as using it for minor modifica-

tions of the structural elements of the building. Using

IFCs would also allow for direct updating and integration

of new elements into the model, which would simplify the

process and potentially speed it up (Bogen and East 2011).

An additional improvement that would add a great

deal of functionality and capability to the system as a

whole would be to create a website to host a web version

of the game. This would allow users to be authenticated

quickly and taken to their specific project in the game,

whilst simultaneously improving the ease of access since

it would not have to be installed on their computer. It is

possible, dependant on how this feature is implemented,

that the user would have to install the Unity web player.

Alternatively installation of Unity web player could be

Figure 13 Post-questionnaire response – interface qualities.

Edwards et al. Visualization in Engineering (2015) 3:4 Page 16 of 17

avoided and the widely available web-based Adobe®

Flash® player utilised since version 3.5 of Unity makes

provision to create an Adobe® Flash® object. Another

web-based improvement would be to implement an

interface that permits a user to browse a retailers’ web-

site, within the game, to pick out a particular piece of

furniture. The game would then download the associated

image for the item and seek basic dimensions such as

length, width and height, applying this to a generic

model of the type of that object.

One further technical improvement could be under-

taken would be to implement Universal Plug and Play

(UPnP). This permits programs to negotiate with a fire-

wall in a network to allow them access across a network

with no user configuration (ISO/IEC 29341–1 2011).

This would eliminate many of the issues that the system

may encounter due to the networked nature of the game

and plug-in. This would be largely applicable to the

‘mini’ web-server and client rather than the game as

Unity’s networking features already include support for

NAT (Network Address Translation) that can bypass

many of these problems (Huston 2004).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GE - Jointly came up with the idea of creating the BIM-based Virtual environment
with LH. Created and programmed the plug-in for Autodesk Revit. Created and

Programmed the Unity based ‘game’ environment. Wrote sections of this paper.

LH - Jointly came up with the idea of creating the BIM-based Virtual environment

with GE. Wrote sections of this paper. BW - Wrote sections of this paper and
reformatted the paper. All authors read and approved the final manuscript.

Author details
1ATKINS, The Hub, 500 Park Avenue, Aztec West, Almondsbury, Bristol BS32
4RZ, UK. 2Cardiff School of Engineering, Cardiff University, Queen’s Building,

The Parade, Cardiff CF24 3AA, Wales.

Received: 10 October 2014 Accepted: 22 January 2015

References

AEC (UK) BIM Standard for Autodesk Revit. (2010). Engineering and Construction

industry in the UK. United Kingdom: AEC (UK) CAD & BIM Standards Site.
Bogen, C, & East, W. (2011). Using IFC Models for User‐Directed Visualization in

Congress on Computing in Civil Engineering, Proceedings. Reston: American

Society of Civil Engineers.

BSI. (2010). Constructing the business case - building information modelling.
London: BSI Corporate.

BuildingSmart. (2010). Investors Report - Building Information Modeling (BIM).

London: BSI Corporate.

Christiansson, P, Svidt, K, Pedersen, KB, & Dybro, U. (2011). User participation in
the building process. Journal of Information Technology in Construction,

16, 309–334.

Dickinson, J, Woodard, P, Canas, R, Ahamed, S, & Lockston, D. (2011). Game-based

trench safety education: development and lessons learned. Journal of Information

Technology in Construction (ITcon), 16(2011), 119–134.

Eastman, C, Teicholz, P, Sacks, R, & Liston, K. (2008). BIM Handbook: A Guide to

Building Information Modeling for Owners, Managers, Designers, Engineers, and

Contractors. Hoboken, NJ: Wiley.
El Nimr, A, & Mohamed, Y. (2011). Aplication of gaming engines in simulation

driven visualization of construction operations. Journal of Information

Technology in Construction (ITcon), 16(2011), 23–38.

GU, N, Nakapan, W, Williams, A, & Figen Gül, L. (2009). Evaluating the use of 3D virtual

worlds in collabora-tive design learning. In the 13th international conference on

Computer Aided Ar-chitectural Design (CAADFutures). St Leonards Sydney: Icon.

Net Pty Ltd.

Gu, N, Singh, V, London, K, Ljiljana, B, & Taylor, C. (2010). Adopting building
information modeling (BIM) as collaboration platform in the design industry.

In The Association for Computer Aided Architectural Design Research in Asia

(CAADRIA). St Leonards Sydney: Icon.Net Pty Ltd.

Hassanien Serror, M, Inoue, J, Adachi, Y, & Fujino, Y. (2008). Shared computer-aided
structural design model for construction industry (infrastructure). Comput Aided

Des, 40(7), 778–788.

Huston, G. (2004). Anatomy: A Look Inside Network Address Translators. The

Internet Protocol Journal, 7(3), 2–32.
ISO/IEC 29341–1. (2011). Information technology – UPnP Device Architecture – Part

1: UPnP Device Architecture Version 1.0. 2011. Geneva: International

Organization for Standardization.

Lin, KY, Son, J, & Rojas, E. (2011). A pilot study of a 3D game environment for
construction safety education. Journal of Information Technology in

Construction (ITcon), 16(2011), 69–84.

McGraw_Hill_construction. (2010). The Business Value of BIM in Europe. Columbus:

The McGraw-Hill Companies.
Moore, ME. (2011). Basics of Game Design. Boca Raton: A K Peters/CRC Press

Taylor & Francis Group.

NBIMS. (2007). United States National Building Information Modeling Standard

Version 1 - Part 1 - overview principles and methodologies. Washington,
DC: National Institute of Building Science.

Obituary. (2011). Alexander (Sandy) Shafto Douglas 1921–2010. Comput J,

54(2), 187–188.

Petri, I, Li, H, Rezgui, Y, Yang, C, Yuce, B, & Jayan, B. (2014). A HPC based cloud

model for real time energy optimization, Enterprise Information Systems. UK:

Taylor & Francis.

Revit 2012 API. (2011). Developer’s Guide. United State: Autodesk, Inc.

Rüppel, U, & Schatz, K. (2011). Designing a BIM-based serious game for fire safety
evacuation simulations. Adv Eng Inform, 25(2011), 600–611.

Shiratuddin, MF, & Thabet, W. (2011). Utilizing a 3D game engine to develop a

virtual design review system. Journal of Information Technology in

Construction (ITcon), 16(2011), 39–68.
Stuart, K (2011). Modern Warfare 3 smashes records: $775m in sales in five days.

Accessed 2 December 2014. [http://www.theguardian.com/technology/2011/

nov/18/modern-warfare-2-records-775m] website

Sun, L, Fukuda, T, & Resch, B. (2014). A synchronous distributed cloud-based
virtual reality meeting system for architectural and urban design. Frontiers of

Architectural Research, 3(4), 348–357.

Wang, B, Li, H, Rezgui, Y, Bradley, A, & Ong, HN. (2014). BIM based Virtual

Environment for Fire Emergency Evacuation. The Scientific World Journal,

2014, 589016. doi:10.1155/2014/589016.

Yan, W, Culp, C, & Graf, R. (2011). Integrating BIM and gaming for real-time

interactive architectural visualization. Autom Constr, 20(2011), 446–458.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Edwards et al. Visualization in Engineering (2015) 3:4 Page 17 of 17

http://www.theguardian.com/technology/2011/nov/18/modern-warfare-2-records-775m
http://www.theguardian.com/technology/2011/nov/18/modern-warfare-2-records-775m

	Abstract
	Background
	Method
	Results
	Conclusion

	Background
	Game engine applied in AEC/FM domain with BIM

	Methods
	System design and implementation
	Implementation framework selection
	Key classes design
	Main menu
	Start server
	Connect to server
	Lobby menu
	Player in game
	Design in game

	Data communication between BIM environment and client end

	Results and discussion
	System deployment and evaluation
	Setting up the linking between BIM modelling & game engine
	Setting up the game server and game client
	Testing scenarios
	System evaluations

	Conclusions
	Competing interests
	Authors’ contributions
	Author details
	References

