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ABSTRACT:

The reconstruction of Building Information Modeling objects for as-built modeling is currently the subject of ongoing research. A

popular method is to extract structure information from point cloud data to create a set of parametric objects. This requires the

interpretation of the point cloud data which currently is a manual and labor intensive procedure. Automated processes have to cope

with excessive occlusions and clutter in the data sets. To create an as-built BIM, it is vital to reconstruct the building’s structure i.e.

wall geometry prior to the reconstruction of other objects.

In this work, a novel method is presented to automatically reconstruct as-built BIM for generic buildings. We presented an unsuper-

vised method that procedurally models the geometry of the walls based on point cloud data. A bottom-up process is defined where

consecutively higher level information is extracted from the point cloud data using pre-trained machine learning models. Prior to the

reconstruction, the data is segmented, classified and clustered to retrieve all the available observations of the walls. The resulting ge-

ometry is processed by the reconstruction algorithm. First, the necessary information is extracted from the observations for the creation

of parametric solid objects. Subsequently, the final walls are created by updating their topology. The method is tested on a variety of

scenes and shows promising results to reliably and accurately create as-built models. The accuracy of the generated geometry is similar

to the precision of expert modelers. A key advantage is that that the algorithm creates Revit and Rhino native objects which makes the

geometry directly applicable to a wide range of applications.

1. INTRODUCTION

The production of as-built BIM models has become widespread

in the AEC industry. These models are vital in project prepara-

tions for renovations and are becoming increasingly mandatory

in project deliveries (Kavanaugh, 2013). Additionally, it can be

used for managing heritage assets and numerous analyses for ex-

isting buildings (Volk et al., 2014, Patraucean et al., 2015). In

the case of new constructions, the geometry of an as-built model

can be obtained from updating an as-design model. More com-

monly, it is conceived from metric measurements such as point

cloud data of the site. Currently, this Scan-to-BIM process is

a manual procedure performed by expert modelers that interpret

the point cloud and manually design all the relevant objects in the

scene. This is a significant time investment and thus the uptake

of automating this procedure is enormous. However, automated

procedures are halted by the lack of consistent data, the compu-

tational effort of the procedures involved and the complexity of

built structures. Furthermore, point cloud data acquired by re-

mote sensing techniques are inherently occluded and are littered

with clutter. It is within the scope of this research to fully au-

tomatically reconstruct BIM wall geometry up to as-built condi-

tions under these realistic conditions.

Automated Scan-to-BIM processes can be considered either bottom-

up or top-down procedures (Hichri et al., 2013). The former con-

siders a range of measurements from the site as input and extracts

increasingly higher level information from the observations until

the intended geometry can be reliably constructed. This is a gen-

eral approach which relies on building logic to interpret the data.
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It is often used in projects that do not have access to other reli-

able sources of information such is the case with insufficiently

documented buildings and heritage structures. In contrast, the

latter relies on this prior information for the point cloud inter-

pretation and reconstructs a well defined number of objects in a

selective manner. This is considered a supervised pattern recogni-

tion approach which is commonly used in Scan-vs-BIM (Bosché

et al., 2013, Bosché et al., 2014). In this research, we propose

a bottom-up method since the majority of built structures do not

have reliable plan information (Gimenez et al., 2015). Further-

more, we solely rely on the point cloud and building logic for the

point cloud interpretation since the incorporation of e.g. sensor

information would make the procedure sensor-dependent.

The emphasis of this work is on the reconstruction of wall geom-

etry as it forms the basis of other objects in the Building Infor-

mation Model. Also, their observed geometry has a quite distinct

signature which can be reliably detected by heuristics and ma-

chine learning techniques. The presented process consists of a

series of consecutive procedures including segmentation, classi-

fication, clustering and finally the reconstruction of the objects.

This research solely discuses the final step as the first three steps

are performed in prior work (Bassier et al., 2018, Bassier and Ver-

gauwen, 2019b). The procedure is specifically designed to deal

with the significant amount of clutter in the scene and to reason

about the occlusions in the input point cloud. The goal is to com-

pute a set of abstract but accurate LOD200 (BIMForum, 2016)

walls based on clustered wall segments. Also, our approach cre-

ates both Revit and Rhino native geometry which ensures data

compatibility with a wide range of industry applications.

The remainder of this work is structured as follows. The back-
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Figure 1: Overview of the intermediate results of the presented Scan-to-BIM procedure: unstructured point cloud (left), extracted

classified clustered planar wall segments (mid) and the reconstructed LOD200 walls (right).

ground and related work is presented in Section 2. In Section 3.

the methodology is presented. The test design and experimen-

tal results are proposed in Section 4. Finally, the conclusions are

presented in Section 5.

2. BACKGROUND & RELATED WORK

As stated above, bottom-up processes gradually extract higher

level information from the point cloud prior to the reconstruc-

tion (Nguyen and Le, 2013). Typically, the data is not processed

in its entirety but subsampled for efficiency (Tang et al., 2010).

In 2D methods, the point cloud is often reduced to a set of raster

images consisting of a slice of the data or other information (Lan-

drieu et al., 2017, Anagnostopoulos et al., 2016). In 3D meth-

ods, the point cloud is typically subsampled and restructured as a

voxel octree which allows efficient neighborhood searches (Vo et

al., 2015) (Fig. 1left). Next, the data is interpreted and assigned to

one of several predefined classes such as walls, ceilings and floors

that form the building’s main structure. Single point classification

does have applications (Qi et al., 2016) but typically the data is

oversegmented into geometric primitives such as planes or cylin-

ders to increase the distinctiveness of the observations. In our

research, we segment the data according to planar primitives due

to the structural components of a building generally being planar.

From each segment, local and contextual information is extracted

and processed by reasoning frameworks to assign the appropriate

label (Garstka and Peters, 2016, Weinmann et al., 2017, Dittrich

et al., 2017). Both heuristics and machine learning techniques

are considered, both of which show promising results due to the

distinct signature of archytypical building classes (Bassier et al.,

2016, Wolf et al., 2015, Xiong et al., 2013, Nikoohemat et al.,

2017). Once the class of the segments is established, the data is

grouped into all the relevant observations of individual objects.

In previous work, we employ a pretrained Conditional Random

Field to associatively group planar wall segments into wall clus-

ters (Fig. 1mid). These groups of observations are the input of

the presented reconstruction algorithm that extracts the relevant

wall parameters and subsequently the topology analysis.

Wall reconstruction algorithms vary depending on the wall geom-

etry that is reconstructed. Most approaches consider wall recon-

struction within the scope of surface based applications such as in

navigation, robotics, and so on (Dı́az-Vilariño et al., 2015). For

instance, Xiong et al. (Xiong et al., 2013) and Adan et al. (Adan

and Huber, 2011) reconstruct planar wall boundaries and open-

ings based on machine learning. Michailidis et al. (Michailidis

and Pajarola, 2016) reconstruct severely occluded wall surfaces

using a Bayesian graph-cut optimization on a cell complex de-

composition. Even Neural Networks are employed to compute a

realistic representation of wall surfaces (Barazzetti, 2018). In this

light, it can also be considered as a room reconstruction paradigm.

Oesau et al. (Oesau et al., 2014) consider the creation of water-

tight rooms as a 2D graph-cut optimization problem. Ochmann

et al. (Ochmann et al., 2016) and Mura et al. (Mura et al., 2016,

Mura et al., 2014) both focus on finding the optimal room layout.

Ochmann et al. do fit wall objects on the rooms edges but do this

for the purpose of room separation.

The emphasis of this research is on the reconstruction of Building

Information Modeling geometry which is most commonly based

on solid parametric entities that can be extended with non-metric

information for a variety of applications (Volk et al., 2014). This

requires a fundamentally different approach since we do not re-

construct the partially observed surfaces of the walls but rather

use the observations to extract the parametric information required

to create a solid wall object. In this research we create LOD200

walls, which have an abstract physical appearance and require a

base constraint, a height or a top constraint, a walltype and a path

which serves as a centreline or a centreplane. Closely aligned

with our work is the method of Macher et al. (Macher et al.,

2017). They have similar outputs as our method but first cre-

ate .obj files within Matlab which they manually transfer to .ifc

files using the FreeCAD Open Source software. In our work, we

use the Rhinocommon API for the information extraction and use

Rhino.Inside (Robert McNeel & Associates, 2019) and Revit API

to fully automatically create BIM geometry directly within Revit.

This allows for a wide range of outputs without the sometimes er-

roneous conversion through .ifc formats and exploits the capabil-

ities of both API’s. Thomson et al. (Thomson and Boehm, 2015)
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Figure 2: Overview implementation of the reconstruction algorithm. (1) the parameter extraction is performed in Rhino and Grasshop-

per with developed components based on the Rhinocommon API and (2) the partial wall geometry and final wall geometry are con-

structed directly inside Revit through the Rhino.Inside and Revit API.

also create BIM geometry. They propose a two-step approach

where they first create partial wall geometry of each segment or

paired segment. In the second step, they merge coplanar partial

walls and heuristically filter outliers. In our method, the cluster-

ing of wall segments is a separate step prior to the reconstruction.

This allows for a more balanced parameter extraction since all the

observations are already available per wall.

The reconstruction of the topology between walls has also been

researched. For instance, Budroni et al. (Budroni and Böhm,

2010) and Previtali et al. (Previtali et al., 2014) use wall line in-

tersections in a 2D cell decomposition. They combine both ceil-

ing and floor geometry to create initial blue prints for the rooms.

Valero et al. solves the intersections of pre-segmented wall lines

to create a closed area (Valero et al., 2012). 3D approaches also

have been presented. For instance, Turner et al. proposed 3D

voxel carving to create watertight meshes of rooms (Turner and

Zakhor, 2014). They determine individual room labels by per-

forming a min-cut on a 2D graph of the Delaunay mesh of the

floor plan. They are one of the few researchers that perform a

multi-storey reconstruction which also is the goal of this research.

However, their emphasis is on room boundaries while this re-

search focuses on accurate wall reconstruction. In this research,

the wall intersections are computed using the semi-automated

tools within Revit. This is quite efficient and often the connec-

tions between objects are project or application dependent.

3. METHODOLOGY

In this paper, a wall reconstruction algorithm is proposed that

creates BIM geometry directly within Revit. The procedure takes

as input a set of clustered labeled wall observations and outputs

generic LOD200 Basic walls (BIMForum, 2016) which are com-

patible with the IFCWallStandardcase class (BuildingSMART In-

ternational Ltd, 2013). Two steps are defined in the process.

First, parametric information is extracted from the clustered la-

beled segments to assign the appropriate walltype and constraints.

Next, the best fit centreline is computed and the partial geometry

is created. The method creates Revit native geometry through the

Rhino.Inside Plug-in and combines the Revit and Rhinocommon

API. This allows for a flexible method that can serve a wide range

of applications and also gives access to multiple file formats. The

consecutive steps are discussed in detail in the following para-

graphs.

3.1 Data preprocessing

Prior to the reconstruction, the data is segmented, classified and

clustered. First, the unstructured point cloud is represented as

a voxel octree after which planar patches are extracted from the

data as presented in our previous research (Bassier et al., 2017).

Next, the planar patches are subjected to a reasoning framework

that computes class labels for each patch. A pre-trained Ran-

dom Forests model is used for the classification (Bassier et al.,

2018). The result is a set of labeled segments that replaces the

point cloud representation of the building. These are then clus-

tered into groups that represent the individual walls. A Condi-

tional Random Field exploiting local and contextual information

is employed to compute the most likely assignment of the wall

segments (Bassier and Vergauwen, 2019c). The result is a set

of clustered wall mesh segments that represent all the available

observations of each wall. This is a highly reliable and accurate

representation of the observed structure but it is heavily occluded

and can only serve as a static model.

3.2 Level Creation

At the start of a Revit project, several levels are defined. These

are horizontal planes that serve as a reference for the different 2D

plans, views and objects. For instance, wall objects are typically

placed in relation to the nearby levels, even if their geometry does

not extend to this level. Most commonly, each storey of a build-

ing has its own level along with a top level for the roof and levels

for the foundations and the ground level. However, the number
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of levels is case-specific and can vary based on the type of project

and building. For instance, a building with intermediate storeys

can be designed with additional levels or the objects are mod-

eled with a height offset depending on the application. In this

research, we generate the levels semi-automatically. Given the

classified floor mesh segments, the user can select any number

of meshes and the levels are automatically created in the Revit

environment through the Rhino.Inside API. The height for these

levels are taken equal to the height of the centroid of the selected

mesh component.

3.3 Walltype

The estimation of the walltype is performed using the Rhinocom-

mon API as it has numerous functions for meshes. The goal of

this step is to compute the most accurate LOD200 representation

with respect to the observations. Therefore, the parameter ex-

traction is weighted based on the surface area of the individual

segments to ensure the best fit positioning of each partial wall.

Height Revit walls can either have a specific height or be placed

with respect to the nearby levels. In this research we prefer the

latter since the walls are then created dynamically and will move

with the levels if the user adjusts them. The top and base con-

straint are selected based on the absolute vertical distance of the

highest mesh point and the project levels (Eq.1).

base constraintw = l ∈ L, for which min|lz − wz,min|

top constraintw = l ∈ L, for which min|lz − wz,max|
(1)

where l ∈ L are the levels defined in the project, lz the height of

a level, w ∈ W the walls in the project that each contain a set

of segments {s1, s2, . . . , si} and wz,min and wz,max are respec-

tively the lowest and highest Z-coordinate of the wall cluster. The

base and top constraint do not have to be consecutive levels.

Width The width of an abstract LOD200 wall is defined as the

uniform orthogonal distance between the two wall faces. In or-

der to reduce the reconstruction error, the euclidean distance be-

tween the final wall faces and the observed mesh segments should

be minimized. However, BIM models shouldn’t unnecessarily

be flooded with numerous walltypes. Also, the noise introduced

by the sensors, registration and subsequent processing should be

taken into consideration. We therefore propose a semi-automated

wall width approach. First, the actual wall width is computed

given the observations. In parallel, the user can create several

walltypes within the Revit project according to their needs. Us-

ing the Rhinocommon API, the computed width is compared with

the user defined width of each walltype and the best fit walltype

is applied. This also allows the use of the Scan-to-BIM method

to extend existing models. To compute the highest accurate dis-

tance from the observations, the computations are performed in

3D. This avoids any abstractions made in 2D methods and takes

into account non-parallel wall segments, skewed walls and other

shortcomings. The segments in both wall faces are sampled with

a fixed number of points equal to their surface area. For every

point on a segment, the dot product of that segment’s normal and

the vector of this point and its closest point on a nearby wall face,

is computed. As this set is not normally distributed, we compute

the mode of the set. As this is unusable for continuous distri-

butions, we discretize the data by assigning frequency values to

intervals of equal distance (Eq. 2).

Figure 3: Width computation given s ∈ w (grey), with the sam-

pled points ∀p ∈ s (green), the normals
−−−→
nsi(p) per p (green ar-

rows) and the vectors −→psj connecting p to the nearest point on sj
(green lines).

−→
Pij =

{

−−→pipj

∣

∣

∣
∀pi ∈ si ∧ pj /∈ si : argmin

pj

(‖pi − pj‖)
}

D =
{

−→pij ·
−−−−→
nsi(pi)

∣

∣

∣
∀−→pij ∈

−→
Pij ∧ |−→pij ·

−−−−→
nsi(pi)|≥ tcopl

∧|
−−−−→
nsj (pj) ·

−−−−→
nsi(pi)|≥ tpar ∧ ‖−→pij‖≤ td

}

dw = Mo(|D|)

(2)

where ∀p ∈ s are the sampled points on each segment s ∈ w,
−−−−→
nsi(pi) the normal of mesh segment si at the location of p. By

sampling the surfaces with respect to their surface area, the actual

width dw is more accurate since the method favors large wall

surfaces which have a significant impact on the reconstruction

accuracy. The walltype is then decided by the minimal difference

between the Revit walltype width dr and dw (Eq. 3).

walltypew = walltyper ∈ Revit walltypes, for which

min|dw − dr|
(3)

3.4 Wall centre surface

Revit Basic Walls can be either slanted or vertical structures. The

vertical variant is created from a polyline in a horizontal plane. It

is the most commonly used geometry in as-built models despite

its inherent abstraction. The alternative is a slanted basic wall

which is placed based on a complex surface which in Revit is re-

ferred to as the wall face. The polyline and the wall face are of

course linked since the polyline is the projection of the wall face

in the case of a vertical wall. In this research, we consider this

face or polyline to be the centre of the wall and will be referred

to the centre surface and the centreline to avoid confusion with

the wall faces on either side of the wall. Also, the emphasis is

on the creation of vertical walls since slanted walls are typically

unwieldy for the majority of applications. The centreline is con-

structed as follows. First, a set of 2D points is created based on

the sampled points P of the mesh segments, their normals and

dw computed in the previous paragraph (Eq. 4).
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



Cx
Cy
Cz



 =







Px + 0.5dw
−−−→
ns(P )D̂

Py + 0.5dw
−−−→
ns(P )D̂

lz






(4)

after which ∀c ∈ C are fed to a least squares and conditional

RANSAC fitting algorithm that establishes the centreline. Three

types of centrelines are identified: straight lines, arcs and poly-

lines. For each of the cases, RANSAC computes

1− p = (1− ωn)k (5)

k number of fits where the number of selected points N is condi-

tion per type based on the dimensions of w in X and Y. ω is ratio

of inliers and is considered fairly high since C is sampled solely

based on wall observations (Eq. 6).

N =



























Line : (#n = 2|‖ci − cj‖≥ 0.5DimXY (w))

Arc : (#n = 3|‖ci − cj‖≥ 0.2DimXY (w))
Polyline : (#n > 3|‖ci − cj‖≥

DimXY (w)

#n
)

(6)

The best fitting model ψw is chosen based on the error between P
in the XY plane and ψ(N) given half of the final wall thickness

dw.

inliers(ψ(N)) =
{

p ∈ P
∣

∣

∣
|‖ψ(N)− p‖−0.5dw|≤ to

}

ψw = argmin
ψ(N)

(|inliers(Ψ)|)
(7)

In the case of walls that are only observed from one side, we

compute the wall face instead of the centreline. Similar to the

two-faced walls, we compute the tracé based on sampled pointsC
but generate them with the normal pointing away from the nearest

floor. A default thickness of 100mm is given to these walls.

To increase the efficiency, not every model is tested to compute

the best fit model. Based on the expected inliers, the first function

to meet the inlier threshold is kept. If the maximum number of

control points is met first, the model with the highest score is

kept.

Once all the relevant parameters have been extracted, the geome-

try of the partial walls is created. Using the Rhino.inside API, a

Revit Basic wall entity is created for every w, with the appropri-

ate walltype, base and top constraint and centreline.

3.5 Wall topology

In order to create a logic building model, the topology of the par-

tial walls should be adjusted. As Revit native basic walls are

created, the semi-automated toolkit of the Revit API can be used

for this operation. Using the intuitive trim, extend and join func-

tions, a user can efficiently finalize the model while performing

a quality control. In future work, we will integrate an automated

topology creation method but currently this method is preferred

since wall connections can be established in several ways and are

often project and modeler specific.

(a) Straight line: #n = 2 model, D = 1.14m,Mo(D) =
1.22m, dw,manual = 1.20m, time = 0.14s

(b) Arc: #n = 3 model, D = 1.41m,Mo(D) =
1.52m, dw,manual = 1.40m, time = 0.26s

(c) Polyline: #n = 4 model, D = 1.77m,Mo(D) =
1.80m, dw,manual = 1.80m, time = 1.3s

Figure 4: Model fitting of ψ(N) (green lines) based on C (red

dots). ‖ψ(N)−P}‖ is computed between P (green dots) and C
given 0.5dw (offsetted green lines).

4. EXPERIMENTS

The proposed algorithm is successfully implemented in Revit us-

ing Matlab and the Rhinocommon and Revit API. Figure 5 shows
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Figure 5: Overview of the three wall cases. The interface of Revit

and Rhino showcase the observed and reconstructed wall geome-

try which are linked through the Rhino.Inside Plug-in.

an example of the interface between both software and the com-

ponents linking to the Matlab functions. Both the level creation,

walltype identification and centreline estimation were all performed

fully automatically. To test the algorithm’s performance, the cen-

treline computation is tested on 3 distinct wall cases i.e. a straight

wall, a curved wall and a wall with a discontinue wall axis. Each

case is simulated with a number of mesh observations which

is the output from our previous work (Bassier and Vergauwen,

2019a). The observed segments represent realistic conditions

with non-parallel meshes, occlusions, non-vertical segments, non-

uniform thickness and clutter. Overall, the segments are littered

with frequently occurring shortcomings given a mostly successful

clustering of the wall segments. For the sake of the experiment,

the scale of the walls was increased to augment the visibility and

the magnitude of the errors. The automatically reconstructed ge-

ometry is compared to manually designed walls. The same wall-

type was used and the sampled points P on the observed mesh

segments is used as a reference.

The results of the comparison are shown in Table 1. The man-

ual geometry was established with an accuracy of respectively

0.13m, 0.19m and 0.12m for the line, arc and polyline. The au-

tomated procedure achieved a similar accuracy (0.12m, 0.11m

and 0.18m). Moreover, the type of model selected by the auto-

mated procedure closely aligns with the actual shape of the wall.

As discussed in the methodology, the first model to meet the in-

lier threshold is kept. Table 1 shows clear spikes in inliers when

the appropriate model is fit and thus this is considered a reliable

indicator. Default values are provided for the fully automated

procedure but users can influence the expected inliers, distance

threshold and the number of control points. Overall, the method

shows promising results for the reconstruction of wall geometry

even in complex environments.

5. CONCLUSION

This paper presents an unsupervised method to reconstruct wall

geometry from unstructured point clouds of buildings. The method

takes as input clustered wall segments originating from previous

works and outputs Native Revit and Rhino LOD200 BIM objects.

Given sampled point on the observed segments, the method com-

putes the best fit centreline that serves as the basis for the recon-

structed entities. Additionally, each wall is associated with the

appropriate Revit walltype in order to create consistent wall ge-

ometry. The result is a set of partial walls that closely align with

the observed faces of the wall. Once the partial geometry is es-

tablished, the wall topology can be semi-automatically adjusted

in the Revit software to create a truthful as-built BIM.

The experiments indicate that the used method is a promising re-

construction framework. The achieved accuracy and model se-

lection rival that of manual modeling by experts for a variety of

scenes. The procedure is robust to noise and clutter and deals

with frequently occurring problems such as non-parallel walls.

In future work, the wall topology will also be automated to even

further reduce the user effort to create as-built BIM geometry.
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Line   |𝑝| = 68, 𝐸𝑚 = 0.13𝑚, 𝑖𝑛𝑙 = 26% 
Arc |𝑝| = 62, 𝐸𝑚 = 0.19𝑚, 𝑖𝑛𝑙 = 23% 

Polyline  |𝑝| = 77, 𝐸𝑚 = 0.12𝑚, 𝑖𝑛𝑙 = 85% 

Fit Line 

(TLS) 

𝐸𝑟𝑟𝑜𝑟 =  0.13 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  59%  𝐸𝑟𝑟𝑜𝑟 =  0.41 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  16% 𝐸𝑟𝑟𝑜𝑟 =  0.69 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  16% 

Fit Line 

(Ransac) 

𝐸𝑟𝑟𝑜𝑟 =  0.12 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  71% 𝐸𝑟𝑟𝑜𝑟 =  0.41 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  34% 𝐸𝑟𝑟𝑜𝑟 =  0.98 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  48% 

Fit Arc 

(TLS) 

𝐸𝑟𝑟𝑜𝑟 =  0.13 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  65% 𝐸𝑟𝑟𝑜𝑟 =  0.23 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  44% 𝐸𝑟𝑟𝑜𝑟 =  0.60 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  12% 

Fit Arc 

(Ransac) 

𝐸𝑟𝑟𝑜𝑟 =  0.12 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  87% 𝐸𝑟𝑟𝑜𝑟 =  0.11 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  71% 𝐸𝑟𝑟𝑜𝑟 =  0.41𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  16% 

Fit Poly 

(Ransac) 𝑛 = 4 

𝐸𝑟𝑟𝑜𝑟 =  0.13 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 = 62% 𝐸𝑟𝑟𝑜𝑟 =  0.19 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  50% 𝐸𝑟𝑟𝑜𝑟 =  0.27 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 =  61% 

Fit Poly 

(Conditioned 

Ransac) 𝑛 = 4 

𝐸𝑟𝑟𝑜𝑟 =  0.14 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 = 60% 𝐸𝑟𝑟𝑜𝑟 =  0.20 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 = 48% 𝐸𝑟𝑟𝑜𝑟 =  0.18 𝑚 , 𝐼𝑛𝑙𝑖𝑒𝑟𝑠 = 62% 

Table 1: Result of the automated hearthline reconstruction. Each column represents the fitting results for the Line, Arc and Polyline. The 

orange dots are P, the blue dots are C and the green lines are the computed hearthline given the different methods. The red rectangle depicts 

the first model to fulfill the expected error and inlier rate.   
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