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Abstract

Summary: Genetic research utilizes a decomposition of trait variances and covariances into genetic

and environmental parts. Our software package biMM is a computationally efficient implementa-

tion of a bivariate linear mixed model for settings where hundreds of traits have been measured on

partially overlapping sets of individuals.

Availability and Implementation: Implementation in R freely available at www.iki.fi/mpirinen.

Contact:matti.pirinen@helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Decomposing phenotypic variance and covariance into genetic and

environmental parts is important for designing genetic studies and

understanding relationships between traits and diseases. The two

main approaches are linear mixed model (LMM) implementations,

such as GCTA (Yang et al., 2011), GEMMA (Zhou and Stephens,

2014) or BOLT-REML (Loh et al., 2015) and LD-score regression,

implemented in LDSC (Bulik-Sullivan et al., 2015). LMM requires ac-

cess to the individual-level genotype-phenotype data whereas LDSC

only needs output from a genome-wide association study (GWAS)

and variant correlations from a reference database, but consequently

may be less precise than LMM (Bulik-Sullivan et al., 2015).

We consider settings where individual-level data are available, and

hence use LMM. The bivariate LMM for n individuals is Y ¼ Gþ e,

where Y ¼ ðYT
1 ;Y

T
2 ÞT is 2n-vector of mean-centered phenotype values

from which the covariates, such as age, sex and principal components

of population structure have been regressed out, G � Nð0;RGÞ is

2n-vector of genetic random effects and e � Nð0;ReÞ is 2n-vector of
environmental random effects. The ð2nÞ � ð2nÞ covariance structures
are parameterized by six scalars: genetic variances VG1 and VG2, gen-

etic covariance VG12, environmental variances Ve1 and Ve2 and envir-

onmental covariance Ve12 as

RG ¼ VG1R VG12R

VG12R VG2R

2

4

3

5 andRe ¼
Ve1I Ve12I

Ve12I Ve2I
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3
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expressed as n�n block matrices. I is the identity matrix and the

element i, j of the genetic relationship matrix (GRM) R is

Rij ¼
1

K

XK

k¼1

gik � 2bfk
� �

gjk � 2bfk
� �

2bfk 1� bfk
� �� �

a

;
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where gik is the genotype of individual i at variant k, coded as 0, 1

or 2 copies of the minor allele and bfk is the minor allele frequency

(MAF). We use the standard scaling of allelic effects determined by

a ¼ �1.

From this model, an estimate of VGt approximates additive genetic

variance of each trait (t¼1, 2) explained by the variants included in

the calculation of R and is often used as a lower bound for the (nar-

row-sense) heritability (detailed assumptions in Yang et al., 2015). An

estimate of the genetic correlation qG ¼ VG12=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VG1VG2

p
measures

(average) correlation of the allelic effects of the variants on the two

traits. Similarly, we can estimate q
e
¼ Ve12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve1Ve2

p
, the correlation

in the environmental components between the traits.

The existing bivariate LMM implementations have not been de-

signed for a case where hundreds of traits have been measured on

10000s of individuals. Our software package biMM combines a

fast likelihood computation (similar in speed to GEMMA) with an

algorithm that optimizes the sample overlap between consecutive

pairs of traits analyzed and therefore efficiently reuses the computa-

tionally expensive matrix decompositions. biMM allows user to

control how much missing data are tolerated for a single analysis

and automatically executes both phenotype imputation and matrix

decompositions required to achieve that tolerance.

2 Materials and methods

2.1 Reusing eigendecomposition

Once an eigendecomposition of R is available, our biMM algorithm

drops the time complexity from cubic to quadratic for a trait pair

and from cubic to linear for a single evaluation of the likelihood

function (Supplementary Information). Similar time complexity is

achieved by GEMMA, and efficient algorithms for multivariate

LMM have recently been considered also by Furlotte and Eskin

(2015) and Casale et al. (2015). Our central observation is that a

complete sample overlap between two trait pairs means that the

same eigendecomposition can be used for both pairs. To fully utilize

this observation, we need to keep the eigendecomposition in random

access memory (RAM) across the trait pairs and we need to optimize

the order of the trait pairs. To our knowledge, neither of these func-

tionalities is available in existing software.

2.2 Ordering pairs, imputing and dropping values

We order the trait pairs in such a way that the consecutive pairs

have a large sample overlap. biMM further allows imputing at

most ti missing values and/or dropping at most td non-missing val-

ues for a trait pair to make it match the available eigendecomposi-

tion (Supplementary Information). Only when this is not possible

for any remaining pair does biMM a new eigendecomposition.

Algorithmically, given user-specified ti and td, biMM finds an

ordering that results in a small number of total eigendecomposi-

tions. This is an instance of the shortest Hamiltonian path problem

that we tackle by a greedy heuristic (Supplementary Information).

2.3 Example analyses

We consider data from the Northern Finland Birth Cohort 1966

(NFBC1966) (Rantakallio et al., 1969) with 16 traits having sample

sizes between 4736 and 5025 individuals (Supplementary Table S1)

and preprocessed by Tukiainen et al. (2014). We analyzed all 120

pairs of traits using both the complete (ti ¼ td ¼ 0) and an approxi-

mate versions (ti ¼ td ¼ 200) of biMM and compared with GCTA

1.25.3, GEMMA 0.94.1 and BOLT-REML 2.2 with their default

parameters. biMM ran in R-3.3.1 with Intel Math Kernel Library.

To assess scaling to larger datasets, we consider 20 000 individ-

uals simulated by HapGen2 (Su et al., 2011) using chromosome 2 of

the CEU panel from HapMap3 (International HapMap3 consor-

tium., 2010) with phenotypes generated to have heritabilities be-

tween 0.2 and 0.8.

In all examples we used a desktop computer with an Intel Quad-

Core i7-3770 CPU @ 3.40GHz and 16Gb of RAM.

3 Results

Figure 1 shows that the complete and approximate versions of

biMM are very similar across the 120 pairs of traits. Table 1 shows

that the approximate version is much faster than either the complete

version or any other software package tested. Detailed results are in

Supplementary Figures S1–S4. In short, biMM and GEMMA gave

essentially the same results and they were also similar to the results

from GCTA and BOLT-REML.

To assess scaling to larger datasets, we evaluated how much time

each additional trait pair would require for a dataset of 20 000 indi-

viduals after the eigendecomposition is available and phenotype

data are completely observed. The resulting times in CPU seconds

are 1.6 for biMM, 75 for GEMMA and 2670 for BOLT-REML.

GCTA was unable to run with 16Gb of RAM. The difference be-

tween biMM and GEMMA in this example with no missing data is

that biMM holds the eigendecomposition in RAM while GEMMA

reads it from a file for each pair of traits. The eigendecomposition

itself took 70 CPU minutes with biMM and 450 CPU minutes

with GEMMA. Hence, with a desktop computer, an analysis of

completely observed or imputed omics data for 500 traits (124750

trait pairs) measured on 20000 individuals would take less than

2.5 days with biMM, over 100 days with GEMMA (although

with a multivariate analysis strategy GEMMA could finish in

14 days, Supplementary Information) and many years with BOLT-

REML.

4 Conclusion

Our freely available biMM software package makes a bivariate lin-

ear mixed model analysis of high-dimensional phenotypes on
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Fig. 1. Comparing estimates for heritability (VG) and genetic correlation (qG)

between an approximate (ti ¼ td ¼ 200) and complete (ti ¼ td ¼ 0) versions of

biMM over 120 pairs of traits

Table 1. Cumulative run time in hours over 120 trait pairs of Figure 1

biMM approx biMM compl GEMMA BOLT-REML GCTA

Real (h) 0.05 0.49 2.76 19.20 21.39

CPU (h) 0.07 1.49 2.76 19.20 21.39

‘Real’ is wall clock time. ‘CPU’ is total CPU time over all cores used.
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cohorts of a few tens of thousands of individuals practical using a

desktop computer. For even larger cohorts, where explicit matrix

decompositions are impractical on current desktop computers,

BOLT-REML may be the only available option to analyze a pair of

traits, but it cannot utilize sharing of individuals across trait pairs to

efficiently analyze tens of thousands of trait pairs.
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