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Bimodal behavior of microlasers investigated with a two-channel
photon-number-resolving transition-edge sensor system
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We explore the photon-number distribution of bimodal quantum-dot micropillar lasers with a two-channel
transition-edge sensor (TES) detection system. The two channels of the photon-number-resolving TES system
simultaneously detect light emission of two orthogonal components of the micropillar’s fundamental emission
mode. The applied experimental scheme provides unprecedented access to the joint photon-number distribution

and enables a profound insight into the dynamics and photon statistics of the gain-coupled mode components.
In particular, the two-channel TES measurements reveal an optical bistability of the correlated laser modes
leading to temporal hopping between emission associated with Poissonian and thermal-like emission statistics.
The experimental data and theoretical modeling based on Monte Carlo simulations are in good agreement and
reveal the anticorrelated behavior of the mode hopping, which results in intensity fluctuations and superthermal
values of the autocorrelation function. Our investigations clearly demonstrate the great benefit of using photon-
number-resolving detectors in nanophotonics to explore the rich physics of multimode micro- and nanolasers.
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I. INTRODUCTION

The enormous progress in semiconductor laser miniatur-
ization has opened up new research opportunities at the
crossroads between optoelectronics, nanophotonics, quantum
optics, and nonlinear dynamics [1-3]. Interesting concepts
are, e.g., coupled bimodal photonic crystal cavities suitable
for studying nonequilibrium thermodynamics [4] and their
applications [5].

Lasers based on microcavities with high quality factors
(Q factors) and small mode volumes, which operate in the
cavity quantum electrodynamics (cQED) regime [6], are of
particular interest. Such high-8 micro- and nanolasers enable
thresholdless lasing [7-9] and even lasing of single quantum-
dot (QD) devices [10-12]. QD micropillar lasers, which have
been investigated in miscellaneous studies [13—15], often
show a bimodal behavior with two modes with orthogonal
linear polarizations competing for the common gain medium
[16,17]. This peculiarity can lead to intriguing effects such
as unconventional normal mode coupling [18] and stochastic
temporal hopping between the fundamental mode components
above the laser threshold [19], which influences the intrin-
sic mode dynamics and photon statistics [16]. The photon
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statistics of emission can be accessed by determining the
second-order photon autocorrelation function which provides
information about the nature of emission and temporal in-
tensity fluctuations. Important additional information can be
obtained by examining the photon-number distribution (PND)
of the emission, which not only provides insight into the
second-order photon correlation function, but also accesses
higher-order correlations.

Quantum optical measurements using the Hanbury Brown
and Twiss (HBT) configuration [20] have become an im-
portant tool for studying the photon statistics of micro-
lasers in terms of the second-order autocorrelation function
[21-23]. However, the typically used click detectors based on
avalanche photodiodes or superconducting nanowire single-
photon detectors do not provide access to the underlying
PND. In fact, these detectors cannot distinguish between one
or more photons in a light field due to their Geiger-mode-
like operation principle. To overcome this issue, the input
signal was demultiplexed to multiple detectors in a cascaded
arrangement to mimic photon-number-resolving (PNR) prop-
erties in Ref. [24]. More suitable for this task, however, are
superconducting transition-edge sensors (TES) with true PNR
capability which enables the direct photon-number measure-
ment in a light pulse with a dynamic range of up to 20-30
photons [25-27].

So far, TES detectors with sensitivity in the optical to
near-infrared spectral range have mainly been used to study
light sources based on parametric down-conversion (PDC)
processes [28,29]. More recently, their application has been
extended to the characterization of nanophotonic devices
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including semiconductor QDs as photon emitters [30,31]. Fur-
thermore, a single-channel TES detector has been used for the
PNR-resolved study of bimodal micropillar lasers. Despite the
restriction that only one emission mode could be investigated
at a time, this experiment provided important insights into the
physics of such lasers and revealed a double-peak characteris-
tic of the individual PNDs as a strong indication of a temporal
mode hopping process [32].

To achieve a deeper understanding of the underlying
emission properties and to go beyond the simple study of
individual PNDs, in this article we use two TESs to directly
measure the joint PND of two modes in an electrically driven
bimodal microlaser. Measuring the joint PND enables us to
distinguish with unprecedented clarity situations and bias
points where the two modes emit independently with different
(thermal-like and coherent) photon statistics or jointly with
mixed photon statistics. Moreover, it also allows us to demon-
strate the power of the advanced TES detection scheme which
may stimulate further experimental and theoretical studies
of coupled photonic and quantum-photonic systems. Interest-
ingly, for the studied bimodal microlaser the gain competition
between the two modes leads not only to a mode hopping but
also to a mode crossing (i.e., an exchange of mode intensities)
at high injection strength well above the laser threshold. The
latter can only fully be revealed by the PNR technique and is
explained by an extended two-state model that describes the
hopping between emission dynamics that are either associated
with Poissonian or with thermal-like statistics. The experi-
mental results are supported by Monte Carlo simulations.

We describe our sample technology and the experimental
setup in Sec. II, while in Sec. III the results are presented
in terms of input-output characteristics, correlation functions,
and PNDs. The two-state model is explained in detail here.
In Sec. IV we introduce Monte Carlo simulations that allow
for a direct comparison with the experimental results and a
conclusion is given in Sec. V.

II. SAMPLE TECHNOLOGY AND EXPERIMENTAL SETUP

The experiments were carried out on an electrically driven
micropillar laser which is based on a planar AlAs/GaAs
heterostructure with a single layer of Ing3Gag;As QDs as
the active medium. The QD layer with an areal density of
5 x 10°/cm? is placed in the middle of the central one-A
GaAs cavity which is sandwiched between an upper and
lower distributed Bragg reflector (DBR). The lower (upper)
DBR is composed of 30 (26) n-doped (p-doped) A/4-thick
AlAs/GaAs mirror pairs, where the doping profile was opti-
mized to achieve a good balance between high conductivity
and low free-carrier absorption [33]. After the epitaxial
growth of the semiconductor heterostructure by molecular
beam epitaxy, electron beam lithography (EBL) and plasma
etching were used to fabricate micropillars with a diameter
of 4 um. The sample was then planarized with benzocy-
clobutene, and ring-shaped gold contacts that form the top
(p-type) electrode of each micropillar were realized via a
second EBL processing step [33].

To study the emission properties and the joint PND of
the bimodal QD-micropillar lasers, the sample was mounted
onto the cold finger of a continuous-flow helium cryostat set
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FIG. 1. Sketch of the used microelectroluminescence (uEL)
setup: The bimodal micropillar is operated at 7 = 20 K inside a
continuous-flow helium cryostat. The two linearly polarized fun-
damental mode components are separated with a half-wave plate
(HWP) and a polarizing beam splitter (PBS). The spectral properties
are measured with two grating spectrometers each equipped with a
charge-coupled device (CCD) camera. The joint PND is measured
using two fiber-coupled transition-edge sensors (TESs) read out by
a superconducting quantum interference device (SQUID) current
sensor. The TES detectors are placed in an adiabatic demagnetization
refrigerator (ADR) and are operated at a temperature of 100 mK.
The laser excitation is synchronized with the data acquisition (DAQ),
which digitizes the analog TES output signal for further processing.

to a temperature of 7 = 20 K as illustrated in Fig. 1. The
microlasers were driven by a pulse generator with a maximum
voltage amplitude of Vyuise, max = 5.1 V. For all measurements
a pulse length of #,c = 2 ns was used. Additional, a DC
voltage of 1.7 V was applied to operate the microlasers close
to the onset of electroluminescence for zero pulse amplitude.
Overall, this defines the bias voltage as Viias = Viae + Vpulse-

The light emitted by individual micropillar lasers was col-
lected by an aspherical lens (numerical aperture NA = 0.5) in
front of the cryostat. With a motorized half-wave plate and a
polarizing beam splitter (PBS), the two orthogonal modes are
selected and their emission is directed via different paths to
two separate monochromators, each equipped with a charge-
coupled device camera. In order to obtain information about
the joint PND of the orthogonal emission modes, two highly
sensitive single-mode fiber-coupled TES detectors were used.
They were attached to the output slit of each of the two
monochromators and enabled us to measure the number of
photons in each incoming optical pulse [34].

The absorption of individual photons results in an increase
of temperature in the TES absorber material (tungsten). Si-
multaneously, the absorber is also a highly sensitive supercon-
ducting phase transition thermometer, which is able to detect
photons with a resolution at the single-photon level. Each
TES is voltage biased to set the working point in the phase
transition between superconducting and normal conducting
state at a temperature of ~150 mK. Ultimately, the photon
absorption results in a change of current which is measured
by an inductively coupled two-stage direct-current supercon-
ducting quantum interference device (DC-SQUID) current
sensor [35]. The two fiber-coupled tungsten TESs are placed
in an adiabatic demagnetization refrigerator. The temperature
is regulated at 100 mK and the temperature fluctuation is
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FIG. 2. Signal response of a single transition-edge sensor (TES).
(a) Exemplary TES output signal of a microlaser under pulsed exci-
tation (40 time traces are shown); zero to six photons can be clearly
distinguished by the pulse height at wavelength of 850 nm. (b) The
photon count distribution is extracted by analyzing the time integral
for red individual pulses in (a) of 200 800 detection events. The
area of a Gaussian peak determines their photon-number probability.
(c) The corresponding photon-number distribution of (b) is plotted.

15 uK (root mean square). The detection efficiency of
both channels was determined to be 87% [36]. Because of
the long thermal recovery time (about 1 us) of the signal
response after photon absorption the TES cannot be used in
continuous-wave mode. Therefore, the repetition frequency
of the pulse generator used to excite the micropillar lasers
is set to f = 5 kHz and its synchronization output is used to
generate the time stamp for each joint TES detection event.
As discussed in detail in Sec. III we determined the joint
PND of the microlaser in dependence of the pulse amplitude.
Each corresponding data point discussed in the next section
in Fig. 4 is based on the measurement and analysis of 200 800
16-us-long TES time traces which are the digitized (125
Megasample/s) SQUID output signal (Fig. 2). For each TES
time trace the pulse area can be extracted, which is assigned
to a photon number in order to finally obtain the joint PND.

III. RESULTS

A. Spectral characteristics and input-output dependence
of the bimodal micropillar laser

In order to explore the joint PND of a bimodal QD-
micropillar laser, we first selected a device which shows
suitable energy splitting of the fundamental emission mode
and pronounced laser action. The fundamental mode (HE)
components of the selected 4-um-diameter pillar laser emit
at an energy of about Ey = 1.4595 eV and show an energy
splitting of 30 ueV as can be seen in the wEL emission
spectrum above laser threshold presented in Fig. 3. Here, the
mode splitting results from a slight (unintentional) ellipticity
of the pillar’s cross section [11]. The low-energy mode com-
ponent features a high emission intensity at intermediate pulse
amplitudes between 3.0 and 4.5 V. Henceforth, we refer to
this mode as the strong mode (s) and to the orthogonal mode
as the weak mode (w). The two modes feature Q factors of
Q =Ew/Ysw =40112 and 30 173 close to the onset of laser
emission at 2.9 V, where E; y (¥s.w) denote the emission en-
ergy (linewidth) of the strong and weak mode. The linewidth
was determined by fitting the experimental data using a Voigt
line shape with a fixed Gaussian contribution with a width of
80 eV representing the spectral resolution of the used setup.
The same procedure was applied to determine the excitation-
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FIG. 3. Pulsed microelectroluminescence spectrum of a 4-pm-
diameter micropillar laser above threshold (Vpuse = 3.25 V). The two
linearly polarized fundamental mode components split to 30 ueV
due to the slightly elliptical cross section; Ey = 1.4595 eV.

power-dependent data presented in Fig. 4. The input-output
dependence of the bimodal microlaser is presented in Fig. 4(a)
and shows the typical smooth s-shape expected for a high-
B microlaser [6]. The two modes have a similar threshold
voltage Vpuise ~ 2.7 V. Increasing the pulse amplitude beyond
4.5 V leads to a change in the emission characteristics with the
weak mode becoming the superior mode above the intensity
crossing point at about 4.85 V. The present input-output char-
acteristics of the strong mode and the weak mode as well as
the occurrence of the intensity crossing point are attributed to
pronounced gain coupling via the joint QD gain medium. This
coupling behavior is typical for bimodal micropillar lasers
with a QD gain medium and has already been reported in a
number of studies [16,17,37,38]. We observe a pronounced
excitation-power-dependent linewidth reduction for both the
strong and weak mode, which starts in the laser threshold
range, as shown in Fig. 4(b). This behavior suggests the
beginning of stimulated emission associated with increased
temporal coherence for both modes. However, only measure-
ments of the photon statistics can unambiguously reveal the
nature of emission.

B. Photon-number distribution of the bimodal micropillar laser

Before obtaining more detailed insights into the underlying
emission statistics and switching of the bimodal QD micropil-
lar laser, let us introduce the necessary theoretical framework
in terms of the joint PND. We consider a matrix P;;, in which
the index pair (i, j) denotes the photon number i of the strong
mode and the photon number j of the weak mode with the
appropriate sets {i} = {0, ..., m} and {j} = {0, n}, where
m (n) represents the highest number of photons measured for
the mode s (w). The m x n matrix P;; can be understood as
a probability distribution if it has the following properties: (i)
All elements are non-negative P;; > 0 and (ii) the sum over
all elements is unity Z P;j = 1. The corresponding single-
mode PNDs are formed by summmg up over the respective
columns and rows: P, =), P;; and Q; = 3, P;. In Fig. 5,
the joint PND and the smgle PNDs for the strong mode P;
and the weak mode Q; are shown for a pulse amplitude of
5.0 V just above the intensity crossing point (cf. Fig. 4 and
cf. Sec. IV for more PNDs). Here, a noticeable feature of the
measured joint PND is the concentration of probability values
indicated by the darker red color. This feature is also evident
in the double-peak structure of the individual PNDs in the
histogram presentation of Fig. 5. The observed behavior will
be explained and discussed in Sec. III D.
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FIG. 4. (a) Input-output characteristics of the bimodal microlaser
under pulsed excitation. The strong mode dominates the emission
intensity before the weak mode becomes the superior mode above the
crossing point Vpus & 4.85 V (vertical gray strip). (b) At the laser
threshold Vpee & 2.7 V (vertical orange strip), the linewidth of both
modes decreases strongly, indicating the onset of temporal coher-
ence. (c)—(e) Excitation strength-dependent autocorrelation functions
[g®(0), g(0), g*(0)] for both modes. The horizontal lines indicate
the expected values (2, 6, 24) and (1, 1, 1) for thermal and coherent
emission, respectively. (), (g) The cross correlations are well below
1 over a wide range across the input-output characteristics, which
indicates a strong anticorrelation of the two modes. The crossing
points in (c), (d), (e), and (g) also fall into the gray strip. (Error bars
shown if larger than symbol size.)

time argument is omitted. The associated factorial moments

are given by
= Zi(i_ .-

(- <)
ij

xjj—=1---

(i—u+1)

(j—v+ DP;. @
In Eq. (1), the expressions (: nlno ;) and (: g },J:) are the
mean photon numbers of the strong (i) and the weak mode
(fiw). Furthermore, if the correlation order of one mode is set
to zero, the autocorrelation of the other single mode is re-
turned, g% — g); g0v) — o) The correlation functions
defined in Eq. (1) are non-negative and they probe the (u + v)-
particle correlations. For the convenience of the reader, we

connect the general correlation functions to the well-known
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second-order autocorrelation function, for example, for the
strong mode, by inserting Eq. (2) into Eq. (1),

2.0) _ Zij l(l - l)Plj _ (BZBZBSI;S) _ <fl§> — <ﬁs> g(z)

T (nyim) (BLb,)? (fs)? o
3

as well as the second-order cross-correlation function
g(l,l) _ Zij ijPij
o (Zij lPLj)(sz]Pl/)
(bibbiby)  (shy)

= = = =g, 4)

(blbg) (bl,by)

Both correlation functions are in principle accessible via a
classical HBT arrangement with two click detectors, although
this would still hide the full photon statistics.

Figure 4(c) presents excitation-power-dependent g val-
ues of the strong mode and the weak mode for the bimodal
QD-microlaser under study. Below threshold the coherence
time of such lasers is on the order of a few tens of ps [42],
which is much smaller than the applied minimum pulse length
(2 ns) of the voltage source. For this reason it is not possible
to resolve the expected bunching behavior with g? = 2 below
threshold [22] and we focus our attention on the bias region
at and above threshold. At threshold both modes show g
close to unity, indicating the emission of coherent light. By
increasing the voltage amplitude, the autocorrelation signal of
the strong mode increases slightly. Up to higher excitations a
strong increase starts (Ve ~ 4.0 V) until a value just below
g» = 2 is reached at maximal voltage amplitude. In the case
of the weak mode, g® increases much stronger with the
excitation strength and exceeds the value of thermal emission
in the voltage range 3.6 V < Viuse S 4.5 V. In contrast to the
strong mode’s behavior, the g» value of the weak mode de-
creases at high excitation strength and reaches values below 2,
which might indicate the transition towards coherent emission
at very high excitation. Unfortunately, the very high excitation
range is not accessible because it lies beyond the maximum
pulse amplitude available in our experiment. Interestingly, the
crossing of g» occurs at the same pulse amplitude as for
the intensities and shows that the two modes exchange their
predominantly coherent and thermal character, respectively,
at this bias point. The superthermal two-photon bunching at
intermediate excitation strengths of the weak mode is a conse-
quence of mode competition [16,19,43] and will be discussed
within a two-state model in Sec. III D. Superthermal light can
also be generated in bimodal microlasers prepared far from
equilibrium through a quench induced by a short pulse [4] and
in superradiant microlasers [44,45].

The same conclusions can be drawn for the third-order au-
tocorrelation function g shown in Fig. 4(d). The maximum
value for the weak mode reaches values well above the value
of 6 for thermal light. Interestingly, the fourth-order auto-
correlation function g for the weak mode does not exceed
the value for thermal light (here 24) as can be clearly seen
in Fig. 4(e). Hence, the light emitted from our bimodal mi-
crolaser exhibits a two-photon and three-photon superthermal
bunching but the bunching of four photons is below that of
thermal light. This result clearly shows that the property “su

perthermal bunching” always has to be considered in relation
to the considered number of photons.

The key strength of our experimental configuration using a
two-channel TES detection system lies in the ability to mea-
sure not only the individual PNDs of the two modes, leading,
for instance, to g, but also the joint PND which gives access
to the cross-correlation functions g,

Let us first consider the limiting case of uncorrelated
modes A and B. From P;; = P(A)P(B ) directly follows g\ =
gW - gW If A and B exhibit thermal characteristics, this leads
to g(A]‘B]) =1, g(:B” = g(Alé) =2,g (2 2) = 4. In fact, any uncor-
related distribution leads to g(1 1) = 1. This is in stark contrast
to highly correlated sources such as those based on PDC [29]
for which values of g’ = 100000 have been demonstrated
experimentally [46]. Figure 4(f) shows the symmetric cross
correlations gl and g%?). At threshold the two-particle
correlation function gl iy is close to unity corresponding to
uncorrelated mode intensities. With increasing pulse excita-
tion the cross correlation decreases below unity, indicating an
anticorrelation of the two mode intensities. The cross corre-
lation reaches a minimum value of ggl\;,l) ~ 0.27 at Vpyse ~
4.7 V, which is near the crossing point Vyuse ~ 4.85 V where
gL 2 0.29. These values are significantly lower than the
minimum value of 2/3 derived in the mesoscopic limit for
the cross correlation in coupled nanolasers performing limit
cycles [47]. However, the physics is slightly different and our
system, in the terminology of Ref. [47], is in the nanoscopic
regime, not in the mesoscopic one. In the Appendix we derive
for our system an approximation of the cross correlation at the
crossing point (7ig) = (7ly),

€+ g

(11)_2_
5 )

8sw &)

where we have assumed that the total photon number (sum of
photons in mode s and w) have the same statistical properties
as in a single-mode laser. With the experimental values g ~
1.74 and g¥ ~ 1.69 we get from Eq. (5) g{l,1’ ~ 0.28, which
is in very good agreement with the measured value.

The four-particle correlation function g measures the
cross correlations of the intensities squared. This correla-
tion function shows a similar behavior, with the difference
that gD > g22 over the entire excitation range. Here,
a minimum value of g%? ~ 0.15 at Vjyse ~ 4.6 V is ob-
tained. In order to better understand the results in relation to
the circumstance of cross correlation in the photon-number
representation different correlations can be considered. For
example, from Eq. (4), g'" can be regarded as the “cross
mean value” divided by the two individual mean values. It
can be seen that the probabilities near the diagonal i = j cause
large contributions in the numerator of Eq. (4). If we look at
the joint PND in Fig. 5, these probabilities are particularly low
and validate the anticorrelating behavior.

Figure 4(g) shows the asymmetric cross correlations g%
and g(1 :2)_ The values also start close to 1 and decrease with
increasing excitation. The crossover behavior is also visible
at Vpuise ~ 4.85 V which implies an exchange of the mode
properties. Similar to Eq. (5) we derive in the Appendix
an approximation of the asymmetric cross correlation at the
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crossing point with g{l.? ~ gD,

W= —gl) ©)

SW 6

With the experimental values g ~ 3.08 and g ~ 3.25

[Fig. 4(d)] follows g\’ ~ 0.28, which is very close to the
experimental result in Fig. 4(g).

D. Two-state model for the description of joint
photon-number distributions

As the individual PNDs of the strong and the weak mode
depicted in Fig. 5 seem to feature characteristics of thermal-
like as well as Poissonian-like distributions, they suggest that
both of the modes are in a state of superposition of different
statistics. To gain a deeper understanding of this superposition
and identify its individual parts, we will make use of a two-
state model as well as a decomposition of the joint PND F;;.

The intuitive idea of the two-state model for bimodal lasers
is that in the time domain the two modes frequently hop
between two states (I = 1, 2). In state 1 the strong mode is
lasing and the weak mode is nonlasing. In state 2 it is the other
way round. This model has been deduced from quantum-
mechanical calculations of second-order correlation functions
in the steady state [16,48] and, more directly, from semiclas-
sical calculations of second-order correlation functions in the
time domain [19].

The two-state model was lifted to the joint PND in
Ref. [49] by assuming the incoherent superposition

2
Pj=7 aP’Qp. ™
=1

The non-negative numbers a; with a; 4+ a, = 1 are the mixing
parameters. a; can be considered as the probability to find the
two modes in state /. Pi(l) (Q(.l )) is a probability distribution
for the strong (weak) mode in the state /. An interpretation of
each Pl.([) as a probability distribution requires (i) ), Pl.(l) =1
and (ii) Pl.(l) > 0 for all i. The same is required for Qg.l ). The
resulting individual PND P; (Q;) is an incoherent superposi-
tion of P{" and P* (0! and Q'”’). In Ref. [49] P* and Q'

were assumed to be thermal distributions and Pi(l) and Q;z)
to be Gaussian distributions (close to Poisson distributions),
which, at first glance, is also suggested by Fig. 5. We find,
however, that this assumption does not provide satisfactory
results over the complete range of parameters. For a more ac-
curate decomposition of the hopping process, we employ the
non-negative matrix factorization (NMF) [50] to numerically
determine Pi(l) and QE.I) without further assumptions. Consider
an m x n matrix V which is non-negative, i.e., all matrix ele-
ments are non-negative. For a given positive integer K < m, n
we approximate the matrix V by a low-rank factorization

K
(V)i ~ (WH); =Y WyH); ®)

I=1
with rank K, non-negative m x K matrix W, and non-negative
K x n matrix H. The matrices W and H are chosen to min-
imize the root-mean-squared residual between V and WH.
Note that the solution is in general not unique as the opti-
mization procedure yields only a local minimum. The relation
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FIG. 6. Decomposed joint PND and original joint PND: (a)-
(c) show the joint PNDs for state (a) [ = 1,(b)l =2,and (c)[ = 1,2
reconstructed from the original joint PND in (d) (same data as in
Fig. 5) using Eq. (7) and the non-negative matrix factorization in
Eq. (8). In (e) the single distributions of strong (Pl.(l)) and weak (Qﬁl))
modes for / = 1 and in (f) the single distributions of strong (Pi(z)) and
weak (Q;z)) modes for [ = 2 are shown.

to the decomposition of the joint PND in Eq. (7) becomes
obvious by the identifications P;; = V;;, K =2,

®

and
a =) Wiy Hj. (10)

Using standard software packages we are now able to de-
compose the joint PND P;; and thus obtain the individual
distributions of the strong and the weak mode for the re-
spective state. As an example, the data from Fig. 5 are used
to demonstrate the operation of decomposition by the NMF.
Figures 6(a)-6(c) show the joint PNDs for [ =1,/ =2, and
I =1, 2 calculated by Eq. (7) using the data from Fig. 5
[repeated in Fig. 6(d) for ease of comparison]. In Figs. 6(a)
and 6(b) the probabilities of the two local maxima can be very
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center where the mixing parameter is 1/2. (b) The four combinations
(strong and weak, state 1 and 2) of autocorrelation functions that
result from NMF. The gray vertical strip marks the crossing point
using the same voltage value as in Fig. 4.

well attributed to a respective state. In state 1 the strong mode
(Pl.(l)) is close to a Poissonian distribution with a correspond-

ing g® value of 1.01 [Fig. 6(e)] and the weak mode (Q;l))

associated with a thermal-like distribution with g = 2.39.
In state 2 it is the other way around. The strong mode (Pi(z)) is
associated with a thermal-like distribution with a g value of
2.47 [Fig. 6(f)] and the weak mode (Q;z)) is close to a Poisson

distribution with a corresponding ¢ = 1.01. The mixing
parameter a; (a;) is 0.448 (0.539). Hence, here the state 2 is
slightly more likely than state 1. The sum a; + a; = 0.987 is
close to unity, which is a necessary condition for the applica-
bility of the rank-2 approximation (7) and (8). If we compare
Figs. 6(c) and 6(d), we identify small differences between the
reconstructed distribution and the original distribution in the
region between the maxima. This intermediate region cannot
be attributed uniquely to state 1 or 2. It is therefore consistent
that this fine structure of the original PND is not captured by
the two-state model.

Next, we explore how the properties of states 1 and 2
depend on the voltage pulse height. At laser threshold and
below, the NMF is not applicable, because one gets into the
region of K ~ m, n. Figure 7 therefore only shows voltages
Vouse = 3.5 V. In Fig. 7(a) one can see that slightly above
threshold, the mixing parameter a; is considerably larger than
a,. Hence, state 1 is dominant, i.e., with a high probability the
strong mode is lasing and the weak mode is nonlasing. Far
above threshold there is a crossing point a; = a, at Vpyiee ~
4.85 V exactly where the crossing point in Figs. 4(a), 4(c),
4(d), 4(e), and 4(g) is. Above this crossing point, the mixing
parameter a, is larger than ay, i.e., the state 2 overcomes state

1, which implies that with higher probability the strong mode
is nonlasing and the weak mode is lasing. Note that throughout
the shown range of voltage pulse heights, the sum of the two
mixing parameters is close to unity, which is an indication that
the rank-2 approximation is valid.

Figure 7(b) shows the second-order autocorrelation func-
tions of the extracted PNDs Pi(l), Pl.(z), Q;l), Q;z). As
mentioned in the previous section, both modes reach the lasing
regime for different states / (state 1 for the strong mode and
state 2 for the weak mode) in which they have a g value of
unity above the laser threshold. The g values of the strong
mode in state 2 and the weak mode in state 1, on the other
hand, describe their nonlasing components. The component
s2 (strong mode in state 2) rises more slowly from a g®
value of 1 to a value of 2 than component w1 (weak mode in
state 1). From Ve = 4.6 V there is a convergence of the two
cases and from 5.0 V they decrease together to g» = 2. For
Voutse & 4.6-5.1 V both modes are above a value of g» = 2,
the value for thermal light. It is remarkable here that even after
the decomposition two combinations can have a g® value
greater than 2, indicating superthermal light emission. This
is consistent with the above-mentioned fact that an adaptation
of the single distribution by a Poissonian and a pure thermal
distribution does not provide satisfactory agreement.

IV. THEORETICAL METHODS AND COMPARISON
WITH THE RESULTS

A. Birth-death model for the bimodal laser

The theory is based on the birth-death model for the bi-
modal laser [16,17,32]. The phenomenological model deals
with the diagonal elements of the quantum mechanical den-
sity matrix (n, N|p[n, N) = py, giving the probability to find
the system with N excited emitters and n = (ng, ny) pho-
tons in the strong and weak mode, respectively. The master
equation is

d
E,O;\lf =P(oy_1 —pN) — T '[Noh — (N + Dpj 4]

— > &[N + Doy — (N + Dniph 5]
— > ki[nipy — (i + Dyt

- ZRHj[nian;\'/ = (n; + D)(n; — l)P;l/ﬂi_ej]o
iJ
(1)

The vector £e; denotes an added or removed photon in mode
i,ie., e = (1,0), e, = (0, 1). Matrix elements py, with nega-
tive indices are zero. The first term describes the pump process
which increases N by one; P is the pump rate. The second
term represents the spontaneous emission into leaky and non-
resonant modes reducing N by one; 7! is the spontaneous
emission rate into leaky modes. The third term takes care of
the emission into the mode i, where n; is increased by one and
N is reduced by one; g; is the emission rate into the mode i.
The fourth term corresponds to the loss of photons from mode
i reducing n; by one; k; is the optical loss rate of mode i. Fi-
nally, the last term accounts for the mode coupling where n; is
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reduced by one and n; is increased by one. Note that the tran-
sition rate R;_, ; can be different from R;_,;. This asymmetry
can result from stimulated scattering due to carrier population
oscillations [51] and geometric asymmetry of the cavity [52].
We mention that our model ignores the free parameter s that
expresses a possible modification of the spontaneous emission
between the two modes by the gain-medium-induced mode
interaction [32].

The master equation (11) can be numerically solved, for
instance, by direct time integration of the system of differ-
ential equations [16,32], by the fixed-point iteration [53], or
by Monte Carlo simulations [17]. The latter is usually the
most efficient scheme and allows us to compute the steady
state and the full dynamics. The Monte Carlo approach for
bimodal lasers in Ref. [17] employs the Gillespie algorithm
[54,55]. The state space is given by N and n = (ng, n,,) with
zero as initial condition. Each process in the master equation
(11) is realized by probabilistic jumps in the state space. The
corresponding jump probabilities and the variable dwell time
are determined by the weights in front of py in Eq. (11): P,
t7'N, giN(n; + 1), kin;, or Ri, jnin;. The statistics of N and
n can be used to approximate the time evolution of py .

B. The extended Monte Carlo simulation

In all previous approaches to describe the emission features
of microlasers based on the birth-death model [16,17,32,53]
the steady-state probability py was computed. The steady-
state solution was used to determine photon numbers,
correlation functions, and single-mode PNDs. The compari-
son of these internal quantities (e.g., number of photons inside
the cavity) to the externally measured experimental data (e.g.,
number of photons finally being collected by the detector
system) requires in principle a detection model.

For photon numbers the detection model is trivial; only
multiplication with the corresponding optical loss rate k; and
the total collection efficiency 7 are required. For normalized
correlation functions such as g®(0), it seems that further
treatment is not necessary, as the multiplied factors «; and n
cancel out. However, we have seen already in Sec. III C that
below the laser threshold, the theoretical g(z)(O) (treated as an
internal quantity) does not agree with the (externally) mea-
sured g»(0). The difference between internal and external
quantities disappears only if the coherence time is larger than
the detector’s temporal resolution. In the opposite case, the
theory has to include the finite time resolution of the detector,
for instance, by a convolution with an appropriate apparatus
function [22], which corresponds to a detection model.

We note that the need for a detection model is most obvious
for PNDs. It can be implemented by simulating the leakage of
photons in a second calculation after the steady state py is
reached [17]. This, however, does not remove the detrimental
influence of a short coherence time.

Our approach avoids all of these problems by (i) sim-
ulating the transient dynamics rather than the steady state
and (ii) by including the external degrees of freedom from
the very beginning. The latter are the numbers of pho-
tons (Mcollected.s» Meollected,w) COllected by the detector system.
Hence, we have extended the state space used in Ref. [17]
to (N, ng, Ny, Aeollected,s» Reollected,w ). All numbers are set to

zero initially. As a conditional process in the Gillespie algo-
rithm, the number of collected photons n¢jjected,; 1 increased
by one with probability n whenever n; is decreased by
one due to optical losses. The statistics of the accumulated
(Rcollected. s» Meollected,w) immediately after the pulse directly ap-
proximates the joint PND we are looking for. Hence, the
detection model is already included in the system dynamics.
There is no need to model the finite collection efficiency or the
finite measurement time afterwards. And, most importantly,
there is no need to include the correlation time from other
sources. The correlation times (actually several correlation
times of various orders and for both modes) enter here ex-
actly as in the experiment, namely by accumulating photons
collected at different times.

C. Comparison to the experimental data

For a comparison with the experimental data we use the
following parameters: A total collection efficiency n = 3.4 x
1074, arectangular pulse of length 7,,15c = 2 ns, a spontaneous
emission time into the leaky modes T = 1.33 ns, Q factors of
44 500 and 37 600, and B factors of 0.25 and 0.23 for the
strong and the weak mode, respectively. The optical loss rates
are then determined by «; = y;/h = Ey/(Q;h) and the rates
of emission into the modes by g; = B;/[(1 — B1 — B2)t], i =
s, w. The parameters for the mode coupling are fitted to get
the best agreement with the input-output curves and the cor-
relation functions, R,; = 5 ns~! and Rj» = Ry; + 0.06 ns~ 1.
The relation between the pump rate P in the birth-death
model and the applied voltage Vs in the experiment is not
known. For simplicity, we assume a quadratic dependence
P = a(Vyuse — Vp)?, and a fit results in a = 3364 ns™' V2
and V, =2.5V.

Figure 8 shows the emission intensities and the correla-
tion functions of the collected photons as a function of the
applied voltage. While there are deviations for the intensities
at low voltages [Fig. 8(a)], at intermediate and large volt-
ages the theoretical results clearly reproduce the behavior of
the strong mode and the weak mode. In particular, the ex-
change of the modes’ properties at the crossing point Vpyse =
4.85 V is accurately described. The autocorrelation functions
in Figs. 8(b)-8(d) show a very good agreement between the
experimental and theoretical results. It has to be emphasized
that the theory is capable to reproduce the values near unity
for low voltages. As explained in Sec. IV B, our theory con-
tains inherently a detection model by incorporating external
degrees of freedom. There is no need for a convolution with
an apparatus function. The cross correlations in Fig. 8(e) are
also reproduced albeit with a less impressive agreement.

Figure 9 compares the experimental (left) and theoretical
(right) joint PNDs using the same parameters for various
voltages. The top row shows Vpue = 5.0 V (the experimental
data have already been shown in Fig. 5) which is the case
just above the crossing point of the two modes. A remarkable
agreement between theoretical and experimental results can
be observed. The next two rows show Vs = 4.85 V close
to the crossing point and Vpuse = 4.7 V just below the cross-
ing point. While the two-state structure with two pronounced
maxima is preserved during this transition, the strong mode
gains intensity if compared to the weak mode. The two-state

013263-8



BIMODAL BEHAVIOR OF MICROLASERS INVESTIGATED ...

PHYSICAL REVIEW RESEARCH 3, 013263 (2021)

10 T : ; i .
(a) oooovmﬁzgwf“&m
00° s000®? LA
2> o0 -~
7 14 o o0® .- E
c 0% ..00
ic} oge -
£ -
0.1 99,9/' --- Weak |
° --- Strong
2’ L N N N )
2.5 i ! j T ]
5 b)|--- g®@ ...00000...
S Fe"Se=- ~._ %
o ——— 2 ” ~,~‘!.
'E;' 2.0 gs ’,’ ~2!‘ ]
0 - repyoe?
IS O. FPeE
31.51 .}" 0™ .
.9 .’* o Q'Q'o‘o‘ogg
oga
< 1.0 %i.o.ofﬁ.ffeazo.°9992°.°.°-°99 =" ]
8 . ; ' .
c 71 (C) .- g\(/va) .-.-.:...... ]
S 61 -a- g® /r ~eal e, ]
E 54 s “\:.. ]
[ 4 »”* e,
= i . .
o o 009
S 3] R4 W::;'ab%;;:
5 2] ﬁ” o_o.ooo°°°'°' ol
< 11= -?%f.ose920.0.0.9999qo.°.°999°° ]
0 L . \
241 i " T T —
@ [-=- g@ voue
‘c:> 20+ Z:) A=\ T 0o 4
= - Gs ¢‘o‘ -~L ®
© 161 ) ., i
m é \4\.
S 12 o .
§ ] ‘. !!!‘ 7
o 8 1 ”.,‘ LYY e
= 227
< 49 11’ 00009999°°° ®os .l
0----=;bgboqmum?ooquxmoo?uxwo .
L e (11
_S 1.0--=£EI--_ - g(22) 1
% 95000, :~:: --- g2
= §°°..O.. o
o (<] ° .... -s‘~
@ 0.51 %0, *Oegis- J
a o LY PPl
3 oo %0 essss
2 %0000, t2%0iscernecect?
© (e) ©9000000000665T0002Y
0.0 1 1 . . ,
3.0 3.5 4.0 4.5 5.0
Vpulse (V)

FIG. 8. (a) Intensities of the two modes given by the average
number of photons recorded by the TES, (b)-(d) autocorrelation
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Monte Carlo simulations and symbols represent the experimental
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orange (gray) strip indicates the laser threshold (intensity crossing
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structure gradually disappears when going to even smaller
voltages. This is demonstrated in the two lower rows with
Voutse = 3.8 V in the middle between the laser threshold and
crossing point, and Vyuse = 3.2 V slightly above the thresh-
old. Also in this regime, the experimental and theoretical
results agree remarkably well.
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V. CONCLUSION

We developed a two-channel transition-edge sensor de-
tection system which provides unprecedented access to the
joint photon-number distribution of two correlated optical
modes. To illustrate the capability of the detection scheme,
we analyzed the light emitted from a bimodal quantum-dot
micropillar laser. We experimentally demonstrated that our
transition-edge sensor detection system allows for a profound
insight into this bimodal quantum system as the measured
photon-number distribution directly reveals a two-state struc-
ture. This two-state structure corresponds in the time domain
to a stochastic hopping between two states. In state 1 the first
mode is lasing while the second mode is nonlasing. In state 2
it is the other way around.

From the joint photon-number distribution one can extract
various kinds of emission properties of the two modes. Here,
one is not restricted to intensities, autocorrelation functions,
and the cross-correlation function of second order as in con-
ventional configurations using, e.g., simple click detectors,
but one has access also to auto- and cross correlations of
higher order. These higher-order moments are out of reach for
conventional schemes.

We introduced a two-state model based on the non-negative
matrix factorization. This factorization decomposes the mea-
sured joint photon-number distribution into two contributions,
each representing one of the two states. By analyzing the
second-order correlation functions of these two contributions
separately we demonstrated unequivocally that, for suffi-
ciently large excitation voltages, in a given state one mode
is indeed lasing while the other one exhibits a superthermal
two-photon bunching.

The experimental data and their interpretation is supported
by theoretical modeling based on Monte Carlo simulations
of a birth-death model. The presented approach goes well
beyond known approaches by explicitly taking into account
external degrees of freedom. This allows for a direct compar-
ison of theoretical and experimental results. Good agreement
between theory and experiment was observed for intensities,
correlation functions, and (joint) photon-number distributions
throughout the available excitation range.

We expect that in the future our photon-number-resolving
detectors will prove to be a valuable tool for the in-
vestigation of various phenomena in the fields of opto-
electronics, nanophotonics, and quantum optics. They may,
for example, provide access to the photon-number distri-
butions of superradiant systems which are not yet well
understood [44,45].
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APPENDIX: CORRELATIONS AT
THE CROSSING POINT

We derive Egs. (5) and (6) for the cross-correlation func-
tions at the crossing point. The central assumption is that the
moments of the total photon operator 71 = #i5 + iy, for a suf-
ficiently large pump strength follow the same statistics as the
moments of the photon operator in a single-mode laser. This
assumption is reasonable as the two involved modes have sim-
ilar properties and the mode coupling only exchanges photons
from mode s to w and vice versa. From /> = 2 + 72, + 2/,
it follows

(%) = g7 ()7 + g () + 2805 (s ()
With

(AD)

(1) = (A)* + () + 2(A) () (A2)

and (: A2 :) = (A)? for a single-mode laser with Poissonian
statistics, we obtain

— ¢®) () +(1-g?) (i)

2(fy) " 2(hs)
At the crossing point (7i5) = (iy) Eq. (A3) simplifies to
Eq. (5). Along the same line of reasoning we get from (:/:) =
(f1)? for a single-mode laser with Poissonian statistics

3(gZD — 1) (As) 2 (Aw) + 3(glL2 — 1) () (w)?
= (1 —g®) ) + (1 — g8) (ay)*.

At the crossing point not only does (7is) = (7iy) hold, but

also g%V ~ g{1:2) as the mode properties exchange. Hence,

Eq. (A4) simplifies to Eq. (6).

g =14 ( (a3

(A4)
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