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The correlation between contact forces and the texture of a packing of rigid particles subject to biaxial compression is

analyzed by means of numerical simulations. Four different aspects are investigated: stress tensor, dissipation due to

friction, angular distribution of forces, and fabric tensor characterizing the anisotropy of the texture. All of them provide

evidence that the contact network can be decomposed unambiguously into two subnetworks with complementary mechanical
properties.

The plasticity of a packing of rigid spheres is maybe

the simplest example in which the dynamics is dominated

by topological constraints: Forces are transmitted only

through the interparticle contacts. This leads to strong in-

homogeneities of the forces [1–4]. Moreover, an initially

isotropic packing develops an anisotropic contact net-

work under shear, because new contacts are formed along

the major principal axis of the strain-rate tensor, while

some are lost perpendicular to it [5–7]. This geometri-

cal anisotropy leads in turn to a mechanical anisotropy of

the contact forces. Both the geometrical and the mechani-

cal anisotropy enter the expression of the stress tensor and

are thus essential for the resistance of a granular medium

to shear [8,9].

In this Letter, we analyze the transmission of stress in a

two-dimensional dense packing of rigid spheres by taking

for the first time both the inhomogeneity of the forces

and the anisotropy of the texture into account. It will be

shown that the forces belong to two distinct classes which

contribute differently to anisotropy, stress, and dissipation.

This bimodal character of the force network is quite natu-

rally suggested by the observation of the “buckling” of

strong force chains supported by weak lateral forces during

shear [10]. The results presented in this Letter provide an

unambiguous demonstration of this intuitive picture for all

the aspects considered.

The main idea of our analysis is to evaluate internal

variables such as the geometrical anisotropy for subsets of

contacts with a given absolute value of the force. Thereby

important aspects of the inhomogeneity of the system can

be taken into account. For example, the contribution of

contact chains with strong forces may be evaluated sepa-

rately from the rest of the packing. This is, however, not

practical because of the bad statistics of contacts within

a small force interval. Instead, we consider the subset

of contacts which carry a force lower than a given cutoff

j. We shall refer to this subset as the “j-network.” The

variation of a quantity evaluated for the j-network as j is

varied from 0 to the maximal force in the system allows us

then to estimate its correlation with the contact force.

For the numerical simulations, we used the relatively

new method of contact dynamics. This method allows us

to integrate the equations of motion for multicontact sys-

tems composed of rigid bodies with Coulombian friction.

The method tackles the nonsmooth character of the inter-

actions with no resort to regularization schemes often used

in numerical algorithms for granular systems. An account

of the mathematical basis and the discretization procedure

of this approach can be found in [11].

The simulation was carried out for a two-dimensional

system with 4012 circular particles contained in a frame of

four rigid walls. The radii were uniformly distributed be-

tween 3.8 and 7.5 mm. The particle-particle and particle-

wall coefficients of friction were 0.5 and zero, respectively.

No gravity acted on the particles. The sample was biaxi-

ally compressed (see Fig. 1) by imposing a constant ve-

locity of 1 cm!s on the upper wall. The left wall was free

to move under a horizontal confining force of 500 N. The

initial sample was prepared with an isotropic contact net-

work. As a consequence of compression the amplitude

of anisotropy and the stress ratio Q ! "s1 2 s2#!"s1 1

s2# increased, where s1 and s2 are the principal values of

the stress tensor. We investigate below several quantities

as a function of j at Q ! 0.18.

The texture is characterized by the probability density

E"u, j# of finding a contact with direction u in the j-

network. In general the first deviatoric component in the

Fourier expansion of E provides an adequate measure of

geometrical anisotropy [12]:

E"u, j# $
1

2p
%1 1 Ac"j# cos 2&u 2 uc"j#'( . (1)

The parameter Ac defines the amplitude of anisotropy, and

uc is its principal direction. For the calculation of these

parameters from the numerical data, it is convenient to use

the “fabric tensor” defined by fij ! )ninj*, where ni is the

i component of the unit vector along the contact direction

and the average is taken over all contacts in the j-network.

Using (1) to evaluate the average of ninj , it is easy to see

that f1 2 f2 ! Ac!2, where f1 and f2 ! 1 2 f1 are
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FIG. 1. Velocity field in the center-of-mass frame during the
biaxial compression.

the eigenvalues of the fabric tensor. uc and uc 1 p!2 are

the directions of the corresponding eigenvectors.

We found that the principal directions of the fabric

tensor in the j-network coincide with those of the strain-

rate tensor irrespective of the value of j. Therefore

we set uc"j# ! uc"`# ! 0, i.e., the direction of the axis

of compression in (1). Then a positive Ac indicates

that the direction of anisotropy is parallel to the axis of

compression, whereas a negative Ac corresponds to the

orthogonal direction. Figure 2 shows the amplitude of

geometrical anisotropy Ac in the j-network as a function

of j. For large j it approaches the geometrical anisotropy

FIG. 2. Amplitude of geometrical anisotropy Ac in the j-
network as a function of j normalized with respect to the
average force )F*; see text. The inset shows the polar diagrams
of the probability density E of contact directions for “weak”
contacts (F , )F*) and for “strong” contacts (F . )F*).

of the whole system. The anisotropy of the network

complementary to the j-network is given by Ac"`# 2

Ac"j# and can be obtained from Fig. 2.

Surprisingly, the direction of anisotropy is orthogonal to

the axis of compression (Ac , 0) for weak forces (small

j). The anisotropy becomes more pronounced as j in-

creases, and reaches a maximum for j ! )F*, where )F*
is the average force in the system. When j is increased

beyond )F*, Ac becomes less negative and finally changes

sign. This shows that contacts which carry a force larger

than the average force (“strong contacts”) are preferen-

tially oriented parallel to the axis of compression. Al-

though these are less than 40% of all contacts, their positive

contribution to Ac overcompensates the negative contribu-

tion of the contacts with a force lower than the average

force (“weak contacts”). This means that the strong net-

work (composed of strong contacts) is more anisotropic

than the weak network (composed of weak contacts), as

shown in the inset of Fig. 2.

The orthogonal anisotropy of the weak network cannot

be simply understood as a result of the process of loss and

gain of contacts induced by the deformation. The latter

predicts only a positive anisotropy, i.e., parallel to the axis

of compression. Our result, Fig. 2, proves that a sheared

granular packing is not only inhomogeneous with respect

to the forces, but also with respect to the geometrical

anisotropy, and that these inhomogeneities are correlated.

A similar analysis can now be applied to investigate

the mechanical anisotropy of the average normal force

Fn"u, j# and the average friction force Ft"u, j# as a

function of the contact direction. As for E, a second order

Fourier expansion provides an adequate representation:

Fn"u, j# ! ")F*!2p# %1 1 An"j# cos 2&u 2 uf"j#'( ,

Ft"u, j# ! ")F*!2p#At"j# sin 2&u 2 uf "j#' ,
(2)

where An and At are the magnitudes of mechanical

anisotropy. The analytical form of Ft results from the

fact that the spherical component of Ft is zero due to

static equilibrium and its principle axes are rotated to

those of Fn by an angle of p!4. Again we found that the

principal directions are independent of j, so that we shall

set uf ! 0 in the following.

For the calculation of An and At we introduce two ten-

sors x
"n#
ij ! "1!)F*# )Fnninj* and x

"t#
ij ! "1!)F*# )Fttinj*,

where ti is the i component of the unit vector t orthogo-

nal to n and such that "n, t# preserves the same parity for

all contacts. It can then be shown that "x
"n#
1 2 x

"n#
2 #!

"x
"n#
1 1 x

"n#
2 # ! "1!2# "Ac 1 An# and "x1 2 x2#!"x1 1

x2# ! "1!2# "Ac 1 An 1 At#, where x
"n#
1 and x

"n#
2 are the

principal values of x "n# and x1 and x2 are those of x !

x
"n# 1 x

"t#. In Fig. 3, An and At in the j-network are

plotted as a function of j. The two parameters remain

positive, i.e., the mechanical anisotropy is always oriented

along the axis of compression. However, the contribution

of normal forces to the total anisotropy begins to increase

2



FIG. 3. Amplitudes of mechanical anisotropy An and At in the
j-network as a function of j!)F*.

significantly only after j ! )F*, where both An and At

have an inflection point.

The physical importance of mechanical anisotropy be-

comes clear when it is considered in connection with the

stress tensor. The stress tensor s for a granular system in

a quasistatic state is given by [13]

sij ! r)Fidj* , (3)

where r is the number of contacts per unit volume, Fi is the

i component of the contact force F ! Fnn 1 Ftt, and dj

is the j component of the intercenter vector joining the cen-

ters of two particles in contact. For spherical particles, we

have d ! dn. Neglecting the weak correlation between

d and F, we get sij ! r)d* )Finj*. Now, introducing the

two components of F into this expression and comparing

with the expression of x , we see that s ! r)d* )F*x , and

accordingly [8]

Q"j# !

1

2
&Ac"j# 1 An"j# 1 At"j#' . (4)

In Fig. 4, both the stress ratio Q and the sum "1!2# "Ac 1

An 1 At# are displayed as a function of j. We see that

Eq. (4) holds for all j with very weak deviations due to a

weak correlation between d and F.

Figure 4 reveals an unexpected property of the stress

tensor: the shear stress Q for all forces lower than the

average force is negligibly small compared to the total

deviatoric load Q"`# sustained by the system. Those

forces contribute only 28% of the average pressure "s1 1

s2#!2 in the medium. This means that the weak network

behaves essentially like an interstitial liquid, whereas the

strong forces carry the whole deviatoric load and in this

respect behave like a solid. Furthermore, Eq. (4) shows

that this property is related to a compensation between the

negative anisotropy of fabric and the positive anisotropy

of forces, so that Ac 1 An 1 At + 0 for forces lower

than the average.

Another aspect of stress transmission in a granular pack-

ing is the appearance of chainlike structures of relatively

strong forces. This observation is suggestive of long-range

FIG. 4. Stress ratio Q and the sum 0.5"Ac 1 An 1 At# in
the j-network as a function of j!)F*. The inset shows the
eigenvalues and the directions of the stress tensor for weak
(F , )F*) and strong (F . )F*) contacts. The orientation of
the weak tensor is irrelevant since its deviatoric component is
nearly zero.

correlations over a scale far larger than the particle size.

In our numerical experiments, we can check these corre-

lations as a function of j in the complementary network

to the j-network. At large values of j, say j . 2)F*,
strong contacts are distributed in the form of relatively iso-

lated clusters. As j is decreased, these clusters grow [see

Fig. 5(a)] and finally at j ! )F* there is directed percola-

tion along the axis of compression [Fig. 5(b)]. The fact

that the whole deviatoric load is supported by a percolat-

ing network of strong chains makes it plausible that buck-

ling of the directed chains under the action of compression

occurs. Their stability then requires lateral forces in the

complementary network. This is the origin of a negative

geometrical anisotropy in the weak network. This mecha-

nism goes with a peculiar scheme of the “mobilization”

of friction, defined by the ratio h ! jFt j!Fn. Figure 6

shows the proportion of sliding contacts to the total num-

ber of contacts in the j-network as a function of j.

At sliding contacts the friction force takes its maximum

mobilized value, h ! m, where m is the coefficient of

friction. At nonsliding contacts, particles roll over one

another and h , m [14]. Almost 8% of contacts are slid-

ing in the whole volume of the system at Q ! 0.18, and

Fig. 6 shows that 96% of them are in the weak network for

j ! )F*. In other words, almost the whole dissipation by

friction occurs at contacts bearing a force lower than the

average force. Almost all contacts with a force larger than

the average, corresponding to the buckling chains, are thus

nonsliding.

In all the cases briefly discussed above, the average force

appears as a characteristic force separating two comple-

mentary networks: a “load-bearing” percolating network of

contacts carrying a force larger than the average force, and

a “dissipative” network of contacts carrying a force smaller

than the average force. The load-bearing network carries

the whole deviatoric load, while the dissipative subnetwork
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FIG. 5. The forces F for (a) F . 1.3)F* and (b) F . )F*,
where )F* is the average force, in the upper halves of the
sample. The line thickness is proportional to the force.

contributes only to the average pressure. All contacts

within the load-bearing network are nonsliding, whereas

nearly the whole dissipation due to sliding takes place in-

side the dissipative network. The load-bearing subnetwork

carries a direct geometrical anisotropy induced by shear,

but it gives rise via buckling to an indirect anisotropy inside

the dissipative network with a preferred direction orthogo-

nal to the major principal direction of the stress tensor.

For all the variables studied here, this distinction be-

tween the two networks disappears in the particular case

where the shear stress is zero. But it still holds for the sta-

tistical distribution PF of forces. PF is a power law with a

weak negative exponent for forces lower than the average

force, and an exponentially decreasing function for forces

larger than the average [3]. The same behavior is observed

in 3D systems as well [15].

The central message is that the inhomogeneous distribu-

tion of forces on the particle scale does not average out at

the macroscopic level. It induces a bimodal behavior for

the macroscopic variables of interest. More particularly,

we find that a more precise description of stress transmis-

sion in a dry granular packing requires two stress tensors

FIG. 6. Proportion rs of sliding contacts to the total number
of contacts in the j-network as a function of j!)F*.

corresponding to two complementary phases. This prop-

erty of a quasistatic granular medium is in contrast to both

liquids and solids.
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