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malized grey-value images. Experiments with 2D-FFT
images are still in progress. In our initial 2D-FFT simula-
tions we come to visual recognition errors, which are on
average about 8% higher than the grey-level coding recog-
nition errors.

We also took a closer look to the dynamic behavior of
the entropy-weights. Figure 3 shows the weights from the
acoustic and visual TDNN to the combined layer over time
during the letter sequence M-I-E was spoken. The upper
dots represent the acoustic weight A and the lower dots the
visual weight V, where
A=0.5+ (entropy(Visual-TDNN)-entropy(Acoustic-TDNN))/2K

and
V=1.0-A.

Big white dots represent weights close to 1.0 and big
black dots weights close to 0.0. K is the maximum entropy
difference in the training set. At the end of the /m/-pho-

neme when the lips are closed, V is higher than A. Obvi-
ously there the visual hypotheses are more certain than the
acoustic ones. During the /ie/-phoneme the acoustic
hypotheses are more certain than the visual ones, which
also makes sense.

VI. OTHER APPROACHES

The interest in automated speechreading (or lipreading)
is growing recently. As a non-connectionistic approach the
work of Petajan et al. [9] should be mentioned. Yuhas et al.
[15] did use a neural network for vowel recognition, work-
ing on static images. Stork et al. [13] used a conventional
TDNN (without DTW) for speechreading. They limited
the task to recognize 10 isolated letters and used artificial
markers on the lips. No visual feature extraction was inte-
grated into their model.

Also of interest are some psychological studies about
human speechreading and their approach to describe the
human performance. This measurements could also be
applied to the performance analysis of automated
speechreading systems. Dodd and Campbell [3], and
Demorest and Bernstein [2] did some valuable work in this
area.

/ae/ /m/

/#//ie/

/#/

/eh/

Figure 3: Entropy-Weights
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VII. C ONCLUSION AND FUTURE WORK

We have shown how a state-of-the-art speech recogni-
tion system can be improved by considering additional
visual information for the recognition process. This is true
for optimal recording conditions but even more for non-
optimal recording conditions as they usually exist in real
world applications. Experiments were performed on the
connected letter recognition task, but similar results can be
expected for continuous speech recognition as well.

Work is in progress to integrate not only the time inde-
pendent weight sharing but also position independent
weight sharing for the visual TDNN, in order to locate and
track the lips. We are also on the way to largely increase
our database in order to achieve better recognition rates
and to train speaker independently. Investigations of dif-
ferent approaches are still in progress in order to combine
visual and acoustic features and to apply different prepro-
cessing to the visual data.
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In a MS-TDNN the hierarchy continues above the
phone-state layer with the Multi-State (MS) units [17] or
better the DTW layer and word layer. In the forward pass
of the network the DTW layer performs the Dynamic
Time Warping algorithm [8] with the phoneme hyptheses
as input to find the optimal path for the word models (Ger-
man alphabet). The activations of the phone-state units
along the optimal paths are accumulated in the word layer.
The word unit with the highest score represents the recog-
nized letter. In a second learning phase (after the TDNN
bootstrapping) the networks are trained to fit word targets.
The error derivatives are backpropagated from the word
units through the best path in the DTW layer down to the
front-end TDNNs, ensuring that the network is optimized
for the actual evaluation task, which is letter and not pho-
neme recognition. As before, the acoustic and visual sub-
nets are trained individually.

In the final “combined mode” of the recognizer, a com-
bined phone-state layer is included between the front-end
TDNNs and the DTW layer. The activation of each com-
bined phone-state unit is the weighted sum of the regard-
ing acoustic phone-state unit and visual phone-state unit.
We call these weights “entropy-weights”, because their
values are proportional to the relative entropy between all
acoustic phone-state activations and all visual phone-state
activations. Hypotheses with higher uncertainty (higher
entropy) are weighted lower than hypotheses with lower
uncertainty.

IV. PHONEME AND VISEME CODING

For the acoustic classification we use a set of 65 pho-
neme-states (phoneme-to-phoneme transition states
included). They represent a reasonable choice of smallest
acoustic distinguishable units in German speech, and the
TDNN architecture is very well suited to be trained as a
classifier for them.

For visual features this will be different. Distinct sounds
are generated by distinct vocal tract positions, and voiced/
unvoiced excitations. External features of the vocal tract
like the lips, part of the tongue and teeth, contribute only
in part to the sound generation. I.e. /b/ and /p/ are gener-
ated by similar lip-movements, and cannot be distin-
guished with pure visual information. Training a TDNN to
classify /b/ and /p/ based only on visual information would
lead to recognition rates not better than guessing, or the
net perhaps would get sensitive for features which are
uncorelated to the produced speech. This leads to the
design of a smaller set of visual distinguishable units in
speech, so called “visemes”. We investigate a new set of
42 visemes and a 1-to-n mapping from the viseme set to
the phoneme set. The mapping is necessary for the com-
bined layer, in order to calculate the combined acoustic

and visual hyphotheses for the DTW layer. For example
the hypotheses for /b/ and /p/ are built out of the same
viseme /b_or_p/ but the different phonemes /b/ and /p/
respectly.

V. EXPERIMENTS

Our database consists of 114 and 350 letter sequences
spelled by two male speakers. They consist of names and
random sequences. The first data set was split into 75
training and 39 test sequences (speaker msm). The second
data set was split into 200 training and 150 test sequences
(speaker mcb).

Best results were achieved with 15 hidden units in the
acoustic subnet and 7 hidden units in the visual subnet.
Obviously visual speech data contains less information
than acoustic data. Therefore better generalization was
achieved with as little as 7 hidden units.

Backpropagation was applied with a learning rate of
0.05 and momentum of 0.5. We applied different error
functions to compute the error derivatives. For bootstrap-
ping the McClelland error measure was applied, and for
the global training on letter targets the Classification Fig-
ure of Merit [16] was applied.

Table 1 summarizes the recognition performance results
on the sentence level. Errors are misclassified words,
insertion, and deletion errors. For speaker “msm”, we get
an error reduction on clean data from 11.2% (acoustic
only) down to 6.8% with additional visual data. With noise
added to the acoustic data, the error rate was 52.8%, and
could be reduced down to 24.4% with lipreading, which
means an error reduction to less than half of the pure
acoustic recognition. For speaker “mcb”, we could not get
the same error reduction. Obviously the pronunciation of
speaker “mcb” was better, but doing that, he was not mov-
ing his lips so much.

It also should be noted that in the pure visual recogni-
tion a lot of the errors are caused by insertion and deletion
errors. When we presented the letters with known bound-
aries, we came to visual recognition rates of up to 50.2%.
The results of table 1 were achieved with histogram-nor-

Acoustic Visual Combined

msm/clean 88.8% 31.6% 93.2%

msm/noisy 47.2% 31.6% 75.6%

mcb/clean 97.0% 46.9% 97.2%

mcb/noisy 59.0% 46.9% 69.6%

Table 1: Results in word accuracy (words correct
minus insertion and deletion errors)



reported that necessary techniques like edge detection are
automatically learned by multi-layer perceptrons [10].

We apply two alternative preprocessing techniques:
Histogram normalized grey-value coding, or 2 dimen-
sional Fourier transformation. In both cases we just con-
sider an area of interest (AOI) centered around the lips,
and low pass filter these AOIs. The AOIs were initially
segmented by hand, but an automatic procedure is now
also available1 [11].

Grey-Value coding:We found that a 24x16 pixel reso-
lution is enough to recognize lip shapes and movements
(Figure 1). Each of these AOI pixels is the average grey-
value of a small square in the original image (low pass fil-
ter). The grey-levels are rescaled in such a way that the
darkest/brightest 5% in the histogram are coded with -1.0/
1.0. The remaining 90% are scaled linear between -1.0 and
1.0.

2D-FFT: The AOI is rescaled to a 64x64 pixel image so
that the 2 dimensional FFT results also with 64x64 coeffi-
cients. We just consider the log magnitudes of the first
13x13 FFT coefficients and rescale them to [-1.0, 1.0].
(After multiplying the complex FFT space with a 13x13
window and applying the inverse FFT, we could still rec-
ognize in the resulting low passed original image the dis-
tinct lip shapes and movements.) The motivation for
considering the FFT is, that this coding is spatial shift
invariant. It makes the recognition more stable against
inaccurate AOI positioning.

III. T HE MODULAR MS-TDNN ARCHITECTURE

 Time Delay Neural Networks are very well suited for
low-level phoneme classification [14]. Because they act as
general time-shift invariant feature extractors they are not
limited to acoustic speech input only. In our case we want
to process image sequences as well. The extracted visual

1.  We don’t want to hide the fact, that the complex task of find-
ing and tracking the lips is very critical to the success of our rec-
ognizer. The Real Time Face Tracking System we are using right
now is a template matching based approach and also used in a
wider context of multi-modal human computer interface
research, were tracking other parts of the face like for example
the eyes is involved as well. Work is in progess to solve this
problem with the connectionist architecture as well.

Figure 1: Typical AOIs

features of the lips change over time in a similar manner
like the acoustic speech signal, so we use for the visual
classification a similar TDNN architecture. Figure 2 shows
the architecture. The preprocessed acoustic and visual data
are fed into two front-end TDNNs [14], respectively. Each
TDNN consists of an input layer, one hidden layer and the
phone-state layer. Backpropagation was applied to train
the networks in a bootstrapping phase, to fit phoneme tar-
gets.
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BIMODAL SENSOR INTEGRATION ON THE EXAMPLE OF
“SPEECH-READING”

Abstract -- In this paper we show how recognition perfor-
mance in automated speech perception can be significantly
improved by additional Lipreading, so called “speech-read-
ing”. We show this on an extension of an existing state-of-the-
art speech recognition system, a modular MS-TDNN. The
acoustic and visual speech data is preclassified in two sepa-
rate front-end phoneme TDNNs and combined to acoustic-
visual hypotheses for the Dynamic Time Warping algorithm.
This is shown on a connected word recognition problem, the
notoriously difficult letter spelling task. With speech-reading
we could reduce the error rate up to half of the error rate of
the pure acoustic recognition.

I. INTRODUCTION

Recent development in the design of human computer
interfaces (HCI) requests a new field of research: Multi-
Modal Recognition. There are strong research efforts in all
kind of alternative computer input methods on the way,
like speech input, or visual input, but usually all different
recognition methods are treated separately. When it comes
to real-world-applications, single recognition methods
have poor recognition performance or are limited to very
small domains. Besides considering a lot of background
knowledge, humans come to much better recognition per-
formance in combining or substituting the different input
sources itself in a flexible way. In speech recognition the
main source is the acoustic signal, but if the signal is of
low quality or ambiguous, visual information, i.e. lip-
movements can contribute to the recognition process as
well. In fact this is a well studied phenomena in human
psychology often called “speech-reading”. Research with
hearing impaired people and also normal hearing people
has shown, that lipreading is subconsciously involved into
human perception in a significant manner [3].

We investigate this phenomena on a state-of-the-art
speech recognition architecture, a so called Multi State
Time-Delay Neural Network (MS-TDNN [6]). We
extended the architecture in a way, that besides the acous-
tic speech signals also visual signals (i.e. lipmovements)

are integrated in the learning and recognition process. A
speaker is set in front of a microphone and a camera, spell-
ing German names and random letter sequences. The
spelling task is seen as a connected word recognition prob-
lem. As words we take the highly ambiguous 26 German
letters. We do not care about high quality recordings, we
even degrade the acoustic signal with artificial noise to
simulate real-world conditions. The camera covers the full
face, but as network input we just consider an area of
interest (AOI) centered around the lips. We show how rec-
ognition performance with additional visual input further
improves over acoustic recognition only.

II. ACOUSTICAND VISUAL INPUTREPRESENTATION

Our bimodal input devices are a microphone and a con-
ventional NTSC camera. The acoustic signal is sampled
with a 16KHz rate and 12 bit accuracy. Every 10ms we
compute 16 Melscale Fourier coefficients on the Hamming
Windowed speech samples as input for the later classifier.

Due to the NTSC standard, the video images are sam-
pled with a much lower frequency. We digitize roughly
every 33 ms a 256x256 pixel area covering the face of the
speaker. We use 8bit gray-value coding for each pixel.
Also timestamps were saved, because the correct synchro-
nization between audio and video signals is critical for the
later classification.

In vision there does not exist such a well established
body of preprocessing techniques like in speech recogni-
tion. Basically preprocessing for connectionist vision is
split in two different “schools of believes”: 1. Apply as
much as possible preprocessing in a manner, that just some
few characteristic features are fed into the classifier. 2.
Apply only transformations with very little information
reduction and let the learning scheme find out the charac-
teristic features. Edge detection would be an example for
the first case and 2D-FFT for the second case.

We follow the second approach, because we believe that
conventional image processing techniques may cut out in
an early stage important features, which could be useful
for the later global learning scheme. In fact it has been
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