Bimodality of the viscoelastic response of a dense liquid and comparison
with the frictional responses at short times

Sarika Bhattacharyya
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

Biman Bagchi®
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
and Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 012, India

While the time dependence of the friction on a tagged particle in a dense liquid has been
investigated in great detail, a similar analysis for the viscosity of the medium and the
interrelationship between the two has not been carried out. This is despite the close relation always
assumed, both in theoretical and experimental studies, between friction and viscosity. In this article
a detailed study of the time and frequency dependencies of the viscosity has been carried out and
compared with those of the friction. The analysis is fully microscopic and is based on the mode
coupling theory(MCT). It is found that for an argonlike liquid near its triple point, the initial decay

of the viscosity occurs with a time constant of the order of 100 fs, which is close to that of the
friction. The frequency dependent viscosity shows a pronounced bimodality with a sharp peak at the
low frequency and a broad peak at the high frequency; the usually employed Maxwell’s relation
fails to describe the peak at the high frequency. A surprising result of the present study is that both
the bare and the MCT values of viscosity and friction individually sustain a ratio which is close to
the value predicted by the Stokes relation, even when Navier—Stokes hydrodynamics itself seems to
have little validity.

I. INTRODUCTION dynamics for molecular processes. The question gathers fur-
ther relevance from the fact that the tirfigcorrelation func-

The well-known Stokes relation is often used to connection determining friction (the force—forcg and that
the friction({) on a spherical molecule with the viscosity) determining viscositythe stress—stresare microscopically
of the medium. This connection goes beyond the ordinargifferent.
Stokes relation; even the generalized hydrodynamics de- In this article we are concerned with the problems that
scribes the frequenciw) dependent friction in terms of fre- can be articulated in terms of the following questions. What
quency dependent viscosity.While the hydrodynamic is the relation betweem(t) and (t) at short times? Does
theory always predicts this near equivalence of the frictiorthe ratio between the two retain a Stokes-like value at all
and the viscosity, microscopic theories seem to provide dmes? And how does the relation behave as a function of
drastically different picturé.In the mode coupling theory, frequency?
the friction on a tagged molecule is expressed in terms of A further motivation of the present article comes from
contributions from the density and the transverse currenthe the following observations. Many chemical dynamical
modes. The latter is expressed in terms of viscosity. Previougrocesses, such as nonpolar solvation dynamézs) be de-
studies have shown that although for solutes with size muchcribed in terms of the frequency dependent viscosity. Vis-
larger than the solvent it is this current mode which primarilycoelastic responses are required to understand the processes
determines the friction, in a neat liquid the friction coeffi- involving the rate of change in shape or size of molecules in
cient is determined not by the transverse current mode bliguids?* Note that it is the frequency dependent viscosity
rather by the collision and the density fluctuation tefms. Which is readily accessible experimentally, whereas the fre-
Thus for neat liquids there is re priori reason for such an duency dependent friction is a purely theoretical entity. An-
intimate relation between friction and viscosity to hold. ~ other place where a knowledge of this interrelationship be-

Mode coupling theory provides the following rationale tween {(w) and 7(w) is required is in understanding the
for the known validity of the Stokes relation between theViscosity dependence of activated processes in viscous lig-
zero frequency friction and the viscosity. According to MCT, Uids; this is a subject of much current interg#.the elegant
both these quantities are primarily determined by the stati€Wanzig—Bixon calculatioh of the frequency dependent
and dynamic structure factors of the solvent. Hence botfriction, the frequency dependence of the viscosity was as-
vary similarly with density and temperature. This calls into SUmed to be given by the following Maxwell relation,
guestion the justification of the use of the generalized hydro-
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where 74 is the viscoelastic relaxation time, given k’y  Here FJ* is the x-component of the force acting on théh
=7l/G.,, whereG,, is the infinite frequency shear modulus molecule,p}‘ is thex-component of the momentum of thth
and »= 7(w=0). From the above expression it is clear thatmolecule, and the corresponding positionxis m is the
this model assumes only one time scale. On the other handhass of the same molecule.
recent experimental studfeShave amply demonstrated that The high-frequency shear modulus is given by
the solvent response is bimodal with at least two widely _ 1, 1x P
different time scales describing the respofise. G..=(VkeT) " X{(%(0))%). @)
In this paper a comparative study is done between théfter a few steps of algebra, E4) can be reduced to the
time/frequency dependence of the friction and the viscosityfollowing exact expression:
It is found that if one includes only the binary interaction in > - d d
. . . . T v(r)
the calculation of the time scale of the short-time dynamics, G, =pkgT+ ——= pZJ dr g(r) — |r* , (5)
both viscosity and friction exhibit nearly the same time scale. 15 0 dr dr
When the triplet dynamics is included, both the responsegnereg(r) is the radial distribution function of the liquid.
become slower, with the viscosity being affected more than gy inyoking the separation of time scales between the
the friction. The time scale of both the responses are of thgyitial fast and the later slow decay, the time dependent vis-
o_rder pf 100_f_s. It is shown that the frequen(_:y _dependen&osity of a liquid can be written as the sum of two different
viscosity exhibits a clear bimodal dynamics, similar to thatierms, The initial fast part arises due to the dynamics within
of the friction? _ _ o the cage formed by the surrounding molecules and is ex-
We have also investigated the validity of the Stokes repressed in terms of the static correlations. The fast part is
lation from the microscopic point of view and found the fo|jowed by a slow long-time part which arises from the
following surprising result. Individually and separately, the gynamical correlations and basically describes the relaxation
ratio of both the bargbinary dominaterland the mode cou- of the cage due to the presence of the hydrodynamic modes
pling contributions to the friction and the viscosity follows a |ike the density and the current. As discussed at length by
Stokes-like relation. Contrary to the hydrodynamic picture,Gesztj, in dense liquids it is the density mode which prima-

we find that in the case of neat liquids in high density, it isr"y contributes to the long-time viscosity. The time depen-
more appropriate to think of the viscosity as being controlledyent viscosity can thus be written as

by the diffusion or the friction. This is because in this regime
the viscosity is primarily determined by the structural relax- ~ 7(t)=78(t) + 7,,(1). (6)

ation of the surrounding liquid, which in turn is determined | the above expressiomg(t) is the short-time part which
by the diffusion. arises from the static correlations ang,(t) is the long-time
The organization of the rest of the paper is as follows.part which arises from the density mode contribution.
Section Il deals with the theoretical formulation and contains e first describe the calculation afs(t). As only even
the mode coupling theory expressions for both the viscosityyowers oft appear inz(t), 7g(t) is approximated to be

and the friction. Section Ill contains the numerical results.expressed in terms of a Gaussian function and written as
The validity of the Stokes relation is discussed in Sec. 1V,

2
and finally Sec. V concludes with a brief discussion on the 78(t) =G exp(—tz/r,,). @)
results.

r

In the above equations, is determined from the second
derivative of (t).

Il. THEORETICAL FORMULATION oG
Let us consider a single tagged solute particle of the 72~ V 7(t=0)’ ®

same size as the solvent molecules in a dense liquid. Let o ) . ) .
v(r) denote the Lennard-JonésJ) interaction pair poten- N the liquid range(t) is dominated purely by its potential
tial. Let o be the radius of the solute and the solvent mol-Part and thus the expression of viscosity reduces to
ecules. The liquid is characterized by its number den/sit.y 7(t)=(VkeT) XSRS Fl(D)y;(1). 9
and absolute temperatufe We shall use the reduced density . o
p*=pa® as a measure of the density of the liquid and the Next, one expresses the force in terms of derivative of
reduced temperatufB* =kgT/e as the measure of the tem- the pair potential. One needs to include all the two- and

perature. Hereg is the Boltzmann constant andthe well ~ three-particle contributions to obtain the proper short-time
depth of the LJ potential. relaxation. The final expression for(t=0) is given by*

. . . . 4mp? (=
A. Calculation of viscosity P(t=0)=— 15;’1 f dr r2[r2(v")2+2rv"v"
0

The time dependent shear viscosity is expressed in terms
of the stress autocorrelation function and is given by 2

' L _
7](t)=(VkBT)71<JXy(O)JXy(t)>, ) +7(v )Z]Q(r) 75m Odq QZ[S(Q) 1]

where J¥ is the off-diagonal element of the stress tensor, X[2A%(q) +3B2(q)]. (10)
and is given by . ] )
N . . The functionsA(q) andB(q) are defined by the following
JY=3 7 1[(p;p}/m)+Fy;]. ) integrals:



TABLE I. The calculated values of the frictidig) and the viscosity ) for The Fourier frequency dependent viscosity is obtained

four different thermodynamic states which are characterized by the reducesy taking a Fourier transform of E(QB) and is given by
density,p* (=Na®/V, o is molecular diamet@rand reduced temperature, ’

T* (=kgT/e, € is the Lennard-Jones energy paramet&he scaling of 77(&’): 775(0’)+ ﬁpp(w)- (15
friction and viscosity are indicated on the table. The values of the ratio of
the friction to viscosity are given in the last column of the table. The calculated values of the viscosity are found to be in good
agreement with the simulated values for Lennard-Jones fluid.
p* ™ N elma no?lJme mel 0% The agreement for the state points studied is within 5%.

0.6 2.0 8.61 0.63 27.29

0.7 15 11.88 1.081 21.97 B. Calculation of friction

0.844 0.728 29.44 3.20 18.37

0.95 0.8 67.233 7.213 18.64 Just as in the case of viscosity, the separation of time

scales between the binary collision and the repeated recolli-
sions are invoked to decompose the friction on a tagged par-
ticle into a short-time and a long-time pA&rt® The resulting
expression is given by

— 2 " AR

A@= |, ar o aw Tiangin W =60+, (16

o where(g(2) is the binary part of the friction angk(z) is the
B(q)=f dr rrv"—v']js(qr)g(r), (12 long-time part which arises due to the correlated recollision
0 of the solute particle with the solvent particles. The corre-
where j(x) are the spherical Bessel functions:’ lated recollision part is obtained by expanding the total fric-
=dv(r)/dr andv”=d?v(r)/dr2. S(q) is the static structure tion in the basis set of the eigenfunctions of the Liouville
factor. operator. For a solute of size that is different from the solvent

Note that the only approximation made in the derivationmolecules, this contribution to the friction can be shown to
of Eq. (10) is the use of the Kirkwood superposition e;gproxi- be given by the following expressidr®
mation for the triplet distribution function of the liquid.In _ _
a dense liquid at low temperatugeear its triple point this {r(2)=Ry,(2) ~[{e(2) T Ry, (2) IR77(2) {(2). 17
is not a bad approximatiotf.But it does introduce an error In the above expressiom,,(z) gives the coupling of the
in the short time which may even be as large as 50%, for lessolute motion to the density modes of the solvent through the
dense liquids. Fortunately, this translates only to about afiwvo-particle direct correlation functionRr(z) gives the
error of 10% maximum for the total viscosity. Actually, we coupling to the transverse current through the transverse ver-
find that at the triple point of argon the calculated valire  tex function. R,,(z) and Rrr(z) are obtained through
the usual scaled unit, see TabJef viscosity is equal to 3.2, Laplace transformation dR,,(t) and Rr(t), respectively.
while the simulated values lie between 2.9 and 3.85 and th&he expressions faR,,(t) andRr+(t) are given by
experimental value is 3.9.

Next, we describe the calculation of the collective partof R, (t)=
the viscosity, 77,,(t), which, as mentioned earlier, arises
from the dengty mode contribution. Th!s is the Iong-tlme xX[e(a)PFS(q’,t)—F°(q’,t)]F(q’,1),
part of the viscosity and has the following mode coupling

pkBT
m

f[dq'/(ZwP](a-d’)zq’z

expressiort®1! (18)
i _ 1 ’ 3 A A2
ﬂpp(t):kBT/eoﬂzf dq o'[S'(q)/S(a)]? RTT(t)_; f [dg'/(2m)*][1-(q-9")]
0
X[(F(a,0/8(a)%~ (Fa(a,0/(@)?], (13 XY aid ) Pood FA
whereS'(q) is the first derivative of the static structure fac- —F°a".v]Cu(a’.1). (19

tor. Fg(q,t) is the inertial part of the intermediate scattering The input parameters required to calculRig(t) are the
function and is given byFg(q,t)=exp(~ksTt72mgq)).  two-particle direct correlation function between the solute
F(q,t) is the intermediate scattering factor of the solvent. Itand the solventg,,(q), the dynamic structure factor of the
is obtained through the Laplace transformation of the dysolute, F5(q,t), the inertial part of the dynamic structure
namic structure factofF(q,z), whereF(q,z) is expressed in  factor of the soluteF°(q,t), and the dynamic structure fac-
terms of the well-known Mori continued-fraction expansiontgr of the solvent,F(q,t). Note here that the product

with its truncation at the second order. THu§g,t) is given ¢ (q)F(q,t) in Eq. (8) represents the modified dynamic

by? 4445 structure factor of the solvent around the solute. Hence the
S(q) fact that the structure of the solvent is different around the
F(q,t)y=2"1 5 (14  solute from that in the bulk has been included in Ef).
<wq> The input parameter necessary for the calculatioRgf(t)
A is the vertex function of the solute—solvent mixtugg,(q),

— which actually takes care of the interaction of the solute mo-
z+ 1, tion with the current mode of the solvent. The other param-



eters required are the Einstein frequency of the solute in
presence of the solvent molecules,;», the dynamic struc-
ture factor of the solute, and the transverse current autocor-
relation function of the solvent,(q,t). 0s — L)
Next we describe the calculation of the binary part | ——
{g(t), which is controlled by the short-time dynamics. For a
continuous potential, the calculation ¢§(t) is nontrivial.
The steps involved in the calculation are outlined below. As
only the even powers dfappear in{g(t), it can be written
as

R
%o p=0.844, T=0.728

0.4t \ T, =2.527 ps

ST, M(UTy)

{(D)=wl, exp( —t4/72). (20)

woy12 IS the Einstein frequency of the solute in the presence of 02
the solvent

p -
wf)lz:% f dr g;(r)V2u(r), (21) 0 :

whereg,(r) is the radial distribution function of the solute— [ 7)o
solvent mixture. In Eq(20), the relaxation timer, is deter-

mined from the second derivative @E(t) att=0 and is FIG‘. 1. The time dependence of the frictigiit) (_sol_id line) gnd t_he vis-_
. il b§/6 cosity 7(t) (dashed ling for a Lennard-Jones liquid near its triple point
given exactly (p*=0.844 andT* =0.728. The friction and the viscosity are normalized
by their initial values to facilitate comparison of the dynamics. The time is

2 2_ 2 av B ay B scaled by the usual dimensionless timg,=(mo?/kgT)%5, which is here
Wil T /3mfdrVer r(VevFPu(r Y Mgy B
01274 (p ) ( ( ))g( )( ( )) equal to 2.527 ps. For more details see the text.

+(1/6p) f [da/(2m)]vg(a) o ,
Laplace frequency viag=iz). From the above expressions
X (S(q)—1)y3#(q), (220 we have calculated(z=0) self-consistently. Using this

_ o R value of friction in Eqs(18) and(19) we have calculated the
where summation over repeated indices is implied. Herggyrier frequency dependent total friction

S(q) is the static structure factor. The expressionf@?(q)
is written as a combination of the distinct parts of the second {(0)={p(0) +Ry,(w). (24)
moments of the longitudinal and transverse current correla-

tion functionsy}(q) and y4(q), respectively. Note that the Il NUMERICAL RESULTS

use of the Kirkwood superposition approximation for the
triplet correlation function has been used in deriving the sec

ond term of Eq.(22). For the friction, unlike for viscosity, gjistribution function and the wave number dependent two-
the effects of the triplet term are small. particle direct correlation function of the liquid. The radial
In order to solve all the above equations one thus needgistrihution function can be calculated accurately by using

to calculate a large number of dynamical variables. The €Xgo 7errah—Hansen scheRfeAlthough the Zerrah—Hansen
pressions of these variables and the method of calculationgheme® is quite accurate in the real space, it is known to

are available elsewhefe. _ . provide a less accurate description in the wave number
~ Finally, note that the expression for the recollision fric- gyace Therefore, the wave number dependent direct correla-
tion given by Eq(17) involves the full friction itself on the 5 fnction is obtained by the following method. First, the

right-hand side. Thus the equations are to be solved selstective hard-sphere diameter and density of the Lennard-

consistently. This is achieved by substituting the expressionag system is obtained by using the well-known

of {r(2) in Eq. (16). The final expression for the total fric- \yeeks—Chandler—Andersdnperturbation scheme. In the
tion is now given by next step, the two-particle direct correlation function for the

The numerical calculation of the time dependent viscos-
ity and friction requires a detailed knowledge of the radial

1 1 Lennard-Jones liquid is obtained from the Wertheim—Thiele
= +Rr1(2). (23)  solution of the Percus—Yevick equation using this effective
+
{2 LB(D+R,(2) hard-sphere diameter and density.
As discussed beforethis expression goes over to the ex- We have already discussed that the calculated value of

pression derived earlier by mah{;'° only if the contribu-  the total zero frequency viscosity at the triple point is in very
tion of the density mode is neglected and the hydrodynamigood agreementwithin 10%) with both the simulated and
approximation of the current mode is employed. Equatiorthe experimental results. The calculated value of the diffu-
(23) is a generalized expression where the microscopic terrsion coefficient at the triple point is 1.3%8.0 °, while the
is renormalized by the density mode. simulated value is 1.7810 ° cn? s %.1°

We shall need friction also as a function of the Fourier ~ Figure 1 depicts a comparative study between the time
frequency(w). In the notation followed(w) is related to the dependent friction and the viscosity at =0.844 andT*
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FIG. 3. The imaginary part of the calculated viscosity is plotted as a func-
FIG. 2. The same as Fig. 1—the short-time dynamics is shown in an elontion of the frequency at the triple poirtsolid line). Also shown is the
gated ordinate scale to facilitate comparison. prediction of the Maxwell viscoelastic mod@ashed ling given by Eq.(1)

of the text. The viscosity is scaled by?/\/(mkgT) and the frequency is

scaled byr_.!, wherers,=[ma?/kgT]¥?=2.527 ps.

=0.728. Thus, we are considering an argonlike liquid near . . .

its triple pont. In this figure, both the viscosity and the fric- well relation fails to describe adequately even the low fre-
tion have been normalized to unity & 0 by their respec- quency peak. :
tive initial values. This figure has several interesting features. In Fig. 4, the frequency dependent real part of the vis-

Both the two quantities exhibit a pronounced ultrafast Gauss(-:oSlty has been plotted. It should be pointed out that the

ian decay which accounts for almost 90% of the total relax-frequency dependence of both the real and the imaginary part

ation. The Gaussian time constants are equal to 130 for tht%ear striking resemblance to those of the friction, discussed
friction and 160 fs for the viscosity. The second interestingIn Ref. 8.

aspect is that both the two quantities exhibit slow Iong-timeth FI(_leurF t5 dshp WS Fthe fcalculat(.edt. ramafg/(fn.%i) agatuhnst
decay which is also comparable. e calculated viscosity, for a variation ofz for more than

It is worthwhile to discuss the relative contributions of 2" order of magnitude—here is the radius of an atom,

the binary and the three-particle correlations to the initial
decay. If the triplet correlation is neglected, then the values
of the Gaussian time constants are equal to 89 and 93 fs for
the friction and the viscosity, respectively. Thus, the triplet
correlation slows down the decay of viscosity more than that
of the friction. The greater effect of the triplet correlation is
in accord with the more collective nature of the viscosity.
This point also highlights the difference between viscosity
and friction. As already discussed, the Kirkwood superposi-
tion approximation has been used for the triplet correlation
function to keep the problem tractable. This introduces an
error which, however, may not be very significant for an
argonlike system at triple point. Figure 2 displays the simi-
larity between the short-time dynamics of the friction and
viscosity on an enlarged scale.

Figure 3 depicts the imaginary part of the frequency de-
pendent viscosity which clearly demonstrates the bimodality

. . . 0 1 1 J
of the V|scoelast|_c response. In the same figure we have also 0 20 40 60 80 100
plotted the prediction from the Maxwell’s relation. In the
latter we have calculated the relaxation timgby the well- 0T

known expressi =p(z= » . It shows that the Max- N i
?I Ie .p ess Odms 77( | O)/G tlf 0 IS t fat the Ma d:IG. 4. The real part of the calculated viscosity is plotted as a function of
well relation produces only one peak at low frequency an he frequency at the reduced dengity= 0.844 and the reduced temperature

provides inadequate description at higher frequencies. Anr(=k.T/¢)=0.728. The viscosity is scaled hy?/\(mksT) and the fre-
other important aspect of this graph is that the simple Maxguency is scaled by..!, wherer,.=[ma?/kgT]V?=2.527 ps.



30 neat liquid. It is, therefore, imperative to analyze the cause of
apparent validity of the Stokes relation in greater depth.

To explain the validity of the Stokes—Einstei8E) re-
lation for solutes of the same size as the solvent at high
density, Mehaffey and Cukitthave suggested the following
25 expression for the diffusion coefficient,

D=D kBT+D 25
= E+ﬁ Lo (25

m{ /MR

where D¢ is the Enskog diffusion coefficient, the second
term on the right is the contribution from the ring term, and
D, is the contribution to diffusion from the longitudinal den-
sity mode. According to Mehaffey and Cukier, the longitu-
dinal density mode contribution may cancel the Enskog con-
15 , , ‘ tribution and the diffusion will be expressed by the SE
0 ) 4 6 8 relation.
* The analysis presented in this article and several previ-
n ous work$®'%"has shown that the contribution from the
longitudinal mode is not an additive term to the diffusion but

FIG. 5. The ratio of the calculated friction to the calculated viscosity is to the friction! Hence such a cancellation is not possible
plotted against the reduced viscosity. These values are obtained at various ) ’

densities and temperatures, all given in Table I. The viscosity is scaled by In the fOHOWing we present a Semiquamitaﬁve argument
o?/\[(me). The prediction of the Stokes relation with the stick boundary ON the recovery of the hydrodynamic boundary condition
condition is shown by a dashed line. from microscopic considerations.
An analysis of the relevant integralin Egs. (13) and
(18)] shows that the dominant contribution of the density
J2=al2. The values ofp*, T*, » and ¢ are all given in mode to the viscosity and the friction comes from interme-

Table 1. It can be seen from this figure that in dense liquidsdiate length scale (Bko=3). That is, more than 90% of
the ratiom¢/(#5.72) is close to 6r, which is indeed surpris- the contribution comes from a region surroun_dlng the sharp
ing. Any hydrodynamiclike behavior is not seen at low den-first peak of the static structure factor, that is, aroukad .
sities where the value of the viscosity decreases faster witfr 277 At these values of the wave number, the dynamic
lowering the density than the friction. Actually, such break-Structure factor is well determined by the following simple
down of hydrodynamic behavior has also been observed if"€an field expression first used by de Gennes many years

T
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the computer simulations of Lennard-Jones ellipséfds. ago,
F(q,t>=8<q>exp( _Dqﬁ‘t). (26
IV. STOKES RELATION REVISITED S(Am)
In an interesting previous study, Mehaffey and Culier Here D is the self-diffusion coefficient which is deter-

showed that when the size of the solute becomes very largained self-consistently from E@23) and then is used in the
compared to the solvent molecules, a form akin to Stokes-above expression to provide a correct intermediate scattering
Einstein relation is recovered. Earlier we showed in Ref. Zunction to be used in the calculation of the viscosity.

that when the size of the diffusing particle becomes larger  Further simplification can be made by using a simple
than the size of the solvent molecules, the contribution of therescription for the wave number dependence of the structure
current modgthe second term in Eq23)] to the total dif-  factor, as shown by Balucaffi.The above prescription pro-
fusion can become larger than the combined contribution ofides fairly accurate values for the zero frequency friction
the binary and the density modes. Numerical calculatiorand the viscosity.

shows that this crossover takes place when the solute— It is, therefore, clear from the above discussion that the
solvent size ratio becomes somewhat larger than 2. If theollective contribution to the viscosity is dominated by the
solute—solvent interaction energy remains unchanged, thestructural relaxation, which in turn is determined by the rate
one finds that the friction numerically converges to a valueof diffusion. Thus, it is more appropriate to consider the

given by 47 nR—that is, the slip limit. viscosity of the medium as being determined by the diffu-
As emphasized in Sec. |, the hydrodynamic derivationsion. This is, of course, a matter of perspective.
(based on the contribution of the current mode afdnef the There is, however, an even more interesting aspect. Us-

relation between the friction and the viscosity has no validitying the results of Balucart, it can be shown that the initial
in the case of neat liquidsvhere the tagged molecule has the value of the viscosity and the friction are related approxi-
same size as a solvent molequl®©n the other hand, the mately by
experiment$; computer simulation&, and the MCT calcu-

lations presented here all show that the ratio of friction to ~ M¢(t=0) 20
viscosity almost always lies betweenr4énd &7 even for a n(t=0).%2 p*’

(27)



For p*=0.844 andT* =0.72, Eq.(27) gives a value of the On the other hand, we show here that for solutes of the
ratio equal to 23.6966. same size as the solvent, both the friction and the viscosity
Now, we have already found that the decay of the nor-aare determined by the microscopic terms and numerically the
malized viscosity is slightly slower than that of the friction, friction converges to a value close tout less thap6 = yR.
and the ratio of the time constants is 160/124. Thus, th&hus the origin behind the validity of the Stokes relation for
contribution of the bare part to the zero frequency friction isthe same size solute is that both the microscopic friction and
equal to 23.6968 124/160, which is equal to 18.364. There- the viscosity are determined essentially by the same dynami-
fore, the ratio of the bare part of the zero frequency frictioncal variables. We have emphasized that the occurrence of 6
to that of viscosity is nearly identical tor6 This we believe is not to be taken as a signature of the stick boundary con-
provides a microscopic explanation for the results shown irdition.
Fig. 5. The above discussion leads to the following important
It is to be noted that in the above discussion, althougtpoint. For a neat liquid the Navier—Stokes hydrodynamics
the numerical values of the prefactor are close49i6does cannot be used to justify apparent numerical validity of the
not in any way imply the stick boundary condition. The Stokes relation. In this case, the validity of a Stokes-like
above calculation is based only on microscopic considerrelation between the viscosity and the friction can be ex-
ations and is semiquantitative in nature. The main point herglained only when the contributions from the bdteat is,
is that in the high density liquid regime, the ratio of the the binary and the density modes are both taken into ac-
friction to the viscosity attains a constant value independentount. Another point of interest is that while in hydrodynam-
of the viscosity(density and temperaturend this value is ics based analysis it is believed that it is the viscosity which
numerically close tgbut less than6r. determines the friction, the present study suggests that per-
It is now interesting to discuss the simulated values ofhaps it is more meaningful to think in terms of the reverse
this ratio at high density. For an argon system near the triplecenario. In the region where hydrodynamics is not valid but
point atp=.021 A~2 and T=86.5 K, the ratio is 4.# At  a Stokes-like relation is obeyed, it is the diffusi¢or the
p=.021 A"2 and T=95 K, the ratio is 5.%. In computing friction) which determines the viscosity and not vice versa.
the above ratios, the friction is obtained from the Einstein  Thus the recovery of the Stokes—Einstein relation for
relation using the known value of diffusion coefficiéntt is large solutes and for solutes of the same size as the solvent
perhaps fair to allow an uncertainty of 5%—-15% in the de-have completely different origins.

termination of this ratio both by theory or simulation. Note that although we have discussed diffusion and vis-
cosity only in the normal liquid domain, the study can be
V. CONCLUSION extended to the region near the glass transition. The expres-

sions for friction and viscosity will remain the same but the

Let us first summarize the main results of the study.d ical variabl has the d ic structure fact "
First, it is shown that the short-time viscous and frictional 9Ynamical varables such as the dynamic structure tactor wi
evelop a long-time tail within a very narrow density

responses in a neat liquid occur essentially on the same tinf 28,991 - . . '
scale. The time dependence of this response is largely Gaud&§nde-” This Iong-t_|me_ tail of the dynamic _strucf[ure factqr
ian, which is followed by a slow long-time decay. This bi- accounts for the rapid rise of the value of viscosity and fric-

phasic response is a hallmark of dynamical processes iﬂog over tlhis nl;ir;\(/)vw dersﬁitydr_zfifngg. As d(ijS(;ESSG_d in Ref. 28,
dense liquid. This is clearly reflected in the imaginary part o ecoupiing between the ditfusion an e viscosity can

the frequency dependent viscosity as shown in Fig. 3. Thgrise near the glass transition, \(vhiqh m?ght Ie_ad 0 a com-
second important result is that the time scale of the initialplete breakdown of the SE relation in this regime. This de-

decay is of the order of 100 fs, which is typically the time coupling might arise due to the existence of the slowly re-

scale observed both in polar and nonpolar solvation dynamlf’lxing solidlike microdomains in the supercooled liquids.
'ghe presence of this solidlike domain gives rise to inhomo-

ics. In the present case, the ultrafast dynamics originate ity in the liquid with d : hich lidlik
clearly from the nearest-neighbor static correlation. The thirgdSNEY 1N e Aiquid with some domains which are Soldlike
nd others which are liquidlike. In each of these domains the

important result is the demonstration that the apparent valicd® . : e
ity of a Stokes-like relation between friction and vi:scositySE Izw m'th ?e va:|hd but the O\:jeré.‘” val_l;e of the diffusion
has its root both in statics and dynamics. While the initiaIC"’m_I_r(]acoulo (Tt rom etn:jeﬁsure v:zco|3| yi) di .
values of these quantities primarily determine the ratio, the € resufts presented here could also be USed In various

nearly identical dynamics sustains this ratio even in the fregppllcatmns, for example in understanding nonpolar solva-

quency plane. tion and in activated barrier crossing dynanfies.

As discussed before, in this work we did not consider the
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