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Abstract

Many combinatorial optimization problems such as the bin packing and multiple knap-
sack problems involve assigning a set of discrete objects to multiple containers. These prob-
lems can be used to model task and resource allocation problems in multi-agent systems
and distributed systms, and can also be found as subproblems of scheduling problems. We
propose bin completion, a branch-and-bound strategy for one-dimensional, multicontainer
packing problems. Bin completion combines a bin-oriented search space with a powerful
dominance criterion that enables us to prune much of the space. The performance of the
basic bin completion framework can be enhanced by using a number of extensions, in-
cluding nogood-based pruning techniques that allow further exploitation of the dominance
criterion. Bin completion is applied to four problems: multiple knapsack, bin covering,
min-cost covering, and bin packing. We show that our bin completion algorithms yield
new, state-of-the-art results for the multiple knapsack, bin covering, and min-cost cov-
ering problems, outperforming previous algorithms by several orders of magnitude with
respect to runtime on some classes of hard, random problem instances. For the bin pack-
ing problem, we demonstrate significant improvements compared to most previous results,
but show that bin completion is not competitive with current state-of-the-art cutting-stock
based approaches.

1. Introduction

Many NP-hard problems involve assigning some set of discrete objects to multiple contain-
ers. In one class of problems, the objective is to pack some items into a set of containers
without exceeding the containers’ capacities. In a related class of problems, the goal is to
cover a set of containers by filling them up to at least some minimal level (quota) using a set
of items. When both the containers and the items are modeled as one-dimensional objects
(possibly with an associated cost/value function), we refer collectively to these problems as
one-dimensional, multicontainer packing and covering problems, or simply multicontainer
packing problems.

One example of a multicontainer packing problem is the bin packing problem: Given a
set of items (numbers), and a fixed bin capacity, assign each item to a bin so that the sum
of the items assigned to each bin does not exceed the bin capacity, and the number of bins
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used is minimized. For example, given the set of items 6, 12, 15, 40, 43, 82, and a bin
capacity of 100, we can assign 6, 12, and 82 to one bin, and 15, 40, and 43, to another, for
a total of two bins. This is an optimal solution to this instance, since the sum of all the
items, 198, is greater than 100, and hence at least two bins are required.

Multicontainer packing problems are ubiquitous. They model many important opera-
tions research problems such as cargo loading and transport, and also model many artificial
intelligence applications, such as the allocation and rationing of resources or tasks among
a group of agents. Multicontainer packing problems can often be found embedded as sub-
problems of more complex, real-world combinatorial optimization problems. For example
many constraint programming problems contain “bin packing” or “knapsack” constraints
as subproblems (e.g., Shaw, 2004). Such constraints are at the core of many scheduling and
resource allocation problems.

In this paper, we propose bin completion, a new algorithm for optimally solving mul-
ticontainer packing problems. We begin in Section 1.1 with an overview of four represen-
tative, strongly NP-complete, multicontainer problems: (1) the bin packing problem, (2)
the multiple knapsack problem, (3) the bin covering problem, and (4) the min-cost covering
problem.

In Section 2, we begin by describing the standard, “item-oriented” branch-and-bound
framework for these problems. In this traditional approach, items are considered one at a
time. Each node in the search corresponds to a decision regarding the assignment of an
item to some non-full container. Then, we describe bin completion, an alternative, “bin-
oriented” branch-and-bound strategy with two key features: (1) the nodes in the search tree
correspond to complete assignments of items to a single bin, and (2) dominance criteria
between assignments of items to bins are used to prune the search. Section 3 describes
extensions to the basic bin completion framework that improve search efficiency, as well as
the runtime and memory usage at each node.

In Sections 4-7, we explore the application of the bin completion framework to four
specific, one-dimensional multicontainer packing problems. For each problem, we review
the previous work on algorithms that optimally solve the problem, detail our bin completion
algorithm for the problem, and provide an empirical comparison with the previous state-of-
the-art algorithm. We apply bin completion to the multiple knapsack problem in Section
4, and show that our bin completion solver significantly outperforms Mulknap (Pisinger,
1999), the previous state-of-the-art algorithm. The min-cost covering problem (also called
the liquid loading problem) was the first problem for which Christofides, Mingozzi, and
Toth (1979) proposed an early variant of the bin completion approach. In Section 5, we
show that our new bin completion algorithm significantly outperforms the earlier algorithm
by Christofides et al. In Section 6, we apply bin completion to the bin covering problem
(also known as the dual bin packing problem). We show that our bin completion algorithm
significantly outperforms the previous state-of-the-art algorithm by Labbé, Laporte, and
Martello (1995). In Section 7, we apply our extended bin completion algorithm to the
bin packing problem. Although our initial results were promising (Korf, 2002, 2003), our
best bin completion solver is not competitive with the current state of the art, which is a
recent branch-and-price approach based on a cutting-stock problem formulation. Section 8
concludes with a discussion and directions for future work.
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1.1 One-Dimensional, Multicontainer Packing Problems

We consider the class of multicontainer packing problems: Given a set of items, which must
be assigned to one or more containers (“bins”), each item can be assigned to at most one
container. Each item j has a weight wj associated with it. Depending on the problem,
each item j may also have a profit or cost pj associated with it. We assume that item
weights and containers are one-dimensional. For some real-world applications, such as
continuous call double auctions (Kalagnanam, Davenport, & Lee, 2001), this model can be
applied directly. For other applications, such as the lot-to-order matching problem, the one-
dimensional model is an approximation (Carlyle, Knutson, & Fowler, 2001). We consider
two types of containers: (1) Containers with a capacity, where the sum of the weights of the
items assigned to a container cannot exceed its capacity, and (2) containers with a quota,
where the sum of the weights of the items assigned to a container must be at least as large
as the quota. When there is only a single container, we have the well-known 0-1 knapsack
problem. See the recent text by Kellerer, Pferschy, and Pisinger (2004) for an overview
of work on the 0-1 Knapsack problem and its variants. In this paper, we focus on four
one-dimensional, multicontainer packing problems (1) bin packing, (2) multiple knapsack,
(3) bin covering, and (4) min-cost covering.

1.1.1 The Bin Packing Problem

In the bin packing problem, the goal is to pack n items with weights w1, ..., wn into bins of
capacity c such that all items are packed into the fewest number of bins, and the sum of the
weights of the items in each bin is no greater than the capacity. Classical applications of bin
packing include the classic vehicle/container loading problem (Eilon & Christofides, 1971),
as well as memory/storage allocation for data. The minimal number of agents required to
carry out a set of tasks in a multiagent planning problem can be modeled as a bin packing
problem.

More formally, the bin packing problem can be formulated as the integer program:

minimize

n∑

i=1

yi (1)

subject to:

n∑

j=1

wjxij ≤ cyi, i = 1, ..., n (2)

n∑

i=1

xij ≤ 1, j = 1, ..., n (3)

xij ∈ {0, 1} i = 1, ..., n, j = 1, ..., n (4)

yi ∈ {0, 1}, i = 1, ..., n (5)

where yi represents whether the ith bin is used or not (yi = 1 if any items are assigned
to bin i, yi = 0 otherwise), and xij = 1 if item j is assigned to bin i, and 0 otherwise.
Constraint 2 ensures that the capacity is not violated for each bin that is instantiated, and
constraint 3 ensures that items are assigned to at most one bin.
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In this standard formulation, we assume that all bins have the same capacity. However,
this assumption is not restrictive, since instances where bins with different capacities (non-
uniform bins) can be modeled by introducing additional items and constraints.

1.1.2 The 0-1 Multiple Knapsack Problem

Consider m containers with capacities c1, ..., cm, and a set of n items, where each item has
a weight w1, ..., wn and profit p1, ..., pn. Packing the items in the containers to maximize
the total profit of the items, such that the sum of the item weights in each container does
not exceed the container’s capacity, and each item is assigned to at most one container is
the 0-1 Multiple Knapsack Problem, or MKP.

The MKP is a natural generalization of the 0-1 Knapsack Problem where there are m
containers of capacities c1, c2, ...cm. Let the binary decision variable xij be 1 if item j is
placed in container i, and 0 otherwise. Then the 0-1 Multiple Knapsack Problem can be
formulated as:

maximize

m∑

i=1

n∑

j=1

pjxij (6)

subject to:
n∑

j=1

wjxij ≤ ci, i = 1, ...,m (7)

m∑

i=1

xij ≤ 1, j = 1, ..., n (8)

xij ∈ {0, 1} ∀i, j. (9)

Constraint 7 encodes the capacity constraint for each container, and constraint 8 ensures
that each item is assigned to at most one container.

The MKP has numerous applications, including task allocation among a group of au-
tonomous agents in order to maximize the total utility of the tasks executed (Fukunaga,
2005), continuous double-call auctions (Kalagnanam et al., 2001), multiprocessor schedul-
ing (Labbé, Laporte, & Martello, 2003), vehicle/container loading (Eilon & Christofides,
1971), and the assignment of files to storage devices in order to maximize the number of
files stored in the fastest storage devices (Labbé et al., 2003). A special case of the MKP
that has been studied in its own right is the Multiple Subset-Sum Problem (MSSP), where
the profits of the items are equal to their weights, i.e., pj = wj for all j (e.g., Caprara,
Kellerer, & Pferschy, 2000b 2000a,2003). An application of the MSSP is the marble cutting
problem, where given m marble slabs, the problem is to decide how to cut the slabs into
sub-slabs (each sub-slab is then further processed into a product) in order to minimize the
total amount of wasted marble.

1.1.3 Bin Covering

Suppose we have n items with weights w1, ..., wn, and an infinite supply of identical con-
tainers with quota q. The bin covering problem, also known as the dual bin packing problem
is to pack the items into containers such that the number of containers that contain sets of
items whose sums are at least q is maximized. That is, the goal is to distribute, or ration
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the items among as many containers as possible, given that the containers have a specified
quota that must be satisfied. Note that the total weight of the items placed in a container
can be greater than q (we assume infinite capacity, although assigning an additional item
to a bin whose quota is already satisfies is clearly suboptimal).

More formally, the bin covering problem can be formulated as the integer program:

maximize
n∑

i=1

yi (10)

subject to:

n∑

j=1

wjxij ≥ qyi, i = 1, ..., n (11)

n∑

i=1

xij ≤ 1, j = 1, ..., n (12)

xij ∈ {0, 1} i = 1, ..., n, j = 1, ..., n (13)

yi ∈ {0, 1}, i = 1, ..., n (14)

where yi represents whether the quota on the ith bin is satisfied (yi = 1) or not (yi = 0),
and xij = 1 if item j is assigned to bin i, and 0 otherwise. Constraint 11 ensures that the
quota is satisfied for each bin that is instantiated, and constraint 12 ensures that items are
assigned to at most one bin.

Bin covering is a natural model for resource or task allocation among multiple agents
where the goal is to maximize the number of agents who achieve some quota. It is also
models industrial problems such as: (1) packing peach slices into cans so that each can
contains at least its advertised net weight in peaches, and (2) breaking up monopolies into
smaller companies, each of which is large enough to be viable (Assmann, Johnson, Kleitman,
& Leung, 1984). Another application of bin covering is the lot-to-order matching problem
in the semiconductor industry, where the problem is to assign fabrication wafer lots to
customer orders of various sizes (Carlyle et al., 2001).

1.1.4 Min-Cost Covering Problem (Liquid Loading Problem)

We define the Min-Cost Covering Problem (MCCP) as follows. Given a set of m bins with
quotas {q1, ..., qm}, and a set of n items with weights w1, ..., wn and costs p1, ..., pn, assign
some subset of the items to each bin such that (1) each item is assigned to at most one
bin, (2) the sum of the weights of the items assigned to each bin is at least the bin’s quota
(i.e., the bin is covered, as in bin covering), and (3) the total cost of all the items that are
assigned to a bin is minimized. This problem has also been called the liquid loading problem
(Christofides et al., 1979), because it was originally motivated by the following application:
Consider the disposal or transportation of m different liquids (e.g., chemicals) that cannot
be mixed. If we are given n tanks of various sizes, each with some associated cost, the
problem is to load the m liquids into some subset of the tanks so as to minimize the total
cost. Note that here, the “liquids” correspond to containers, and the “tanks” correspond
to the items.

Other applications of the MCCP include: (1) the storage of different varieties of grain
in different silos, where different types of grains cannot be mixed, (2) storage of food types
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in freezer compartments, (3) a trucking firm which distributes its trucks (of different sizes)
among customers with no mixing of different customer’s orders on any truck, and (4) storage
of information in storage devices (e.g., sensitive customer data that must be segregated
between physical filing cabinets or file servers). A closely related problem is the segregated
storage problem (Neebe, 1987; Evans & Tsubakitani, 1993).

More formally, the MCCP can be formulated as the integer program:

minimize

m∑

i=1

n∑

j=1

pjxij (15)

subject to:

n∑

j=1

wjxij ≥ qi, i = 1, ...,m (16)

m∑

i=1

xij ≤ 1, j = 1, ..., n (17)

xij ∈ {0, 1} ∀i, j. (18)

The binary variable xij represents whether item j is assigned to container i. Constraint
16 ensures that the quotas of all the bins are satisfied, and constraint 17 ensures that each
item is assigned to at most one bin.

1.1.5 A taxonomy of multicontainer problems

Table 1 summarizes the two key, defining dimensions of the four multicontainer problems
we study in this paper. One key dimension is whether the problem involves packing a set of
items into containers so that the container capacity is not exceeded (packing), or whether
the problem requires satisfying the quota associated with a container (covering). Another
key dimension is whether all of the items must be assigned to bins, or whether only a
subset of items are selected to be assigned to bins. A third dimension (not shown in the
table) is the set of item attributes (e.g., weight, profit/cost). Bin packing and bin covering
are single-attribute problems (items have weight only), while the multiple knapsack and
min-cost covering problems are two-attribute problems (items have weight and profit/cost).

We focus on the bin packing, bin covering, MKP, and MCCP problems because we
believe that these are in some sense the most “basic” multicontainer problems. Many
combinatorial optimization problems can be viewed as extensions of these problems with
additional constraints. For example, the generalized assignment problem can be considered
a generalization of a MKP with a more complex profit function.

assign all items to bins assign subset of items to bins

packing bin packing multiple knapsack

covering bin covering min-cost covering

Table 1: Characterizing multicontainer problems.
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2. Bin Completion

The multiple-knapsack problem, bin covering problem, min-cost covering problem, and bin
packing problem are all strongly NP-complete (proofs by reduction from 3-PARTITION,
e.g. Martello & Toth, 1990; Fukunaga, 2005). Thus, these problems cannot be solved by
a polynomial or pseudo-polynomial time algorithm unless P = NP , and the state-of-the-
art approach for optimally solving to these problems is branch-and-bound. In contrast,
the single-container 0-1 Knapsack problem and subset sum problem are only weakly NP-
complete, and can be solved in pseudopolynomial time using dynamic programming algo-
rithms (Kellerer et al., 2004).

In this section, we begin by describing the standard item-oriented branch-and-bound ap-
proach to solving multi-container problems. We then describe bin completion, an alternate,
bin-oriented strategy. For clarity and simplicity of exposition, we detail the algorithms in
the context of the bin packing problem.

2.1 Item-Oriented Branch-and-Bound

The standard approach to solving multi-container problems is an item-oriented branch-and-
bound strategy. Suppose we have a bin packing problem instance where the bin capacity is
100, and we have 7 items with weights 83, 42, 41, 40, 12, 11, and 5. We perform a branch-
and-bound procedure to search the space of assignments of items to bins, where each node
in the branch-and-bound search tree corresponds to an item, and the branches correspond
to decisions about the bin in which to place the item. Assuming that we consider the items
in order of non-increasing weight, we first place the 83 in a bin, resulting in the set of
bins {(83)}. Next, we consider the 42. If we put it in the same bin as the 83, resulting
in {(83, 42)}, then we exceed the bin capacity. The other possibility is to put the 42 in
a new bin, resulting in {(83), (42)}. This is the only feasible choice at this node. Next,
the 41 is assigned to a bin. There are three possible places to assign the 41: (a) in the
same bin as the 83, resulting in {(83, 41), (42)}, (b) in the same bin as the 42, resulting in
{(83), (42, 41)}, and (c) in a new bin of its own, resulting in {(83), (42), (41)}. Option (a)
exceeds bin the capacity of the first bin and is infeasible. Options (b) and (c) are feasible
choices, so we branch on this item assignment, resulting in two subproblems, to which the
search procedure is recursively applied. Figure 1 illustrates a portion of this search space
(we show only the feasible nodes).

This branch-and-bound procedure is item-oriented because at each node, we decide
upon the placement of a particular item. Upper and lower bounding techniques specific to
the problem can be applied to make this basic depth-first strategy more efficient. Item-
oriented branch-and-bound appears to be the most “natural” strategy for multicontainer
problems. The seminal paper by Eilon and Christofides (1971), which was the first paper to
address optimal solutions for multi-container problems, proposed an item-oriented branch-
and-bound strategy. Most of the work in the literature on algorithms for optimally solving
multi-container problems have relied upon this item-oriented strategy.
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(83)

(83)(42)

(83) (42,41)

(83)
(42,41) (40)

(83 12) (42 41) (40)

(83)(42 41 12)
(40)

(83)(42 41)
(40 12)

(83)(42 41)
(40)(12)

(83)(42)(41)

(83)(42)
(41,40)

...

(83)(42)
(41)(40)

...

Figure 1: Partial, item-oriented search space for a bin packing instance with capacity 100
and items {83,42,41,40,12,11,5}. Each node corresponds to a decision about which
existing or new bin an item is assigned to. Items are considered in nonincreasing
order of weight.

2.2 Bin Completion, a Bin-Oriented Branch-and-Bound Strategy

An alternate problem space for solving multi-container problems is bin-oriented, where
nodes correspond to decisions about which remaining item(s) to assign to the current bin.

A bin assignment B = (item1, ..., itemk) is a set of all the items that are assigned to
a given bin. Thus, a valid solution to a bin packing problem instance consists of a set of
bin assignments, where each item appears in exactly one bin assignment. A bin assignment
is feasible with respect to a given bin capacity c if the sum of its weights does not exceed
c. Otherwise, the bin assignment is infeasible. The definition of feasibility is the same for
the MKP; however, for bin covering and the MCCP, we define a bin assignment as feasible
with respect to a bin quota q if the sum of its weights is at least q. Given a set of k
remaining items, we say that a bin assignment S is maximal with respect to capacity c if
S is feasible, and adding any of the k remaining items would make it infeasible. Similarly,
for bin covering and the MCCP, a feasible bin assignment is minimal with respect to quota
q if removing any item would make it infeasible. For brevity, in the rest of this paper,
we omit the qualification “with respect to a given capacity/quota” when it is unnecessary
(for example, in bin packing and bin covering, all bins have the same capacity/quota so no
qualification is necessary).

Bin completion (for bin packing) is a bin-oriented branch-and-bound algorithm in which
each node represents a maximal, feasible bin assignment. Rather than assigning items one at
a time to bins, bin completion branches on the different maximal, feasible bin assignments.
The nodes at a given level in a bin completion search tree represent different maximal,
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�

(83,12,5)

(42,41)

(40,11)

(42,40) (42,11)

(83,11,5)

Figure 2: Bin-completion search space for a bin packing instance with capacity 100 and
items {83,42,41,40,12,11,5}. Each node represents a maximal, feasible bin assign-
ment for a given bin. Bin assignments shown with a strikethrough, e.g., (83,11,5),
are pruned due to the dominance criterion described in Section 2.3.

feasible bin assignments that include the largest remaining item. The nodes at the next
level represent different maximal, feasible bin assignments that include the largest remaining
item, etc. The reason that we restrict sibling bin assignments in the bin packing search
tree to have the largest remaining number in common is to eliminate symmetries that are
introduced by the fact that all bins have the same capacity in our bin packing fomulation.
Thus, the depth of any branch of the bin completion search tree corresponds to the number
of bins in the partial solution to that depth. Figure 2 shows an example of a bin completion
search tree.

2.3 Dominance Criteria for Bin Assignments

The key to making bin completion efficient is the use of a dominance criterion on the feasible
bin assignments that requires us to only consider a small subset of them.

Bin comletion (for bin packing) only considers maximal, feasible assignments, because
it is clear that non-maximal assignments are dominated by maximal assignments, i.e., as-
signing a non-maximal assignment to a bin cannot lead to a solution with fewer bins than
assigning a maximal assignment. For example, if the current bin has 20 units of remaining
space and the remaining items are {15, 30, 40, 60}, it is always better to add the 15 to the
current bin, because we must eventually pack the 15 somewhere. We now formalize this
notion of dominance and describe more powerful dominance criteria that significantly prune
the search space.

Definition 1 (Dominance) Given two feasible bin assignments F1 and F2, F1 dominates
F2 if the value of the optimal solution which can be obtained by assigning F1 to a bin is
no worse than the value of the optimal solution that can be obtained by assigning F2 to the
same bin.

If we can show that a bin assignment B is dominated by another bin assignment A, then
we can prune the search tree under B. Maximality is a trivial dominance criterion for bin
completion. If a feasible bin assignment B is not maximal, then by definition, it must be a
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subset of a maximal, feasible subset A, and B is clearly dominated by A. We now consider
more powerful dominance criteria.

Suppose we have a bin packing instance with bin capacity 100 and items {96,3,4,80,15,12}.
The sets (96,3) and (96,4) are both maximal, feasible bin assignments. If we choose the
bin assignment (96,3), the remaining subproblem has the unassigned items {80,15,12,4}.
On the other hand, if we choose the bin assignment (96,4), the remaining subproblem is
{80,15,12,3}. Clearly, the optimal solution to the subproblem {80,15,12,4} must use at least
as many bins as the optimal solution to the subproblem {80,15,12,3}. In other words, the
optimal solution in the subtree under the node (96,4) is at least as good as the optimal
solution in the subtree under (96,3), and therefore there is no need to search under (96,3)
because the bin assignment (96,4) dominates the bin assignment (96,3).

Christofides, Mingozzi, and Toth first proposed a more general form for this dominance
criterion in the context of the min-cost covering problem (Christofides et al., 1979). We
have reformulated their criterion in terms of the bin packing problem:

Proposition 1 (CMT Dominance for Bin Packing) Given two feasible sets A and B,
A dominates B if: (1) |A| ≥ |B| and (2) there exists a one-to-one (but not necessarily onto)
mapping π from B to A such that each item b ∈ B, is mapped to an element of A with a
weight that is greater than or equal to the weight of b, i.e., w(b) ≤ w(π(b)).1

In other words, if for each element b in a feasible bin assignment B, there is a corre-
sponding item a of a feasible bin assignment A such that b ≤ a, then A dominates B. The
reason is as follows: consider a bin packing solution S, where a single bin is assigned the
items in B. All of the items must be assigned to some bin, so the items a ∈ A are assigned
to some other bin(s). For each item in B, we can swap the corresponding item in A, and the
resulting solution S′ will be feasible, and have no more bins than S. For example, consider
a bin packing instance with the items {10,9,8,7,6} and bin capacity 20. The bin assignment
A = (10, 8) dominates the bin assignment B = (9, 7), because we can map the 9 to the 10
and map the 7 to the 8.

Martello and Toth (1990) proposed a more powerful dominance criterion that subsumes
the CMT criterion. Consider a bin packing instance with items {6,4,2,1,...} and capacity
10. The assignment (6,4) dominates the assignment (6,2,1) because given any solution with
the assignment (6,2,1), we can swap the 2 and 1 with the 4, resulting in a solution with the
assignment (6,4) and the same number of bins. The CMT criterion does not account for
this. More generally, consider two feasible bin assignments A and B. If all the elements of
B can be packed into bins whose capacities are the elements of A, then set A dominates set
B. For example, let A = (20, 30, 40) and let B = (5, 10, 10, 15, 15, 25). Partition B into the
subsets (5, 10),(25), and (10, 15, 15). Since 5 + 10 ≤ 20, 25 ≤ 30, and 10 + 15 + 15 ≤ 40,
set A dominates set B. More formally:

Proposition 2 (Martello-Toth Bin Packing Dominance Criterion) Let A and B be
two feasible bin assignments. A dominates B if B can be partitioned into i subsets B1, ...Bi

such that each subset Bk is mapped one-to-one to (but not necessarily onto) an item ak ∈ A
such that the sum of the weights of the items in Bk is less than or equal to the weight of ak.

1. Recall that a function f : X → Y is one-to-one if for any two distinct elements x, x′ ∈ X, f(x) �= f(x′).
A function f : X → Y is onto Y if each element of Y is the image under f of some element in X.
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Proof: Suppose we have candidate solution s that assigns B to bin m, and all of the bin
assignments in s are currently feasible. Let A be a feasible bin assignment such that B can
be partitioned into i subsets B1, ..., Bi, and each subset Bk can be mapped one-to-one to
ak ∈ A, such that the sum of the weights of the items in Bk is less than or equal to the weight
of ak. Consider swapping B with A. Each subset Bk is swapped with its corresponding
element ak (where ak is assigned to bin dk in the original solution s). Since A is feasible,
bin m remains feasible after A and B are swapped. Now consider each of the bins d1, ...di

where the subsets B1, ..., Bi end up after the swaps (in other words, d1, ...di are the bins
which contain a1, ..., ak, respectively, in the original solution s). Each such target bin dk

will remain feasible after the swap, since (1) the bin assignment of dk is feasible prior to the
swap, and (2) the sum of the weights of the items in Bk is less than or equal to the weight
of ak. Thus, the resulting solution s′ after the swap is (a) feasible (all bin assignments are
feasible) (b) no worse than the initial solution s, and (c) assigns A to bin m. Therefore, A
dominates B. �

The Martello-Toth dominance criterion is a generalization of the CMT dominance cri-
terion – the CMT dominance criterion is a special case of the Martello-Toth criterion where
we only consider partitions of B into single-element subsets. Thus, any node that would be
pruned by the CMT criterion is also pruned by the Martello-Toth criterion, but not vice
versa.

Similarly, we can define a dominance criterion for bin covering as follows:
For bin covering (and the MCCP), a bin assignment is feasible with respect to a given

bin if the sum of the item weights is greater than or equal to the bin quota q.

Proposition 3 (Bin Covering Dominance Criterion) Let A and B be two feasible as-
signments. A dominates B if B can be partitioned into i subsets B1, ..., Bi such that each
item ak ∈ A is mapped one-to-one to (but not necessarily onto) a subset Bk, such that the
weight of each ak is less than or equal to the sum of the item weights of the corresponding
subset Bk (i.e., Bk “covers” ak).

Proof: Suppose we have a solution s that assigns B to bin m, and all of the bin assignments
in s are currently feasible. Let A be a feasible bin assignment such that B can be partitioned
into i subsets B1, ..., Bi, and each item ak ∈ A can be mapped one-to-one to a subset Bk,
such that the weight of ak is less than or equal to the sum of the weights of the items in Bk.
Consider swapping B with A. Each subset Bk is swapped with its corresponding element ak

(where ak is assigned to bin dk in the original solution s). Since A is feasible, bin m remains
feasible after A and B are swapped. Now consider each of the bins d1, ..., d|A| where the
subsets Bk end up after the swaps. In other words, d1, ..., d|A| are the bins which contain
a1, ..., ak , respectively, in the original solution s. Each such target bin dk will remain feasible
after the swap, since (1) the bin assignment of dk is feasible prior to the swap, and (2) the
sum of the weights of the items in Bk is greater than or equal to the weight of ak (and thus
the quota of bin dk will continue to be satisfied). Thus, the resulting solution s′ after the
swap is (a) feasible (all bin assignments are feasible) (b) no worse than the initial solution
s, and (c) assigns A to bin m. Therefore, A dominates B. �

The dominance criteria for the MKP and MCCP are similar to the dominance criteria for
bin packing and bin covering, respectively, except that we must also take into consideration
the profits/costs. The proofs are similar to the proofs for bin packing and bin covering.
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Proposition 4 (MKP Dominance Criterion) Let A and B be two assignments that
are feasible with respect to capacity c. A dominates B if B can be partitioned into i subsets
B1, ..., Bi such that each subset Bk is mapped one-to-one to (but not necessarily onto) ak,
an element of A, and for all k ≤ i, (1) the weight of ak is greater than or equal the sum of
the item weights of the items in Bk, and (2) the profit of item ak is greater than or equal
to the sum of the profits of the items in Bk.

Proposition 5 (MCCP Dominance Criterion) Let A and B be two assignments that
are feasible with respect to quota q. A dominates B if B can be partitioned into i subsets
B1, ..., Bi such that each item ak ∈ A is mapped one-to-one (but not necessarily onto) to a
subset Bk, and for each ak ∈ A and its corresponding subset Bk, (1) the weight of ak is less
than or equal to the sum of the item weights of the items in Bk, and (2) the cost of item ak

is less than or equal to the sum of the cost of the items in Bk.

The CMT dominance criterion for the MCCP originally proposed in (Christofides et al.,
1979) is a special case of Proposition 5, where |Bk| = 1 for all k.

Note that in the “packing” problems such as the MKP and bin packing, the dominance
criteria require that the subsets of the dominated assignment are packed into the items of the
dominating assignment. In contrast, with the “covering” problems such as the MCCP and
bin covering, the dominance criteria requires that the subsets of the dominated assignment
(B) cover the items in the dominating assignment (A).

2.3.1 Bin-Oriented Branch-and-Bound + Dominance = Bin Completion

At this point, we have defined the salient features of the bin completion approach to solving
multicontainer packing and knapsack problems:

• A bin-oriented branch-and-bound search where the nodes correspond to maximal (or
minimal), feasible bin assignments; and

• The exploitation of a dominance criterion among bin assignments to prune the search
space.

The first instance of a bin completion algorithm that we are aware of is the Christofides,
Mingozzi, and Toth algorithm for the min-cost covering problem in 1979 (Christofides et al.,
1979), which used the CMT criterion described above. However, as far as we know, no
further research was done with bin completion algorithms until our work on bin completion
for bin packing (Korf, 2002).

The Martello-Toth dominance criterion was proposed by Martello and Toth (1990), as a
component of the Martello-Toth Procedure (MTP), a branch-and-bound algorithm for bin
packing. However, the MTP branch-and-bound algorithm is item-oriented, and they only
exploit this dominance property in a limited way. In particular, they take each remaining
element x, starting with the largest element, and check if there is a single assignment of
x with one or two more elements that dominates all feasible sets containing x. If so, they
place x with those elements in the same bin, and apply the reduction to the remaining
subproblem. They also use dominance relations to prune some element placements as well.

Another earlier instance of a bin completion algorithm is the BISON algorithm for bin
packing by Scholl, Klein, and Jürgens (1997). BISON uses the following, very limited form
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of the Martello-Toth dominance criterion: if a bin assignment has one or more items that
can be replaced by a single free item without decreasing the sum, then this assignment is
dominated. It is interesting that despite the fact that the basic idea of bin-oriented search
with dominance-based pruning was demonstrated by Christofides, Mingozzi, and Toth, both
the MTP and BISON only use a limited form of the Martello-Toth dominance criterion,
and the two ideas were not successfully integrated until our work.2 Presumably, the reason
is that it is not trivial to generate undominated bin assignments efficiently.

2.4 Generating Undominated Bin Assignments

A key component in bin completion is the efficient generation of undominated bin assign-
ments. An obvious approach is to generate all feasible bin assignments, then apply the dom-
inance tests to eliminate the dominated assignments. However, this is impractical, because
the number of feasible assignments is exponential in the number of remaining items, and
the memory and time required to generate and store all assignments would be prohibitive.
We now describe an algorithm that generates all and only undominated bin assignments,
which enables the efficient implementation of bin completion.

We can generate all subsets of n elements by recursively traversing a binary tree. Each
internal node corresponds to an item, where the left branch corresponds to the subsets that
include the item, and the right branch corresponds to the subsets that do not include the
item. Thus, each leaf node represents an individual subset. Note that this binary tree
is the search space for this subproblem (generating undominated bin assignments), and is
distinct from the search space of the higher level bin-completion algorithm (i.e.. the space
of undominated maximal assignments).

Given n elements and a container capacity c, the feasible bin assignments are the sub-
sets of the n elements, the sum of whose weights do not exceed c. The recursive traversal
described above for generating all subsets can be modified to generate only feasible assign-
ments as follows: At each node in the tree, we keep track of the sum of items that we have
committed to including in the subset (i.e., the sum of the weights of the items for which we
have taken the left branch). During the recursive traversal of the tree, we pass a parameter
representing the remaining capacity of the bin. Each time a left branch is taken (thereby
including the item), we reduce the remaining capacity by the item weight. If the remaining
capacity drops to zero or less, we prune the tree below the current node, since we have
equaled or exceeded the container capacity. Thus, this algorithm generates only feasible
bin assignments.

Now, we further extend the algorithm to generate only the undominated, feasible bin
assignments. Suppose that we have a feasible set A whose sum of weights is t. The excluded
items are all items that are not in A. Set A will be dominated (with respect to the Martello-
Toth dominance criterion) if and only if it contains any subset whose sum s is less than or
equal to an excluded item x, such that replacing the subset with x will not exceed the bin
capacity c. This will be the case if and only if there exists an excluded item x and a subset
with weight sum s such that t − s + x ≤ c. Therefore, to check if A is undominated, we
enumerate each possible subset of its items, and for each subset, we compare it against each

2. As shown in (Korf, 2002, 2003), bin-oriented search using the full Martello-Toth dominance criterion
results in dramatic speedups compared to the MTP.
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excluded number x to verify that t−s+x > c, where s is the sum of the item weights of the
subset. If so, then A is undominated, and we store A in a list of undominated assignments;
otherwise, A is dominated. Further optimizations can be found in (Korf, 2003).

This algorithm generates feasible bin assignments and immediately tests them for domi-
nance, so it never stores multiple dominated bin assignments. Furthermore, the dominance
test is done by comparing the included elements to excluded elements, and does not involve
any comparison between a candidate bin assignment and previously generated bin assign-
ments. Therefore, the memory required for dominance testing is linear in the number of
items. In contrast, a method that depends on comparisons between candidate sets, such
as the earlier algorithm described in (Korf, 2002), requires memory that is linear in the
number of undominated bin assignments, which is potentially exponential in the number
of items. The ability to incrementally generate undominated bin assignments using lin-
ear space without having to store all of the undominated assignments enables the hybrid
incremental branching strategy, described in Section 3.4.

3. Extensions to Bin Completion

We now describe some extensions to bin completion that significantly improve search effi-
ciency. Again, for clarity, we describe the algorithms mostly in the context of bin packing,
but as with the basic bin completion algorithm, these extensions can be adapted straight-
forwardly to the multiple knapsack, bin covering, and min-cost covering problems.

3.1 Nogood Pruning (NP)

Nogood pruning prunes redundant nodes in the bin completion search tree by detecting
symmetries. Since we need to refer to specific bins, we extend our notation for bin assign-
ment. Let (A)d denote a bin at depth d that is assigned the elements in A. Thus, (10, 8, 2)1
and (10, 7, 3)1 denote two possible bin assignments for the bin at depth 1.

Suppose we have an instance with the numbers {10,9,8,7,7,3,3,2,2}, and bin capacity
c=20. After exhausting the subproblem below the assignment (10, 8, 2)1 , and while exploring
the subproblem below the assignment (10, 7, 3)1 , assume we find a solution that assigns
(9, 8, 2)2. We can swap the pair of items (8,2) from the assignment (9, 8, 2)2 with the pair
of items (7,3) from the assignment (10, 7, 3)1 , resulting in a solution with (10, 8, 2)1 and
(9, 7, 3)2 and the same number of bins. However, we have already exhausted the subtree
below (10, 8, 2)1 and we would have found a solution with the same number of bins as the
best solution in the subtree below (9, 7, 3)2. Therefore, we can prune the branch below
(9, 8, 2)2, because it is redundant (in other words, we have detected that the current partial
solution is symmetric to a partial state that has already been exhaustively searched).

More formally, let {N1, N2, ..., Nm} be a set of sibling nodes in the search tree, and
let {S1, S2, ..., Sm} be the bin assignments for each sibling node, excluding the first item
assigned to the bin, which is common to all the sibling nodes. When searching the subtree
below node Ni for i > 1, we exclude any bin assignment B that (1) includes all the items in
Sj, and (2) swapping the items in Sj from B with the items Si in Ni results in two feasible
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bin assignments, for i > j. The items in Sj become a nogood with respect to nodes deeper
in the tree.3

If there exists such a bin assignment B, then we could swap the items Sj from B with
the items Si in Ni, resulting in a partial solution with the bin assignment Si in bin Ni.
However, we have already exhausted the subtree below Ni, so this is a redundant node and
can be pruned.

As the search progresses down the tree, a list of nogoods is maintained, which is the set
of bin assignments against which each candidate undominated bin assignment is compared.
Given a candidate bin assignment B, where the items are sorted according to weight, the
current implementation of the test for nogood pruning compares the items against each
nogood. Since the items in the nogood sets are also sorted by weight, each comparison
takes time linear in the cardinality of B. In the worst case, the number of nogoods that
we must compare with a candidate assignment at level d corresponds to the number of
undominated bin assignments at levels 1, ..., d − 1 that are currently on the stack (that is,
all of the ancestors and the siblings of the ancestors of the current node). Note that the list
of nogoods need not grow monotonically as we go down the search tree. If at any point, a
nogood N is no longer a subset of the set of remaining items, then N has been ’split’, and
can be removed from the nogood list that is passed down the search tree.

3.2 Nogood Dominance Pruning (NDP)

The following nogood dominance pruning (NDP) technique allows even more pruning: Sup-
pose that after exhausting the subproblem below the assignment (10, 8, 2)1 , and while
exploring the subproblem below the assignment (10, 7, 3)1, we consider the assignment
(9, 7, 2)2. We can swap the pair of items (7,2) from bin 2 with the pair of items (7,3)
from bin 1 and end up with a solution with (10, 7, 2)1 and (9, 7, 3)2 . However, according
to the Martello-Toth dominance criterion, (10,7,2) is dominated by (10,8,2), and we have
already exhausted the search below the node (10, 8, 2)1 , so we can prune the search under
(9, 7, 2)2 because it is not possible to improve upon the best solution under (10, 8, 2)1 .

In general, given a node with more than one child, when searching the subtree of any
child but the first, we don’t need to consider assignments that are dominated by a bin
assignment in a previously explored child node. More precisely, let {N1, N2, ..., Nm} be a
set of sibling nodes in the search tree, and let {S1, S2, ..., Sm} be the corresponding sets of
items used in the bin assignment at each node. When searching the subtree below node
Ni for i > 1, we exclude any bin assignment A for which there exists an assignment Sj ,
j < i, such that (1) A is dominated by the items in Sj (note that an assignment dominates
itself), and (2) A can be swapped with Si, such that the resulting bin assignments are both
feasible. If there exists such a bin assignment A, then we could swap the items from A
with the items Si in Ni, resulting in a partial solution with the bin assignment A in bin Ni,
and the same number of bins. However, since A is dominated by Sj , it means that we are
searching a node that is symmetric to one that is dominated by Sj, and therefore, it is not
possible to find a solution better than the best solution under Sj , so A can be pruned.

3. While the term nogood in the constraint programming literature often refers to an assignment of value(s)
to variable(s) that cannot lead to a solution, we use the term to mean an assignment that cannot lead
to any solution that is better than a previously discovered solution, similar to the usage in (Focacci &
Shaw, 2002).
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We can also describe nogood dominance pruning in terms of a more general constraint
programming formulation, where variables correspond to items and values denote the bins
to which they are assigned. Given a partial, j-variable solution x, nogood dominance
pruning tries to show, via swapping of items and dominance checks, that x is in the same
equivalence class as another partial solution x′ such that x̄′

i, the subset of x′ including the
first i variables, is dominated by another partial solution q. Thus, if we have exhausted the
subtree below q in the search tree, we do not need to search the subtree below x′.

Nogood dominance pruning is strictly more powerful than nogood pruning. Any node
pruned by nogood pruning will be pruned by nogood dominance pruning, but not vice
versa. Of course, since NDP must detect dominance relationships as opposed to equiva-
lence relationships, NDP will incur more overhead per node compared to NP. Our current
implementation propagates a list of nogood sets along the tree. While generating the un-
dominated completions for a given bin, we check each one to see if it is dominated by any
current nogood. If so, we ignore that bin assignment. Our current implementation uses
a brute-force algorithm to check for dominance between a candidate bin assignment and
each nogood, which in the worst case takes time exponential in the cardinality of the bin
assignment (for each nogood).

Since nogood pruning is much less expensive than nogood dominance pruning, we use
a combined pruning strategy. Whenever we apply NDP, we actually apply both NP and
NDP at each node. First, the candidate bin assignment is checked against a nogood, and
nogood pruning is applied. We apply nogood dominance pruning only if the bin assignment
was not pruned by nogood pruning. Thus, we never pay the full cost of applying NDP to
nodes that can be pruned quickly by NP. As with nogood pruning, NDP requires storing a
set of nogoods, and the number of possible nogoods at a particular search depth d in the
worst case is the number of undominated bin assignments considered at depths 1, ..., d − 1.
Note that when using NDP, we do not apply the optimization described above in Section
3.1 for removing nogoods from the nogood list that are passed down the tree when using
nogood pruning. The reason is that even if a nogood has been “split” and can no longer
prune a bin assignment due to nogood pruning, that nogood may still be able to prune a
bin assignment due to nogood dominance pruning.

The size of the nogood list increases with depth, and we compare each bin assignment
against each nogood. Therefore, the per-node overhead of NDP increases with depth. This
means that pruning at the bottom of the tree (where pruning has the lowest utility) is more
expensive than pruning at the top of the tree (where pruning has the highest utility). A
simple strategy which address this issue is depth-limited NDP, where NDP is applied only
at nodes up to the NDP depth limit L. At nodes below the depth limit, only the weaker
nogood pruning is applied. In the experiments described in this paper, we did not use this
depth-limited strategy because NDP consistently outperformed nogood pruning without
having to use depth limits.

3.3 Related Work in Constraint Programming

Nogood pruning identifies and prunes nodes by detecting whether the bin assignment for
the current node contains a nogood. This is related to other symmetry-breaking techniques
proposed in the constraint programming literature. A symmetry partitions the set of pos-
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sible assignments of values to variables into equivalence classes (Gent & Smith, 2000). The
goal of symmetry breaking is to prune nodes that can be mapped to a previously explored
node via a symmetry function. Symmetry-breaking approaches introduce constraints dur-
ing the search that prune symmetric variable assignments (e.g., Gent & Smith, 2000; Fahle,
Schamberger, & Sellmann, 2001; Focacci & Milano, 2001). Similarly, our nogood and no-
good dominance pruning techniques dynamically introduce constraints that prune variable
assignments that cannot lead to a solution that is better than the best solution found so far.
Nogood dominance pruning uses the same dynamic nogood recording mechanism as nogood
pruning, but goes a step further in detecting dominance relationships based on the nogoods.
The general notion of dominance exploited by NDP is more powerful than symmetry, since
dominance can be asymmetric, i.e., all symmetries are dominance relationships, but not
vice versa.

Our NDP technique is similar to the pruning technique proposed by Focacci and Shaw
(2002) for constraint programming, who applied their technique to the symmetric and
asymmetric traveling salesperson problem with time windows. Both methods attempt to
prune the search by proving that the current node at depth j, which represents a partial j-
variable (container) solution x, is dominated by some previously explored i-variable partial
solution (nogood), q. The main difference between the two methods is the approach used
to test for dominance. Focacci and Shaw’s method extends q to a j-variable partial solution
q′ which dominates x. They apply a local search procedure to find the extension q′.

In contrast, our NDP method starts with a partial, j-variable solution x and tries to
transform it to a partial solution x′ such that x̄′

i, the subset of x′ including the first i
variables, is dominated by q. We do this by swapping the values of the ith and jth variables
in x to derive x′, and testing whether x̄′

i is dominated by q.
For efficiency, the current implementations of both nogood dominance pruning methods

are weak, in the sense that if x is dominated by q, the procedures will not necessarily detect
the dominance. Focacci and Shaw rely on an incomplete, local search to find the extension
q′. Due to the cost of considering the transformations, we only consider transformations
involving two variables (containers), but to fully exploit the dominance criterion, we would
need to consider transformations involving all variables i, i + 1, ..., j.

3.4 Reducing the Computation Required Per Node

An issue with enumerating all undominated completions and applying value ordering is
that computing the undominated sets is itself NP-complete. For a multicontainer problem
instance where the items have weight wi and average container capacity is c, the average
number of items that fit in a container is x =

∑n
i=0 wi/c. The time to generate all undomi-

nated bin assignments increases with x. This is not an issue for bin packing, where problems
with large x tend to be easily solved using heuristics such as best-fit decreasing. The solu-
tion found by the heuristic often equals the lower bound. Therefore, such instances require
no search, and hence there is no need to compute undominated bin assignments. On the
other hand, for multiple knapsack and bin covering, we have observed experimentally that
it is much less likely that heuristics will match the optimistic bound and allow termination
without search, and we have found that for instances with high x, the algorithm would not
terminate within a reasonable time limit because it was spending an inordinate amount of
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Figure 3: Hybrid Incremental Branching Strategy

time computing the set of undominated completions at each node. In addition, generating
all undominated bin assignments may cause us to run out of memory.

An alternative approach is to start to go down the search tree and explore some of the
children of a node without first enumerating and sorting all the children. In cases where
(a) a good optimistic bound is available, and (b) it takes relatively little search to find an
optimal solution, this approach leads to dramatic speedups compared to the original scheme
of generating all undominated completions before going further down the search tree. The
price we pay for this strategy is that we lose the benefits of ordering all the candidate bin
assignments according to the value-ordering heuristic.

To solve this problem, we propose a hybrid incremental branching strategy that generates
h children at each node, applies the value-ordering heuristic to these, then recursively calls
bin completion on the remaining subproblems. For each node, we first generate h children,
and sort them according to the value-ordering heuristic. Then, we explore the subtrees under
each of these children. After the subtrees under the first h children are fully explored, then
the next h children are generated and their subtrees are explored, and so on.

For example, consider the tree in Figure 3, where the nodes correspond to undominated
bin assignments. Assume that this is the complete search tree, and assume for simplicity
that there is no value ordering heuristic. The standard bin completion algorithm first
generates the children of the root: a, b, and c. Then, bin completion selects one of the
children (say a), and expands a’s children (d,e,f ,g). It then generates the children of d,
and so on. Thus, the order of node generation is: a, b, c, d, e, f, g, h, i, j, k, l. This is a
pre-order traversal of the tree. Now consider hybrid incremental branching with width 1.
This corresponds to a standard postorder traversal of the tree, where the order in which
nodes are generated is a, d, h, i, j, e, f, g, b, k, l, c. Hybrid incremental branching with width
2 generates the nodes in the order a, b, d, e, h, i, j, f, g, k, l, c.

4. The Multiple Knapsack Problem (MKP)

Given a set of containers and a set of items (characterized by a weight and profit), the
objective of the multiple knapsack problem (defined formally in section 1.1.2) is to assign
items to containers such that the container capacities are not exceeded, and the sum of the
profits of the items assigned to the containers is maximized.

We compared bin completion to two standard algorithms: the state-of-the-art Mulknap
algorithm (Pisinger, 1999), as well as the MTM algorithm (Martello & Toth, 1981).
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4.1 The MTM Algorithm

The MTM algorithm of Martello and Toth (1981) is an item-oriented branch-and-bound
algorithm. The items are ordered according to non-increasing efficiency (ratio of profit
to weight), so that the next item selected by the variable-ordering heuristic for the item-
oriented branch-and-bound is the item with highest efficiency that was assigned to at least
one container by a greedy bound-and-bound procedure (see below). The branches assign
the selected item to each of the containers, in order of non-decreasing remaining capacity.

At each node, an upper bound is computed using a relaxation of the MKP, which is
obtained by combining all of the remaining m containers in the MKP into a single con-
tainer with aggregate capacity C =

∑m
i=1 ci, resulting in the single-container, 0-1 knapsack

problem:

maximize
n∑

j=1

pjx
′
j (19)

subject to

n∑

j=1

wjx
′
j ≤ C, (20)

x′
j ∈ {0, 1}, j = 1, ..., n. (21)

where the variable x′
j represents whether item j has been assigned to the aggregated bin.

This surrogate relaxed MKP (SMKP) can be solved by applying any algorithm for optimally
solving the 0-1 Knapsack problem, and the optimal value of the SMKP is an upper bound
for the original MKP. Thus, this upper bound computation is itself solving an embedded,
weakly NP-complete (single-container) 0-1 Knapsack problem instance as a subproblem.
The SMKP is currently the most effective upper bound for the MKP (details on how the
formulation above is derived from an initial surrogate relaxation are in Martello & Toth,
1981; Kellerer et al., 2004).

At each node, the MTM algorithm applies an extension to branch-and-bound called
bound-and-bound. Consider a branch-and-bound procedure for a maximization problem. If
the upper (optimistic) bound computed at a node is less than or equal to the best known
lower bound for the problem, then the node can be pruned. In the standard branch-and-
bound approach, the lower bound is simply the objective function value of the best solution
found so far.

In bound-and-bound, we attempt to validate the upper bound by applying a fast, heuris-
tic algorithm in order to find a solution whose score equals the upper bound. If such a solu-
tion can be found, then it means that we have found the optimal solution under the current
node (i.e., the upper bound has been validated), and we can backtrack. On the other hand,
if no such solution is found, then we must continue to search under the node. The MTM
algorithm applies a greedy heuristic algorithm for the MKP, which involves solving a series
of m 0-1 Knapsack problems. First, container i = 1 is filled optimally using any of the
remaining items, and the items used to fill container i = 1 are removed. Then, container
i = 2 is filled using the remaining items. This process is iterated m times, at which point
all containers are filled.
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4.2 The Mulknap Algorithm

The previous state-of-the-art algorithm for the MKP is Mulknap (Pisinger, 1999). Like
MTM, Mulknap is an item-oriented branch-and-bound algorithm using the SMKP upper
bound and bound-and-bound. Mulknap differs from MTM in that it (1) uses a different
validation strategy for the bound-and-bound based on splitting the SMKP solution, (2)
applies item reduction at each node, and (3) applies capacity tightening at each node.

Like MTM, Mulknap uses a bound-and-bound strategy, but it uses a different approach
to validating the upper bound: As described above, the upper bound for a MKP instance
can be computed by solving the surrogate relaxation of the MKP, or SMKP, which is a 0-1
Knapsack instance. Suppose we have just computed the optimal solution to the SMKP.
Now, suppose we are able to partition the items used in the SMKP into the m containers
in the original MKP, such that each item used in the SMKP solution is assigned to some
container, and the capacity constraints are not violated. In this case, we have a solution to
the original MKP that achieves the upper bound. Details on the capacity tightening and
reduction procedures are given by Pisinger (1999).

4.3 Bin Completion Algorithm for the MKP

We now describe our bin completion algorithm for the MKP. We apply a depth-first, bin
completion branch-and-bound algorithm. Each node in the search tree represents a max-
imal, feasible bin assignment for a particular bin. Note that in the MKP, bin capacities
can vary, so at each node, we consider all undominated bin assignments for the bin. This
is in contrast to bin packing 2.2, where (assuming all bins have identical capacity), we can
restrict all nodes at the same level to have the same (largest) item.

At each node, an upper bound for the remaining subproblem is computed using the
surrogate relaxed MKP (SMKP) bound. The SMKP bound is computed using a straight-
forward branch-and-bound algorithm with the Martello-Toth U2 upper bound (Martello &
Toth, 1977). Pisinger’s R2 reduction procedure (Pisinger, 1999) is applied at each node
in order to possibly reduce the remaining problem. Then, we select the bin with smallest
remaining capacity (i.e., we use a smallest-bin-first variable ordering heuristic, with ties
broken randomly), and its undominated bin assignments are computed and explored using
our dominance criterion (Proposition 4). Nogood pruning and nogood dominance pruning
are applied as described in Sections 3.1 and 3.2.

The order in which we branch on the undominated children of the current node has a
significant impact on the algorithm’s performance. At each node, all of the undominated
children of the node are generated and ordered using a value ordering heuristic. We eval-
uated 11 different value ordering heuristics and found that the best performing heuristic
overall was the min-cardinality-max-profit ordering, where candidate bin assignments are
sorted in order of non-decreasing cardinality and ties are broken according to non-increasing
order of profit. Fukunaga (2005) provides further details on experiments evaluating various
value and variable ordering strategies. Figure 4 shows an outline of our bin completion
algorithm for the MKP.
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MKP bin completion(bins,items)
bestProfit = −∞
search MKP(bins,items,0)

search MKP(bins, items,sumProfit)

if bins==∅ or items == ∅
/*we have a candidate solution*/

if sumProfit > bestProfit

bestProfit = sumProfit

return

/* Attempt to reduce problem. reducedBinAssignments are

maximal, feasible assignments of items to bins */

reducedBinAssignments = reduce(bins,items)
ri = get items(reducedBinAssignments) /* items eliminated by reduction */

rb = get bins(reducedBinAssignments) /* bins eliminated by reduction */

if reducedItems �= ∅
search MKP(bins \ rb, items \ ri, sumProfit+

∑
i∈ri

profit(i))
return

/* Attempt to prune based on upper bound */

if (sumProfit + compute upper bound(items,bins)) < bestProfit

return

bin = choose bin(bins)
undominatedBinAssignments = generate undominated(items,capacity(bin))
foreach A ∈ sort assignments(undominatedBinAssignments)
if not(nogood(A)) and not(nogood dominated(A))
assign undominated bin assignment to bin

search MKP(bins \ bin, items \ items in(A),sumProfit+
∑

i∈A
profit(i))

Figure 4: Outline of bin completion for the multiple knapsack problem.
compute lower bound returns the SMKP upper bound on profit for the
remaining subproblem, and reduce applies Pisinger’s R2 reduction to eliminate
items and bins if possible. choose bin selects the bin with least remaining
capacity, and and sort assignments sorts the undominated bin assignments in
order of non-decreasing cardinality, and ties are broken in order of non-increasing
profit. generate undominated generates undominated bin assignments using
the algorithm in (Section 2.4). nogood and nogood dominated apply nogood
pruning (Section 3.1) and nogood dominance pruning (Section 3.2).
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4.4 Experimental Results

We evaluated our MKP algorithm using the same four classes of instances used by Pisinger
(1999). We considered:

• uncorrelated instances, where the profits pj and weights wj are uniformly distributed
in [min,max].

• weakly correlated instances, where the wj are uniformly distributed in [min,max] and
the pj are randomly distributed in [wj − (max−min)/10, wj +(max−min)/10] such
that pj ≥ 1,

• strongly correlated instances, where the wj are uniformly distributed in [min,max] and
pj = wj + (max − min)/10, and

• multiple subset-sum instances, where the wj are uniformly distributed in [min,max]
and pj = wj.

The bin capacities were set as follows: The first m − 1 capacities ci were uniformly
distributed in [0.4

∑n
j=1 wj/m, 0.6

∑n
j=1 wj/m] for i = 1, ...,m − 1. The last capacity cm

is chosen as cm = 0.5
∑n

j=1 wj −
∑m−1

i=1 ci to ensure that the sum of the capacities is half
of the total weight sum. Degenerate instances were discarded as in Pisinger’s experiments
(1999). That is, we only used instances where: (a) each of the items fits into at least one of
the containers, (b) the smallest container is large enough to hold at least the smallest item,
and (c) the sum of the item weights is at least as great as the size of the largest container.
In our experiments, we used items with weights in the range [10,1000].

4.4.1 Comparison of Bin Completion With Previous Algorithms

We now compare bin completion (BC) with Mulknap and MTM. In all experiments de-
scribed below involving Mulknap, we used Pisinger’s Mulknap code, available at his web
site4, compiled using the gcc compiler with the -O3 optimization setting. Likewise, in all
experiments described below involving MTM, we used Martello and Toth’s Fortran imple-
mentation of MTM from (Martello & Toth, 1990), which was converted to C using f2c so
that we could add some instrumentation. Our bin completion code was implemented in
Common Lisp.5 We have shown experimentally that the choice of programming language
added an overhead of approximately a factor of two to our runtimes (see Fukunaga, 2005,
Appendix A) compared to GNU C 2.95 with -O3 optimization.

For each of the four problem classes, we generated test sets of 30 instances each, where
n = 20, and m was varied between 2 and 10. On each instance, we ran Mulknap, bin
completion, and bin completion with nogood dominance pruning. The purpose of this
experiment was to observe the behavior of the algorithms as the ratio n/m was varied. The
results are shown in Table 2. Each algorithm was given a time limit of 300 seconds to solve
each instance. The fail column indicates the number of instances (out of 30) which could
not be solved by the algorithm within the time limit. The time and nodes column show the

4. http://www.diku.dk/∼pisinger/
5. All of the bin completion solvers described in this paper for the MKP, MCCP, bin covering, and bin

packing problems are implemented in Common Lisp.
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MTM Mulknap Bin Completion+NDP

m n fail time nodes fail time nodes fail time nodes
# bins # items

Uncorrelated Instances

2 20 0 0.0003 201 0 0.0000 1 0 0.0050 55
3 20 0 0.0017 697 0 0.0000 23 0 0.0063 123
4 20 0 0.0063 1530 0 0.0030 306 0 0.0023 112
5 20 0 0.0767 34800 0 0.0387 2977 0 0.0033 212
6 20 0 0.2343 100387 0 0.4063 36057 0 0.0050 403
7 20 1 1.5721 851591 1 3.8207 369846 0 0.0043 399
8 20 1 6.3352 3539729 1 23.7996 2493203 0 0.0023 207
9 20 1 18.3314 11294580 4 33.2138 2868979 0 0.0017 136

10 20 3 22.5185 13536735 5 52.0812 4848676 0 0.0010 84

Weakly Correlated Instances

2 20 0 0.0040 781 0 0.0000 26 0 0.0340 87
3 20 0 0.0127 2693 0 0.0167 638 0 0.0117 240
4 20 0 0.0327 6626 0 0.0390 1708 0 0.0133 379
5 20 0 0.2363 53324 0 0.2917 12701 0 0.0107 521
6 20 0 0.2763 65216 0 0.4220 20165 0 0.0080 405
7 20 0 0.6237 168974 0 1.3180 60890 0 0.0050 245
8 20 0 11.0927 2922499 2 6.5793 40339 0 0.0027 144
9 20 0 27.5807 11263928 3 22.5878 1274756 0 0.0013 66

10 20 2 25.1029 10697165 5 72.3472 4478185 0 0.0013 43

Strongly Correlated Instances

2 20 0 0.0723 5747 0 0.0037 32 0 0.0743 118
3 20 0 0.1243 6748 0 0.0053 65 0 0.0417 278
4 20 0 0.1237 8125 0 0.0120 156 0 0.0353 331
5 20 0 0.1777 14823 0 0.0360 563 0 0.0350 359
6 20 0 0.1807 18012 0 0.0550 734 0 0.0217 194
7 20 0 5.1393 882080 1 0.0928 1339 0 0.0137 109
8 20 2 11.2361 2616615 3 12.2581 225236 0 0.0073 42
9 20 2 20.0136 3150848 4 33.5415 693398 0 0.0060 25

10 20 4 38.8554 8141902 9 34.3291 634358 0 0.0057 21

Subset-Sum Instances

2 20 0 0.0820 2061 0 0.0033 9 0 0.0447 64
3 20 0 0.2057 7033 0 0.0337 77 0 0.0310 248
4 20 0 0.1760 8371 0 0.0503 137 0 0.0260 294
5 20 0 0.2507 17514 0 0.1780 830 0 0.0257 315
6 20 0 0.2393 17546 0 0.1953 738 0 0.0173 176
7 20 0 5.7657 852615 1 0.3221 1752 0 0.0113 102
8 20 2 14.9261 2546834 3 19.5930 270841 0 0.0073 39
9 20 2 25.9393 3124421 4 41.8962 677467 0 0.0063 25

10 20 4 51.5027 7907407 9 39.7500 627688 0 0.0057 20

Table 2: MTM, Mulknap, and Bin Completion with Nogood Dominance Pruning on small
MKP instances with varying n/m ratio.The fail column indicates the number
of instances (out of 30) that were not solved within the time limit (300 sec-
onds/instance). The time (seconds on 2.7GHz Pentium 4) and nodes columns
show average time spent and nodes generated on the successful runs, excluding
the failed runs.
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average time spent and nodes generated on the successful runs, excluding the failed runs.
All experiments described in this section were run on a 2.7GHz Pentium 4.

Our data confirms the observations of Pisinger (1999) and Martello and Toth (1981) that
the class of uniform, random instances that require the most search for previous branch-
and-bound solvers appear to be generated when n/m is relatively low. In other words,
the n/m ratio for the MKP appears to be a critical parameter that determines search
difficulty, similar to the clause-to-variable ratio for satisfiability problems (Mitchell, Selman,
& Levesque, 1992). Table 2 shows that Mulknap and MTM have great difficulty with
relatively small problems with small n/m ratios, while bin completion could solve these
problems very quickly.

Next, we investigated larger problem instances, where n/m varied between 2 and 4.
In this experiment, we also included bin completion with nogood pruning (BC+NP), in
addition to MTM, Mulknap, and BC+NDP.

As shown in Table 3, for problems where n/m = 2 or 3, both variants of bin completion
(BC+NP and BC+NDP) dramatically outperformed both MTM and Mulknap, with the
difference in performance becoming more pronounced as problem size was increased. Be-
cause the runs were truncated at 300 seconds per instance per algorithm, it is not possible
to compare the full runtimes for all of the sets. Note, for example, that on subset-sum
instances where n = 40 and m = 20, the mean runtime for BC+NDP is 0.06 seconds, while
neither MTM nor Mulknap solved any of the instances within 300 seconds each, so they are
both at least three orders of magnitude slower than BC+NDP on these instances. We tried
running the solvers longer in order to get actual runtimes (as opposed to a truncated, lower
bound on runtimes), but found that even allocating an hour per problem was insufficient
to allow MTM and Mulknap to solve any of these problems. These results suggest that
bin completion is asymptotically more efficient than MTM and Mulknap for this class of
problem instances. For the problems with n/m = 4, the results are similar, with the notable
exception that for the strongly-correlated instances, Mulknap outperformed bin completion
when n = 40 and m = 10.

For problems where n/m = 2 and 3, we observed that BC+NDP consistently outper-
forms BC+NP by a significant margin with respect to the number of nodes searched, and
significant improvements in success rate and execution times are observed for the larger
problems sets. However, when n/m = 4, BC+NDP still searches fewer nodes than BC+NP,
but the difference is much less significant, and in fact, the reduced search is not enough
to offset the increased overhead per node for NDP, so that the runtimes of BC+NP and
BC+NDP end up being comparable (Table 3).

We also ran some experiments with instances with larger n/m ratios. When n/m ≥ 5,
Mulknap clearly dominates all other current algorithms, solving instances with little or no
search in under a second, as first demonstrated by Pisinger (1999). At high n/m ratios,
the bound-and-bound approach of Mulknap has a very high probability of finding an upper
bound that matches the lower bound at each node, essentially eliminating the need for
search. In fact, Pisinger (1999) showed that for instances with n/m ≥ 10, there were
almost no instances that required searching more than one node.
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MTM Mulknap Bin Completion+NP Bin Completion + NDP
m n fail time nodes fail time nodes fail time nodes fail time nodes

# bins # items
Uncorrelated Instances

15 30 30 - - 30 - - 0 0.04 1215 0 0.02 887
20 40 30 - - 30 - - 0 1.48 66681 0 0.72 26459
25 50 30 - - 30 - - 4 72.66 2767939 3 32.43 1060723
10 30 12 47.77 9240426 11 29.96 1649062 0 0.71 48407 0 0.61 33141
15 45 30 - - 30 - - 15 66.81 3369997 15 60.54 2516681
5 20 0 0.08 32602 0 0.10 8487 0 0.01 253 0 0.01 237

10 40 7 99.13 15083247 4 51.66 1744911 0 11.58 360567 0 13.47 297225
Weakly Correlated Instances

15 30 30 - - 30 - - 0 0.07 2123 0 0.05 1050
20 40 30 - - 30 - - 0 0.79 22553 0 0.35 7473
25 50 30 - - 30 - - 0 34.39 691645 0 15.80 231934
10 30 16 68.80 8252155 15 69.65 1647576 0 0.94 34001 0 0.79 25764
15 45 30 - - 30 - - 19 52.42 1126242 18 67.17 1207099
5 20 0 0.10 21150 0 0.14 5758 0 0.01 407 0 0.01 396

10 40 29 205.99 12672965 27 131.41 2390152 0 21.10 565036 0 20.63 490983

Strongly Correlated Instances

15 30 30 - - 30 - - 0 0.04 415 0 0.03 194
20 40 30 - - 30 - - 0 3.46 5407 0 2.29 2694
25 50 30 - - 30 - - 9 52.26 58500 4 58.72 61900
10 30 1 23.48 2916858 0 7.02 88737 0 0.53 5662 0 0.50 5381
15 45 30 - - 30 - - 24 105.90 964566 23 118.72 1150024
5 20 0 0.06 12490 0 0.02 486 0 0.01 264 0 0.01 258

10 40 13 115.38 5528847 0 44.55 361987 2 51.89 263462 2 50.51 254094
Subset-Sum Instances

15 30 30 - - 30 - - 0 0.01 171 0 0.01 95
20 40 30 - - 30 - - 0 0.13 1664 0 0.06 806
25 50 30 - - 30 - - 0 4.37 55334 0 1.59 19491
10 30 0 25.58 1993648 0 4.74 43734 0 0.12 1816 0 0.12 1752
15 45 18 0.0 27.58 23 100.19 480014 2 45.07 597581 2 43.44 562129
5 20 0 0.05 5676 0 0.01 207 0 0.01 140 0 0.01 137

10 40 5 35.20 946934 0 10.48 58317 0 1.98 26674 0 2.00 26097

Table 3: Multiple knapsack problem results: Comparison of MTM, Mulknap, Bin Completion with Nogood Pruning (NP), and
Bin Completion with Nogood Dominance Pruning (NDP) on hard MKP instances. The fail column indicates the number
of instances (out of 30) that were not solved within the time limit (300 seconds/instance). The time (seconds on 2.7GHz
Pentium 4) and nodes show average time spent and nodes generated on the successful runs, excluding the failed runs.
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On the other hand, for n/m ≥ 5, bin completion tends to generate a very large (more
than 10000) number of undominated bin assignments at each decision node, and runs out of
memory while allocating the set of undominated bin assignments that are the candidates to
be assigned to the current bin. While hybrid incremental branching (Section 3.4) eliminates
this problem and allows the algorithm to run to completion, it is still not competitive with
Mulknap (runs do not complete within a 300-second time limit).

We conclude that uniform instances of the multiple knapsack problem exhibit a “bi-
modal” characteristic, for which bin completion and bound-and-bound are complementary
approaches. For n/m ≤ 4, uniform MKP instances require a significant amount of search
to solve, and our bin completion approach is clearly the current state of the art, as demon-
strated by Table 3. On the other hand, for n/m ≥ 5, the bound-and-bound approach as
exemplified by Pisinger’s Mulknap algorithm is the state of the art, and the runtimes are
dominated by the computation of a single lower bound and a single upper bound at the
root node. There is a rather sharp “phase transition” around n/m = 4 where the dominant
approach changes between bin completion and bound-and-bound (see Fukunaga, 2005 for
details).

Because of the highly complementary nature of Mulknap and bin completion, the MKP
is a natural candidate for the application of an algorithm portfolio approach (Huberman,
Lukose, & Hogg, 1997; Gomes & Selman, 2001) where both Mulknap and bin completion
are run in parallel on the same problem instance. Even under a trivial portfolio resource
allocation scheme where both processes received equal time, the resulting total CPU usage
of the portfolio on each instance would be no worse than twice that of the faster algorithm.
Another way to combine bin completion with bound-and-bound is to add bound-and-bound
at each node of the bin completion search, and is an avenue for future work.

5. Min-Cost Covering Problem (MCCP)

Given a set of containers with quotas and a set of items (characterized by a weight and
cost), the objective of the MCCP is to assign items to containers such that all the container
quotas are satisfied, and the sum of the costs of the items assigned to the containers is
minimized (see 1.1.4 for a formal definition).

5.1 Christofides, Mingozzi, and Toth (CMT) Algorithm

The previous state-of-the-art algorithm for the min-cost covering problem is an early version
of bin completion by Christofides, Mingozzi, and Toth (1979). Their algorithm is a bin
completion algorithm which uses the CMT dominance criterion (see Section 2.3).

An effective lower bound can be computed by solving m independent minimization
problems (similar to the standard 0-1 Knapsack, except that the objective is to satisfy a
container’s quota while minimizing the cost of the items assigned to it), one for each of the
bins, and then summing the results. This L2 lower bound is a relaxation of the constraint
that each item can only be used once.

Christofides et al. (1979) proposed several more complex lower bounds, but they found
empirically that among all of the proposed lower bounds, the L2 bound resulted in the best
performance by far across a wide range of problem instances.
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5.2 Bin Completion for the MCCP

Our new bin completion algorithm for the MCCP is similar to the Christofides et al. algo-
rithm. The major difference is that we use a more powerful dominance criterion (Proposition
5). Each node in the depth-first, search tree represents a minimal, feasible bin assignment
for a particular bin. Our bin completion algorithm assigns bins in order of non-decreasing
size, i.e., a smallest-bin-first variable ordering heuristic. We evaluated eight different strate-
gies for ordering the candidate undominated bin assignments, and found that a min-weight
strategy which sorts assignments in non-decreasing order of weight performed best. Fuku-
naga (2005) provides a detailed comparison of variable and value orderings for the MCCP.
We use the same L2 bound as the CMT algorithm.

5.3 Experimental Results

We compared the performance of bin completion variants and previous algorithms. We
implemented the following algorithms.

• CMT - The Christofides, Mingozzi and Toth algorithm described above. Our imple-
mentation used smallest-bin-first variable ordering, min-weight value ordering, and
the L2 lower bound.

• CMT+NP - The CMT algorithm extended with nogood pruning.

• BC - Bin completion using min-weight value ordering and smallest-bin-first variable
ordering.

• BC+NP - Bin completion with nogood pruning

• BC+NDP - Bin completion with nogood dominance pruning,

We used smallest-bin-first variable ordering for the CMT and BC variants after observ-
ing that this led to good performance compared with random or largest-bin-first variable
orderings.

In the experiment shown in Table 4, we compared CMT, CMT+NP, BC, BC+NP,
and BC+NDP. The purpose of this experiment was to evaluate the relative impact of
each component of bin completion, by comparing various combinations of: (1) the type of
dominance criterion used, (2) whether nogood pruning was used, and (3) whether nogood
dominance pruning was used.

We used the same four classes of test problems (uncorrelated, weakly correlated, strongly
correlated, and subset-sum) as for the multiple knapsack problem experiments (Section 4.4),
with item weights and costs in the range [10,1000]. For each of the four problem classes,
30 instances were generated for various values of m and n. We ran each algorithm on each
instance. All experiments were run on a 2.7GHz Pentium 4. Each algorithm was given a
time limit of 300 seconds to solve each instance. The fail column indicates the number of
instances (out of 30) which could not be solved by the algorithm within the time limit. The
time and nodes column show the total time spent and nodes generated, excluding the failed
runs.
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CMT CMT+NP BC BC+NP BC+NDP
m n fail time nodes fail time nodes fail time nodes fail time nodes fail time nodes

# bins # items
Uncorrelated Instances

5 15 0 0.30 34094 0 0.21 12641 0 0.02 678 0 0.01 385 0 0.01 238
10 30 30 - - 30 - - 20 184.79 12816074 2 49.66 1952236 0 23.82 635035
5 10 0 0.01 256 0 0.01 48 0 0.01 127 0 0.01 31 0 0.01 28

10 20 1 47.43 5136873 0 0.17 10645 0 7.24 801863 0 0.02 2149 0 0.01 1149
15 30 30 - - 11 80.04 3121178 30 - - 0 11.58 705748 0 2.81 136000
20 40 30 - - 30 - - 30 - - 26 184.59 8356961 10 97.67 3145263
5 20 0 13.66 1041966 0 0.10 4665 0 0.29 15979 0 0.25 9339 0 0.15 5193

Weakly Correlated Instances

5 15 0 0.21 10239 0 0.13 4665 0 0.01 347 0 0.01 197 0 0.01 150
10 30 30 - - 30 - - 26 208 4242634 16 168.21 2843080 5 97.16 1436142
5 10 0 0.01 46 0 0.01 21 0 0.01 25 0 0.01 12 0 0.01 12

10 20 0 3.22 189874 0 0.07 3979 0 0.13 11216 0 0.01 428 0 0.01 236
15 30 28 227.63 16471570 2 46.49 1803180 20 106.70 5367215 0 3.19 182830 0 0.56 30669
20 40 30 - - 18 97.58 2874351 30 - - 12 112.08 3871911 2 44.84 1704351
5 20 1 54.11 975879 0 17.64 203251 0 0.65 15566 0 0.54 10032 0 0.45 7698

Strongly Correlated Instances

5 15 0 0.08 4226 0 0.05 2518 0 0.01 68 0 0.01 53 0 0.01 40
10 30 30 - - 30 - - 0 54.65 1340276 0 17.60 333450 0 6.20 114786
5 10 0 0.01 30 0 0.01 16 0 0.01 10 0 0.01 7 0 0.01 7

10 20 0 0.24 19496 0 0.02 1064 0 0.01 1064 0 0.01 139 0 0.01 79
15 30 6 93.33 5178573 0 5.18 241654 0 2.45 204069 0 0 0.12 7532 0 0.02 1354
20 40 30 - - 18 97.19 2844301 17 52.50 2933474 1 27.17 1039810 0 2.13 86685
5 20 0 18.91 446419 0 20.78 253291 0 0.09 2474 0 0.07 1893 0 0.06 1546

Subset-Sum Instances

5 15 0 0.08 4606 0 0.07 2899 0 0.01 65 0 0.01 49 0 0.01 42
10 30 30 - - 30 - - 0 32.71 810471 0 11.32 213975 0 3.97 70774
5 10 0 0.01 31 0 0.01 17 0 0.01 10 0 0.01 8 0 0.01 8

10 20 0 0.17 13286 0 0.03 1573 0 0.01 986 0 0.01 146 0 0.01 73
15 30 10 74.57 3812510 0 17.48 789928 0 2.34 177683 0 0.10 6168 0 0.02 1272
20 40 30 - - 18 97.90 2874340 17 55.18 2933474 2 26.37 1160452 0 2.47 125697
5 20 0 18.11 384584 0 17.66 203251 0 0.08 2270 0 0.07 1605 0 0.06 1242

Table 4: Min-cost covering problem results: Comparison of (a) Christofides, Mingozzi, and Toth (CMT) algorithm, (b) CMT algorihm with our Nogood

Pruning (NP), (c) Bin Completion, (d) Bin Completion with Nogood Pruning (NP), and (e) Bin Completion with Nogood Dominance Pruning

(NDP). The fail column indicates the number of instances (out of 30) that were not solved within the time limit. The time (seconds on 2.7GHz

Pentium 4) and nodes columns show average time spent and nodes generated on the successful runs, excluding the failed runs.
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As shown in Table 4, each component of bin completion has a significant impact. Al-
though our dominance criterion requires much more computation per node than the simpler
CMT criterion, the search efficiency is dramatically improved. Thus, BC performed much
better than CMT, and BC+NP performed much better than CMT+NP.

Furthermore, the nogood pruning (NP) strategy significantly improves performance for
both the algorithm based on the CMT dominance criterion, as well as our dominance
criterion, as evidenced by the improvement of CMT+NP over CMT and the improvement
of BC+NP over BC. In fact, nogood pruning is sufficiently powerful that it allows CMT+NP
to sometimes outperform pure BC (without nogood pruning). Thus, this data illustrates
the power of nogood pruning, confirming similar results for bin packing reported in (Korf,
2003), as well as in some preliminary experiments for the MKP and MCCP.

Finally, BC+NDP results in the best performance, significantly outperforming BC+NP
for the larger instances with respect to the number of problems solved within the time limit,
as well as the runtimes and nodes on the problems that were solved.

We also implemented two baseline algorithms: a straightforward integer programming
model using the freely available GNU glpk integer programming solver, as well as an item-
oriented branch-and-bound algorithm which uses the L2 lower bound, but these baselines
performed very poorly compared to the CMT and bin completion algorithms (Fukunaga,
2005).

6. The Bin Covering Problem

Given a set of identical containers with quota q and a set of n items, each with weight
wi, the bin covering problem, sometimes called dual bin packing, is to assign all items to
containers such that the number of containers whose quotas are satisfied (i.e., the sum of
item weights assigned to the container equal or exceed the quota) is maximized (see 1.1.3
for formal definition). Although there has been considerable interest in the bin covering
problem in the algorithm and operations research communities, most of the previous work
on bin covering has been theoretical, focusing on approximation algorithms or heuristic
algorithms (e.g., Assmann et al., 1984; Foster & Vohra, 1989; Csirik, Frenk, Galambos, &
Kan, 1991; Csirik, Johnson, & Kenyon, 2001), and analysis of the properties of some classes
of instances (e.g., Rhee & Talagrand, 1989).

6.1 The Labbé, Laporte, Martello Algorithm

The state-of-the-art algorithm for opimally solving bin covering is an item-oriented branch-
and-bound algorithm by Labbé, Laporte, and Martello (1995). We refer to this as the
LLM algorithm. The items are sorted in non-increasing order of size. Each node represents
a decision as to which bin to put an item into. At each node, upper bounds based on
combinatorial arguments are computed, and the remaining subproblem is reduced using
two reduction criteria. At the root node, a set of heuristics is applied in order to compute
an initial solution and lower bound. The LLM upper and lower bounds are described in
(Labbé et al., 1995).
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6.2 Bin Completion for Bin Covering

Our bin completion algorithm for bin covering works as follows. First, we use the LLM
upper bounding heuristics at the root node to find an initial solution and lower bound.
Then, we apply a bin completion branch-and-bound algorithm, using our new dominance
criterion (Proposition 3). Each node in the depth-first, search tree represents a minimal,
feasible bin assignment for a particular bin that include the largest remaining item. At each
node, we apply the same upper bounding procedures as the LLM algorithm to compute an
upper bound. In addition, we apply the LLM reduction criteria at each node. We evaluated
eight different strategies for ordering undominated bin assignments, and found that the min-
cardinality-min-sum strategy (sort bin assignments in order of non-decreasing cardinality,
breaking ties by non-decreasing sum) performed best overall (Fukunaga, 2005).

6.3 Empirical Results

In order to evaluate our bin covering algorithm, we considered the class of uniform, random
problem instances previously studied by Labbé, Laporte, and Martello. This is a simple
model in which n items are chosen uniformly in the range [min,max], where max is less
than the bin quota q. In their experimental evaluations, Labbé, Laporte, and Martello used
items with weights in the range 1 and 100, and bin quotas ranging between 100 and 500.

However, many instances in this class can be solved without any search. If the LLM
lower bound heuristics find a solution with the same number of bins as the LLM upper
bound, then we have found the optimal solution and can terminate without any search. We
say that an instance is trivial if it is solved without any search, and nontrivial otherwise.

To illustrate the prepondrance of trivial instances, we generated 10000 uniform, random
instances with bin quota 100000 and 120 items with weights in the range [1, 99999]. Of
these, 9084 were solved at the root node. This shows that most uniform random bin
covering instances are, in fact, trivial given powerful upper and lower bounds. We have
previously observed a similar phenomenon for bin packing – most uniform, random bin
packing instances are solved at the root node by the combination of the best-first-decreasing
heuristic and the Martello-Toth L2 lower bound (Korf, 2002).

It is well-known that the number of significant digits of precision in the weights of the
items significantly affects the difficulty of one-dimensional packing problems such as the
0-1 Knapsack problem (Kellerer et al., 2004). In general, problem difficulty increases with
precision. This property extends to multicontainer, one-dimensional packing problems as
well (e.g., Pisinger, 1999). We confirmed that problem difficulty was highly correlated with
the number of significant digits of item weights (Fukunaga, 2005).

Therefore, in the experiments described below, we only used nontrivial instances, in
order to highlight the impact of differences in search strategy. That is, when generating
test instances, we filtered out all trivial instances by testing whether the LLM upper bound
is matched by its lower bound heuristics. Furthermore, we use high precision problems
(quotas of 10000 or more) in order to focus on the most difficult instances.

6.3.1 Hybrid Incremental Branching

In Section 3.4, we proposed hybrid incremental branching, a strategy for avoiding the run-
time and memory overheads imposed by completely enumerating all undominated children
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of a node. In our earlier experiments with the multiple knapsack and min-cost covering
problems, (Sections 4–5), the problem instances used in our experiments had fewer than 50
items, and we have not observed more than a few hundred assignments generated at each
node in our MKP and MCCP experiments. Thus, the number of candidate undominated
bin assignments generated per node did not become a bottleneck, and hybrid incremen-
tal branching was unnecessary. However, as (1) the average number of items that fit in a
container increases, and (2) the number of items increases, the number of candidate undom-
inated bin assignments per node increases. Therefore, the benchmark comparisons below
for bin covering, hybrid incremental branching becomes much more relevant.

To illustrate this, we performed the following experiment. We generated 20 nontrivial
instances with bin quota q=20000 and 100 items in the range [1,9999]. We applied bin
completion + NDP to these problem instances, using hybrid incremental branching with
various values for the parameter h, which limits the number of children that are generated
at once at every node. For h= 2000, 200, 20, and 2, the instances were solved on average
in 4.998 seconds, 0.150 seconds, 0.0139 seconds, and 0.0079 seconds, respectively. The
average number of nodes expanded was 20.2 for all h ∈ {2, 20, 200, 2000}. In other words,
these instances were easily solved by relying on the leftmost children at each node in the
bin completion search tree – generating additional children was an entirely unnecessary
but very expensive overhead. Thus, as h increases, the same number of nodes are being
explored, but each node requires much more computation to enumerate and sort up to h
undominated children, resulting in more than two orders of magnitude difference in runtime
between h = 2 and h = 2000. To see how large h would have to be in order to be able to
enumerate all of the undominated children of a node, we have experimented with h up to
10000, but found it insufficient (the statically allocated array of size h overflowed during
the runs).

We experimented with several values of h on several classes of problems, but found
that the optimal value of h varied significantly depending on the problem instance. In
our experiments below, we use hybrid incremental branching with h=100, in order to set
a balance between minimizing the number of nodes expanded (exploiting value ordering
among the children of each node) and minimizing the computational overhead per node (by
minimizing the number of children generated).

6.3.2 Comparing LLM and Bin Completion

Next, we compared LLM, bin completion+NP, and bin completion+NDP using larger in-
stances. We also implemented a straightforward integer linear programming model using
GNU glpk for bin covering, but found that it performed much worse than the LLM and
bin completion algorithms (Fukunaga, 2005).

For each n ∈ {60, 80, 100}, we generated 2000 non-trivial, uniform random instances
where the items were chosen uniformly in the range [1,99999], and the bin quota was 100000.
We also generated 2000 non-trivial instances where n = 100, q = 200000, and items were in
the range [1,99999]. We ran our implementations of the three algorithms on each instance,
with a time limit of 180 seconds per instance. As shown in Table 5, the bin completion
algorithms significantly outperformed LLM. On the harder problems, bin completion + NDP
significantly outperforms bin completion + NP. For the problems with n = 100, q = 200000,

423



Fukunaga & Korf

Labbé et al. Bin Completion+NP Bin Completion+NDP
n (# of items) q (quota) fail time nodes fail time nodes fail time nodes

2000 nontrivial instances per set
60 100000 10 0.39 25196 6 0.08 33287 2 0.11 13735
80 100000 36 1.02 62093 15 0.18 39740 12 0.09 10517

100 100000 45 1.98 113110 15 0.42 152113 8 0.31 31107
100 nontrivial instances per set

100 200000 100 - - 3 0.11 25 3 0.11 25

Table 5: Bin Covering results: Comparison of Labbé, Laporte, and Martello algorithm, Bin
Completion with Nogood Pruning, and Bin Completion with Nogood Dominance
Pruning. The fail column indicates the number of instances (out of 30) that were
not solved within the time limit. The time (seconds on 2.7GHz Pentium 4) and
nodes columns show average time spent and nodes generated on the successful
runs, excluding the failed runs.

our results indicate that while these instances are extremely difficult for the LLM algorithm,
which failed to solve any of the 100 instances within the time limit, these problems are
actually relatively easy for bin completion. Since little or no search is being performed by
bin completion, bin completion+NDP does not improve upon bin completion+NP.

7. Bin Packing

The bin completion approach was originally developed for the bin packing problem, and
was shown to significantly outperform the Martello-Toth Procedure on randomly generated
instances (Korf, 2002, 2003). We implemented an extended bin completion algorithm for the
bin packing problem, and summarize our results below. For further details, see (Fukunaga,
2005). Our bin completion based solver incorporated nogood dominance pruning and a
min-cardinality-max-weight value ordering strategy, in which (1) completions are sorted in
order of non-decreasing cardinality, and (2) ties are broken according to non-increasing
weight.

We evaluated our bin completion solver using the set of standard OR-LIB instances.6

This test set consists of 80 “triplet” instances (where the elements are generated three at
a time so that the sum of the elements add exactly to the bin capacity) and 80 “uniform”
instances (where items sizes are chosen from a uniform random distribution). The bin
completion solver (executed on a 1.3GHz Athlon) was given a time limit of 15 minutes on
each instance from the benchmark set. It solved all 80 of the triplet instances from OR-
LIB within 1500 seconds combined. It solved all 40 of the uniform instances with 120 and
250 items in under 4 seconds combined. It solved 18 (out of 20) of the 500-item uniform
instances in 11.13 seconds combined, but failed to solve 2 instances. Bin completion solved
19 (out of 20) of the 1000-item uniform instances in 44 seconds combined, but failed to
solve one of the instances.

6. available at http://www.brunel.ac.uk/depts/ma/research/jeb/info.html
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However, our bin completion solver was not competitive with the state of the art, which
is a recently developed branch-and-price integer linear programming solver by Belov and
Scheithauer (2006). Belov and Scheithauer provide a new benchmark set of 28 very hard
bin packing instances; their solver solved most of these within seconds, although some took
hours. Our current bin completion code could not solve any of the 28 instances, given
15 minutes per instance. They also report that the largest triplet instances from OR-LIB
(Triplet-501) were solved in an average of 33 seconds per instance (660 seconds total) on a
1GHz AMD Athlon XP. Furthermore, Belov was kind enough to run their solver on a set
of one hundred, 80-item, uniform, random instances that we generated with items in the
range [1,1000000] and a bin capacity of 1000000. Their solver solved all of these instances
in less than 1 second each at the root node (i.e., without any search), using rounding
heuristics based on the linear programming LP solution, whereas our best bin completion
solver required 534 seconds and searched 75,791,226 nodes.

7.1 Branch-and-Price vs. Bin Completion

Recent branch-and-price approaches for bin packing such as the solver by Belov and Schei-
thauer use a bin-oriented branching strategy, where decisions correspond to the instantia-
tion of one or more maximal bin assignments (see Valério de Carvalho, 2002, for a survey
of branch-and-price approaches). At each node, a column generation procedure is used
to compute the LP lower bound. They derive much of their power from a very accurate
LP lower bound based on a cutting-stock formulation of bin packing (Gilmore & Gomory,
1961), which has been observed to almost always give the optimal value as the lower bound,
and has never been observed to give a value that is more than one greater than the optimal
value (e.g., Wäscher & Gau, 1996). In addition, rounding heuristics applied to fractional
LP-solutions often yield the optimal, integral solution. The combination of a very tight
LP lower bound and good upper bounding procedure results in very little search being
performed for almost all problem instances.

This branch-and-price LP-based approach does not seem to generalize straightforwardly
to the MKP and MCCP, in part due to the differences in the granularity of the objective
function. The objective function for bin packing counts the number of bins used. On the
other hand, the objective functions for the MKP and MCCP sums the profits of the items
assigned to the containers. Thus, the number of possible, distinct objective function values
for the MKP and MCCP is much larger than the number of distinct objective function values
for a bin packing problem of comparable size. Therefore, even if we assume the existence of
some formulation analogous to the cutting-stock problem, it is not likely that rounding up
the LP solution for the MKP, MCCP, or other problems with objective functions that are
fine-grained compared to bin packing will result in an optimistic bound that is as accurate
as for bin packing. This suggests that it may be difficult to develop a branch-and-price
solver that is competitive for these problems. On the other hand, since the granularity of
the objective function for bin covering is the same as that for bin packing, it is possible that
a branch-and-price approach could be applied to bin covering. However, we are unaware of
any such approach in the literature.
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8. Conclusions

We studied bin completion, a branch-and-bound approach for multi-container packing,
knapsack, and covering problems. While previous work focused on item-oriented, branch-
and-bound strategies that assign one item at a time to containers, bin completion is a
bin-oriented branch-and-bound algorithm that uses a dominance relationship between bin
assignments to prune the search. We presented a general framework for this approach,
and showed its general utility and applicability to multicontainer problems. We proposed
several extensions to bin completion that improve its efficiency, including nogood pruning,
nogood dominance pruning, variable and value ordering heuristics, and hybrid incremental
undominated completion generation. We demonstrated the power of the bin completion
approach by developing new, state-of-the-art algorithms for three fundamental multicon-
tainer problems. We showed that bin completion algorithms significantly outperform the
Mulknap (Pisinger, 1999) and MTM (Martello & Toth, 1981) and algorithms on hard MKP
instances. We developed a new, state-of-the-art algorithm for the MCCP based on bin
completion. We showed that by exploiting a more powerful dominance criterion, our new
bin completion algorithms significantly outperform an early bin completion algorithm by
Christofides, Mingozzi, and Toth (1979). We developed a new, state-of-the-art algorithm for
bin covering based on bin completion, and showed that our bin completion algorithm signif-
icantly outperforms the item-oriented branch and bound algorithm by Labbé, Laporte, and
Martello (1995). However, our results for bin packing were not competitive with the state-
of-the-art solver based on the cutting-stock approach. We showed that for all four of the
problems studied, nogood dominance pruning consistently improves upon the performance
of bin completion with nogood pruning.7

While we have focused on four particular multicontainer problems in this paper, there
are many similar problems involving the assignment of objects to multiple containers where
similar dominance relationships between candidate bin assignments can be exploited. Ex-
amples include the generalized assignment problem, a widely studied generalization of the
MKP with many applications where the weight and profit of an item is a function of the con-
tainer to which it is assigned (e.g., Cattrysse & Wassenhove, 1992; Martello & Toth, 1990),
multiprocessor scheduling, which is equivalent to k-way number partitioning, (Dell’Amico
& Martello, 1995), and the segregated storage problem (Neebe, 1987; Evans & Tsubakitani,
1993). In addition, there are variants of the problems we studied with additional constraints,
such as the class-constrained multiple knapsack problem (Shachnai & Tamir, 2001a, 2001b;
Kellerer et al., 2004) which has applications in multimedia file storage. Exploiting pow-
erful dominance criteria in a bin completion framework appears to be a promising future
direction for such multicontainer problems.

One issue with bin completion is that as the number of unique items grows, the number
of undominated bin assignments grows rapidly. While we showed that hybrid incremental
branching can significantly alleviate this problem (Section 6.3.1), a drawback is that it limits
the utility of value-ordering heuristics that are applied to sort undominated bin assignments
after they are generated. Thus, an algorithm that generates undominated assignments in

7. We previously showed that nogood pruning significantly improves performance over bin-completion with-
out pruning in (Korf, 2003). This was also confirmed for the MCCP (Table 4), and for the MKP and
bin covering in preliminary experiments.
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an order that conforms to a desired heuristic value ordering, rather than relying on sorting
the assignments after they are all generated, is an area for future work.
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