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Abstract: Clostridium difficile (C. difficile) is a problematic Gram positive bacterial pathogen causing 

moderate to severe gastrointestinal infections. Based on a lead binaphthyl-tripeptide dicationic 

antimicrobial, novel mono-, di-and tri-peptidomimetic analogues targeting C. difficile were designed and 

synthesized incorporating one, two or three D-configured cationic amino acid residues, with a common 

1,2,3-triazole ester isostere at the C-terminus. Copper- and ruthenium-click chemistry facilitated the 

generation of a 46 compound library for in vitro bioactivity assays, with structure-activity trends over the 

largest compound subset revealing a clear advantage to triazole-substitution with a linear or branched 

hydrophobic group. The most active compounds were dicationic-dipeptides where the triazole was 

substituted with a 4- or 5-cyclohexylmethyl or 4,5-diphenyl moiety, providing MICs of 4 µg mL-1 against 

three human isolates of C. difficile. Further biological screening revealed significant antimicrobial activity 

for several compounds against other common bacterial pathogens, both Gram positive and negative, 

including S. aureus (MICs ≥2 µg mL-1), S. pneumoniae (MICs ≥1 µg mL-1), E. coli (MICs ≥4 µg mL-1), 

A. baumannii (MICs ≥4 µg mL-1) and vancomycin-resistant E. faecalis (MICs ≥4 µg mL-1). 

 

Introduction 

Unique antibacterial molecules with new modes of action are currently in high demand for the 

treatment of antibiotic-resistant bacterial infections.1 In particular, the Gram positive, gastric 

anaerobe Clostridium difficile has been recently listed as the number one bacterial threat in the 

USA.2 C. difficile produces potent toxins which cause symptoms such as diarrhea, abdominal pain 

and pseudomembranous colitis (PMC) upon gastrointestinal infection.3−5 C. difficile infection 

(CDI) occurs in up to 20% of patients given conventional oral antibiotic therapy due to 

elimination of the commensal, gastrointestinal microflora.3,4 High morbidity and up to an 8% 

mortality rate highlights the seriousness of this disease, with both the severity and incidence 

increasing due to epidemics of hypervirulent strains.3−5 Further, the nosocomial nature of the 

infection and the persistence of C. difficile spores results in a major health problem and a serious 

financial burden to the healthcare sector (>$1 billion/year in the USA alone).5 



Traditional medications for the treatment of CDI (vancomycin and metronidazole) are 

inadequate as reinfection occurs in 15−35% of patients.3,4 Fidaxomicin was approved by the Food 

and Drug Administration in 2011 for the treatment of CDI, exhibiting a decrease in recurrence 

relative to that of vancomycin and metronidazole.6,7 Potential CDI chemotherapeutics are 

currently under various stages of development, these include REP3123,8 nitazoxanide,9 fusidic 

acid,5 teicoplanin,5,10 LFF571,11 CB-183 31512 and cationic nylon-3 polymers.13 Furthermore, 

monoclonal antitoxin antibodies are under investigation as potential treatments for CDI 

recurrence.7 This intense interest in novel CDI therapeutics is a direct result of the inadequacy of 

current medications, the continuing cost to the healthcare sector and the emergence of 

hypervirulent strains. 

Previous research in our laboratory has led to the development of a promising new class of 

antimicrobials based upon a binaphthyl-tripeptide structure (e.g., 1, Fig. 1).14−16 These derivatives 

exhibit selective inhibition of Gram negative bacteria, as well as broad-spectrum activity against 

Gram positive bacteria including vancomycin-, linezolid- and methicillin-resistant strains.14−16 

Efficacy has been translated in vivo, both topically and systemically, for infections of the latter.14 

A rudimentary pharmacophore has emerged comprising an anchoring (semi)rigid aromatic core 

(binaphthyl/biphenyl), two cationic residues and a hydrophobic moiety at the peptide C-

terminus.14−16 

With a continuing interest in expanding the applications of these binaphthyl-based 

antimicrobials, we were inspired to investigate their potential as chemotherapeutics for CDI. We 

envisioned that the non-drug-like features and high molecular weight of these molecules would 

ensure limited oral bioavailability, making them ideal candidates for the treatment of 

gastrointestinal infections. Initial inspiration came from preliminary in vitro testing of 1 against C. 

difficile, which exhibited a promising minimum inhibitory concentration (MIC) of 8 µg mL-1 

against two problematic ribotype 027 strains. This is the first example of this class of compounds 

inhibiting an anaerobic bacterial strain. Therefore, this lead compound formed the basis of this 

current study, which aimed to replace the terminal ester with a peptidomimetic 1,2,3-triazole 

moiety17 for increased metabolic stability in the gut.18 We report here the synthesis and 

antimicrobial activities of forty six novel binaphthyl-1,2,3-triazole peptide derivatives, resulting 

in the identification of several promising compounds with improved activity against C. difficile 

and various other bacterial pathogens relative to compound 1.  



 

 

 

Fig. 1 Antibacterial compound 1 developed previously in our laboratory.14 

 

Results and Discussion 

The synthetic binaphthyl-1,2,3-triazole peptides for this investigation were divided into three 

target classes (A−C) based on the number of embedded amino acid residues (Fig. 2). Class A was 

the starting point for our molecular design, given that is an isostere analogue of our existing 

broad-spectrum antibacterials which incorporate three amino acid residues (e.g., ester 1). Smaller 

peptide classes B and C, bearing two and one amino acid residues respectively, were chosen as 

additional targets to establish the necessary components for activity against C. difficile and other 

bacterial pathogens. Within classes A and C, we also planned to perform minor variations in the 

amino acid identity at AA1 and AA3. A cationic arginine was to be maintained as the second 

residue (AA2) throughout.14−16 Our previous studies have shown that all stereoisomers of 1 have 

similar activity,14 thus we aimed to incorporate the unnatural D-configured cationic residues due to 

an expected increase in enzymatic stability.19 

 

Fig. 2 Binaphthyl-triazole peptide classes (A−C) synthesized in this study. 

 

An overview of our proposed synthetic strategy is shown in Scheme 1, exemplified with a Class 

B scaffold. The peptide backbone would be assembled from the N-terminus by the iterative 

coupling of protected amino acid and amino azide components, resulting in a net-replacement of 

the C-terminus with an azide moiety. This modular approach would allow variation of the number 

and type of amino acid residues incorporated, enabling straightforward access to all three target 

classes. The terminal triazole ester isostere, common to all target peptides, could then be 

assembled by cycloadditions with alkynes and arynes. Finally, basic amino functionalities would 

be revealed as their hydrochloride salts by acidolysis of the Boc and 2,2,4,6,7-

pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) protecting groups.  



 

 

Scheme 1 Brief overview of the synthesis of cationic triazole peptides, exemplified with a Class B scaffold. 

 

In addition to the prevalence of 1,2,3-triazole-containing antibacterials,20 this heterocyclic motif 

offers clear advantages in terms of synthetic possibilities, given its reliable access via metal-

catalyzed azide-alkyne click chemistry.21 This atom economical cycloaddition is arguably the 

most efficient of all click processes, offering a high yielding, regioselective and functionally 

tolerant entry to 1,2,3-triazoles. Thus, strategic incorporation of click chemistry at the penultimate 

stages of our syntheses should permit rapid, divergent access to new heterocyclic derivatives 

based on readily available alkynes, enabling a thorough structure-activity exploration at the 

peptide termini (R1 and R2). A variety of conditions (A−E, Fig. 3) were adapted from the 

literature for the cycloadditions conducted throughout this study, including ruthenium-catalyzed 

variants to reverse the regiochemistry obtained by conventional copper catalysis.22−26 

 

Fig. 3 Conditions for azide−alkyne cycloadditions used in this study.22−26 

 

The synthesis of Class A compounds began with the coupling of lysine-based acid 214 and 

protected arginine ester 3,27  giving dipeptide 4 in 92% yield after saponification (Scheme 2a). 

This intermediate was coupled with leucine-derived amino azide 528 and separately, the novel 

arginine-derived amino azide 14 (Scheme 2b) to give terminal azides 6 and 15, respectively, in 

near quantitative yields. Excess amine (1.5−2.0 equiv) was necessary during these reactions to 

avoid competitive consumption of 4 via intramolecular attack of its protected guanidine on the 

activated acid, which occurred as a side reaction under stoichiometric conditions.  

With azide 6 in hand, copper-catalyzed click reactions (conditions A, Fig. 3) with selected 

terminal alkynes proceeded smoothly to produce triazoles 7−9 in 63−93% yields (Scheme 2a). 

The hydrophobic nature of the binaphthyl-azide constituted the need for a 4:1 t-BuOH:H2O binary 



 

 

solvent, as opposed to the standard 1:2 t-BuOH:H2O more polar medium.22 The quantities of 

inexpensive reagents: alkyne, Cu(OAc)2 and Na·ascorbate were not optimized due to the small 

scale of the reactions (<0.1 mmol of azide). Prior to deprotection of the leucine-containing Class 

A compounds, alcohol 7 was converted to its methyl ether derivative 10. Subsequent treatment of 

8−10 with TFA, followed by anion exchange with ethereal HCl, afforded dihydrochloride salts 

11−13 (Scheme 2a; insert). Similarly, a tricationic Class A derivative 17 was prepared in good 

overall yield via cycloaddition of 15 with 5-methyl-1-hexyne (Scheme 2b). 
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Scheme 2 Synthesis of Class A triazoles bearing three amino acid residues. 

 

 

Scheme 3 Synthesis of Class B triazoles bearing two amino acid residues. See Table 1 for specific click conditions and yields.

 



Class B triazoles precursor 18 was obtained in multigram quantities by the coupling of acid 214 

with 14 (Scheme 3). Cycloaddition reactions were then carried out under a range of conditions as 

summarized in Table 1. All unsymmetrically substituted non-fused triazoles (R1 ≠ R2) were 

formed with >95% regiochemical purity as determined by NMR analysis. A diverse set of 1,4-

disubstituted triazoles (R1 = H, R2 ≠ H) were obtained by copper-catalyzed conditions A,22 which 

accommodated a number of terminal alkynes including functionalized versions and those 

substituted with primary alkyl, tertiary alkyl, cyclic and aryl hydrocarbons. Under conditions A, 

good to excellent yields were obtained throughout, with the exception of the electron-poor methyl 

propiolate, which afforded triazole ester 38 in a moderate 56% yield (Table 1, entry 20). 

Silylacetylenes reacted slowly under the copper catalyzed conditions and afforded mixtures 

containing de-silylated products. Therefore, thermal Huisgen cycloaddition was used for these 

substrates, allowing the sterically controlled installation of trimethylsilyl (TMS) and 

dimethylphenylsilyl groups at R2 in high yields (conditions C, entries 9 and 10).24 

The 1,5-regioisomers (R1 ≠ H, R2 = H) of selected Class B triazoles were prepared by Ru(II) 

catalysis in 70−82% yield (conditions B, Table 1, entries 3, 7 and 12).23 Notable differences in the 

NMR spectra were observed in comparison to their previously prepared regioisomers. For 

example, the lone triazole proton (R2 = H) of compound 30 (entry 12) appeared as a singlet at 7.69 

ppm in the 1H NMR spectrum, in contrast to its 1,4-regioisomer 29 (entry 11) in which this proton 

(R1 = H) resonated at 8.06 ppm. Ru(II) activation was also suitable for internal alkyne 

diphenylacetylene,29 providing a fully substituted triazole 40 in excellent yield (entry 22). 

Additionally, a halogen was introduced at C-5 (R1) of the triazole ring through CuI mediated 

cycloaddition of 1-iodo-phenylacetylene and 18 (conditions D, entry 23).25 

Fused benzotriazole 42 was synthesized via the cycloaddition of azide 18 with in situ generated 

benzyne (conditions E, Table 1, entry 24).26 This protocol was also extended to a heteroaryne, 

producing the indole-fused triazole 43 in a reasonable 58% yield, albeit as an approximate 2:1 

mixture of regioisomers (entry 25). The structure of the major isomer could not be determined due 

to poor resolution of regioisomeric peaks in the 1H NMR spectrum, however it is noteworthy that 

a previous indolyltriazole formed in this manner showed moderate preference for azide attack 

(triazole N-1) at the indole 5-position (2.4:1 isomeric ratio).30 Commercially available pyridyne 

precursors were also screened in this (hetero)aryne cycloaddition, however, with the need to 

utilize azide 18 as the limiting reagent, pyridine polymerization31 occurred almost exclusively 

over the desired cycloaddition. 

 

  



 

 

Table 1 Conditions & yields for the preparation of Class B triazoles via cycloaddition of azide 18 with alkynes and arynes. 

 

Entry R1 R2 Conda Prod Yield (%) 
1 H A 19 90 

2 H A 20 67 

3 
 

H B 21 74 

4 H A 22 94 
5 H A 23 82 

6 H A 24 93 

7  H B 25 70 

8 H A 26 99 

9 H C 27 93 

10 H C 28 96 

11 H A 29 90 

12 
 

H B 30 82 

13 H 
 

A 31 87 

14 H A 32 79 

15 H A 33 85 

16 H A 34 81 

17 H OH A 35 92 

18 H A 36 75 

19 H A 37 87 

20 H A 38 56 

21 H A 39 78 

22 
 

B 40 94 

23 I D 41 85 

24b 
         

E 42 81 

25b 

   

E 43 58 

a See Fig. 3 for reaction conditions. b Prepared by reaction with the appropriate (hetero)aryne. 

 



Although the preferred regiochemical outcome of conditions A−D could be confidently inferred 

from literature precedent,22−25 we were able to confirm the expected orientations of representative 

triazoles 28, 30, 31 and 41 by two-dimensional HSQC and HMBC NMR experiments (Fig. 4). In 

each case, a through-bond correlation between the methylene hydrogens adjacent to the triazole 

and C-5 of the ring provided unequivocal evidence of the assigned structure.  

 

Fig. 4 Key NMR through-bond H−C correlations used to confirm the regiochemistry of representative Class B triazoles. 
a Spectra acquired for deprotected derivative. 

 

With the exception of triazole ester 38, all Class B triazoles documented in Table 1 were 

converted to their corresponding hydrochloride salts 44−67 in an average yield of 87% (Scheme 

3). Selected click products from this Class B set (in protected form) were also used to access 

further derivatives as shown in Schemes 4−6. Unsubstituted triazole 69 was obtained through the 

desilylation of compound 27 with TBAF (Scheme 4). Removal of the TMS group was extremely 

slow, requiring 7 d at rt to give intermediate 68 in 91% yield. 

 

Scheme 4 Synthesis of unsubstituted Class B triazole 69. 

 

Further Class B ether derivatives 77−83, unattainable from commercially available alkynes via 

click chemistry, were synthesized in a divergent fashion from alcohol 35 (Scheme 5). The 

mesylate ester derivative was treated with preformed alkoxides or phenoxide using NBu4I as an 

additive, giving penultimate protected ethers 70−76 in 41−85% yield. The efficiency of this 

etherification generally decreased with increasing length of the alkyl chain. It should be noted that 

compound 75 was also prepared in 79% yield by the copper catalyzed click reaction of azide 18 

with pre-synthesized i-heptyl propargyl ether (reaction not shown). This more convergent 

approach could prove superior for future scale-up of a selected compound, but would have proven 

synthetically more cumbersome if used to access all desired ether derivatives.  



 

 

Finally, Class B ester 38 was used for the synthesis of amide derivatives after saponification to 

carboxylic acid 84 (Scheme 6). Initially, we were surprised to find that neither our standard 

EDCI·HCl/HOBt coupling conditions nor a HATU/(i-Pr)2NEt system were successful for amide 

bond formation, resulting in recovery of unreacted starting materials. Eventually, we found that 

acid 84 could be activated as a mixed anhydride,32 although excess reagents were necessary to 

obtain synthetically useful yields of the desired amides. 

 

Scheme 5 Synthesis of additional Class B triazole ethers. a Etherification conditions: PhOH, Cs2CO3, MeCN, rt. 

 

 

Scheme 6 Synthesis of Class B triazole amides. 

 

After establishing an extensive set of Class B triazoles, we turned our attention to the synthesis 

of monocationic Class C compounds; details are given in Scheme 7. The required lysine and 

arginine-based azides 91 and 98 were readily obtained by the coupling of acid 8914 with amino 

azides 9033 and 14, respectively. Each azide was then subjected to copper catalyzed cycloadditions 

with a small set of previously employed hydrophobic alkynes (Table 2). Interestingly, 

cycloadditions of lysine-derived azide 91 with benzyl and isopentyl-substituted alkynes were 



rather slow; heating to 35 °C for 46−48 h was required for complete azide consumption (Table 2, 

entries 2 and 3), in contrast to the arginine analogue 98, which reacted completely at rt within 24 

h. This reactivity difference revealed a theretofore hidden accelerating effect of the remote 

guanidine moiety, presumably by coordination to the copper catalyst. 

 

 

Scheme 7 Synthesis of Class C triazoles bearing one amino acid residue. See Table 2 for specific click conditions and yields. 

 

Table 2 Conditions and yields for the preparation of Class C triazoles via cycloaddition of azides 91 and 98 with various 

alkynes. 

 

Entry AA1 R2 Conda Prod Yield (%) 

1 Lys(Boc) 
 

A 92 92 

2 Lys(Boc) 
 

Ab 93 79 

3 Lys(Boc) 
 

Ab 94 72 

4 Arg(Pbf) 
 

A 99 98 

5 Arg(Pbf) 
 

A 100 85 

6 Arg(Pbf) 
 

A 101 98 

7 Arg(Pbf)  A 102 79 

8 Arg(Pbf)  A 103 89 

a See Fig. 3 for reaction conditions. b Reaction temp = 35 °C. 

 



 

 

In vitro bacterial testing results for the three triazole classes A−C are presented in Tables 3−5, 

respectively. Lead compound 1 was included as a positive control throughout, in addition to 

vancomycin and chloramphenicol for Gram positive and Gram negative strains, respectively. 

Three C. difficile human isolates were evaluated including 027 ribotypes from Canada (M7404) 

and the UK (R20291).34  

Our initial results with Class A tripeptides 11−13 were encouraging (Table 3, entries 2−4) and 

established that antibacterial activity across the eight strains tested was not adversely affected by 

incorporation of the triazole ester isostere. A direct comparison between leucine-containing 

triazole 13 and ester 1, which both contain a terminal isopentyl group, revealed similar or 

identical potency against C. difficile and the majority of other strains tested (entry 4 versus entry 

1). Our laboratory had yet to examine the effect of a third cationic residue incorporated into the 

peptide backbone, however this modification ultimately resulted in a slight decrease in C. difficile 

activity (entry 5). 

Improved antimicrobial activity was observed for several Class B dipeptides in comparison to 

their Class A counterparts. Good to excellent activity was observed across Gram positive S. 

aureus, E. faecalis and S. pneumoniae strains (Table 4, entries 2−35), with equivalent potency to 

previously optimized lead compound 1 in many cases. 1,4-Disubstituted triazoles and their 1,5-

regioisomers generally exhibited comparable activity; for example, cyclohexylmethyl 

regioisomers 49 and 50 returned identical MICs across seven of the eight strains tested (Table 4, 

entries 8 and 9). A notable structure-activity trend was observed for dialkyl ether derivatives 

77−82 (entries 20−25). Namely, when the length of the terminal alkyl chain was increased 

beginning with a methyl ether (entry 20), a corresponding increase in activity was observed across 

all strains until reaching optimal potency with an isopentyl or isohexyl terminus (entries 23 and 

24). No further benefit was accrued from further elongation of the alkyl chain (entry 25). 

Analysis of C. difficile testing results from Class B derivatives revealed a clear activity 

dependency upon triazole substitution with a hydrophobic moiety (Table 4). Aryl, alkyl and silyl-

based groups were all conducive to good activity, while the incorporation of polar functional 

groups such as an alcohol (Table 4, entry 19), amides (entries 29−30) and an ammonium cation 

(entry 31) led to decreased C. difficile inhibition. A notable exception to this trend was a 4-

butylphenyl substituent (entry 15), which showed relatively weak activity overall. Reduced C. 

difficile activity was also observed with unsubstituted triazole 69 (entry 2) and the propyl 

derivative 44 (entry 3), highlighting the general requirement of a larger and/or branched 

hydrophobic group. The most potent Class B triazoles were 49, 50 and 64, bearing 4-

cyclohexylmethyl, 5-cyclohexylmethyl and 4,5-diphenyl substituents, respectively (Table 4, 



entries 8, 9 and 32). These compounds inhibited C. difficile growth at a concentration of only 4 µg 

mL-1 across all three strains examined, thus approaching the efficiency observed for vancomycin 

(MIC = 2 µg.mL-1, Table 4, entry 36). None of the ether derivatives tested had MICs lower than 8 

µg mL-1 against C. difficile (entries 20−27). 

 

Table 3 Antibacterial activity of Class A triazoles as minimum inhibitory concentrations (MICs) in µg mL-1. 

 

Entry Compound AA3 R2 

C. difficile 
E. coli 

ATCC 

25922 

S. aureus E. 

faecalis 

ATCC 

29212 

S. 

pneumoniae 

ATCC 

49619 

M7404 

(RT027) 

R20291 

(RT027) 

1470 

(RT017) 

ATCC 

29213 

NCTC 

10442 

1 1 - - 8 8 8 16 2 2 2 2 

2 11 Leu CH2OMe 16 16 16 16 4 4 4 8 

3 12 Leu Propyl 8 8 8 8 2 4 4 8 

4 13 Leu i-Pentyl 8 8 8 16 4 4 4 8 

5 17 
D-

Arg·HCl 
i-Pentyl 16 8 16 16 2 4 4 8 

6 vancomycin - - 2 2 2 - 1 1 4 0.5 

7 chloramphenicol - - - - - 4 - - - - 

 

A related dependence on hydrophobic termini also emerged from the testing of Class B 

compounds against Gram negative E. coli (Table 4). Triazole substituents such as isopentyl, 

cyclohexyl, TMS and benzyl provided optimal MICs of 4 µg mL-1 (entries 4, 5, 7, 11 and 17), 

representing a four-fold increase in potency relative to that of compound 1. 

Class C compounds with a single amino acid residue were also active against C. difficile, with 

MICs ranging from 4−16 µg mL-1 (Table 5, entries 2−9). Strong bacterial inhibition was also 

maintained for Gram positive S. aureus and E. faecalis strains. Class C triazoles derived from 

arginine were generally more active than their lysine-based analogues; for instance, comparison 

of phenyl-substituted triazoles 95 and 104 derived from lysine and arginine, respectively, showed 

at least a two-fold increase in potency for the latter for six out of the eight strains tested (Table 5, 

entry 2 versus entry 5). Notably, Class C triazoles were completely inactive against E. coli, 

establishing the need for two basic side chains for Gram negative activity.  

Selected Class B compounds bearing hydrophobic termini were also tested against additional 

bacterial isolates (Table 6). Similar to compound 1, good to excellent activity was observed across 



 

 

all strains including Gram negative A. baumannii and Gram positive vancomycin-resistant E. 

faecalis (VRE) strains. Comparison of Class B data for VRE (Table 6) to that obtained for 

vancomycin-susceptible E. faecalis (Table 4), shows that MICs are largely the same or one 

dilution different, suggesting that vancomycin resistance does not have a significant impact on 

susceptibility to the triazole compounds. 

The ease of synthetic access to this class of binaphthyl-triazole peptides has allowed ready 

scale-up for impending in vivo studies on CDI. For instance, 0.56 g of Class B triazole 49 and 

0.67 g of Class C triazole 104 have been prepared. Preliminary toxicity screening has also 

provided promising results. Our most active compounds (i.e., 49, 50 and 64, Table 4) exhibited 

<3% hemolysis of sheep erythrocytes at concentrations above their C. difficile MICs (5 µg mL-1, 

Tables S3−S5 in electronic supplementary material). 

Although the precise antimicrobial mechanism of our binaphthyl-peptides has not yet been fully 

elucidated, the observation that all three compound classes A−C were active suggests a general 

mode of action. Related cationic peptides have been shown to operate via a membrane 

depolarization mechanism.35 Resistance studies with C. difficile are in progress within our 

laboratories to identify a potential binding target for our newly developed molecules. 



Table 4 Antibacterial activity of Class B triazoles as minimum inhibitory concentrations (MICs) in µg mL-1. 

 

Entry Compound R1 R2 

C. difficile E. coli 
ATCC 
25922 

S. aureus E. faecalis 
ATCC 
29212 

S. pneumoniae 
ATCC 
49619 

M7404 
(RT027) 

R20291 
(RT027) 

1470 
(RT017) 

ATCC 
29213 

NCTC 
10442 

1 1 - - 8 8 8 16 2 2 2 2 
2 69 H H 32 32 32 64 4 4 8 2 
3 44 H Propyl 16 16 16 16 2 2 4 8 
4 45 H i-Pentyl 16 16 8 4 2 2 2 1 
5 46 i-Pentyl H 8 8 8 4 2 2 2 4 
6 47 H n-Hexyl 8 4 8 8 2 2 2 4 
7 48 H Cy 8 8 8 4 2 2 2 2 
8 49 H CH2Cy 4 4 4 8 2 2 2 4 
9 50 CH2Cy H 4 4 4 8 2 4 2 4 
10 51 H t-Bu 8 8 8 8 2 2 4 4 
11 52 H SiMe3 8 8 8 4 2 2 2 1 
12 53 H SiMe2Ph 8 8 8 8 2 4 2 4 
13 54 H Ph 16 16 16 8 2 2 2 2 
14 55 Ph H 8 8 8 4 2 2 2 4 
15 56 H 4-(n-Bu)-Ph 32 32 16 64 8 4 4 16 
16 57 H 4-OMe-Ph 8 16 8 16 2 2 4 4 
17 58 H Bn 8 8 8 4 2 2 2 4 
18 59 H CH2CH2Ph 8 8 8 8 2 4 2 4 
19 60 H CH2OH 32 32 32 64 8 8 8 8 
20 77 H CH2OMe 32 32 32 32 8 8 8 8 
21 78 H CH2O(i-Pr) 32 32 32 32 4 4 8 4 
22 79 H CH2O(i-Bu) 16 16 16 8 2 2 4 4 
23 80 H CH2O(i-Pent) 8 8 8 4 2 2 2 4 
24 81 H CH2O(i-Hex) 8 8 8 4 2 2 2 8 
25 82 H CH2O(i-Hept) 8 8 8 16 4 4 4 8 
26 83 H CH2OPh 8 8 8 8 4 2 4 4 
27 61 H CH2OBn 16 16 16 4 2 2 2 2 
28 62 H OEt 16 16 16 16 4 4 4 4 
29 87 H CO(Morph) 16 16 16 16 4 4 8 8 
30 88 H CONH(i-Bu) 16 16 16 8 2 4 4 4 
31 63 H (CH2)2NH2·HCl 32 32 16 64 4 4 8 4 
32 64 Ph Ph 4 4 4 16 4 4 4 4 
33 65 I Ph 8 8 8 16 4 4 4 4 
34 66 Benzo(triazole)a 16 16 16 8 2 2 2 4 
35 67 Indolyl(triazole)b 16 8 8 16 2 4 4 8 
36 vancomycin - - 2 2 2 - 1 1 4 0.5 
37 chloramphenicol - - - - - 4 - - - - 

a See Table 1, entry 24 for compound structure. b See Table 1, entry 25 for compound structure. 

  



 

 

Table 5 Antibacterial activity of Class C triazoles as minimum inhibitory concentrations (MICs) in µg mL-1. 

 

Entry Compound AA1 R2 

C. difficile E. coli 

ATCC 

25922 

S. aureus E. faecalis 

ATCC 

29212 

S. pneumoniae 

ATCC 

49619 

M7404 

(RT027) 

R20291 

(RT027) 

1470 

(RT017) 

ATCC 

29213 

NCTC 

10442 

1 1 - - 8 8 8 16 2 2 2 2 

2 95 Lys Ph 16 16 16 >128 4 8 4 32 

3 96 Lys Bn 8 8 8 >128 4 4 4 32 

4 97 Lys i-Pentyl 16 16 16 128 8 8 4 32 

5 104 Arg Ph 8 8 4 >128 2 2 4 8 

6 105 Arg Bn 8 8 8 128 2 2 4 16 

7 106 Arg i-Pentyl 8 8 8 128 2 2 4 16 

8 107 Arg Cy 8 8 8 >128 2 2 4 8 

9 108 Arg CH2Cy 16 16 16 >128 4 4 4 8 

10 vancomycin - - 2 2 2 - 1 1 4 0.5 

11 chloramphenicol - - - - - 4 - - - - 

 

  



Table 6 Further biological screening of selected Class B compounds. Results given as minimum inhibitory concentrations 

(MICs) in µg mL-1. 

 

Entry Compound R1 R2 

A. baumannii  S. aureus 

Mu50 

(VISA) 

S. epidermidis 

ATCC 

11047 

E. faecalis  

ATCC 

19606 

ATCC 

15308 

ATCC  

51299 (VRE) 

clinical 

(VRE) 

1 1 - - 4 8 2 2 4 4 

2 45 H i-Pentyl 4 4 2 2 4 4 

3 46 i-Pentyl H 4 4 2 2 4 4 

4 47 H n-Hexyl 4 4 2 2 4 4 

5 49 H CH2Cy 8 4 2 2 4 4 

6 52 H SiMe3 8 8 4 1 8 4 

7 54 H Ph 8 8 2 2 4 4 

8 55 Ph H 4 4 4 2 8 8 

9 59 H CH2CH2Ph 8 8 2 2 8 4 

10 81 H CH2O(i-Hex) 4 4 4 2 4 4 

11 61 H CH2OBn 8 4 4 2 8 8 

12 64 Ph Ph 4 4 2 4 8 4 

13 65 I Ph 8 8 2 4 4 4 

14 vancomycin - - - - 8 2 128 64 

15 ciprofloxacin - - 1 0.25 - - - - 

 

Conclusions 

In conclusion, we have prepared forty six triazole ester isostere analogues of the antibacterial 

dicationic tripetide 1, with the aim of developing metabolically more stable molecules suitable for 

targeting C. difficile infections in the gut. These analogues were synthesized employing Cu- or 

Ru-catalyzed click chemistry which allowed for regioselective variations of substituents at C-4 

and C-5 (R1 or R2) of the triazole moiety. Dicationic-tripeptide and dipeptide mimetics were 

prepared along with a series of monocationic-monopeptide analogues, incorporating unnatural D-

amino acids in most cases.  

Significantly, the dicationic-tripeptide analogues (Class A compounds) had similar antibacterial 

activity as the lead compound 1 against a select panel of Gram positive and Gram negative 

bacteria and were effective (MICs of 8 µg mL-1) against three strains of C. difficile, including two 

problematic ribotype 027 strains. The larger set of dicationic-dipeptide analogues (Class B 



 

 

compounds) provided useful SAR data and identified three significant compounds (49 (R2 = 

CH2Cy), 50 (R1 = CH2Cy) and 64 (R1 = R2 = Ph)) with MICs of 4 µg mL-1 against the three C. 

difficile strains, only one broth dilution different from the positive control vancomycin (MIC of 2 

µg mL-1). SAR studies indicated that linear or branched hydrocarbon chain substituents (>4 

carbons) at C-4 and/or C-5 (R1 or R2) of the triazole provided compounds with the highest 

activities against the eight bacterial strains, while compounds with more polar substituents (short 

chain ethers, alcohol, amide or ammonium ion) were less effective. Interestingly, some of the 

structurally much simpler monocationic-monopeptides (Class C compounds) were just as active 

as compound 1 against most Gram positive strains, while a complete loss of Gram negative E. coli 

activity was observed for all monocationic compounds.  

In addition to the promising antimicrobial activity of these peptidomimetics, their 

straightforward synthetic access via amide coupling and click chemistry, based on an inexpensive 

binaphthyl scaffold, makes them attractive candidates for the treatment of CDI. These 

encouraging results have prompted in vivo studies of these compounds in mouse models which 

are underway. Additionally, the significant C. difficile inhibition observed for diphenyl triazole 

64, in particular, presents further synthetic opportunities to be explored including click chemistry 

with other internal alkynes, both symmetrical and unsymmetrical,23 to produce a wider range of 

fully substituted triazoles. Transition metal-catalyzed cross-coupling36 using halogenated 

derivatives such as 41 should also provide modular access to numerous second-generation drug 

candidates for screening and optimization purposes. Further developments in these areas will be 

reported in due course. 

 

Experimental section 

Synthesis and characterization methods. All reactions were carried out in standard laboratory 

glassware with magnetic stirring. Thin layer chromatography (TLC) was performed on aluminum-

backed 0.20 mm silica gel plates. Visualization was accomplished with UV light, a ninhydrin 

staining solution in n-butanol and/or an aqueous ceric ammonium molybdate solution. Flash 

chromatography and silica pipette plugs were performed under positive air pressure using Silica 

Gel 60 of 230−400 mesh (40−63 µm). Optical Rotations were measured at 25 °C in the specified 

solvent with a path length of 1.0 dm on a Jasco P-2000 Digital Polarimeter (λ = 589 nm). 

Concentrations (c) are given in g/100 mL. Proton and carbon magnetic resonance spectra (1H 

NMR and 13C NMR) were recorded on a Varian Mercury 300 MHz spectrometer, a Varian Inova 

500 MHz spectrometer or a Varian VNMRS PS54 500 MHz spectrometer. Spectra aquired in 



CDCl3 are reported relative to tetramethylsilane (1H:  = 0.00 ppm) and solvent resonance (13C:  

= 77.0 ppm). Spectra acquired in CD3OD are reported relative to solvent resonance (1H:  = 3.31 

ppm; 13C:  = 49.0 ppm). 1H NMR data are reported as follows: chemical shift, multiplicity 

(abbreviations: s = singlet, bs = broad singlet, d = doublet, bd = broad doublet, app. d = apparent 

doublet, dd = doublet of doublets, t = triplet, app. t = apparent triplet, q = quartet, ABq = AB 

quartet, quin = quintet, sex = sextet, sep = septet, m = multiplet and bm = broad multiplet), 

coupling constant (Hz) and integration. Infrared (IR) spectra were obtained on a Shimadzu 

IRAffinity-1 FTIR Spectrometer. IR samples were analyzed as neat solids or oils. Low resolution 

mass spectrometry (MS) was performed on a Shimadzu LC-2010 Electrospray Ionization (ESI) 

Mass Spectrometer. All samples were prepared in HPLC grade methanol with a trace of formic 

acid. High resolution mass spectrometry (HRMS) was performed on a Waters Quadrupole-Time 

of Flight (QTOF) Xevo Spectrometer via ESI with Leucine-Enkephalin as an internal standard. 

For isolated hydrochloride salts of basic amino compounds, “M” refers to the mass of the 

corresponding neutral molecule. High performance liquid chromatography (HPLC) was 

performed on a reverse-phase phenomenex Synergi 4u Fusion-RP 80Å column (φ = 4.6 × 150 

mm) at a wavelength (λ) of 280 nm using water/acetonitrile (both containing 0.1% TFA) as the 

mobile phase. All samples were injected at a concentration of ~1 mg mL-1 in HPLC grade MeOH 

(injection volume = 20 µL). 

Synthesis materials. Nitrogen (N2) was dried by passage through self-indicating silica gel (2−4 

mm bead size). Unless otherwise noted, anhydrous solvents (obtained from commercial sources) 

were utilized. Known reagents and alkynes that were not commercially available were prepared 

according to literature procedures cited within the ESI†. All other reagents were purchased 

reagent grade and used as received. 

General synthetic procedures 

General procedure 1 for peptide coupling. A reaction vessel was charged in air with the 

carboxylic acid (1.0 equiv), EDCI·HCl (1.2 equiv), HOBt (1.2 equiv) and the specified 

equivalents of the amine. If the latter was an ammonium salt, a slight excess of (i-Pr)2NEt was 

also added as noted. To this was added the specified volume of HPLC grade MeCN (not pre-

dried) and the resulting mixture was stirred at rt in an air atmosphere for the time specified. After 

removal of the solvent under reduced pressure (for reactions with less than 5 mL of MeCN this is 

not necessary), the residue was dissolved in EtOAc (20 mL for reactions with ≤1 mmol of acid; or 

20 mL/mmol of acid for larger scale) and washed sequentially with 1 M HCl (2×20 mL; to 

remove any excess amine, EDCI and the urea by-product), saturated NaHCO3 (2×20 mL; to 

remove HOBt) and brine (20 mL). The organic layer was dried (MgSO4) and concentrated under 



 

 

reduced pressure, yielding in most cases the analytically pure peptide. Purification was carried out 

by flash chromatography with the indicated eluent if required. 

General procedure 2 for copper-catalyzed azide−alkyne cycloaddition. A reaction vessel was 

charged in air with the azide (1.0 equiv), Cu(OAc)2·H2O (0.2 equiv), Na·ascorbate (0.4 equiv), 

and the neat alkyne (3.0 equiv). To this was added t-BuOH (20 mL/mmol of azide) and H2O (5 

mL/mmol of azide). The mixture was sonicated briefly (<1 min) and the resulting suspension 

stirred at rt in an air atmosphere for the time specified. The mixture was diluted with EtOAc (20 

mL for reactions with ≤1 mmol of azide; or 20 mL/mmol of azide for larger scale) and shaken 

with a 1:1 mixture of 32% aqueous NH3:brine (20 mL). The organic layer was dried (MgSO4) and 

concentrated under reduced pressure. If required, the residue was purified using either a small 

silica pipette plug or conventional flash chromatography as specified, to give the desired 1,4-

substituted triazole. 

General procedure 3 for ruthenium-catalyzed azide−alkyne cycloaddition. An oven-dried vial 

was charged in air with the azide (1.0 equiv), Cp*RuCl(PPh3)2 (5 mol %) and the neat alkyne (2.0 

equiv). The vial was fitted with a rubber septum, evacuated and refilled with N2 (single cycle), 

then anhydrous 1,4-dioxane (10 mL/mmol of azide) was added. The sealed vessel was heated at 

60 °C under N2 for the specified time. After cooling to rt, the reaction mixture (with solvent) was 

directly subjected to flash chromatography with the specified eluent to provide the desired 1,5-

disubstituted- or 1,4,5-trisubstituted triazole. 

General procedure 4 for the preparation of alkyl ethers. To the neat alkyl alcohol (R'OH, 10 

equiv) under N2 at −78 °C was added a solution of NaHMDS (1 M in THF, 5 equiv) and the 

solution was stirred at −78 °C for 15 min to generate the sodium alkoxide. To this was added a 

solution of the mesylate (1 equiv) and NBu4I (0.1 equiv) in THF and the external cooling bath 

was allowed to warm to rt with stirring for the indicated time. The mixture was diluted with 

EtOAc (20 mL) and washed with 1 M HCl (20 mL) and saturated NaHCO3 (20 mL), then dried 

(MgSO4) and concentrated under reduced pressure. If required, purification was carried out by 

flash chromatography to provide the desired alkyl ether. 

General procedure 5 for TFA mediated deprotection. To a solution of the N-protected peptide 

in reagent grade CH2Cl2 (3.3 mL/0.1 mmol of substrate) was added TFA (3.3 mL/0.1 mmol of 

substrate) and the solution was stirred at rt in an air atmosphere for the time specified. The 

solvents were removed under reduced pressure and the residue dried under high vacuum. This 

was taken up in CH2Cl2 (~0.5 mL) and an aliquot of excess ethereal HCl (2 M in Et2O, 1.6 mL/0.1 

mmol of substrate) was added to exchange the TFA anion with chloride. The mixture was again 

concentrated and dried under reduced pressure. The remaining sticky solid was dissolved in 



minimal MeOH (≤10 drops from a Pasteur pipette for ≤0.05 mmol of product) and reagent grade 

Et2O (5 mL) was added, resulting in instantaneous precipitation of the product. The precipitate 

was collected via vacuum filtration and the original vessel (containing significant product 

deposited on the glass) and filter cake were washed with Et2O (3×10 mL). The filter cake was 

transferred back into the original vessel (containing the remainder of the product) via dissolution 

with MeOH (~10 mL). Concentration and drying under reduced pressure provided the desired 

hydrochloride salts as thin films which routinely gave easily-handled powders upon scratching 

with a spatula. 

 

Representative synthesis of compound 47 from acid 2 

tert-Butyl ((R)-6-(((R)-1-azido-5-(2-((2,2,4,6,7-pentamethyl-2,3-dihydrobenzofuran-5-

yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-[1,1'-binaphthalen]-2-

yl)oxy)acetamido)-6-oxohexyl)carbamate (18). This compound was prepared according to 

general procedure 1 using the known acid 214 (1.806 g, 2.81 mmol), EDCI·HCl (646 mg, 3.37 

mmol), HOBt (455 mg, 3.37 mmol), amine 14 (1.266 g, 2.89 mmol) and MeCN (28 mL) with a 

4.5 h reaction time. Work-up as described gave 18 (2.899 g, 97%) as an off-white solid. TLC 

(10% MeOH/CH2Cl2) RF = 0.60, (75% EtOAc/pet. ether) RF = 0.68; 25

D ][  −24.0 (c 5.31, CH2Cl2); 

1H NMR (500 MHz, CDCl3) δ 7.97 (app. t, J = 9.4 Hz, 2H), 7.92–7.83 (m, 2H), 7.47 (d, J = 9.0 

Hz, 1H), 7.41–7.20 (m, 5H), 7.18–7.09 (m, 2H), 6.72 (d, J = 8.5 Hz, 1H), 6.17 (d, J = 7.6 Hz, 

1H), 6.07 (bs, 2H), 4.59 (t, J = 5.7 Hz, 1H), 4.45 (ABq, ΔδAB = 0.06, J = 14.5 Hz, 2H), 4.09–3.96 

(m, 2H), 3.96–3.85 (m, 2H), 3.30 (dd, J = 12.4, 4.5 Hz, 1H), 3.23 (dd, J = 12.4, 5.8 Hz, 1H), 

3.17–3.02 (m, 2H), 3.03– 2.84 (m, 4H), 2.56 (s, 3H), 2.50 (s, 3H), 2.08 (s, 3H), 1.51–1.31 (m, 

20H), 1.31–1.06 (m, 5H), 0.97–0.75 (m, 3H), 0.55 (d, J = 6.5 Hz, 3H), 0.50 (d, J = 6.5 Hz, 3H); 
13C NMR (125 MHz, CDCl3) δ 171.4, 168.8, 158.6, 156.1, 155.9, 154.4, 152.1, 138.2, 133.8, 

133.6, 133.2, 132.1, 129.8, 129.75, 129.68, 129.2, 128.0, 127.9, 126.6, 126.5, 125.4, 124.9, 124.4, 

124.1, 123.7, 120.4, 119.3, 117.3, 115.9, 114.2, 86.2, 78.9, 68.3, 67.9, 54.6, 52.6, 48.8, 43.2, 40.5, 

40.0, 37.9, 31.1, 29.1, 28.5, 28.4, 25.6, 24.5, 22.4, 22.20, 22.16, 22.0, 19.2, 17.9, 12.4; IR (cm-1) ʋ 

3330, 2929, 2097, 1653, 1507, 1244, 1087, 808; MS (ES+) m/z 1085 (24%, M+Na), 1063 (100%, 

M+H); HRMS (ES+) Calcd. for C57H75N9NaO9S: 1084.5306 (M+Na), Found: 1084.5342. 

 

  



 

 

tert-Butyl ((R)-6-(((R)-1-(4-hexyl-1H-1,2,3-triazol-1-yl)-5-(2-((2,2,4,6,7-pentamethyl-2,3-

dihydrobenzofuran-5-yl)sulfonyl)guanidino)pentan-2-yl)amino)-5-(2-(((S)-2'-(isopentyloxy)-

[1,1'-binaphthalen]-2-yl)oxy)acetamido)-6-oxohexyl)carbamate (22). This compound was 

prepared according to general procedure 2 using azide 18 (50.0 mg, 0.047 mmol), Cu(OAc)2·H2O 

(1.9 mg, 0.0094 mmol), Na·ascorbate (3.7 mg, 0.019 mmol), 1-octyne (15.6 mg, 0.14 mmol), t-

BuOH (1.0 mL) and H2O (0.25 mL) with a 24 h reaction time. Work-up as described gave 22 

(52.0 mg, 94%) as an off-white solid. TLC (100% EtOAc) RF = 0.10; 25

D ][  −21.9 (c 2.45, 

CH2Cl2); 
1H NMR (500 MHz, CDCl3) δ 7.98–7.90 (m, 2H), 7.85 (app. t, J = 7.6 Hz, 2H), 7.44 (d, 

J = 8.9 Hz, 1H), 7.38 (s, 1H), 7.37–7.26 (m, 3H), 7.26–7.17 (m, 3H), 7.14 (d, J = 8.5 Hz, 1H), 

7.10 (d, J = 8.5 Hz, 1H), 6.27 (bs, 2H), 6.18 (bd, J = 5.7 Hz, 1H), 4.90 (bs, 1H), 4.48 (d, J = 14.5 

Hz, 1H), 4.41–4.27 (m, 3H), 4.25–4.16 (m, 1H), 4.07–3.95 (m, 2H), 3.93–3.85 (m, 1H), 3.15–3.04 

(m, 2H), 2.97–2.84 (m, 4H), 2.67 (t, J = 7.5 Hz, 2H), 2.55 (s, 3H), 2.48 (s, 3H), 2.07 (s, 3H), 

1.69–1.59 (m, 2H), 1.52–1.08 (m, 29H), 0.94–0.76 (m, 4H), 0.75–0.63 (m, 2H), 0.53 (d, J = 6.3 

Hz, 3H), 0.49 (d, J = 6.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 171.5, 168.8, 158.6, 156.2, 

156.0, 154.3, 152.1, 148.1, 138.1, 133.8, 133.6, 133.0, 132.1, 129.7, 129.6, 129.1, 128.0, 127.9, 

126.6, 126.5, 125.4, 124.9, 124.5, 124.1, 123.7, 121.9, 120.3, 119.3, 117.4, 115.9, 114.2, 86.3, 

78.8, 68.2, 67.9, 52.8, 52.6, 49.2, 43.2, 40.5, 39.9, 37.9, 31.5, 31.0, 29.4, 29.02, 28.95, 28.5, 28.4, 

25.6, 25.3, 24.5, 22.5, 22.4, 22.2, 22.0, 19.2, 17.9, 14.0, 12.4; MS (ES+) m/z 1195 (100%, M+Na), 

1173 (92%, M+H); HRMS (ES+) Calcd. for C65H89N9NaO9S: 1194.6402 (M+Na), Found: 

1194.6436. 

(R)-6-Amino-N-((R)-5-guanidino-1-(4-hexyl-1H-1,2,3-triazol-1-yl)pentan-2-yl)-2-(2-(((S)-

2'-(isopentyloxy)-[1,1'-binaphthalen]-2-yl)oxy)acetamido)hexanamide·dihydrochloride (47). 

This compound was prepared according to general procedure 5 using 22 (47.8 mg, 0.041 mmol), 

CH2Cl2 (1.34 mL) and TFA (1.34 mL) with a 24 h reaction time. Work-up and treatment with 

HCl (2 M in Et2O, 0.67 mL) as described gave 47 (34.2 mg, 94%) as a tan solid. 25

D ][  −15.1 (c 

0.95, MeOH); 1H NMR (500 MHz, CD3OD) δ 8.18 (s, 1H), 8.03 (app. d, J = 9.0 Hz, 2H), 7.96– 

7.89 (m, 2H), 7.55 (d, J = 9.0 Hz, 1H), 7.49 (d, J = 9.0 Hz, 1H), 7.39–7.32 (m, 2H), 7.23 (app. t, J 

= 7.5 Hz, 2H), 7.12–7.02 (m, 2H), 4.70–4.41 (m, 4H), 4.34–4.25 (m, 1H), 4.18–4.08 (m, 1H), 

4.02–3.91 (m, 2H), 3.23–3.11 (m, 2H), 2.86–2.70 (m, 4H), 1.80–1.47 (m, 8H), 1.46–1.10 (m, 

10H), 1.07–0.97 (m, 1H), 0.96–0.79 (m, 5H), 0.58 (d, J = 6.5 Hz, 3H), 0.52 (d, J = 6.5 Hz, 3H); 
13C NMR (75 MHz, CD3OD) δ 173.7, 170.9, 158.5, 155.9, 154.1, 146.5, 135.2, 135.1, 131.4, 

130.8, 130.7, 129.3, 129.1, 127.6, 127.5, 126.3, 126.0, 125.2, 124.8, 121.7, 120.6, 116.8, 116.0, 

69.3, 69.0, 56.8, 53.9, 50.5, 41.8, 40.4, 39.3, 32.5, 32.2, 29.8, 29.6, 29.5, 27.7, 26.1, 25.6, 24.7, 



23.6, 23.5, 22.8, 22.5, 14.4; FTIR (cm-1) ʋ 2923, 1653, 1506, 1214, 1149, 1048, 811, 747; MS 

(ES+) m/z 821 (<5%, M+H), 411 (100%, M+2H); HRMS (ES+) Calcd. for C47H66N9O4: 820.5238 

(M+H), Found: 820.5256. 
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