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Abstract: Many metaheuristic approaches have been developed to select effective features from
different medical datasets in a feasible time. However, most of them cannot scale well to large medical
datasets, where they fail to maximize the classification accuracy and simultaneously minimize the
number of selected features. Therefore, this paper is devoted to developing an efficient binary version
of the quantum-based avian navigation optimizer algorithm (QANA) named BQANA, utilizing the
scalability of the QANA to effectively select the optimal feature subset from high-dimensional medical
datasets using two different approaches. In the first approach, several binary versions of the QANA
are developed using S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic transfer functions
to map the continuous solutions of the canonical QANA to binary ones. In the second approach,
the QANA is mapped to binary space by converting each variable to 0 or 1 using a threshold. To
evaluate the proposed algorithm, first, all binary versions of the QANA are assessed on different
medical datasets with varied feature sizes, including Pima, HeartEW, Lymphography, SPECT Heart,
PenglungEW, Parkinson, Colon, SRBCT, Leukemia, and Prostate tumor. The results show that the
BQANA developed by the second approach is superior to other binary versions of the QANA to find
the optimal feature subset from the medical datasets. Then, the BQANA was compared with nine
well-known binary metaheuristic algorithms, and the results were statistically assessed using the
Friedman test. The experimental and statistical results demonstrate that the proposed BQANA has
merit for feature selection from medical datasets.

Keywords: optimization; feature selection; binary metaheuristic algorithms; swarm intelligence algorithms;
medical datasets; transfer functions; classification; machine learning

MSC: 68T20

1. Introduction

In recent years, artificial intelligence technologies have been used to solve various
problems [1], which dictates the importance of storing data and information. With con-
tinued advances in science, a plethora of enormous datasets, including a large number
of features, are being stored in different fields, such as business, text mining, biology,
and medicine. Since medical datasets are often gathered for different purposes and from
different sources, they may have challenges and complexities, such as structural and
type heterogeneity, high dimensional, outliers, missing values, skewness, integration,
and irrelevant and redundant features [2–4]. The existence of irrelevant and redundant
features may degrade the accuracy of the classifier and bring additional computational
costs [5]. To tackle this issue, many effective methods have been proposed to select effec-
tive features by reducing such disadvantageous features [6–10]. Feature selection (FS) is
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employed in a wide range of real-world applications, including disease diagnosis [11–15],
text clustering [16,17], intrusion detection systems [18–21], e-mail spam detection [22–25],
and genomic analysis [25–29].

The FS algorithms are broadly classified into filter-based, wrapper-based, and embedded-
based methods [30–32]. The filter-based methods assess and rank features of datasets based
on principle criteria such as distance, information, similarity, consistency, and statistical
measures [33,34]. Although filter-based methods demand lower computational costs
than other methods, they cannot provide satisfactory performance. The wrapper-based
methods search for an optimal feature subset using a predetermined learning algorithm
for evaluating the feature subsets. The advantages of both filter-based and wrapper-based
methods are combined in embedded-based methods. These methods incorporate the search
for an optimal feature subset as part of the classifier training process [32]. The wrapper-
based methods can generally provide greater classification accuracy than other methods
by using a machine-learning algorithm to assess possible solutions [6,35]. Since assessing
2N subsets of problem space with N features is an NP-hard issue, near-optimal subsets
are discovered using approximate algorithms that heuristically search for an optimal
subset [36–38].

Metaheuristic algorithms are a subset of approximate algorithms that have been used
for solving many NP-hard problems in different fields of science, such as engineering
design [39–50], task scheduling [51–53], engineering prediction [54–58], and optimal power
flow [59–64] problems. When tackling the FS problem, metaheuristic algorithms have
shown outstanding results in prior studies [65–68]. For instance, Emary et al. [69] intro-
duced two versions of binary grey wolf optimizer (bGWO) to solve the FS problem as
a wrapper-based method. The first approach was developed by performing stochastic
crossover among the three best solutions, while in the second approach, the authors applied
the S-shaped transfer function to convert continuous solutions of GWO to binary ones.
Mafarja et al. [70] proposed a binary grasshopper optimization algorithm (BGOA) to tackle
the feature selection problem within a wrapper-based framework by applying S-shaped
and V-shaped transfer functions as the first mechanism. The second mechanism employs
a new method that combines the finest solutions found so far. Furthermore, a mutation
operator is used in the BGOA algorithm to improve the exploration phase.

Sindhu et al. [71] proposed an improved sine cosine algorithm (ISCA) that includes a
feature selection elitism technique and a new best solution update method to select the best
features and increase the classification accuracy. Dhiman et al. [72] developed eight binary
versions of the emperor penguin optimizer to solve the FS problem by employing S-shaped
and V-shaped transfer functions. In this study, 25 standard benchmark functions have been
used to validate the results of the developed algorithms. The results revealed that the V4
transfer function provides better solutions than other transfer functions. A binary farmland
fertility algorithm (BFFA) has been proposed by Naseri et al. [18] to tackle feature selection
problems in intrusion detection systems using a V-shaped transfer function. Although
many metaheuristic algorithms have been developed in the FS domain, most of them are
not scalable enough to overcome small and large datasets.

Quantum-based avian navigation optimizer algorithm (QANA) [73] is a recently
introduced evolutionary algorithm inspired by the navigation mechanism of migratory
birds during long-distance aerial paths for solving continuous optimization problems. The
QANA provides competitive results by employing several operators, including population
partitioning, self-adaptive quantum orientation, a qubit-crossover, and two mutation strate-
gies. Moreover, the gained information is shared among search agents using a V-echelon
communication topology. The experimental evaluations reveal that QANA is scalable
for solving high-dimensional problems. It is worth mentioning that when working with
high-dimensional datasets, tackling optimization problems becomes particularly difficult
due to the curse of dimensionality problems [74,75].

This paper aims to extend our earlier study [73] by using our proposed binary QANA
(BQANA) to overcome the curse of dimensionality difficulties in the FS domain and gen-
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erate high-quality solutions using two approaches. In the first approach, the canonical
QANA is converted to binary using 20 different transfer functions from five categories
of S-shaped [76], V-shaped [77], U-shaped [78], Z-shaped [79], and quadratic [80,81] to
solve FS problem in medical datasets. The transfer functions are discussed in this paper,
and then they are paired with the QANA to develop several binary QANA models. In
the second approach, a threshold is assigned for each dimension to map the continuous
solutions of QANA to binary and develop BQANA without any further computational
cost. The effectiveness of the proposed approaches is investigated on 10 medical datasets
with various scales. To validate the proposed algorithms, the results of the winner version
of binary QANA named BQANA were compared with the results of nine well-known
metaheuristic algorithms, including binary particle swarm optimization (BPSO) [82], ant
colony optimization (ACO) [83], binary differential evolution (BDE) [84], binary bat algo-
rithm (BBA) [85], feature selection based on whale optimization algorithm (FSWOA) [11],
binary ant lion optimizer (BALO) [86], binary dragonfly algorithm (BDA) [87], quadratic
binary Harris hawk optimization (QBHHO) [80], and binary atom search optimization
(BASO) [88]. The convergence behavior, the average number of selected features, and
the accuracy of the proposed BQANA and comparative algorithms were visualized and
investigated for all datasets. Moreover, the BQANA is statistically assessed by the Friedman
test to demonstrate the algorithm’s superiority. The main contributions of this study are
summarized as follows.

• Introducing binary approaches of quantum-based avian navigation optimizer algo-
rithm (QANA) to select effective features from high-dimensional medical datasets.

• The binary QANA variants have been developed by adapting the main components
of the standard QANA.

• Comparing the behavior of QANA with different transfer functions from five differ-
ent categories, S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic, to develop
20 versions of binary QANA based on the first approach.

• Applying the second approach as a low-cost and effective method to develop the
superior version of binary QANA named BQANA by assigning a threshold for
each variable.

• Dimensionality reduction, generating solutions with high accuracy and a minimum
number of features are obtained by the second approach.

• The experiments prove that the BQANA developed by the second approach provides
superior results compared to the first approach and nine other comparative algorithms
in terms of increasing classification accuracy and minimizing the number of features
for 10 medical datasets with various scales.

2. Related Works

The Fs is an NP-hard problem with discrete search space, in which the number of po-
tential solutions grows exponentially as the number of features grows. Hence, metaheuristic
algorithms are known as powerful optimizers in the literature. Ant colony optimization
(ACO) [89] is a discrete metaheuristic algorithm inspired by the behavior of some ants
in nature that has been applied for solving FS problems in different fields such as text
categorization [90], image feature selection [91], intrusion detection system [92], and email
spam classification [93]. As most of the metaheuristic algorithms are proposed for con-
tinuous search spaces, many researchers applied metaheuristic algorithms to discover an
optimal feature subset by converting the continuous solutions into a binary form using
logical operators or different transfer functions [94]. Logical operators have been applied
for producing binary solutions due to their low computational costs [95]. Boolean particle
swarm optimization was first proposed by Marandi et al. [96] to solve antenna design by
converting continuous particle swarm optimization (PSO) into a binary form using three
Boolean operators. In [97], the authors proposed a binary form of the Jaya algorithm named
Jayax using the xor logical operator and incorporating a local search module to boost the
algorithm’s performance.
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Many researchers apply different transfer functions to convert continuous values
of optimizer algorithms into binary ones. The most well-known transfer functions used
in the literature are S-shaped [76], V-shaped [77,98], U-shaped [78], Z-shaped [78], and
quadratic [81] transfer functions. In 1997, Kennedy and Eberhart [76] introduced a binary
version of the particle swarm optimization (BPSO) algorithm by applying the sigmoid
transfer function to solve discrete optimization problems [82,99]. The sigmoid function is
known as the S-shaped transfer function and has been applied to many other metaheuristic
algorithms. Gong et al. [84] proposed binary differential evolution (BDE) algorithm to
apply the differential evolution algorithm in discrete search space. To construct binary-
adapted DE operators, DE operator templates are explicitly specified through the forma
analysis. In [85] authors proposed a binary bat algorithm (BBA) for solving FS by applying
the S-shaped transfer function to restrict the new search agent’s position to only binary
values. A new binary algorithm named feature selection based on whale optimization
algorithm (FSWOA) was proposed by Zamani et al. [11] to handle the dimensionality of
medical data using the whale optimization algorithm (WOA). To map continuous solutions
of WOA to binary ones, the authors applied the S-shaped transfer function. The binary
dragonfly algorithm (BDA) is the binary version of the dragonfly algorithm proposed by
Mirjalili [87] which mimics the static and dynamic swarming behaviors of dragonflies
in nature. The exploration and exploitation of the algorithm are modeled by the social
interaction of dragonflies in searching for foods, avoiding enemies, and navigating when
swarming dynamically or statistically.

The V-shaped transfer function introduced by Rashdi et al. [77] is a symmetric transfer
function initially used in binary gravity search algorithm (BGSA) to map continuous
values of GSA into binary ones. Emary et al. [86] proposed a binary antlion optimizer
(BALO) for finding optimal feature subsets by applying S-shaped and V-shaped transfer
functions. The findings indicate that the developed binary algorithm based on V-shaped
transfer functions outperforms the S-shaped transfer functions. In a comparative study,
Mirjalili et al. [98] evaluated six variants of S-shaped and V-shaped transfer functions on the
traditional BPSO algorithm. The results indicate that the newly presented V-shaped family
of transfer functions significantly outperforms the original BPSO. Too et al. [88] proposed
eight versions of the binary atom search optimization (BASO) algorithm to effectively
select an optimal feature subset by applying S-shaped and V-shaped transfer functions. In
comparison to other BASO versions, the results showed that BASO with S-shaped transfer
function (S1) is highly capable of finding effective features.

Mirjalili et al. [68] proposed a new U-shaped transfer function for the PSO algorithm
to convert continuous values of velocity to binary solutions. The obtained results reveal
that the U-shaped transfer functions greatly enhance the performance of BPSO. The DEOSA
proposed by Guha et al. [100] is a discrete combination of equilibrium optimizer and
simulated annealing for selecting optimal features. This algorithm uses a U-shaped transfer
function to convert continuous values into binary. Nadimi-Shahraki et al. [101] proposed an
enhanced version of the whale optimization algorithm named E-WOA to solve continuous
optimization problems using a pooling mechanism and three robust search strategies. To
address the FS problem, the solutions of E-WOA are converted to binary form using a
U-shaped (U2) transfer function.

The Z-shaped [79] and quadratic [81] transfer functions are two recently proposed
transfer functions for mapping continuous solutions to binary ones. The quadratic binary
Harris hawk optimization (QBHHO) [80] algorithm is a binary version of the Harris hawk
optimization algorithm developed by applying quadratic transfer functions for converting
continuous solutions to binary. Considering a threshold for each variable is another efficient
method to map continuous solutions to binary ones. Hafez et al. [102] utilized the sine
cosine algorithm (SCA) to address the FS problem by assigning a variable threshold (0.5) to
convert solutions to binary form. In [103], the authors proposed a PSO-based FS algorithm
with a variable-length representation called VLPSO. The results showed that the variable-



Mathematics 2022, 10, 2770 5 of 30

length representation enhances the scalability of PSO. The algorithm uses a predefined
threshold (0.6) to map solutions into binary form.

3. Quantum-Based Avian Navigation Optimizer Algorithm (QANA)

QANA is a recent population-based metaheuristic algorithm inspired by the naviga-
tion behavior of migratory birds during long-distance aerial routes. The QANA is modeled
using multi-flock construction and quantum-based navigation which consists of two muta-
tion strategies and a qubit-crossover operator to explore the search space effectively.

3.1. Multi-Flock Construction

Initially, the population of migratory birds is randomly divided into multi-flocks. Next,
the migratory birds’ flight formation is mimicked in this algorithm to distribute the gained
information among the search agents by adopting a V-echelon communication topology.
Suppose V indicates a set of n members of the flock fq, which includes a header (H) and
two subsets called right-line (R) and left-line (L) considered in a V-shaped formation. The
migratory birds’ aerial maneuver using the V-echelon topology is depicted in Figure 1.
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3.2. Quantum-Based Navigation (Movement Strategy)

The flocks use quantum-based navigation to explore the search space, which includes
a success-based population distribution (SPD) policy, two mutation strategies including
“DE/quantum/I” and “DE/quantum/II,” and a qubit-crossover operator. Each flock is
dynamically allocated to one of these mutation techniques throughout the optimization
process, depending on the SPD policy presented in Equation (1),

SRm(t) =

(
( ∑

i∈ fm

∑n
j=1 τij

n
)/| fm|

)
× 100 (1)

where fm is the set of flocks that used Mm in iteration t, and τij is equal to 1 if Mm improved
aj of the i-th flock in the set fm; otherwise, τij is equal to 0.

Quantum mutation strategies, including DE/quantum/I and DE/quantum/II, are de-
scribed by Equations (2) and (3), where xi (t) denotes the position of search agent ai in the
current iteration t, xV_echelon (t) is the position of the search agent followed by ai, and xbest (t)
is the location of the best search agent. xj ∈ STM (t) and xj ∈ LTM (t) are randomly picked
from short-term memory (STM) and long-term memory (LTM), respectively. Equation (4) is
used to calculate the trial vector vH (t + 1) as a leader in the V-echelon topology, where L and
U are the lower and upper bounds of the search space and Si is the quantum orientation for
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avian ai, which is defined in [73], and it also uses parameter adaptation mechanism based on a
historical record of successful parameter [104].

vi(t + 1) = xbest(t) + Si(t)×
(

xVechelon(t)− xj∈LTM(t)
)
+

Si(t)×
(

xVechelon(t)− xbest(t)
)
+ Si(t)×

(
xj∈LTM(t)− xj∈STM(t)

) (2)

vi(t + 1) = Si(t)×
(
xbest(t)− xVechelon(t)

)
+

Si(t)×
(

xi(t)− xj∈LTM(t)− xj∈STM(t)
) (3)

vH(t + 1) = Si(t)× xbest + (L + (U − L)× rand(0, 1)) (4)

To construct trial vector ui (t + 1), the mutant vector vi (t + 1) is crossed by its parent xi
(t) using Equation (5), where |ψi〉d is a qubit-crossover probability of the d-th dimension.

uid(t + 1) =


xid(t + 1), |ψi〉d < rand

vid(t + 1), |ψi〉d ≥ rand
(5)

In each iteration, Equation (6) computes a qubit-crossover |ψi〉d for each dimension of
the trial vector ui (t + 1), where the parameter |ψR〉d is a random integer that serves as a
coefficient for modifying the length of the vector |ψi〉d in the Bloch sphere.

|ψi〉d = |ψR〉d ×
(

cos
(

θ

2

)
|0〉+ eiϕsin

(
θ

2

)
|1〉
)

θ, ϕ = rand× π

2
(6)

Based on the avian navigator modeling given in the previous sections, the flowchart of
the quantum-based avian navigation optimizer algorithm (QANA) is presented in Figure 2.
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4. The Proposed Binary QANA

According to the previous study [73], QANA outperforms other well-known optimiz-
ers in various continuous search space benchmark tests. In comparison to its competitors,
QANA outperforms them in terms of exploration and exploitation abilities. Hence, the
main components of the standard QANA are utilized to develop binary QANA for solving
the FS problem. To develop binary QANA, initially, solutions are randomly generated in
the range [0, 1]. The iterative procedure is continued after initialization until the stopping
condition (maximum number of iterations) is met. In each iteration, the positions of search
agents are mapped to binary using the transfer function (first approach) or by assigning a
threshold for each variable (second approach). In the first approach, 20 different transfer
functions from five categories, S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic,
are applied to map the continuous solutions of the canonical QANA to binary ones. While
in the second approach, the QANA is converted to binary by simply assigning a threshold
for each dimension. Both approaches are described and investigated in more detail in the
following subsections.

4.1. Binary QANA Development Using Different Transfer Functions

In accordance with the literature, the transfer function has a crucial role in mapping
continuous solutions to discrete space. The output of a transfer function is in the range of
[0, 1]. The value of the search agent’s position determines the probability of changing the
solution of the previous iteration, where the transfer function has to provide a large enough
probability of changing the previous solution for a higher value of the search agent’s
position. On the other hand, the computed probability of changing the solution should
also be low if the value is low. Based on the above discussion, choosing a suitable transfer
function will enhance the algorithm’s performance in solving the FS problem. Hence, in this
study, the four versions of each transfer function S-shaped, V-shaped, U-shaped, Z-shaped,
and quadratic are discussed and applied to develop different variants of binary QANA.

4.1.1. Binary QANA Using S-Shaped Transfer Function (S-BQANA)

The S-shaped transfer function first used in BPSO [76] employs the sigmoid function
(S2) to map continuous position into binary form based on Equation (7),

TFS

(
xd

i (t + 1)
)
= 1/(1 + exp−xd

i (t)) (7)

where xd
i (t) is the position of the i-th search agent in the d-th dimension at the current

iteration. The new position of the search agent is then updated using Equation (8), where r
is a random number in [0, 1].

bd
i (t + 1) =

1, i f r < TFs

(
xd

i (t + 1)
)

0, i f r ≥ TFs

(
xd

i (t + 1)
) (8)

S2 and three other variants of S-shaped transfer functions are presented visually in
Figure 3 and mathematically in Table 1. As shown in Figure 3, S1 sharply grows and hits
saturation as the value of the position increases substantially higher than S2, while S3
and S4 saturations begin later than S2. Hence, among these four versions of the S-shaped
transfer function, S1 generates the highest probability for the same value, while S4 returns
the lowest value.
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Table 1. The formulation of S-shaped, V-shaped, and U-shaped family transfer functions.

No. S-Shaped Transfer
Functions No. V-Shaped Transfer

Functions No. U-Shaped Transfer
Functions

S1 TFS(x) = 1/(1 + exp−2x) V1 TFV(x) =
∣∣∣er f

(√
π

2 x
)∣∣∣ U1 TFU(x) = α

∣∣x1.5
∣∣

S2 TFS(x) = 1/(1 + exp−x) V2 TFV(x) = |tan h(x)| U2 TFU(x) = α
∣∣x2
∣∣

S3 TFS(x) = 1/(1 + exp−x/2) V3 TFV(x) =
∣∣∣(x)/

√
1 + x2

∣∣∣ U3 TFU(x) = α
∣∣x3
∣∣

S4 TFS(x) = 1/(1 + exp−x/3) V4 TFV(x) =
∣∣∣ 2

π arctan
(

π
2 x
)∣∣∣ U4 TFU(x) = α

∣∣x4
∣∣

The S-shaped transfer function has certain flaws. In SI algorithms, if the value is 0,
the next solution remains the same as the present position. To put it another way, the 0
value indicates that the new location should not be modified. However, with a chance of
0.5, the new position in the S-shaped transfer function may be modified to 0 or 1. Also,
in the SI algorithms, there is no difference between large positive or negative values, as a
large absolute position value implies that the present search agent’s location is insufficient
and that a significant movement is necessary to attain the ideal position. A tiny absolute
value also indicates that the present search agent’s location is near the ideal solution and
that only a small distance is required to reach it. However, in S-shaped transfer functions, a
positive value results in a higher likelihood (probability of 1), whereas a negative value
results in a probability of 0 for the following particles’ location, which is in contrast with
the natural movements of SI algorithms.

4.1.2. Binary QANA Using V-Shaped Transfer Function (V-BQANA)

The V-shaped transfer function (hyperbolic) is a symmetric function introduced by
Rashdi et al. [77] to develop a binary version of the gravity search algorithm named BGSA.
According to Equation (9), this function calculates the probability of changing the value of
each dimension based on the position of each search agent in continuous search space,

TFv

(
xd

i (t + 1)
)
=
∣∣∣tanh

(
xd

i (t)
)∣∣∣ (9)

where xd
i (t) indicates the position value of the i-th search agent in the d-th dimension at the

current iteration. As illustrated in Equation (10), the position updating rules of V-shaped
transfer functions are quite different from S-shaped transfer functions,

bd
i (t + 1) =


(

bd
i (t)

)−1
, i f r < TFv

(
xd

i (t + 1)
)

bd
i (t), i f r ≥ TFv

(
xd

i (t + 1)
) (10)

where bd
i (t) and xd

i (t) represent the binary position and continuous position value of the

i-th search agent in the d-th dimension at the current iteration,
(

bd
i (t)

)−1
is the complement
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of bd
i (t), and r denotes a random value in [0, 1]. Based on this rule, if the value obtained

from the transfer function is equal to or greater than r, the value of the d-th dimension will
change to the complement of the current binary position as the continuous value is high
enough to change the current position. In contrast, the binary position of the d-th dimension
remains constant if the value obtained from the transfer function is less than r. As can
be seen in Table 1, three new transfer functions have been introduced by implementing
different mathematical equations. According to Figure 3, transfer functions V1, V2, V3, and
V4 provide the highest probability of switching search agents’ positions, respectively.

Unlike the S-shaped transfer functions, V-shaped transfer functions do not require
search agents to take 0 or 1 values, as they let search agents with low values remain
at their current positions or switch to their complements if their value is high enough.
Also, the V-shaped transfer functions solve the shortcomings of the S-shaped transfer
functions by assigning 0 probability of changing the position of a search agent with zero
value and considering the absolute value of the continuous position in the equations to
avoid assigning a probability of 0 for search agents with negative values. Moreover, in
another study, Mirjalili et al. [98] evaluated and compared different versions of sigmoid and
hyperbolic functions, which showed the relative superiority of hyperbolic family functions
in solving the FS problem.

4.1.3. Binary QANA Using U-Shaped Transfer Function (U-BQANA)

In a recent study, Mirjalili et al. [78] proposed a new U-shaped transfer function for
the PSO algorithm to map continuous solutions to binary ones. This transfer function
comes with two control parameters to modify the range of exploration and exploitation.
As can be seen in Figure 3, similar to the V-shaped transfer function, U-shaped is a sym-
metric function, which means that it assigns 0 probability of changing the position of a
search agent with 0 value. Also, as the absolute value of continuous position is consid-
ered in this transfer function, there are no differences between the positive and negative
values. The mathematical formulation of the U-shaped transfer function is presented in
Equations (11) and (12),

TFu

(
xd

i (t + 1)
)
= α

∣∣∣∣(xd
i (t)

)β
∣∣∣∣ (11)

bd
i (t + 1) =


(

bd
i (t)

)−1
, i f r < TFu

(
xd

i (t + 1)
)

bd
i (t), i f r ≥ TFu

(
xd

i (t + 1)
) (12)

where α and β are two control parameters for determining the slope and saturation point of
the U-shaped transfer function. bd

i and xd
i represent the binary and continuous positions of

the i-th search agent in the d-th dimension, respectively. r is a uniform random value in [0, 1].
Table 1 and Figure 3 illustrate different versions of the U-shaped transfer function

labeled U1, U2, U3, and U4 that were established using different values of control pa-
rameters. The α control parameter determines the U-shaped curve’s saturation point. In
contrast, β modifies the exploration range of the transfer function by changing the width of
the U-shaped transfer function’s basin. Hence, it is noticeable that U4 provides a higher
exploration range than other variations. It is also noticeable that all U-shaped variants offer
higher exploration than V-shaped ones.

4.1.4. Binary QANA Using Z-Shaped Transfer Function (Z-BQANA)

The Z-shaped transfer function proposed by Guo et al. [79] is a symmetric transfer
function applied to denote the probability that an element of the position vector will change
from 0 to 1 in the BPSO algorithm. Based on this transfer function, when the continuous
position value is 0, the probability of change should be low because when the particle
reaches the best value, the continuous position value should be lowered to 0, and the
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probability of the particle’s position change should be 0. The Z-shaped transfer function is
defined mathematically based on Equations (13) and (14),

TFz

(
xd

i (t + 1)
)
=

√
1− axd

i (t+1) (13)

bd
i (t + 1) =


(

bd
i (t)

)−1
, i f r < TFz

(
xd

i (t + 1)
)

bd
i (t), i f r ≥ TFz

(
xd

i (t + 1)
) (14)

where bd
i and xd

i represent the binary and continuous positions of the i-th search agent in
the d-th dimension, respectively, and a denotes a positive integer. A collection of Z-shaped
function families is generated by modifying the value of a, the formulas and figures of
which are presented in Table 2 and Figure 4, respectively. The Z-shaped transfer function is
an asymmetric mapping function, as seen in Figure 4. The asymmetric mapping function
essentially fulfills the absolute value to calculate the mapping probability of the particle
position vector variation, resulting in a quick convergence. The function’s slope varies
when the parameter Dparticle = DFunction × 15 is changed. The lesser the slope of the function,
the greater Dparticle = DFunction × 15. Hence, when the value remains constant, the probability
of obtaining small changes in the location of the i-th particles is greater.

Table 2. The formulation of Z-shaped and quadratic family transfer functions.

No. Z-Shaped Transfer Functions No. Quadratic Transfer Functions

Z1 TFZ(x) =
√

1− 2x Q1 TFQ(x) =

{∣∣∣ x
(0.5 xmax )

∣∣∣, i f x < 0.5 xmax

1 , i f x ≥ 0.5 xmax

Z2 TFZ(x) =
√

1− 5x Q2 TFQ(x) =

{(
x

(0.5 xmax )

)2
, i f x < 0.5 xmax

1 , i f x ≥ 0.5 xmax

Z3 TFZ(x) =
√

1− 8x Q3 TFQ(x) =

{(
x

(0.5 xmax )

)3
, i f x < 0.5 xmax

1 , i f x ≥ 0.5 xmax

Z4 TFZ(x) =
√

1− 20x Q4 TFQ(x) =


(

x
(0.5 xmax )

) 1
2 , i f x < 0.5 xmax

1 , i f x ≥ 0.5 xmax
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4.1.5. Binary QANA Using Quadratic Transfer Function (Q-BQANA)

The quadratic transfer function proposed by Rezaee Jordehi [81] is a recent transfer
function used for converting continuous solutions of the PSO to binary ones based on
Equations (15) and (16),

TFQ

(
xd

i (t + 1)
)
=


(

xd
i (t)

0.5 xmax

)2
, i f xd

i (t) < 0.5 xmax

1, i f xd
i (t) ≥ 0.5 xmax

(15)
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bd
i (t + 1) =


(

bd
i (t)

)−1
, i f r < TFQ

(
xd

i (t + 1)
)

bd
i (t), i f r ≥ TFQ

(
xd

i (t + 1)
) (16)

where TFQ denotes the quadratic transfer function and bd
i and xd

i represent the binary
and continuous positions of the i-th search agent in the d-th dimension, respectively. The
variable r is a random number in [0, 1]. The three other variants of the quadratic transfer
function [80] are presented mathematically in Table 2 and visualized in Figure 4.

4.2. Binary QANA Development Using Variable Threshold (BQANA)

The previous subsections introduced different variants of binary QANA based on five
different categories of transfer functions. Although transfer functions are widely used in
the literature of FS, they impose an additional computational cost. Furthermore, transfer
functions cannot provide superior results for every metaheuristic algorithm, especially
for high-dimensional datasets. On the other hand, the QANA proved to be an effective
problem solver in solving high-dimensional problems as it provides adequate search space
coverage [73]. It is expected that the BQANA developed based on the second approach
can generate suitable candidates for solving the FS problem. Hence, this section proposes
the superior version of binary QANA, named BQANA, by simply using a threshold for
assigning continuous solutions of the QANA into binary. In this approach, the generated
continuous solutions are converted to binary form based on Equation (17),

bd
i (t + 1) =

{
1, i f xd

i (t) > 0.5
0, i f xd

i (t) ≤ 0.5
(17)

where bd
i is the binary solution of the i-th search agent in the d-th dimension, xd

i (t) denotes
the continuous position of the i-th search agent in the d-th dimension at iteration t. The
general procedure of selecting effective features with BQANA is illustrated in Figure 5,
where the algorithm receives the dataset with all features as input and returns an optimal
feature subset as output.
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5. Experimental Assessment

In this section, the performance of the proposed binary QANA approaches for solving
the FS problem is experimentally assessed on 10 medical datasets of various sizes, which
are described in Table 3. Also, the parameters of the algorithms used in this experiment
are shown in Table 4. In the first approach, the canonical QANA is converted to binary
using 20 different transfer functions from five categories of S-shaped [76], V-shaped [77],
U-shaped [78], Z-shaped [79], and quadratic [80,81] to solve FS problem. The comparison
results related to different variants of the first approach are tabulated in Tables A1–A5. In
the second approach, the QANA is converted to binary by assigning a threshold for each
dimension to map the continuous solutions into binary without further computational
cost. To select the best algorithms from the first approach, one algorithm is considered
representative of each transfer function category. Then, the five selected algorithms are
compared against the BQANA developed based on the second approach in Table 5. Ulti-
mately, Table 6 presents a comparison between the proposed BQANA and nine well-known
metaheuristic algorithms introduced in the literature, including binary particle swarm
optimization (BPSO) [82], ant colony optimization (ACO) [83], binary deferential evolution
(BDE) [84], binary bat algorithm (BBA) [85], feature selection based on whale optimization
algorithm (FSWOA) [11], binary ant lion optimizer (BALO) [86], binary dragonfly algorithm
(BDA) [87], quadratic binary Harris hawk optimization (QBHHO) [80], and binary atom
search optimization (BASO) [88]. In Tables 5, 6 and A1–A5, the bold values indicate the
winning algorithms, and at the end of each table, the overall comparisons are shown based
on the numbers of the wins (W), ties (T), and losses (L).

Table 3. Datasets specifications.

No. Medical Datasets No. Samples No. Features Classes Size

1 Pima 768 8 2 Small
2 HeartEw 270 13 2 Small
3 Lymphography 148 18 4 Small
4 SPECT Heart 267 22 2 Small
5 PenglungEW 73 325 7 Medium
6 Parkinson 756 754 2 Medium
7 Colon 62 2000 2 Large
8 SRBCT 83 2308 4 Large
9 Leukemia 72 7129 4 Large

10 Prostate tumor 102 10509 2 Large

Table 4. Parameters of the algorithms.

Algorithm Parameter Settings

BPSO c1 = c2 = 2, w = [0.9 to 0.4].
ACO τ = 1, α = 1, ρ = 0.2, β = 0.1, η = 1.
BDE Cr = 0.9.
BBA A = 0.9, r = 0.9, Qmin = 0, Qmax = 2.
FSWOA a is linearly decreased from 2 to 0, a2 = is linearly decreased from −1 to −2, b = 1.
BALO V-shaped transfer function.
BDA Dmax = 6.
QBHHO β = 1.5, Q4 transfer function, and xmax = 5.
BASO α = 50, β = 0.2.
BQANA The number of flocks (k) = 2, LTM size (K′) = 2, and STM size (K”) = 10.
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Table 5. The comparison between the BQANA and winners of each family.

Datasets Metrics S4 V2 U4 Z1 Q3 BQANA

Pima

Fitness
Avg 0.2386 0.2389 0.2393 0.2350 0.2380 0.2316

Min 0.2343 0.2332 0.2318 0.2281 0.2319 0.2291

Accuracy
Avg 76.5053 76.4863 76.3969 76.8837 76.4997 77.2076

Max 76.9617 76.9532 77.0933 77.4675 77.0762 77.4863

HeartEW

Fitness
Avg 0.1493 0.1513 0.1493 0.1496 0.1509 0.1384

Min 0.1395 0.1432 0.1432 0.1395 0.1416 0.1329

Accuracy
Avg 85.3333 85.1111 85.2778 85.4074 85.0741 86.4259

Max 86.2963 85.9259 85.9259 86.2963 85.9259 87.0370

Lymphography

Fitness
Avg 0.1434 0.1425 0.1423 0.1273 0.1432 0.1128

Min 0.1324 0.1247 0.1258 0.1049 0.1303 0.1008

Accuracy
Avg 86.0595 86.1048 86.1690 87.7024 85.9952 89.1310

Max 87.1905 87.9048 87.8571 89.9048 87.2857 90.3810

SPECT Heart

Fitness
Avg 0.2503 0.2457 0.2468 0.2450 0.2453 0.2231

Min 0.2415 0.2306 0.2260 0.2288 0.2326 0.2038

Accuracy
Avg 75.1709 75.6019 75.4623 75.7543 75.5648 77.8725

Max 76.0969 77.1652 77.5356 77.2080 76.8234 79.7863

PenglungEW

Fitness
Avg 0.1014 0.0993 0.1000 0.1012 0.0977 0.0765

Min 0.0830 0.0842 0.0935 0.0805 0.0828 0.0545

Accuracy
Avg 90.2946 90.4286 90.3393 90.3929 90.5357 92.6429

Max 92.1429 91.9643 90.8929 92.3214 91.9643 94.8214

Parkinson

Fitness
Avg 0.2341 0.2200 0.2011 0.2308 0.2049 0.1604

Min 0.2160 0.1882 0.1865 0.1949 0.1838 0.1279

Accuracy
Avg 76.8834 78.1005 79.9472 77.2476 79.6068 83.9765

Max 78.7018 81.4895 81.4877 80.8175 81.7456 87.1807

Colon

Fitness
Avg 0.1012 0.0994 0.0995 0.1007 0.0947 0.0775

Min 0.0949 0.0852 0.0916 0.0874 0.0809 0.0481

Accuracy
Avg 90.3214 90.4286 90.4167 90.4405 90.7976 92.5000

Max 90.9524 91.9048 91.1905 91.6667 92.1429 95.2381

SRBCT

Fitness
Avg 0.0129 0.0120 0.0101 0.0116 0.0047 0.0040

Min 0.0053 0.0038 0.0021 0.0045 0.0018 0.0003

Accuracy
Avg 99.2361 99.2222 99.3819 99.3750 99.8333 99.8333

Max 100.00 100.00 100.00 100.00 100.00 100.00

Leukemia

Fitness
Avg 0.1010 0.1000 0.0960 0.0969 0.0915 0.0638

Min 0.0884 0.0827 0.0690 0.0825 0.0702 0.0426

Accuracy
Avg 90.3393 90.3661 90.7143 90.8304 91.0714 93.9196

Max 91.6071 92.1429 93.3929 92.1429 93.2143 96.2500

Prostate Tumor

Fitness
Avg 0.1219 0.1201 0.1147 0.1195 0.1113 0.0534

Min 0.1044 0.1074 0.0984 0.1014 0.0882 0.0199

Accuracy
Avg 88.2318 88.2864 88.7136 88.5409 89.0818 94.7773

Max 90.0000 89.5455 90.0909 90.2727 91.2727 98.0000

Overall Results W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0
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Table 6. The comparison between the BQANA and comparative algorithms.

Datasets Metrics BPSO ACO BDE BBA FSWOA BALO BDA QBHHO BASO BQANA

Pima

Fitness
Avg 0.2329 0.2380 0.2324 0.2327 0.2374 0.2323 0.2317 0.2337 0.2353 0.2316

Min 0.2304 0.2317 0.2292 0.2267 0.2266 0.2499 0.2280 0.2266 0.2243 0.2291

Accuracy
Avg 77.0224 76.519 77.2101 77.0195 76.6752 77.0936 77.1855 76.9329 76.7359 77.2076

Max 77.3599 77.211 77.4812 77.6094 77.0796 77.6196 77.4744 77.6145 77.8520 77.4863

No.
features

Avg 4.300 4.400 5.400 4.450 5.200 4.450 4.450 4.250 4.000 4.750

Min 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 2.000 4.000

HeartEW

Fitness
Avg 0.1414 0.1489 0.1390 0.1408 0.1548 0.1407 0.1386 0.1417 0.1426 0.1384

Min 0.1358 0.1395 0.1308 0.1358 0.1468 0.1358 0.1308 0.1351 0.1380 0.1329

Accuracy
Avg 86.1296 85.333 86.5370 86.1481 84.9074 86.1852 86.426 86.0370 85.9074 86.4259

Max 86.6667 86.296 87.4074 86.6667 85.5556 86.6667 87.407 86.6667 86.6667 87.0370

No.
features

Avg 5.300 4.150 7.450 4.950 7.050 5.150 5.450 4.450 4.000 5.250

Min 3.000 3.000 5.000 3.000 4.000 3.000 4.000 3.000 3.000 3.000

lymphography

Fitness
Avg 0.1194 0.1450 0.1246 0.1524 0.1380 0.1146 0.1154 0.1266 0.1275 0.1128

Min 0.1046 0.1303 0.1050 0.1375 0.1252 0.1055 0.1054 0.1130 0.1135 0.1008

Accuracy
Avg 88.4929 85.900 88.1000 85.0714 86.6905 88.9476 88.871 87.6500 87.7167 89.1310

Max 90.0000 87.286 90.0000 86.6190 87.9524 89.9048 89.952 89.0952 89.0952 90.3810

No.
features

Avg 9.650 9.600 12.150 8.150 11.300 9.350 9.450 7.650 10.600 9.400

Min 6.000 5.000 10.000 5.000 9.000 6.000 7.000 6.000 6.000 6.000

SPECT Heart

Fitness
Avg 0.2291 0.2488 0.2298 0.2339 0.2574 0.2209 0.2230 0.2308 0.2354 0.2231

Min 0.2091 0.2348 0.1994 0.2226 0.2458 0.2069 0.2012 0.2150 0.2219 0.2038

Accuracy
Avg 77.2877 75.234 77.3440 76.6254 74.6197 78.1346 77.900 76.9708 76.5021 77.8725

Max 79.3875 76.695 80.2279 77.9772 75.7265 79.4729 80.185 78.6467 77.9060 79.7863

No.
features

Avg 9.150 7.800 12.050 9.450 13.500 9.650 9.200 6.100 6.200 8.850

Min 6.000 2.000 6.000 4.000 10.000 7.000 4.000 2.000 2.000 2.000

PenglungEW

Fitness
Avg 0.0895 0.0977 0.0936 0.0915 0.1093 0.0898 0.0826 0.0843 0.0895 0.0765

Min 0.0807 0.0816 0.0735 0.0832 0.0878 0.0803 0.0681 0.0695 0.0746 0.0545

Accuracy
Avg 91.4554 90.446 91.3304 91.2143 89.6607 91.7321 92.143 91.7411 91.2500 92.6429

Max 92.3214 91.964 93.2143 91.9643 91.7857 93.3929 93.571 93.2143 93.0357 94.8214

No.
features

Avg 158.650 98.650 252.750 148.400 225.950 159.550 155.15 80.950 94.400 120.650

Min 139.000 34.000 204.000 118.000 212.000 143.000 131.00 28.000 38.000 47.000

Parkinson

Fitness
Avg 0.2033 0.1813 0.2512 0.2217 0.2541 0.1953 0.1938 0.1673 0.1703 0.1604

Min 0.1754 0.1628 0.2429 0.1768 0.2500 0.1556 0.1549 0.1546 0.1489 0.1279

Accuracy
Avg 79.9612 81.813 75.3543 78.0702 75.0166 80.7618 80.902 83.1542 82.9234 83.9765

Max 82.8018 83.595 76.3228 82.5474 75.3912 84.7895 84.795 84.4123 85.0386 87.1807

No.
features

Avg 367.450 90.550 540.100 355.000 511.650 365.650 358.40 37.450 96.550 130.100

Min 331.000 7.000 402.000 299.000 184.000 325.000 332.00 8.000 46.000 16.000

Colon

Fitness
Avg 0.0892 0.0983 0.1020 0.0913 0.1098 0.0898 0.0925 0.0821 0.0905 0.0775

Min 0.0710 0.0795 0.0882 0.0684 0.0969 0.0803 0.0776 0.0501 0.0625 0.0481

Accuracy
Avg 91.4881 90.381 90.5357 91.2381 89.6071 91.4286 91.143 91.9286 91.0714 92.5000

Max 93.3333 92.143 91.9048 93.5714 90.7143 92.3810 92.619 95.0000 93.8095 95.2381

No.
features

Avg 993.050 534.15 1651.50 918.250 1386.20 988.950 954.20 431.900 422.950 644.300

Min 963.000 36.000 1355.00 636.000 989.000 939.000 848.00 117.000 164.000 80.000
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Table 6. Cont.

Datasets Metrics BPSO ACO BDE BBA FSWOA BALO BDA QBHHO BASO BQANA

SRBCT

Fitness
Avg 0.0048 0.0061 0.0097 0.0064 0.0241 0.0047 0.0052 0.0006 0.0012 0.0040

Min 0.0046 0.0010 0.0057 0.0025 0.0179 0.0042 0.0039 0.0002 0.0009 0.0003

Accuracy
Avg 100.000 99.604 99.7153 99.7222 98.2500 100.000 99.938 100.000 100.000 99.8333

Max 100.000 100.00 100.000 100.000 98.8889 100.000 100.00 100.000 100.000 100.000

No.
features

Avg 1102.00 483.35 1597.20 957.900 1568.70 1077.80 1048.0 132.450 277.850 551.850

Min 1068.00 138.00 1327.00 566.000 979.000 972.000 4.000 57.000 208.000 77.000

Leukemia

Fitness
Avg 0.0844 0.0925 0.0937 0.0893 0.1105 0.0802 0.0768 0.0706 0.0744 0.0638

Min 0.0739 0.0708 0.0766 0.0700 0.1007 0.0580 0.0560 0.0560 0.0438 0.0426

Accuracy
Avg 91.9821 90.92 91.3036 91.3482 89.5446 92.4018 92.732 93.0179 92.6786 93.9196

Max 93.0357 93.036 93.0357 93.3929 90.5357 94.6429 94.821 94.4643 95.7143 96.2500

No.
features

Avg 3552.30 1706.9 5421.20 3270.30 5003.65 3532.25 3451.6 1073.15 1385.95 2546.800

Min 3496.00 68.000 4057.00 2251.00 4723.00 3451.00 3108.0 315.000 737.000 536.000

Prostate Tumor

Fitness
Avg 0.1026 0.0997 0.1024 0.1047 0.1263 0.0997 0.1009 0.0561 0.0880 0.0534

Min 0.0922 0.0678 0.0828 0.0902 0.1132 0.0814 0.0806 0.0289 0.0704 0.0199

Accuracy
Avg 90.1409 90.000 90.4864 89.8182 87.9545 90.4364 90.300 94.3500 91.2409 94.7773

Max 91.1818 93.182 92.2727 91.3636 89.2727 92.2727 92.364 97.0909 93.0000 98.0000

No.
features

Avg 5238.15 786.25 8669.55 4655.00 7425.75 5247.40 5129.7 206.250 1342.50 1833.300

Min 5157.00 83.000 6645.00 2420.00 7230.00 5138.00 4809.0 65.000 1012.00 82.000

Overall Results W|T|L 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|0|10 1|0|9 0|0|10 8|0|2

The comparison tables show the average fitness, minimum fitness, average classifica-
tion accuracy, maximum classification accuracy, average number of selected features, and
minimum number of selected features obtained by each algorithm. The average number
of selected features by each algorithm from different datasets with various sizes is visual-
ized in Figures 6 and 7. Also, as classification accuracy is the most important criterion in
medical datasets, the boxplot results of 10 different algorithms are exhibited in Figure 8.
Furthermore, the convergence curves of fitness values obtained during the optimization
process are visualized in Figure 9. Ultimately, the nonparametric Friedman test [105] was
used to rank the significance of the algorithms based on their performance in minimizing
the fitness, as is shown in Table 7 and Figure 10.
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Figure 6. The average number of features selected by BQANA and comparative algorithms on
small datasets.
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Figure 7. The average number of features selected by BQANA and comparative algorithms on
medium and large datasets.
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Table 7. The Friedman test for the fitness obtained by each algorithm.

Datasets BPSO ACO BDE BBA FSWOA BALO BDA QBHHO BASO BQANA

Pima 5.73 9.70 3.65 5.18 8.90 4.33 2.85 6.85 5.90 1.93
HeartEw 5.97 8.95 2.92 4.57 10.00 4.82 2.20 6.30 7.25 2.00
Lymphography 3.95 9.05 5.35 9.95 7.90 2.63 2.65 6.00 6.05 1.48
SPECT Heart 4.35 9.00 4.85 6.95 10.00 1.85 2.45 4.95 7.80 2.80
PenglungEW 5.45 8.55 7.90 6.95 10.00 4.35 2.95 2.90 4.85 1.10
Parkinson 6.35 5.15 9.10 7.65 9.90 5.10 5.65 2.10 2.80 1.20
Colon 4.55 8.05 8.90 5.95 10.00 4.75 5.45 2.00 4.35 1.00
SRBCT 6.85 5.20 8.85 5.65 9.95 6.30 5.85 1.00 2.30 3.05
Leukemia 6.25 7.90 8.75 6.90 10.00 5.00 3.05 2.00 3.75 1.40
Prostate
Tumor 6.80 5.65 6.90 7.85 10.00 5.50 6.15 1.65 3.15 1.35

Average rank 5.62 7.72 6.71 6.76 9.66 4.46 3.92 3.57 4.82 1.73

Overall rank 6 9 7 8 10 4 3 2 5 1
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Figure 10. The rank of BQANA and comparative algorithms for feature selection problems.

5.1. Medical Datasets Description

In this study, 10 medical benchmark datasets, mostly from the UCI machine learning
repository, are utilized to evaluate the performance of the proposed BQANA and com-
parative algorithms in solving the FS problem. The benchmark datasets utilized in the
experimental evaluation of this study are on an ordinal scale, as common in the literature.
Datasets with non-ordinal features can be encoded in the pre-processing stage [106]. Table 3
provides the specifics of the utilized datasets in terms of the number of samples, total
number of features, number of classes, and size that is considered small if Nf < 300, medium
if 300 ≤ Nf < 1000, and considered large if Nf ≥ 1000, where Nf is the number of features.
To avoid overfitting problems, the K-fold cross-validation method divides datasets into
k folds where kfold = 10. In this method, the classifier uses one fold as the testing set and
k − 1 folds as the training sets.

The Pima Indian Diabetes dataset aims to diagnose diabetes based on medical exami-
nation of females at least 21 years old and being tested for diabetes [107]. The HeartEW
dataset [108] predicts the absence or presence of heart disease based on data gathered
from 270 samples, 120 samples with a heart problem, and the remaining are healthy. The
Lymphography dataset [108] has 18 predictor features and 148 cases, with four distinct
values for the class label. The aim of diagnosing cardiac single proton emission computed
tomography (SPECT) heart dataset is to discriminate between the normal and abnormal
function of patients’ hearts using 267 image sets. The PenglungEW is a medium dataset
consisting of 73 samples and 325 features with seven different classes. The Parkinson’s
dataset describes diagnosing healthy persons from those with Parkinson’s disease. This
dataset is built up of various biological voice measurements with 22 features. The Colon
dataset aims to classify tissues as cancerous or normal based on data gathered from 62
colon tissue samples with 2000 genes [109]. There are 83 samples in the small round blue-
cell tumor (SRBCT) dataset, each containing 2308 genes. The four classes of this dataset
are the Ewing family of tumors (EWS), Burkitt lymphoma (BL) tumors, rhabdomyosar-
coma (RMS) tumors, and neuroblastoma (NB) tumors [110]. The data for the Leukemia
dataset came from publicly accessible microarray gene data [111]. The bone marrow ex-
pressions of 72 samples with 7128 genes are included. The dataset contains two different
kinds of Leukemia classifications. The prostate tumor [112] is the largest dataset used in
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our experiments that contains 10,509 genes from 52 prostate cancers and 50 non-tumor
prostate tissues.

5.2. Parameter Settings

In this study, the error rate is calculated using the k-nearest neighbor (KNN) algorithm
with Euclidean distance and k = 5 to evaluate the effectiveness of selected feature subsets.
The objectives of this study are evaluated by a fitness function presented in Equation
(18), where CE denotes the classification error, α is the significance of classification quality,
Nsf and Ntf are the numbers of selected features, and the total features of the dataset,
respectively. As classification accuracy is the most important factor for medical datasets,
we considered α = 0.99 for this study.

Fitness = α× CE + (1− α)
Ns f

Nt f
(18)

To verify that the comparisons are accurate and fair, all experiments are conducted
20 times independently on a laptop with an Intel Core i7-10750H CPU and 24.0 GB of RAM
using MATLAB R2022a. The maximum number of iterations (MaxIt) and the population
size (N) were set to 300 and 20, respectively. Furthermore, the competing algorithms’
parameters were adjusted to the same values as the stated settings in their works, shown in
Table 4.

6. Discussion

Tables A1–A5 show the comparison results of applying different transfer functions to
develop different binary versions of the QANA based on the first approach. The results
indicate that S4, V2, U4, Z1, and Q3 transfer functions provide superior results compared to
other family members. Table 5 compares the results of five selected algorithms developed by
the first approach with the BQANA developed based on the second approach. Clearly, the
BQANA developed using the second approach overcomes the binary algorithms belonging
to the first approach. Table 6 further investigates the proposed BQANA’s effectiveness
by comparing it with nine well-known optimization algorithms of the feature selection
domain. The results show that the BQANA achieves superior results in terms of average
fitness for most of the datasets. Regarding the BQANA’s results shown in Figure 6, it has an
average performance in minimizing the number of features, while turning to Figure 7, it is
clear that the BQANA and the QBHHO provide the minimum number of features for most
of the datasets among the competitors. The boxplots in Figure 8 illustrate the spread of
the classification accuracy distribution obtained by each algorithm, in which the BQANA
is predominantly the superior algorithm in terms of obtaining the highest accuracy and
normal distribution.

Convergence curves plotted in Figure 9 generally suggest that the BQANA has the
fastest convergence toward optimum solutions compared to comparative algorithms for
most cases. Furthermore, it is noticeable that the BQANA consistently improves the
solutions until the final iterations. Overall, the BQANA is fairly scalable as it can find
better feature subsets for different scales of medical datasets by maintaining a balance
between exploration and exploitation. Based on the results of the Friedman test reported
in Table 7, the BQANA is superior to comparative algorithms in feature selection from
different scales of medical data. For further statistical evaluation, Figure 10 provides the
exploratory data analysis in a radar chart format. It is noticeable in the radar chart that the
BQANA surrounds the center of the radar chart for most of the datasets, which shows the
superiority of the BQANA over the comparative algorithms.

7. Conclusions

The advancement of information storage technologies in medical science has resulted
in the generation of massive amounts of raw datasets with many irrelevant or redundant
features. Selecting desirable features will reduce the computational costs and improve the
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algorithms’ accuracy in the data-driven decision-maker software. Although many meta-
heuristic algorithms have been developed to select effective features, a few can maintain
their performance when the number of features increases. This paper introduces an efficient
binary version of the quantum-based avian navigation optimizer algorithm (QANA), called
BQANA, to select effective features from various scales of medical datasets. The study
consists of two approaches for mapping continuous solutions of QANA into binary. In
the first approach, 20 different transfer functions from five distinct categories, S-shaped,
V-shaped, U-shaped, Z-shaped, and quadratic, were applied to develop different variants
of the binary QANA. According to the results, transfer functions cannot generate optimal
binary solutions for every metaheuristic algorithm in the FS domain. Moreover, using
transfer functions imposes additional computational costs on the optimization algorithms.

In the second approach, a simple threshold with minimum computational costs is used
to assign continuous QANA solutions into binary ones to develop the BQANA. All variants
were experimentally evaluated on 10 medical datasets to identify the winner variant. The
experimental results reveal that the BQANA developed by the second approach generates
better solutions than the other variants. Then, the results of the BQANA were compared
with results obtained from nine well-known metaheuristic algorithms: BPSO, ACO, BDE,
BBA, FSWOA, BALO, BDA, QBHHO, and BASO. Furthermore, the Friedman test was
applied to rank the algorithms based on their performance. The experimental results
and statistical analysis revealed that the BQANA developed by the second approach
outperforms comparative algorithms in selecting effective feature subsets from different
scales of medical datasets. In the future, the BQANA can be enhanced by improving
its search strategy and using novel and more effective transfer functions. Moreover, the
BQANA can be applied to solve real-world applications and other discreet problems such
as nurse scheduling.
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Appendix A

Tables A1–A5 present the comparison results between different versions of binary
QANA developed by the first approach in each transfer function family.
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Table A1. The comparison results between different versions of S-BQANA.

Datasets Metrics S1 S2 S3 S4

Pima

Fitness
Avg 0.2353 0.2357 0.2374 0.2386

Min 0.2318 0.2305 0.2318 0.2343

Accuracy
Avg 76.8744 76.7920 76.6131 76.5053

Max 77.2180 77.3445 77.2215 76.9617

HeartEW

Fitness
Avg 0.1479 0.1504 0.1510 0.1493

Min 0.1382 0.1418 0.1424 0.1395

Accuracy
Avg 85.5926 85.3148 85.1481 85.3333

Max 86.6667 86.2963 85.9259 86.2963

Lymphography

Fitness
Avg 0.1314 0.1332 0.1361 0.1434

Min 0.1204 0.1218 0.1136 0.1324

Accuracy
Avg 87.3667 87.1405 86.8190 86.0595

Max 88.5714 88.4286 89.1429 87.1905

SPECT Heart

Fitness
Avg 0.2496 0.2504 0.2462 0.2503

Min 0.2390 0.2359 0.2321 0.2415

Accuracy
Avg 75.3540 75.2158 75.6211 75.1709

Max 76.4530 76.7236 77.1510 76.0969

PenglungEW

Fitness
Avg 0.1084 0.1042 0.1035 0.1014

Min 0.0984 0.0948 0.0973 0.0830

Accuracy
Avg 89.7589 90.0804 90.1071 90.2946

Max 90.7143 91.0714 90.7143 92.1429

Parkinson

Fitness
Avg 0.2538 0.2489 0.2437 0.2341

Min 0.2453 0.2357 0.2191 0.2160

Accuracy
Avg 75.1071 75.4697 75.9318 76.8834

Max 75.9281 76.8491 78.4175 78.7018

Colon

Fitness
Avg 0.1088 0.1034 0.1034 0.1012

Min 0.0998 0.0978 0.0978 0.0949

Accuracy
Avg 89.7381 90.1905 90.1310 90.3214

Max 90.7143 90.7143 90.7143 90.9524

SRBCT

Fitness
Avg 0.0211 0.0168 0.0165 0.0129

Min 0.0059 0.0060 0.0055 0.0053

Accuracy
Avg 98.5764 98.9306 98.8889 99.2361

Max 100.00 100.00 100.00 100.00

Leukemia

Fitness
Avg 0.1048 0.1044 0.1021 0.1010

Min 0.0820 0.0980 0.0973 0.0884

Accuracy
Avg 90.1250 90.0804 90.2500 90.3393

Max 92.3214 90.7143 90.7143 91.6071

Prostate Tumor

Fitness
Avg 0.1203 0.1199 0.1227 0.1219

Min 0.1050 0.1106 0.1110 0.1044

Accuracy
Avg 88.5909 88.5227 88.1727 88.2318

Max 90.1818 89.4545 89.3636 90.0000

Overall Results W|T|L 2|0|8 1|0|9 1|0|9 4|0|6
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Table A2. The comparison results between different versions of V-BQANA.

Datasets Metrics V1 V2 V3 V4

Pima

Fitness
Avg 0.2386 0.2389 0.2390 0.2382

Min 0.2330 0.2332 0.2344 0.2343

Accuracy
Avg 76.4616 76.4863 76.4431 76.5175

Max 77.0933 76.9532 76.8319 76.9600

HeartEW

Fitness
Avg 0.1518 0.1513 0.1513 0.1521

Min 0.1411 0.1432 0.1424 0.1439

Accuracy
Avg 85.0926 85.1111 85.1111 85.0370

Max 86.2963 85.9259 85.9259 85.9259

Lymphography

Fitness
Avg 0.1422 0.1425 0.1457 0.1412

Min 0.1263 0.1247 0.1382 0.1252

Accuracy
Avg 86.1524 86.1048 85.7857 86.2667

Max 87.8571 87.9048 86.5238 87.9048

SPECT Heart

Fitness
Avg 0.2468 0.2457 0.2499 0.2465

Min 0.2225 0.2306 0.2341 0.2188

Accuracy
Avg 75.4964 75.6019 75.1952 75.5306

Max 77.9345 77.1652 76.7236 78.2621

PenglungEW

Fitness
Avg 0.1030 0.0993 0.1001 0.0998

Min 0.0946 0.0842 0.0857 0.0825

Accuracy
Avg 90.0536 90.4286 90.3839 90.4196

Max 90.8929 91.9643 91.7857 92.1429

Parkinson

Fitness
Avg 0.2115 0.2200 0.2148 0.2160

Min 0.1805 0.1882 0.1831 0.1908

Accuracy
Avg 78.9557 78.1005 78.6849 78.6106

Max 82.0000 81.4895 81.7491 81.0912

Colon

Fitness
Avg 0.1008 0.0994 0.1030 0.1022

Min 0.0849 0.0852 0.0874 0.0970

Accuracy
Avg 90.2976 90.4286 90.0714 90.1429

Max 91.9048 91.9048 91.6667 90.4762

SRBCT

Fitness
Avg 0.0135 0.0120 0.0121 0.0097

Min 0.0031 0.0038 0.0030 0.0026

Accuracy
Avg 99.0694 99.2222 99.2083 99.4236

Max 100.00 100.00 100.00 100.00

Leukemia

Fitness
Avg 0.0974 0.1000 0.0982 0.0977

Min 0.0837 0.0827 0.0570 0.0757

Accuracy
Avg 90.6071 90.3661 90.5179 90.5804

Max 91.7857 92.1429 94.4643 92.8571

Prostate Tumor

Fitness
Avg 0.1206 0.1201 0.1152 0.1175

Min 0.1030 0.1074 0.0876 0.1004

Accuracy
Avg 88.2909 88.2864 88.7591 88.5864

Max 90.0909 89.5455 91.4545 90.3636

Overall Results W|T|L 2|0|8 3|1|6 1|1|8 3|0|7
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Table A3. The comparison results between different versions of U-BQANA.

Datasets Metrics U1 U2 U3 U4

Pima

Fitness
Avg 0.2399 0.2386 0.2377 0.2393

Min 0.2345 0.2331 0.2292 0.2318

Accuracy
Avg 76.3406 76.4590 76.5948 76.3969

Max 76.8267 77.0813 77.4812 77.0933

HeartEW

Fitness
Avg 0.1513 0.1514 0.1514 0.1493

Min 0.1432 0.1418 0.1453 0.1432

Accuracy
Avg 85.1481 85.1296 85.0926 85.2778

Max 85.9259 86.2963 85.5556 85.9259

Lymphography

Fitness
Avg 0.1415 0.1423 0.1419 0.1423

Min 0.1267 0.1258 0.1252 0.1258

Accuracy
Avg 86.2024 86.1524 86.1476 86.1690

Max 87.7619 87.8571 87.8571 87.8571

SPECT Heart

Fitness
Avg 0.2474 0.2481 0.2466 0.2468

Min 0.2326 0.2328 0.2374 0.2260

Accuracy
Avg 75.4444 75.3490 75.5221 75.4623

Max 76.7806 76.8519 76.4815 77.5356

PenglungEW

Fitness
Avg 0.0994 0.1004 0.0991 0.1000

Min 0.0827 0.0880 0.0833 0.0935

Accuracy
Avg 90.4286 90.3304 90.4375 90.3393

Max 92.1429 91.6071 91.9643 90.8929

Parkinson

Fitness
Avg 0.2163 0.2102 0.2082 0.2011

Min 0.2003 0.1903 0.1955 0.1865

Accuracy
Avg 78.4618 79.0351 79.2160 79.9472

Max 80.0456 80.9509 80.3982 81.4877

Colon

Fitness
Avg 0.1003 0.1004 0.0975 0.0995

Min 0.0945 0.0851 0.0826 0.0916

Accuracy
Avg 90.3571 90.3333 90.6310 90.4167

Max 90.9524 91.9048 92.1429 91.1905

SRBCT

Fitness
Avg 0.0112 0.0110 0.0084 0.0101

Min 0.0014 0.0035 0.0005 0.0021

Accuracy
Avg 99.2361 99.3125 99.4931 99.3819

Max 100.00 100.00 100.00 100.00

Leukemia

Fitness
Avg 0.0986 0.1001 0.0976 0.0960

Min 0.0863 0.0880 0.0827 0.0690

Accuracy
Avg 90.4821 90.3214 90.5804 90.7143

Max 91.7857 91.6071 91.7857 93.3929

Prostate Tumor

Fitness
Avg 0.1164 0.1169 0.1186 0.1147

Min 0.0982 0.0972 0.0977 0.0984

Accuracy
Avg 88.6045 88.5455 88.4136 88.7136

Max 90.2727 90.4545 90.3636 90.0909

Overall Results W|T|L 1|0|9 0|0|10 3|0|7 5|0|5
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Table A4. The comparison results between different versions of Z-BQANA.

Datasets Metrics Z1 Z2 Z3 Z4

Pima

Fitness
Avg 0.2350 0.2350 0.2345 0.2331

Min 0.2281 0.2279 0.2319 0.2305

Accuracy
Avg 76.8837 76.9140 76.9554 77.0729

Max 77.4675 77.4846 77.2283 77.4778

HeartEW

Fitness
Avg 0.1496 0.1472 0.1435 0.1465

Min 0.1395 0.1382 0.1387 0.1380

Accuracy
Avg 85.4074 85.6852 85.9630 85.7222

Max 86.2963 86.6667 86.2963 86.6667

Lymphography

Fitness
Avg 0.1273 0.1366 0.1313 0.1328

Min 0.1049 0.1138 0.1132 0.1120

Accuracy
Avg 87.7024 86.8548 87.4071 87.1881

Max 89.9048 89.2381 89.2381 89.1905

SPECT Heart

Fitness
Avg 0.2450 0.2491 0.2411 0.2411

Min 0.2288 0.2285 0.2167 0.2161

Accuracy
Avg 75.7543 75.3796 76.1197 76.1830

Max 77.2080 77.2365 78.6182 78.6325

PenglungEW

Fitness
Avg 0.1012 0.1002 0.0992 0.0985

Min 0.0805 0.0804 0.0811 0.0848

Accuracy
Avg 90.3929 90.5089 90.6339 90.6875

Max 92.3214 92.3214 92.3214 91.9643

Parkinson

Fitness
Avg 0.2308 0.2369 0.2355 0.2363

Min 0.1949 0.2082 0.1931 0.1935

Accuracy
Avg 77.2476 76.6975 76.7999 76.7173

Max 80.8175 79.5018 80.9579 80.9421

Colon

Fitness
Avg 0.1007 0.0995 0.1019 0.1006

Min 0.0874 0.0781 0.0827 0.0855

Accuracy
Avg 90.4405 90.4762 90.3452 90.4524

Max 91.6667 92.6190 92.1429 92.1429

SRBCT

Fitness
Avg 0.0116 0.0115 0.0132 0.0152

Min 0.0045 0.0044 0.0041 0.0038

Accuracy
Avg 99.3750 99.3750 99.2431 99.0347

Max 100.00 100.00 100.00 100.00

Leukemia

Fitness
Avg 0.0969 0.1003 0.0984 0.0983

Min 0.0825 0.0830 0.0716 0.0836

Accuracy
Avg 90.8304 90.4732 90.6964 90.6875

Max 92.1429 92.1429 93.2143 91.9643

Prostate Tumor

Fitness
Avg 0.1195 0.1178 0.1146 0.1178

Min 0.1014 0.1004 0.1004 0.1005

Accuracy
Avg 88.5409 88.7182 89.0364 88.6864

Max 90.2727 90.3636 90.3636 90.3636

Overall Results W|T|L 3|0|7 2|0|8 2|1|8 2|1|7
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Table A5. The comparison results between different versions of Q-BQANA.

Datasets Metrics Q1 Q2 Q3 Q4

Pima

Fitness
Avg 0.2392 0.2390 0.2380 0.2385

Min 0.2331 0.2318 0.2319 0.2344

Accuracy
Avg 76.4142 76.4458 76.4997 76.4923

Max 76.9549 77.0933 77.0762 76.8267

HeartEW

Fitness
Avg 0.1522 0.1528 0.1509 0.1540

Min 0.1468 0.1395 0.1416 0.1468

Accuracy
Avg 85.0556 84.9815 85.0741 84.8333

Max 85.5556 86.2963 85.9259 85.5556

Lymphography

Fitness
Avg 0.1438 0.1416 0.1432 0.1428

Min 0.1316 0.1252 0.1303 0.1202

Accuracy
Avg 85.9619 86.1524 85.9952 86.1143

Max 87.1429 87.8571 87.2857 88.4762

SPECT Heart

Fitness
Avg 0.2474 0.2441 0.2453 0.2464

Min 0.2287 0.2112 0.2326 0.2347

Accuracy
Avg 75.4345 75.6916 75.5648 75.5221

Max 77.1795 79.0313 76.8234 76.7949

PenglungEW

Fitness
Avg 0.1015 0.0982 0.0977 0.0991

Min 0.0958 0.0684 0.0828 0.0829

Accuracy
Avg 90.2054 90.4821 90.5357 90.4821

Max 90.7143 93.5714 91.9643 92.1429

Parkinson

Fitness
Avg 0.2256 0.2109 0.2049 0.2188

Min 0.1948 0.1888 0.1838 0.1998

Accuracy
Avg 77.6659 78.9870 79.6068 78.3081

Max 80.8175 81.2193 81.7456 80.0281

Colon

Fitness
Avg 0.1008 0.0994 0.0947 0.1017

Min 0.0829 0.0783 0.0809 0.0943

Accuracy
Avg 90.2738 90.3571 90.7976 90.2262

Max 92.1429 92.3810 92.1429 90.9524

SRBCT

Fitness
Avg 0.0130 0.0060 0.0047 0.0089

Min 0.0026 0.0021 0.0018 0.0024

Accuracy
Avg 99.1389 99.7153 99.8333 99.5417

Max 100.00 100.00 100.00 100.00

Leukemia

Fitness
Avg 0.1009 0.0969 0.0915 0.0970

Min 0.0875 0.0844 0.0702 0.0844

Accuracy
Avg 90.2946 90.6071 91.0714 90.6696

Max 91.6071 91.7857 93.2143 91.7857

Prostate Tumor

Fitness
Avg 0.1176 0.1126 0.1113 0.1201

Min 0.1032 0.0999 0.0882 0.1040

Accuracy
Avg 88.5773 88.9864 89.0818 88.3364

Max 90.0909 90.1818 91.2727 90.0000

Overall Results W|T|L 1|0|9 2|0|8 6|0|4 1|0|9
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