
90 Computer

H O W T H I N G S W O R K

D
igital technology works so
well because at the heart of
digital representation there
are only a few basic compo-
nents. Nowadays, these basic

components usually are binary digits,
bits for short, called binary because
they are designed to stand for only
two different values, conveniently
called zero and one. A stored or trans-
mitted bit’s state can deteriorate quite
badly before a processing device will
be mistaken in deciding which of the
two possible values is the original.

Most modern computers store the
data uniformly in blocks in their main
store. The blocks are numbered serially
so that each block has its own num-
ber—its address. Thus, each block has
two aspects: its address and its content.
Addresses are a simple sequence of ser-
ial numbers. The content located at a
specific address is the value of its bits,
usually eight in number and called a
byte, divided into two groups of four
contiguous bits called nibbles.

As each bit can independently be
either 0 or 1, a byte can hold 28 or 256
different values overall. There are too
many of these to conveniently give a
name to each, so bytes are usually con-

sidered as divided into nibbles of
hexadecimal digits—hex digits for
short. Table 1 lists binary digits and
their hexadecimal equivalent.

For clarity, the hex digits beyond 9
are sometimes spoken as able, baker,
charlie, dog, easy, and fox.

The value that any byte stores can
then be shown as a pair of these hex
digits. Strings of bytes can represent
anything you need represented digitally.
Being able to represent anything de-
pends on having adopted a convention
for representing things of that kind.

The earliest and still quite popular
class of thing to be represented is num-
bers, though properly speaking these
are not things but properties of things.
The numerical operations that a com-
puter carries out on numbers as num-
bers are together called its arithmetic.

ADDRESS ARITHMETIC
Working with a computer’s data
addresses requires only the simplest
arithmetic, called address arithmetic
or logical arithmetic. The arithmetic is
simple because there is only a limited
number of addresses and these are
unsigned—that is, never negative—
and start at zero.

If a computer used an address of one
byte, it would have a main store of 256
bytes with addresses from 0 to 255
(decimal) or 00 to FF (hex). A 2-byte
address would allow addresses from 0
to 65,535 or 0000 to FFFF, a 3-byte
address 0 to 16,777,215 or 000000 to
FFFFFF, and so on. Nowadays, com-
puters usually have addresses larger
than this. However, a one-byte address
will serve here to illustrate logical
arithmetic.

The main operation of logical arith-
metic is addition. Addition is a series
of steps starting with an augend and
an addend. For simplicity, we use an
8-bit byte to illustrate the process,
although 32-bit and 64-bit words are
more common today.

Each step computes three new quan-
tities: an augend, a carry, and an
addend. The steps use all n bits of the
operands in parallel (here n = 8). The
new augend bit is 1 if and only if
(denoted iff) one and only one of the
two incoming bits is a 1 (that is, iff cor-
responding bits of the augend and
addend are 01 or 10). The new carry bit
is 1 iff both incoming bits are 1. The
adder forms the new addend by shift-
ing the carry bits one position to the left
and putting a 0 in the right-most bit
position. The adder repeats the three
computations of a step (new augend,
carry, and addend) until all the carry
bits are 0. Figure 1 illustrates the exam-
ple of adding 85 and 103 (decimal).

Quirks
The time taken for a straightfor-

ward addition depends on the number
of steps needed, which can vary
widely. However, shortcuts can re-
move this dependency.

When adding two numbers, the
high order carry bit could be a 1. This
is simply lost in shifting. The effect is
like the hour-hand of a clock passing
through 12, except that in the hexa-
decimal example the clock would have
256 hours labeled 00 to FF.

Circuitry could be provided for sub-
traction, but it’s simpler to add the
complement. For a hexadecimal clock,
this hinges on 1 back, say, being the
same as 255 forward, and vice versa.

Binary
Arithmetic
Neville Holmes, University of Tasmania

The basic aspects of computer

arithmetic are how numbers

are represented and the

operations performed on

those representations.

For the binary representation of a
byte, the complement is its bitwise
complement with a one added in to
the lowest position.

Logical arithmetic is error free. An
address can be invalid, but only
because the main store is not big
enough to hold a value at every possi-
ble address, a fault that virtual
addressing eliminates.

INTEGER ARITHMETIC
When possible values are quantita-

tive and not indicative, the arithmetic
must be able to handle negative num-
bers and to multiply and divide with
them.

An early method of representing
negativity was to use the leading bit as
a simple arithmetic sign, but this raised
the ambiguity of having two different
zeroes, one negative and one positive.

The usual method nowadays is to
offset the values in such a way that the
arithmetic is not directly concerned
with negativity, but the leading bit
nevertheless acts as a negative sign.
Thus the values for a single byte
binary integer range from -128 (80) to
-1 (FF) and from 0 (00) to 127 (7F).
The four examples of addition in
Figure 2 illustrate this, showing that
the operation is practically the same
as for logical arithmetic, even though
the meanings have been changed.

Subtraction is carried out by adding
the negation of the subtrahend.
Multiplication is carried out by
repeated addition, and division by
repeated subtraction. Shortcuts are
used to speed up these operations.
Simple operations such as negation

and magnitude are typically also pro-
vided in a computer’s instruction set.

Quirks
Just as for address arithmetic, the

results are exact if they will fit into the
space provided for the result in the
result register. However, because the
values are no longer cyclic, the result
of an addition can be longer than that
space. If adding two positive numbers

results in an apparently negative num-
ber, then the correct sum is too long
for the result register to hold. This is
called an overflow and must be sig-
naled so that a program can deal with
this exceptional result. An apparent
nonnegative result from adding two
negative numbers is also an overflow.
Negation and magnitude of the lowest
representable number will also cause
an overflow, which will need to be

June 2007 91

Step Operand Binary Hex Decimal

Add decimal 85 + 103

Augend 01010101 55 85

Addend 01100111 67 103

New augend bit is 1 iff incoming bits are 01 or 10

1a Augend 00110010 32 50

Carry bit is 1 iff incoming bits are 11

1b Carry 01000101 45 69

New addend is now the left-shifted carry with 0 fill

1c Addend 10001010 8A 138

Repeat the three substeps until the carry is all zeroes

2a Augend 10111000 B8 184

2b Carry 00000010 02 2

2c Addend 00000100 04 4

Repeat the three substeps until the carry is all zeroes

3a Augend 10111100 BC 188

3b Carry 00000000 00 0

Finished because carry is all zeroes; answer is in the last augend

Figure 1. Address arithmetic example.The arithmetic is simple because there is only a

limited number of addresses and these are never negative.

Table 1. Hexadecimal digits.

Binary Hex Binary Hex

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

Example Binary Hex Decimal

(a) 85 + 39 = 124

Augend 01010101 55 85

Addend 00100111 27 39

Result 01111100 7C 124

(b) 85+ (–39) = 46

Augend 01010101 55 85

Addend 11011001 D9 –39

Result 00101110 2E 46

(c) (–85) + 39 = –46

Augend 10101011 AB –85

Addend 00100111 27 39

Result 11010010 D2 –46

(d) (–85) + (–39) = –124

Augend 10101011 AB –85

Addend 11011001 D9 –39

Result 10000100 84 –124

Figure 2. Integer addition examples.The values for a single byte binary integer range

from -128 (80) to -1 (FF) and from 0 (00) to 127 (7F).

signaled. In the example using eight
bits, –128 cannot be negated because
+128 is larger than the largest positive
number representable in eight bits
(+127).

While a program can satisfactorily
deal with an occasional overflow, sim-
ple multiplication would overflow far
too often to be tolerated. The usual way
to deal with this is to couple two result
registers to provide a double-length
product. It’s then up to the program to
use the two halves appropriately.

Integer division is more complicated
still. First, while the quotient, as an
integer, usually can be accommodated,
the division will leave a remainder, so
two result registers are needed.
Second, the quotient can in effect
overflow when the divisor is zero or
when the lowest representable integer
is divided by negative one.

SCALED ARITHMETIC
In scientific and engineering com-

puting, multiplications and divisions
are as frequent as additions and sub-
tractions. Repeated multiplication, as
in polynomial evaluation, is common.
Such computation requires scaling.

Before electronic computers became
available, scientists and engineers com-
monly used slide rules and logarithm
tables for multiplication and division,
and they did scaling mentally or with
the help of pencil and paper. Although
Konrad Zuse’s early computers used
automatic scaling, later machines, such
as John von Neumann’s IAS computer,
did not. This forced the programmer
to anticipate what scaling would be
needed, although the IAS machine
used 40-bit numbers to protect against
the unexpected.

When the unexpected proved all too
frequent, users built scaling into their
programs but, because this was very
slow, scientific computers soon did
their scaling in hardware. Rather
unfortunately, such arithmetic and the
representation of scaled values came
to be called floating-point arithmetic
and numbers. The adjective semilog-
arithmic is sometimes used for clarity.

A floating-point number has three
parts: the base b, the scale or expo-
nent e, and the significand s. The value
represented is s � be. The exponent
and the significand are variable in
floating-point representations, but the
base is fixed. Scaled values are printed
out using a base of 10, so 45E6 rep-
resents 45,000,000 and 4.5E–6 rep-
resents 0.0000045. Internally, most
computers use binary floating-point
arithmetic and representation in
which the base is 2.

IEEE Standard 754 for Binary
Floating-Point Arithmetic specifies the
format of floating-point numbers for
both single-precision (32-bit) and
double-precision (64-bit) representa-
tions. For simplicity, we consider only
the single-precision format. The stan-
dard says that the most significant bit
is the sign of the number (0 indicates
positive, and 1 indicates negative).
The next eight bits are the exponent
in base 2, expressed as an integer. But
because the number’s true exponent
must be allowed to be positive or neg-
ative, the 8-bit exponent value is
biased by +127, which makes the rep-
resentable range –127 to +128. The
remaining 23 bits are the mantissa,
also called the significand. Those 23
bits are used as fraction bits appended
to an implied integer of 1, sometimes

called the “hidden” bit. The signifi-
cand is termed “normalized” because
its arithmetic value is always less than
2 but not less than 1.

In floating-point multiplication the
exponents are added and the signifi-
cands multiplied. The exponent and
significand of the result might need
slight adjustment to bring the integer
part for the hidden bit back to 1
before the leading 23 fraction bits of
the product’s significand, perhaps with
rounding, are stored in the result.
Division is handled in much the same
way, but using subtraction on the
exponents and full division (without
remainder) on the significands.

Addition and subtraction are quite
complex because the values of the
exponents must be used to adjust the
alignment of the two significands
before the addition or subtraction can
take place. For further explanation
of floating-point arithmetic, see en.
wikipedia.org/wiki/floating_point.

Quirks
The most significant quirk of scaled

arithmetic is the loss of exactness.
Basic laws of arithmetic no longer
hold. For example,

(a + b) – a = a + (b – a) = b

in exact arithmetic but, because the
significand of any result needs to be
truncated or rounded in floating-point
arithmetic before it is stored, the result
of (a + b) – a might not be the same as
that of a + (b – a). Such errors can
accumulate significantly when a pro-
gram carries out trillions of floating-
point operations. Sophisticated use of
interval arithmetic can avoid this prob-
lem, but this requires the type of
rounding to be selectable so that it can
preserve the interval properties.

Because the significand is normal-
ized, there is no straightforward way
to represent zero. A tweak is needed.
Once this tweak is provided, the var-
ious possible results of division by
zero need tweaks in turn to represent
them. For example, different repre-
sentations are needed for 0 ÷ 0, 1 ÷ 0
and –1 ÷ 0. The arithmetic’s various

92 Computer

H O W T H I N G S W O R K

Sign Exponent Significand Binary Decimal

0 1000 0000 01000000. . . 0 +1.01 � 2 128-127 (1 + .25) � 21 = 2.5

1 1000 0001 11000000. . . 0 –1.11 � 2129-127 –(1 + .5 + .25) � 22 = –7

0 0111 1111 00000000. . . 0 +1 � 2127-127 1

Figure 3. Examples of scaled values.The most significant bit is the sign of the number (0

indicates positive, and 1 indicates negative).The next eight bits are the exponent in base

2, expressed as an integer.The 8-bit exponent value is biased by +127, which makes the

representable range –127 to +128.The significand is termed “normalized” because its

arithmetic value is always less than 2 but not less than 1.

operations must be able to handle all
these special values in combination
with each other and with ordinary val-
ues. To handle these special cases,
exponent values of all zeroes and all
ones are reserved to signal special val-
ues such as 0, denormalized numbers,
infinity, and not-a-number. Thus, for
ordinary arithmetic the exponent
actually only has a range of –126
to +127.

Floating-point arithmetic is not only
still subject to overflow when a result
becomes too large to represent, but a
result also can be too small to repre-
sent, an exception called underflow.

COMPLETE ARITHMETIC
Traditional floating-point arithmetic

tolerates the introduction of error, but
the errors tend to accumulate in unpre-
dictable ways. In the past, providing
longer and longer representations less-
ened the error, but this is a losing bat-
tle as computers become faster and
faster and problems larger and larger.
The result of a large scientific compu-
tation might now need many trillions
of floating-point operations.

Such computations typically include
focused subsections traversing very
large arrays of values to arrive at only
a few results such as the sum of prod-
ucts. The truncation error within such
subsections can be unpredictably
large, but it can be eliminated by using
a result register large enough to keep
the complete result, which is exact.
With computers as capacious as
today’s, that exact result can then be
kept as is for intermediate results,
pressing it into floating-point format
only for final results.

Complete arithmetic was available
more than 20 years ago as a special
feature for an IBM mainframe com-
puter, but was later removed from
sale. Perhaps it was before its time, as
implementation in a microprogram
was relatively slow.

With today’s integrated circuitry,
complete arithmetic has become quite
practical and has been satisfactorily
implemented on special chips. Its
widespread adoption is overdue as its
support for a branch of computation

called validated numerics is crucial.
Validated numerics can provide

solutions to most scientific computa-
tions with certainty. Prominent among
its techniques is a sophisticated appli-
cation of interval arithmetic, arith-
metic that works with paired values
that specify the bounds within which
an entity’s value must lie. Control of
rounding type ensures that values stay
within their bounds. Mathematicians
can design algorithms so that conver-
gence of intervals is proof that the
solution is completely valid. Complete
arithmetic can greatly speed up con-
vergence, and it can induce conver-
gence that would not be possible with
traditional floating-point arithmetic.

Quirks
While complete arithmetic can

greatly reduce the incidence of over-
flows and underflows, it cannot com-
pletely eliminate them. Valid results
can be too large or small to be repre-
sented even in a complete result regis-
ter—for example, in the unlikely event
of repeated exponentiation of extreme
values. Such invalidity is not of prac-
tical concern, however, because it can
be completely avoided in its most par-
ticular use—the ubiquitous scalar or
dot product. A more significant prob-
lem is the inability to fit extreme com-
plete results into standard floating-
point formats.

Large arrays of complete results
need large amounts of storage space
and time to store and fetch, although
using a variable-length format for
external storage of complete results
could greatly reduce both the space
and time needed. Nevertheless, pro-
grams need to keep down the number
of times they convert complete results
to floating-point format.

An arithmetic and representation
such as symmetric-level indexing,
which compares to semilogarithmic
arithmetic somewhat the way semi-
logarithmic compares to integer, can
eliminate overflow and underflow.
The drawback is the severe complex-
ity of arithmetic operations.

Perhaps a more serious problem
with binary arithmetic is the isolation

of scaled arithmetic from integer arith-
metic. This isolation means that pro-
grammers must make decisions about
which to use when coding programs,
and making such decisions is not
always easy. Also, they might need to
write several versions of a computa-
tional function for different represen-
tations of its arguments. An early
Burroughs mainframe computer in
which an integer represesentation
would switch to scaled rather than sig-
naling an overflow implemented such
an arithmetic.

F
urther discussion of these possi-
bilities can be found in “Com-
posite Arithmetic” (Computer,

Mar. 1997, pp. 65-73). Ulrich
Kulisch’s Advanced Arithmetic for
the Digital Computer: Design of
Arithmetic Units (Springer-Verlag,
2002) provides a description of com-
plete and interval arithmetics and their
implementation. ■

Neville Holmes is an honorary research

associate at the University of Tasmania’s

School of Computing. Contact him at

neville.holmes@utas.edu.au.

June 2007 93

Computer welcomes your submis-

sions to this bimonthly column.

For additional information, or to

suggest topics that you would like

to see explained, contact column

editor Alf Weaver at weaver@cs.

virginia.edu.

www.computer.org/join/

Join the
IEEE

Computer Society
online

at

