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Abstract—In recent years, the protection of biometric data has
gained increased interest from the scientific community. Methods
such as the fuzzy commitment scheme, helper-data system, fuzzy
extractors, fuzzy vault, and cancelable biometrics have been pro-
posed for protecting biometric data. Most of these methods use
cryptographic primitives or error-correcting codes (ECCs) and
use a binary representation of the real-valued biometric data.
Hence, the difference between two biometric samples is given by
the Hamming distance (HD) or bit errors between the binary
vectors obtained from the enrollment and verification phases, re-
spectively. If the HD is smaller (larger) than the decision threshold,
then the subject is accepted (rejected) as genuine. Because of the
use of ECCs, this decision threshold is limited to the maximum
error-correcting capacity of the code, consequently limiting the
false rejection rate (FRR) and false acceptance rate tradeoff. A
method to improve the FRR consists of using multiple biometric
samples in either the enrollment or verification phase. The noise
is suppressed, hence reducing the number of bit errors and de-
creasing the HD. In practice, the number of samples is empir-
ically chosen without fully considering its fundamental impact.
In this paper, we present a Gaussian analytical framework for
estimating the performance of a binary biometric system given
the number of samples being used in the enrollment and the ver-
ification phase. The error-detection tradeoff curve that combines
the false acceptance and false rejection rates is estimated to assess
the system performance. The analytic expressions are validated
using the Face Recognition Grand Challenge v2 and Fingerprint
Verification Competition 2000 biometric databases.

Index Terms—Binary biometrics, binary template matching,
performance estimation, template protection.

I. INTRODUCTION

W ITH THE increased popularity of biometrics and its
application in society, privacy concerns are being raised
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by privacy protection watchdogs. This has stimulated research
into methods for protecting the biometric data in order to
mitigate these privacy concerns. Numerous methods such as
the fuzzy commitment scheme [1], helper-data system [2]–[4],
fuzzy extractors [5], [6], fuzzy vault [7], [8], and cancelable

biometrics [9] have been proposed for transforming the bio-
metric data in such a way that the privacy is safeguarded.
Several of these privacy or template-protection techniques use
some cryptographic primitives (e.g., hash functions) or error-
correcting codes (ECC). Therefore, they use a binary rep-
resentation of the biometric data, referred to as the binary

vector. The transition from real valued to binary representation
of the biometric allows the difference between two biometric
samples to be quantified by the Hamming distance (HD),
i.e., the number of different bits (bit errors) between two binary
vectors.

Eventually, the biometric system has to verify the claimed

identity of a subject. If verified, this identity is considered

as genuine. The decision of either rejecting or accepting the

subject as genuine depends on whether the HD is larger than a

predetermined decision threshold (T ). In template-protection

systems that use an ECC, T is usually determined by its

error-correcting capacity. Hence, the false rejection rate (FRR)

depends on the number of genuine matches that produce an HD

that is larger than the decision threshold.

Attackers may attempt to gain access by impersonating a

genuine user. The associated comparisons are referred to as the

impostor comparisons and will be accepted if the HD is smaller

or equal to T , thus leading to a false accept. The success rate of

impersonation attacks is quantified by the false acceptance rate

(FAR).

Therefore, the performance of a biometric system can be

expressed by its FAR and FRR, which depends on the gen-

uine (φge) and impostor (φim) HD probability mass functions

(pmfs) and the decision threshold T . A graphical representation

is shown in Fig. 1.

One of the problems with template-protection systems based

on ECCs is that the FRR is lower (LB) bounded by the

error-correcting capacity of the ECC. A large FRR makes the

biometric system inconvenient because many genuine subjects

will be wrongly rejected. In some practical cases [2], [3], high

FRR values were obtained because it was impossible to further

increase the decision boundary since the used ECC was unable

to correct more bits. The method they used to improve the

FRR consists in using multiple biometric samples in order to
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Fig. 1. FRR and FAR from the genuine and impostor HD pmfs, φge, and
(φim), respectively.

suppress the noise and thus reduce the number of bit errors

resulting in a smaller HD.

The main objective of this paper is to analytically estimate,

under the Gaussian assumption, the performance of a biometric

system based on binary vectors under HD comparison and

considering the use of multiple biometric samples. We present

a framework for analytically estimating both the genuine and

impostor HD pmfs from the analytically estimated bit-error

probability presented in [10] under the assumption that both

the within and between class of the real-valued features are

Gaussian distributed. First, due to the central-limit theorem,

we can assume that the real-valued features will tend to ap-

proximate a Gaussian distribution when they result from a lin-

ear combinations of many components, e.g., feature-extraction

techniques based on the principle component analysis (PCA)

or linear discriminant analysis (LDA). PCA or LDA techniques

are often being used to perform dimension reduction in order

to prevent overfitting or to simplify the classifier [11], and in

the field of template protection, PCA is also used to decorrelate

the features in order to guarantee uniformly distributed keys

extracted from the biometric sample [5]. Second, the Gaussian

assumption makes it possible to obtain an analytical closed-

form expression for the HD pmf.

This paper is organized as follows. In Section II, we present

a general description of a biometric system with template pro-

tection and model each processing component. We present the

Gaussian model assumption describing the probability density

function (pdf) of the real-valued biometric features extracted

from the biometric sample, the binarization method under

consideration, and the interpretation of the template-protection

block. Then, we present the analytic expression for estimating

the genuine and impostor HD pmfs and the FRR and FAR

curves in Section III. In Section IV, we validate these ana-

lytic expressions with two different real biometric databases,

namely, the Face Recognition Grand Challenge (FRGC) v2 3-D

face images [12] and the Fingerprint Verification Competition

(FVC) 2000 fingerprint images [13]. We further extend the

framework in Sections V and VI in order to relax the assump-

tions made in Section II. Furthermore, some practical consider-

ations are discussed in Section VII. Section VIII concludes this

paper and outlines the future work.

II. MODELING OF A BIOMETRIC SYSTEM

WITH TEMPLATE PROTECTION

A general scheme of a biometric system with template pro-

tection based on helper data is shown in Fig. 2. In the enrollment

phase, a biometric sample, for example, a 3-D shape image of

the face of the subject, is obtained by the acquisition system

and presented to the Feature-Extraction module. The biometric

sample is preprocessed (enhancement, alignment, etc.) and a

real-valued feature vector f
e
R ∈ R

NF is extracted, where NF

is the number of feature components or dimension of the

feature vector. In the Bit-Extraction module, a binary vector

f
e
B ∈ {0, 1}NB is extracted from the real-valued feature vector,

where NB is the number of bits and, in general, does not need

to be equal to NF. Quantization schemes range from simple,

extracting a single bit out of each feature component [2], [3] to

more complex, extracting multiple bits per feature component

[14], [15]. Hereafter, the binary vector is protected within the

Bit-Protection module. The Bit-Protection module safeguards

the privacy of the users of the biometric system by enabling

accurate comparisons without the need to store the original

biometric data f
e
R or f e

B. We focus on the helper-data system that

is based on ECCs and cryptographic primitives, for example,

hash functions. A unique but renewable key is generated for

each user and kept secret by using a hash function. Robustness

to measurement noise and biometric variability is achieved

by effectively using ECCs. The output is a pseudoidentity

(PI), represented as a binary vector, accompanied by some

auxiliary data that are also known as helper data (AD)[16].

Finally, PI and AD have to be stored for use in the verification

phase.

In the verification phase, another live biometric measurement

is acquired from which its real-valued feature vector f
v
R is

extracted followed by the quantization process, which produces

the binary vector f
v
B. In the Bit-Protection module, a candidate

pseudoidentity PI∗ is created using AD and the binary vector

f
v
B. There is an exact match between PI and PI∗ when the same

AD is presented together with a biometric sample with similar

characteristics as the one presented in the enrollment phase. In

a classical biometric system, the comparator bases its decision

on the similarity or distance between the feature vectors f
e
R and

f
v
R. For a binary biometric system, the decision is based on the

difference between f
e
B and f

v
B, which can be quantified using the

HD. For a template-protection system, there is an acceptance

only when PI and PI∗ are identical.

In summary, the biometric system incorporating template

protection can be divided into three blocks: 1) the Acquisi-

tion and Feature-Extraction modules, where the input is the

subject’s biometrics and the output is a real-valued feature

vector fR ∈ R
NF ; 2) the Bit-Extraction module that extracts a

binary vector fB out of fR; and 3) the Bit-Protection and Bit-

Matching modules which protect the binary vector and perform

the matching and decision making based on PI and PI∗. To

build an analytical framework, we have to model each block.

In this section, we present a simple model for each block.

However, the simple model incorporating the Acquisition and

Feature-Extraction block is built under strong assumptions and

will be relaxed later in this paper.
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Fig. 2. General scheme of a biometric system with template protection based on helper data.

Fig. 3. PGC for both the enrollment and verification phase.

A. Acquisition and Feature-Extraction Block

The input of the Acquisition and Feature-Extraction block is
a captured biometric sample of the subject, and the output is a
real-valued feature vector fR = [fR[1], fR[2], . . . , fR[NF]]′ of
dimension NF, where “′” is the transpose operator. The feature
vector fR is likely to be different between two measurements,
even if they are acquired immediately after each other. Causes
for this difference include sensor noise, environment conditions
(e.g., illumination), and biometric variabilities (e.g., pose or
expression).

To model these variabilities, we consider parallel Gaussian
channels (PGCs) as shown in Fig. 3. We assume an ideal Acqui-
sition and Feature-Extraction module which always produces
the same feature vector µi for subject i. Such ideal module is
thus robust against all aforementioned variabilities. However,
the variability of component j is modeled as an additive zero-
mean Gaussian noise w[j] with its pdf pw[j],i ∼ N (0, σ2

w,i[j]).
Adding the noise w[j] with the mean μi[j] results into the noisy
feature component fR[j]; in vector notation, fR = µi + w.
The observed variability within one subject is characterized
by the variance of the within-class pdf and is referred to
as within-class variability. We assume that each subject has
the same within-class variance, i.e., homogeneous within-class
variance σ2

w,i[j] = σ2
w[j] ∀i. For each component, the within-

class variance can be different, and we assume the noise to be
independent.

On the other hand, each subject should have a unique
mean in order to be distinguishable. Across the population,
we assume μi[j] to be another Gaussian random variable
with density pb[j] ∼ N (μb[j], σ2

b[j]). The variability of μi[j]
across the population is referred to as the between-class vari-
ability. Fig. 4 shows an example of the within-class and
between-class pdfs for a specific component and a given sub-
ject. The total pdf describes the observed real-valued feature
value fR[j] across the whole population and is also Gaussian
with pt[j] ∼ N (μt[j], σ

2
t [j]), where μt[j] = μb[j] and σ2

t [j] =

σ2
w[j] + σ2

b[j]. For simplicity, but without loss of generality, we
consider μt[j] = μb[j] = 0.

As shown in Fig. 3, in both the enrollment and verification
phase, the PGC adds random noise w

e and w
v with the same

probability density to µi, resulting in f
e
R and f

v
R, respectively.

Thus, µi is sent twice over the same Gaussian channel.

B. Bit-Extraction Block

The function of the Bit-Extraction block is to extract a
binary representation from the real-valued representation of
the biometric sample. As a bit-extraction method, we use the
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Fig. 4. Modeling of a single feature component of the real-valued biometric.

Fig. 5. Fuzzy commitment scheme.

thresholding version used in [2] and [3], where a single bit is
extracted from each feature component. Hence, the obtained
binary vector fB ∈ {0, 1}NF has the same dimension as fR.
Furthermore, the binarization threshold for each component
δ[j] is set equal to the mean of the between-class pdf μb[j]; if
the value of fR[j] is smaller than δ[j], then it is set to “0,” oth-
erwise it is set to “1.” (see Fig. 4). More complex binarization
schemes could be used [14], [15], but the simple binarization is
used more frequently. Therefore, we only focus on the single-
bit binarization method. Note that the binarization method is
similar in both the enrollment and verification phase. In the
case where multiple biometric samples are used in either the
enrollment (Ne) or verification (Nv) phase, the average of all
the corresponding fR is taken prior to the binarization process.

C. Bit-Protection and Bit-Comparator Block

Many bit-protection or template-protection schemes are
based on the capability of generating a robust binary vector
or key out of different biometric measurements of the same
subject. However, the binary input vector fB itself cannot be
used as the key because it is most likely not exactly the same
in both the enrollment and verification phase (f e

B �= f
v
B) due to

measurement noise and biometric variability that lead to bit

errors. The number of bit errors is also referred to as the HD
dH(f e

B, fv
B). Therefore, ECCs are used to deal with these bit

errors. A possible way of integrating an ECC is shown in Fig. 5,
which is also known as the fuzzy commitment scheme [1].

In the enrollment phase, a binary secret or message vector
s is randomly generated by the Random-Number-Generator

module. The security level of the system is higher at larger

TABLE I
SOME EXAMPLES OF THE BCH CODE GIVEN BY THE CODEWORD (nc

AND MESSAGE (kc) LENGTH, THE CORRESPONDING NUMBER OF

CORRECTABLE BITS (tc), AND THE BIT-ERROR RATE tc/nc

secret lengths. A codeword c of an ECC is obtained by
encoding s in the ECC-Encoder module. The codeword is
XORed with f

e
B in order to obtain the auxiliary data AD.

Furthermore, the hash of s is taken in order to obtain the
pseudoidentity PI . For the sake of coherence, we use the
terminology proposed in [16] and [17].

In the verification phase, the possibly corrupted codeword
c
∗ is created by XORing f

v
B with AD. The candidate secret s

∗

is obtained by decoding c
∗ in the ECC-Decoder module. We

compute the candidate pseudoidentity PI∗ by hashing s
∗. The

decision in the Bit-Comparator block is based on whether PI
and PI∗ are bitwise identical.

In order to illustrate our framework with practical parameter
values, we choose the linear block-type “Bose, Ray- Chaudhuri,
Hocquenghem” (BCH) encoder/decoder as an example ECC.
While more sophisticated ECCs can be used, the BCH ac-
commodates our framework due to its HD classifier property.
For example, if we would consider the binary-symbol-based
Reed–Solomon code, the number of bits it can correct depends
on the error pattern. Hence, their probabilistic decoding behav-
ior also needs to be modeled, which is out of the scope of
the framework described in this paper. The ECC is specified
by the codeword length (nc), message length (kc), and the
corresponding number of bits that can be corrected (tc); in
short [nc, kc, tc]. Because the BCH ECC can correct random
bit errors, the Bit-Protection module yields equivalent PI and
PI∗ when the number of bit errors between the binary vectors
f
e
B and f

v
B is smaller or equal to the error-correcting capability

tc. Thus, there is a match when the HD is smaller than tc,
dH(f e

B, fv
B) = ‖f e

B ⊕ f
v
B‖1 ≤ tc, and the Bit-Protection module

can be modeled as an HD classifier with threshold tc. Some
[nc, kc, tc] settings of the BCH code are given in Table I. Note
that the maximum number of bits that can be corrected lies
between 20% and 25% of the binary vector.

D. Modeling Summary

The following is a summary of the modeling choices and
assumptions that we have made.
• Acquisition and Feature-Extraction Block fR

– Modeled as a PGC, where each feature component is
defined by:

• Within-class pdf ∼ N (0, σ2
w[j])

– Describes the genuine biometric variability
and measurement noise;

– Homogeneous variance across subjects
σ2

w,i[j] = σ2
w[j] ∀i

– Noise is independent across channels, mea-
surements, and subjects
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• Between-class pdf ∼ N (0, σ2
b[j])

– Characterizes the μi[j] variability across
the population

– Feature components are independent
• Total pdf ∼ N (0, σ2

t [j])
– Defines fR[j] across the population

• Bit-Extraction Block fB

– Single bit extraction method, with binarization
threshold δ[j] = μb[j]

• Bit-Protection and Bit-Comparator Block

– HD classifier with the ECC settings defining its deci-
sion boundary.

III. ANALYTICAL ESTIMATION OF BIT-ERROR

PROBABILITIES, FRR, AND FAR

The goal of this paper is to analytically estimate the perfor-
mance of the presented general template-protection system. In
Section II, we have presented a comprehensive description of
such a system, including the modeling approach or properties
of each block that forms the basis of our analytic framework.
In case of an HD classifier, the goal is to analytically estimate
the expected genuine and impostor HD pmfs φge and (φim),
respectively (see Fig. 1). With these pmfs, we can compute the
FRR β and the FAR α, where β is the probability that a genuine
subject is incorrectly rejected and α is the probability that an
impostor is incorrectly accepted by the biometric system.

The HD between two binary vectors is the number of bit
errors between them. Knowing the bit-error probability for each
bit Pe[j], the expected HD d̄H between f

e
B and f

v
B is

d̄H (f e
B, fv

B) =

NF
∑

j=1

Pe[j]. (1)

Further, we define the pmf of the number of bit errors of
component j as Pj = [1 − Pe[j], Pe[j]], where Pj(0) is the
probability of no bit error (dH = 0) and Pj(1) is the probability
of a single bit error (dH = 1). Under the assumption that the
bit-error probabilities are independent, the pmf of dH(f e

B, fv
B)

is defined as

φ(k)
def
= P {dH (f e

B, fv
B) = k}

= (P1 ∗ P2 ∗ · · · ∗ PNF
) (k) (2)

where the convolution is taken of the pmf of the number of bit
errors per component. A toy example is shown in Fig. 6. For the
two extreme cases of (2), we have

φ(0) =

NF
∏

j=1

Pj(0) =

NF
∏

j=1

(1 − Pe[j]) (3)

φ(NF) =

NF
∏

j=1

Pj(1) =

NF
∏

j=1

Pe[j] (4)

which are the probabilities of having zero or NF errors, respec-
tively. The FRR corresponding to an HD threshold T β(T ) is

Fig. 6. Toy example of the convolution method given by (2).

the probability that the HD for a genuine comparison is greater
than T , therefore

β(T ) =P
{

dH

(

f
e
B,i, f

v
B,i

)

> T
}

=

NF
∑

k=T+1

φge(k). (5)

Furthermore, α(T ) is the probability that the HD for an
impostor comparison is smaller or equal to the threshold T ,
hence we have

α(T ) =P
{

dH

(

f
e
B,i, f

v
B,j

)

≤ T ∀i �= j
}

=

T
∑

k=0

φim(k). (6)

In other words, if we want to estimate β(T ) and α(T ) ana-
lytically, we have to obtain an analytic closed-form expression
of the average bit-error probability Pe[j] across the population
for both the genuine and impostor case, P ge

e [j] and P im
e [j],

respectively. Because of the PGC modeling approach, P ge
e [j]

will depend on the within-class and between-class variances
σ2

w[j] and σ2
b[j], respectively. Furthermore, we also want to find

the relationship between P ge
e [j] and the number of enrollment

Ne and verification Nv samples. As mentioned in Section II-B,
in case of multiple samples, the average of the extracted fR of
each sample is taken prior to the binarization process.

A. Pe Estimation for the Impostor Case: P im
e

For the impostor case, we are considering the com-
parison between binary vectors of two different subjects
dH(f e

B,i, f
v
B,j) ∀i �= j. As mentioned in Section II-B, we focus

on the binarization method based on thresholding with δ =
μb = μt (see Fig. 4). Because the total pdf is assumed to be
Gaussian with mean μt, we have equiprobable bit values. This
implies that the bit-error probability of randomly guessing a bit
is 1/2, P im

e [j] = 1/2 ∀j. Thus, under the assumption that the
feature components are independent, impostor comparisons are
similar to matching f

e
B with a random binary vector.

Since P im
e [j] = 1/2 ∀j, we can simplify φim(k) as the

binomial pmf

φim(k) = (P1 ∗ P2 ∗ · · · ∗ PNF
) (k) (7)

=

(

NF

k

)

(

P im
e [j]

)k (

1 − P im
e [j]

)NF−k
(8)

=

(

NF

k

)

2−NF (9)
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Fig. 7. Measurement error Pa.

where the simplification step from (7)–(8) holds because of
P im

e [i] = P im
e [j] ∀i �= j. Furthermore, α(T ) turns into

α(T ) =

T
∑

k=0

φim(k) = 2−NF

T
∑

k=0

(

NF

k

)

(10)

which corresponds to what is used in [18].

B. Pe Estimation for the Genuine Case: P ge
e

We focus on estimating the bit-error probability for each
component P ge

e [j], and for convenience purposes, we omit the
component index j. Using the Gaussian model approach as
defined in Section II and shown in Fig. 7, the expected bit-error
probability P ge

e over the whole population is defined by

P ge
e = E [P ge

e (μ)]

=

∞
∫

−∞

pb(μ)P ge
e (μ) dμ (11)

where P ge
e (μ) is the bit-error probability given μ and pb is

the between-class pdf. With the binarization threshold δ =
μb = 0, this problem becomes symmetric with respect to δ.
Consequently, (11) becomes

P ge
e = 2

0
∫

−∞

pb(μ)P ge
e (μ) dμ

= 2

0
∫

−∞

1√
2πσb

e
−
(

µ
√

2σb

)2

P ge
e (μ) dμ

=
2λ√
π

0
∫

−∞

e−(λµ)2P ge
e (μ) dμ (12)

where λ = 1/
√

2σb.
We define the measurement or acquisition-error probability

Pa, shown by the shaded area in Fig. 7, as the probability
that the measured bit is different than the bit defined by the
mean μ of the feature value. Pa becomes smaller at either a
larger distance between μ and the binarization threshold δ or a
smaller within-class variance. Since multiple enrollment (Ne)

and verification (Nv) samples are considered, Pa also depends
on the number of samples N , given as

Pa(μ;N) =

∞
∫

0

√
N√

2πσw

e
−
(

√

N(x−µ)
√

2σw

)2

dx (13)

where we used the fact that when averaging N samples, the
within-class variance decreases as

σ2
w,N =

σ2
w

N
⇒ σw,N =

σw√
N

. (14)

With the use of the error function

erf(z) =
2√
π

z
∫

0

e−t2 dt (15)

and by defining η=(
√

N/
√

2σw), Pa(μ;N) can be rewritten as

Pa(μ;N) =
η√
π

∞
∫

0

e−(η(x−µ))2dx

=
1√
π

∞
∫

−ηµ

e−z2

dz, with z = η(x − μ)

=
1√
π

⎡

⎣

∞
∫

0

e−z2

dz −
−ηµ
∫

0

e−z2

dz

⎤

⎦ , for μ ≤ 0

=
1√
π

[√
π

2
−

√
π

2
erf(−ημ)

]

=
1

2
[1 − erf(−ημ)] (16)

where we used the well-known result
∫ ∞
0 λe−(λµ)2dμ =

√
π/2.

There is a bit-error probability only when there is a measure-
ment error at either the enrollment or the verification phase. If
there is a measurement error in both phases, then the measured
bits still have the same bit value thus, no bit error. Hence, Pe(μ)
of (12) becomes

P ge
e (μ;Ne, Nv) = (1 − Pa(μ;Ne)) Pa(μ;Nv)

+ Pa(μ;Ne) (1 − Pa(μ;Nv))

=
1

4
[(1 + erf(−ηeμ)) (1 − erf(−ηvμ))

+ (1 − erf(−ηeμ)) (1 + erf(−ηvμ))]

=
1

2
[1 − erf(−ηeμ)erf(−ηvμ)] (17)

where ηe =
√

Ne/
√

2σw and ηv =
√

Nv/
√

2σw. By substitut-
ing (17) into (12), we obtain

P ge
e (Ne, Nv) =

λ√
π

0
∫

−∞

e−(λµ)2[1 − erf(−ηeμ)erf(−ηvμ)] dμ

=
λ√
π

∞
∫

0

e−(λµ)2 [1 − erf(ηeμ)erf(ηvμ)] dμ

=
1

2
− λ√

π

∞
∫

0

e−λ2µ2

erf(ηeμ)erf(ηvμ) dμ.

(18)
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The integral of the erf function can be solved using the
general solution of erf integrals [19] given as

∞
∫

0

e−γx2

erf(ax)erf(bx) dx =

arctan

(

ab√
γ(a2+b2+γ)

)

√
γπ

.

(19)

Thus, (18) can be solved by using (19) with γ = λ2, a = ηe,
and b = ηv as

P ge
e (Ne, Nv, σw, σb)

=
1

2
− λ√

π

arctan

(

ηeηv√
λ2(η2

e+η2
v+λ2)

)

λ
√

π

=
1

2
− 1

π
arctan

⎛

⎜

⎜

⎝

η
√

NeNv

λ

√

Ne + Nv +
(

λ
η

)2

⎞

⎟

⎟

⎠

=
1

2
− 1

π
arctan

⎛

⎜

⎜

⎝

σb

√
NeNv

σw

√

Ne + Nv +
(

σb

σw

)−2

⎞

⎟

⎟

⎠

(20)

where we also included σw and σb as an argument of the
estimation function. As can be observed, P ge

e is dependent on
the σb/σw ratio, Ne, and Nv.

C. Summary

We have presented the analytic expressions of the genuine
(φge) and impostor (φim) HD pmfs and the corresponding FRR
(β(T )) and FAR (α(T )) curves. Because of the choice of the
binarization scheme, the impostor bit-error probability P im

e [j]
does not need to be estimated and can be assumed to be equal
to 1/2 for each feature component. However, the genuine bit-
error probability P ge

e [j] has to be estimated using the analytic
expression in (20). Therefore, in the remainder of this paper,
we only need to estimate P ge

e [j], and for convenience reason,
we frequently omit the ge superscript.

IV. EXPERIMENTAL EVALUATION WITH

BIOMETRIC DATABASES

In this section, the analytic expressions and the effect of the
Gaussian assumption are validated using two real biometric
databases, which are discussed in Section IV-A. To estimate
Pe[j] using (20), we need to estimate the within- and between-
class variances σ2

w[j] and σ2
b[j], respectively. In Section IV-B,

we show that the within-class variance influences the between-
class variance estimation, and we present a corrected estimator.
Due to the limited size of the databases, estimation errors do
occur when estimating Pe[j], even in the case when the underly-
ing model is correct. We account for these errors by estimating
the 95 percentile boundaries in Section IV-C. We then present
the results of estimating Pe[j] in Section IV-D and the effect
of using PCA as a means to generate uncorrelated features
in Section IV-E. We conclude by portraying the experimental

TABLE II
OVERVIEW OF THE BIOMETRIC DATABASES

Fig. 8. EER of the training set after applying PCA for different reduced
number of features NF.

φge(k), φim(k), β(T ), α(T ), and detection error tradeoff (DET)
curves in Section IV-F.

A. Biometric Databases and Feature Extraction

The first database (db1) consists of 3-D face images from
the FRGC v2 data set [12], where we used the shape-based 3-
D face recognizer of [20] to extract feature vectors of dimen-
sion Norig = 696. Subjects with at least eight samples were
selected resulting in Ns = 230 subjects with a total of Nt =
3147 samples. The number of samples per subject varies
between 8 and 22 with an approximate average of N̄i = 14
samples per subject. The second database (db2) consists of
fingerprint images from the database 2 of FVC2000 [13] and
uses a feature-extraction algorithm based on Gabor filters and
directional fields [21], resulting in 1536 features (Norig =
1536). There are Ns = 110 subjects with Ni = 8 samples each.
An overview is given in Table II.

The components of the original feature vectors are depen-
dent. Therefore, we applied the PCA technique to decorrelate
the features and reduce the dimension of the feature space
if necessary. Furthermore, we partitioned both databases into
a training and testing set containing 25% and 75% of the
number of subjects, respectively. The size of the test set is
a very important factor in this analytic framework; thus, we
traded off the size of the training set and limited it to 25% of
the number of subjects. We applied PCA on the training set
and reduced the dimensionality (NF) of the feature vectors
to the codeword lengths presented in Table I and computed
the equal error rate (EER) (see Fig. 8), which is defined as
the point where FAR equals FRR. The optimal performance
is computed using the bit-extraction method in Section II-B
and an HD classifier. The optimal number of features for both
db1 and db2 are in the range of 15, 31, and 63. Note that
the best EER of 12.7% for db1 and 15.2% for db2 is higher
than the reported performance of template-protection systems
based on these databases in the literature (≈8% for db1 in [2]
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TABLE III
VARIANCE ESTIMATION TABLE AS DEFINED IN [23]

and ≈5% for db2 in [22]).1 However, our proposed analytic
framework is not focused on optimizing the performance but
on analytically estimating the performance. The effect of the
PCA transformation on the feature value distribution and the
error probability estimation is discussed in Section IV-E. Unless
stated otherwise, the remainder of this analysis is based on the
PCA transformed test set using the PCA matrix obtained from
the training set. For convenience, the remainder of this work is
mainly focused on the optimal setting of NF = 31.

B. Variance Estimation of σ2
w and σ2

b

The analytic expression P ge
e (Ne, Nv, σw, σb) in (20) re-

quires the standard deviations σw and σb. The estimated values
σ̂w and σ̂b are obtained from the test set of the database under
consideration. The variances σ̂2

w and σ̂2
b are estimated according

to the variance estimation table given in Table III from [23],
where fi,j is the jth real-valued feature vector of subject i, Ns is
the number of subjects, Ni is the number of samples or feature
vectors of subject i, and Nt is the total number of samples;

Nt =
∑Ns

i=1 Ni. This table is also used in analysis of variance
models and describes the method for computing the sum of

squares of the source of the within-class (SSW), between-
class (SSB), and the total (SST) variation. Two important facts
derived from this table are that: 1) the total sum of squares is
equal to the sum of the within-class and between-class sum of
squares SST = SSW + SSB and 2) the total number of degrees

of freedom (d.f.) is equal to the sum of the between-class and
the within-class d.f. The details are in [23]. With the use of the
table, the variance estimation is given as the sum of squares
divided by the d.f., thus

σ̂2
w =

1

Nt−Ns

Ns
∑

i=1

Ni
∑

j=1

(fi,j−μ̂i)
2

(21)

σ̂2
b =

1

Ni(Ns−1)

Ns
∑

i=1

Ni (μ̂i−μ̂)2 , with N̄i =
Nt

Ns
(22)

σ̂2
t =

1

Nt−1

Ns
∑

i=1

Ni
∑

j=1

(fi,j−μ̂)2 (23)

with the exception of σ̂2
b, which is also divided by the average

number of samples per subject N̄i. Notice that σ̂2
w is calculated

as the variance of the aggregated zero-mean samples of the sub-
jects, while taking into account that Ns d.f. are lost because of
the need to estimate the mean of each subject μ̂i. Furthermore,

1In [2], the most reliable feature components were selected, and in [22], six
enrollment samples were used.

Fig. 9. Within-class, between-class, and total variance estimation for different
settings of {σ2

w, σ2
b
}.

σ̂2
w is also equal to the weighted average of the variance of each

subject because (21) can also be written as

σ̂2
w =

1

Nt − Ns

Ns
∑

i=1

(Ni − 1)σ̂2
w,i

=
1

Ns

(

N̄i − 1
)

Ns
∑

i=1

(Ni − 1)σ̂2
w,i

=
1

1
Ns

∑Ns

i=1(Ni − 1)

1

Ns

Ns
∑

i=1

(Ni − 1)σ̂2
w,i, with

σ̂2
w,i =

1

Ni − 1

Ni
∑

j=1

(fi,j − μ̂i)
2

(24)

which turns into σ̂2
w = (1/Ns)

∑Ns

i=1 σ̂2
w,i when Ni is equal for

each subject.
The variance estimators are validated using a synthetically

generated database of Ns = 1000 subjects with Ni = 4 sam-
ples each. The parameters {σ2

w, σ2
b} are used during the syn-

thesis, and we estimated {σ̂2
w, σ̂2

b, σ̂2
t } using (21), (22), and

(23), respectively. The synthesis and estimation processes are
performed ten times (tenfold), and the average of the result is
taken. Fig. 9 shows the estimation results of σ̂2

w for different
values of σ2

w with σ2
b = 2, and both σ̂2

b and σ̂2
t for different val-

ues of σ2
b with σ2

w = 2. We can conclude that the σ̂2
w and σ̂2

t es-
timators give values that closely resemble the underlying model
parameters σ2

w and σ2
t , but we observe a constant estimation

error for the σ̂2
b estimator. This estimation error is examined for

different values of σ2
w and Ni, as shown in Fig. 10(a) and (b),

respectively. The figures show that the estimation error in-
creases when σw increases or when Ni decreases.

The constant estimation error of σ̂2
b is caused by the estima-

tion error of the sample mean of each subject μ̂i. From [23],
we know that the variance of the sampling distribution of the
sample mean μ̂i is given by

σ2
µ̂i

=
σ2

w,i

Ni
. (25)

If more samples are taken to estimate the sample mean, the
estimation variance decreases. This implies that the estimation
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Fig. 10. Between-class estimation of (22) at (a) different values of σ2
w with

Ni = 2 and (b) different values of Ni with σ2
w = 2, with its corrected version

(27) in (c) and (d), respectively.

σ̂2
b of (22) is in fact

σ̂2
b = EST

(

σ2
b + σ2

µ̂

)

= EST

(

σ2
b +

σ2
w

σi

)

(26)

where EST (τ)
△
= τ̂ is the estimation of parameter τ . The cor-

rected version of the between-class estimation σ̌2
b thus becomes

σ̌2
b = σ̂2

b − σ̂2
w

Ni
. (27)

Fig. 10(c) and (d) shows the results of applying this correc-
tion on the results of Fig. 10(a) and (b), and the estimation has
clearly improved.

C. Boundaries of Tolerated Estimation Errors

When estimating Pe[j] of a given biometric database, there
are always estimation errors because of its random nature.
Even if we randomly generate a synthetic database that fully
complies with the Gaussian modeling assumption, there are still
estimation errors. These estimation errors are caused by the
random nature of the problem and should be tolerated. Hence,
we compute the upper (UB) and LB tolerance bounds for the
estimation errors. Such an example is shown in Fig. 11 for a
synthetic data set of similar size as db2 (Ns = 110 and Ni = 8)
but with NF = 500 and σ2

w[j] = 1, with σ2
b[j] randomly drawn

from the uniform distribution U(0, 16) with minimum and
maximum values of 0 and 16, respectively. Fig. 11 compares the

estimated bit-error probability of the synthetic data set P̂ sy
e [j]

with the corresponding analytically obtained P ge
e [j], which

stands for P ge
e (Ne, Nv, σ̂w[j], σ̌b[j]) of (20), where σ̂w[j] and

σ̌b[j] are estimated using (21) and (27), respectively. P̂ sy
e [j] is

reported by a circle (“o”) at its estimated σ̂b[j]/σ̂w[j] ratio, and
its analytic estimation is the value of the solid line at the same
σ̂b[j]/σ̂w[j] ratio. A greater vertical distance implies a greater
analytical estimation error.

Fig. 11. Random estimation errors due to the random nature and the UB and
LB boundaries.

The test protocol for calculating P̂ sy
e [j] is as follows: For

each feature component, P̂ sy
e [j] is calculated as the average

across the bit-error probability of each subject P̂ sy
e,i[j]. The

subject bit-error probability P̂ sy
e,i[j] results from performing

200 matches and determining the relative number of errors. For
each match, Ne distinct feature vectors are randomly selected,
averaged, and binarized (enrollment phase). The obtained bit is
compared with the bit obtained from averaging and binarizing
Nv different randomly selected feature vectors of the same
subject (verification phase).

We empirically estimate the UB and LB boundaries by
clustering the points into equidistant intervals on the x-axis and

compute the 95 percentile range of the P̂ sy
e [j] values in each

interval. The circles (disks) correspond to cases where P̂ sy
e [j] is

within (outside) the 95 percentile boundaries.

D. Validation of the Analytic Expression P ge
e

In this section, we experimentally validate the analytic
expression of the bit-error probability P ge

e . In the previous
section, we have discussed the use of PCA for decorrelating
the feature components and for reducing the dimension to
NF = 31. In order to have more components for the validation,
we apply PCA but without reducing the number of features.
Hence, we consider the original number of features (696) for
database db1. However, for database db2, we only consider
223 components since 25% of the total number of subjects (i.e.,
28 subjects) with a total of 224 feature vectors were used to
derive the PCA projection. Thus, to avoid singularities, we have
reduced the number of features to 223.

To assess the model assumptions, we compared the estimated

bit-error probability of the biometric database P̂ db
e [j] with

the corresponding analytically obtained P ge
e [j]. The same test

protocol is used as discussed in Section IV-C. The experimental
results for db1 and db2 for different values of Ne and Nv

are shown in Figs. 12 and 13, respectively. The circles (disks)

correspond to cases where P̂ db
e [j] is within (outside) the 95 per-

centile boundaries. We refer to the number of disks as the esti-
mation error ǫPe

. If all the assumptions hold, then we expect the
relative ǫPe

to be around 5%. Table IV reports the absolute and
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Fig. 12. Comparison between P ge
e [j] and P̂db1

e [j] for different settings.
(a) Ne = Nv = 1. (b) Ne = Nv = 2. (c) Ne = Nv = 3. (d) Ne = Nv = 4.

The circles (disks) correspond to cases where P̂db1
e [j] falls within (outside) the

boundaries.

Fig. 13. Comparison between P ge
e [j] and P̂db2

e [j] for different settings.
(a) Ne = Nv = 1. (b) Ne = Nv = 2. (c) Ne = Nv = 3. (d) Ne = Nv = 4.

The circles (disks) correspond to cases where P̂db2
e [j] falls within (outside) the

boundaries.

relative ǫPe
. Because ǫPe

is noisy due to the random selection
of Ne and Nv samples within the test protocol, we repeat the
estimation 20 times and report its mean. For db1, ǫPe

is 16.7%
for Ne = Nv = 1 and decreases to 13% for Ne = Nv = 4.
In the case of db2, ǫPe

is very large; 27.3% for Ne = Nv = 1
but decreases significantly when both Ne and Nv are increased,
reaching 6.3% when Ne = Nv = 4. Thus, for both databases,
there is a clear improvement when increasing the number of
samples. We conjecture that the improved bit-error probability
estimation performance is due to the fact that the feature value
distribution becomes more Gaussian when averaging multiple
samples as stated by the central-limit theorem [24]. In addition,

note that many P̂ db1
e [j] estimations of db1 are very close to

the 95 percentile boundaries, hence, small estimation errors

TABLE IV
NUMBER OF CASES ǫPe WHERE P̂db

e [j] IS OUTSIDE THE 95 PERCENTILE

BOUNDARIES PER DATABASE AND {Ne, Nv} SETTING

Fig. 14. Normal probability plot of each feature-vector component of db1 and
db2 before and after applying PCA. (a) db1 before PCA. (b) db1 after PCA.
(c) db2 before PCA. (d) db2 after PCA.

can lead to large variation in ǫPe
that could explain the bit-

error probability-estimation-performance differences between
db1 and db2 observed in the table.

E. Effect of PCA on the Gaussian Assumption

As described in Section II, the analytic framework is based
on the Gaussian model assumption. Fig. 14(a) and (c) shows
the normal probability plot for each component of the feature
vectors of db1 and db2, respectively, before applying the PCA
transformation. The normal probability plot is a graphical tech-
nique for assessing the degree to which a data set approximates
a Gaussian distribution. If the curve of the data closely follows
the dashed-thick line, then the data can be assumed to be
approximately Gaussian distributed. Prior to comparing, we
normalized each feature so that it has zero mean and unit
variance. For both databases, it is evident that the distributions
before applying PCA are not Gaussian because they signif-
icantly deviate from the dashed-thick line that represents a
perfect Gaussian distribution. Fig. 14(b) and (d) shows the
normal probability plot for each of the 696 components of db1
and the 223 components of db2, respectively, after applying
PCA. For both databases, the figures show that after applying
PCA, the features tend to behave more like Gaussians. Yet, the
tails deviate the most from being Gaussian where for the most
cases the empirical distribution is wider.

Fig. 15 shows the Pe estimations before applying PCA for
both databases in two cases: Ne = Nv = 1 and Ne = Nv = 4.
Note that before PCA, db1 and db2 have 696 and 1536
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Fig. 15. P̂dbx
e [j] at different settings of Ne and Nv for both db1 and db2

before applying the PCA transform. (a) db1 with Ne = Nv = 1. (b) db1 with
Ne = Nv = 4. (c) db2 with Ne = Nv = 1. (d) db2 with Ne = Nv = 4.

Fig. 16. Results for db1 with NF = 31. (a) and (b) P̂db1
e and the analytical

estimation of P ge
e . (c) and (d) φge(k) and φim(k) pmfs. (e) and (f) the α(T )

and β(T ) curves. The graphs on the left (right) correspond to Ne = Nv =
1(Ne = Nv = 4).

components, respectively. For db1 ǫPe
is equal to 99.8% for

the Ne = Nv = 1 and 61.2% for the Ne = Nv = 4 case, while
for db2, ǫPe

is 71% and 18%, respectively. Comparing these

Fig. 17. Results for db2 with NF = 31. (a) and (b) P̂db2
e and the analytical

estimation of P ge
e . (c) and (d) φge(k) and φim(k) pmfs. (e) and (f) the α(T )

and β(T ) curves. The graphs on the left (right) correspond to Ne = Nv =
1(Ne = Nv = 4).

results with the ǫPe
values when applying PCA (see Table IV),

we can also conclude that applying PCA makes the features
significantly more Gaussian.

F. Validation of the Analytic Expression of FRR and FAR

For both db1 and db2, we analytically estimate the genuine
φge(k) and impostor φim(k) HD pmfs, and the β(T ) and α(T )
curves. The results are shown in Figs. 16 and 17 for db1
and db2, respectively. The experimentally calculated pmfs are
indicated by “Exp,” while the ones obtained using the analytical
model are indicated by “Mod.” The experimental results are
obtained using the same protocol as the one discussed in
Section IV-C but storing the HD pmfs of each subject instead.
We focus on the cases corresponding to NF = 31, with Ne =
Nv = 1 and Ne = Nv = 4.

Both Figs. 16 and 17 indicate that there is a good agreement
between φim(k)-Exp and φim(k)-Mod. Large differences are
observed between φge(k)-Exp and φge(k)-Mod. However, the
differences decrease when both Ne and Nv are increased. Aver-
aging multiple independent samples leads to a higher Gaussian-
ity degree in accordance with the central-limit theorem. This
effect was also observed for the Pe estimation results in the
previous section. It is interesting to note the differences between
the estimation errors of φge(k) of db1 and db2. For db1, the
centers of gravity of φge(k)-Exp and φge(k)-Mod practically
coincide. The only difference is the width of the pmfs since the
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Fig. 18. DET curves for both db1 and db2 for NF = 31 with different values of Ne, and Nv. The values Ne and Nv are indicated in the legend in the subsequent
order. The experimentally obtained curves are denoted by Exp, while the analytical by Mod. (a) db1 with NF = 31. (b) db2 with NF = 31.

Fig. 19. Approximation of the genuine HD pmf as binomial with P̄e [(26)] for the Ne = Nv = 4 case with NF = 31. (a) db1. (b) db2.

Fig. 20. Empirical estimated probability density pκi using synthetic databases (a) of 2000 subjects with NF = 31, Ni = 8, σ2
b
[j] = 1, where for case 1, every

subject has the same σ2
w,i

[j] = 1; in case 2, σ2
w,i

[j] = 1 + νi[j]; and for case 3, σ2
w,i

[j] = 1 + νi, where νi is drawn from U(−0.4,0.4) and is redrawn for each

feature component separately in case 2. In (b) the comparison between case 1, db1, and db2 is shown.

experimentally obtained pmf is wider than the theoretical one.
In case of db2, we see that there is both an alignment and a
width error; φge(k)-Exp is skewed to the left.

Eventually, we are interested in estimating the DET curves.
Because the DET curves combine both β and α, they are thus
prone to estimation errors associated with β or α. The DET
curves for db1 and db2 for NF = 31 with different values of
Ne and Nv are shown in Fig. 18. From this figure, we can

conclude that increasing Ne and Nv leads to greater estimation
errors of the DET curve, which contradicts the previous finding
that increasing Ne and Nv leads to better estimations of Pe

and φge(k). This can be explained by the fact that in the Ne =
Nv = 4 case, the area of interest with β(T ) ∈ [0.01, 0.1] occurs
for smaller values of α(T ) because the number of bit errors
decreases when Ne and Nv increase, i.e., the performance
improves. As shown by the α(T ) curves in Figs. 16 and 17,
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there is a greater estimation error at smaller values of α(T ) thus
amplifying the estimation error of the DET curve.

A summary of the probable causes for the observed differ-
ences, starting from the most probable, are as follows: 1) the
nonhomogeneous within-class variance; 2) the dependence be-
tween features; and 3) the dependence between bit errors.
The db2 seems to be clearly not adhering to the homoge-
neous within-class variance assumption, resulting into a skewed
φge(k) with a large tail. Such a tail is caused by subjects that
have, on average, a worse performance than the other subjects.
These subjects have many feature components with a larger
within-class variance leading to larger Pe[j] values and thus,
greater HDs. In the literature, these subjects are referred to
as goats [25], [26]. If the features are dependent, then the
HD pmf becomes wider while keeping its original mean. This
effect is visible for both φge(k) and φim(k) for both databases.
On the other hand, certain disturbances, such as occluded
biometric images or strong biometric variabilities, can cause
multiple errors to occur simultaneously. Thus, the bit errors are
dependent, causing the tails on the right side of the genuine HD
pmf. A right tail is slightly visible for db1 but is clearly present
for db2, as shown in Fig. 16(c) and (d) and Fig. 17(c) and (d),
respectively.

In Section V, we propose a modified model that incorporates
the nonhomogeneous within-class variance property, while in
Section VI, we further extend the model to include dependences.

V. RELAXING THE HOMOGENOUS WITHIN-CLASS

VARIANCE ASSUMPTION

In this section, we propose a modified model that takes the
nonhomogeneous property into account, while still assuming
independent feature components. The proposed method makes
use of the approximation of the convolution of (2) with the
binomial pmf. For the genuine case, this would be

φ̄ge(k) =

(

NF

k

)

(

P̄ ge
e

)k (

1 − P̄ ge
e

)NF−k
(28)

where P̄ ge
e is the average bit-error probability across the feature

components P̄ ge
e = 1/NF

∑NF

j=1 P ge
e [j]. The approximate pmfs

φ̄ge(k) are shown in Fig. 19(a) for db1 and Fig. 19(b) for db2
for the Ne = Nv = 4 case with NF = 31. For both databases,
the approximation is reasonably accurate.

Thus we can model the nonhomogeneous effect by assuming
that P̄ ge

e,i is not equal for each subject and is distributed accord-
ing to a probability density pP̄ ge

e
. The following step consists in

determining the pdf pP̄ ge
e

across the population and computing
the average genuine HD pmf defined as

Φ̄ge(k) =

1/2
∫

0

pP̄ ge
e

(τ)φ̄ge(k|τ)dτ (29)

where the integral limits are due to the fact that Pe ∈ [0, 1/2]
and φ̄ge(k|τ) is the generic case of (28) as

φ̄ge(k|τ) =

(

NF

k

)

(τ)k(1 − τ)NF−k. (30)

We propose a method for estimating pP̄ ge
e

using only the

estimated within-class variance of each subject σ̂2
w,i[j]. Because

Fig. 21. Results of the proposed method incorporating the nonhomogeneous
property of db1 and db2 for the cases Ne = Nv = 1 and Ne = Nv = 4 with
NF = 31. (a)–(d) show the HD pmf estimations, while (e)–(h) show the DET
curves estimation, where Mod and Mod2 indicate the modeling method without
and with the nonhomogeneous property, respectively. In (e) and (f), all the DET
curves are plotted using the experimentally obtained α-Exp, while in (g) and
(h), we use the α-Exp for the Exp curves and α-Mod for both the Mod and
Mod2 curves.

of the limited number of samples Ni, we know from [23] that
the estimation ratio ((Ni − 1)σ̂2

w,i[j])/σ2
w[j] follows the χ2

distribution with Ni − 1 d.f., where σ2
w[j] is the underlying

within-class variance that has to be estimated and is assumed
to be homogeneous. However, in practice, σ2

w[j] is unknown;
therefore, we have to replace it by its estimate σ̂2

w[j]. It is
well known that the mean associated with a χ2 distribution
is equal to its number of d.f.; thus, by omitting the (Ni − 1)
multiplications, it becomes a unit mean.

The next step is to take the average ratio over all feature
components as

κi =
1

NF

NF
∑

j=1

σ̂2
w,i[j]/σ̂2

w[j]. (31)
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Fig. 22. Results of estimating ϑopt from (φim)-Exp using (33) for the Ne = Nv = 1 case for both databases. The variance-corrected Gaussian approximated
curve as described by (32) is shown as (φim)-Mod-ϑ. (a) db1 ϑopt = 1.11. (b) db2 ϑopt = 1.17.

We can model the nonhomogeneous property by assuming
that for all components of subject i, the within-class variance is
σ2

w,i[j] = κiσ
2
w[j]. If the homogeneous assumption holds and

the number of features is large, then the pdf of κi across the
whole population becomes Gaussian with unit mean and a vari-
ance that decreases when NF increases. The variance decreases
at larger values of NF because this would be similar to having
NF times more samples and therefore, a better estimation of
its mean. When there are “goatlike” subjects, the homogeneous
assumption does not hold, then the variance of the pdf of κi

increases.
Fig. 20(a) shows the empirically estimated pdf of κi for

a synthetically generated databases containing 2000 subjects
with NF = 31, Ni = 8, and σ2

b[j] = 1, where for “case 1,”
every subject has the same σ2

w,i[j] = 1; in “case 2,” σ2
w,i[j] =

1 + νi[j]; and for “case 3,” σ2
w,i[j] = 1 + νi, where νi is drawn

from U(−0.4, 0.4) and is redrawn for each feature component
separately in case 2. The results imply that the variance of the κi

pdf increases when σ2
w,i[j] is different for each subject (case 2)

and increases significantly when there is a positive correlation
with the variance offset, for example, when subjects have all
their σ2

w,i[j] larger or smaller than the average value (case 3).
Hence, in case 3, there is a clear existence of goats or doves,
where the latter are the subjects that have a small number of bit
errors when matched against themselves [27].

Fig. 20(b) compares the κi pdf of case 1, db1, and db2.
The results show that both db1 and db2 do not adhere to the
homogeneous property. The κi pdf found for db1 looks similar
to case 3. However, the pdf found for db2 significantly deviates
from the synthetic cases, which confirms the existence of goats
and doves. This may also explain the significant discrepancy
found when estimating the genuine HD pmfs of db2, as shown
in Fig. 17.

Now, we can empirically estimate the probability density
pP̄ ge

e
using pκi

. The relationship between κi and P̄ ge
e,i is given by

P̄ ge
e,i =

1

NF

NF
∑

j=1

P ge
e

(

Ne, Nv,
√

κiσ̂2
w[j], σ̂b[j]

)

(32)

where we take the average of P ge
e [j] across all features, while

using σ̂b[j] and the modified within-class variance estimation
√

κiσ̂2
w[j]. Because of the nonlinear relationship between

P ge
e [j] and σ̂w[j], we take the average over P ge

e [j] instead of
estimating P ge

e , using the average of σ̂w[j].
In practice, we can rewrite (29) as

Φ̄ge(k) =
1

Ns

Ns
∑

i=1

φ̄ge

(

k|P̄ ge
e,i

)

. (33)

We applied this new method for estimating φge(k) of db1
and db2, and the results are shown in Fig. 21(a)–(d) for the
Ne = Nv = 1 and Ne = Nv = 4 cases with NF = 31, where
φge(k)-Exp is the experimentally obtained pmf, φge(k)-Mod
is obtained using (2), and Φ̄ge(k)-Mod2 with (31). The results
show that φge-Exp is better approximated when using the new
method Φ̄ge(k)-Mod2. In the case of db1, there is a small
improvement, but for db2, there is a significant improvement,
and even a better estimation is obtained when Ne = Nv = 4.
Furthermore, Fig. 21(e)–(h) shows the DET curve results. In
Fig. 21(e) and (f), the same α is used for each DET curve in or-
der to isolate the estimation errors of φge(k), while in Fig. 21(g)
and (h), α-Exp is used for the Exp curves and α-Mod is used
for both the Mod and Mod2 curves. With the new method,
the DET curve estimation has improved, most significantly for
db2. However, the differences between Fig. 21(e) and (f) and
Fig. 21(g) and (h) clearly indicate that the remaining estimation
errors are caused by the estimation of α. As shown in Fig. 16(c)
and (d) and Fig. 17(c) and (d), there is an estimation error of
(φim), which we consider to be caused by the fact that the
feature components are dependent.

VI. INCORPORATING FEATURE-COMPONENT

DEPENDENCES

In the previous section, we observed that a significant part of
the remaining DET estimation errors is related to the estimation
errors of the (φim)-Exp pmf. In this section, we propose a
further extension of the analytical framework in order to incor-
porate dependences between feature components. We propose
to estimate the dependence from the (φim) pmf and apply it to
the φge pmf estimation. Hence, we assume that both pmfs are
influenced by the dependence to the same extent.

We estimate the dependence from (φim)-Exp by fitting it
with a Gaussian approximation of the binomial pmf of (9) with
the variance as the fitting parameter. For large values of NF,
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the binomial pmf with probability Pe and dimension NF can
be approximated by the Gaussian density N (NFPe, NFPe(1 −
Pe)), with mean NFPe and variance NFPe(1 − Pe). For the
impostor case, we know that Pe = 1/2, from which its mean
and variance become NF/2 and NF/4, respectively. Hence,
the Gaussian approximation of the (φim)-Exp pmf with the
variance parameter ϑ used for fitting becomes

φim(k)-Mod-ϑ =
1√

2πϑσ2
e−

(k−µ)2

2ϑσ2

=
1

√

2πϑNFPe(1 − Pe)
e
− (k−NFPe)2

2ϑNFPe(1−Pe)

=
2√

2πϑNF

e
− (2k−NF)2

2ϑNF (34)

where the optimal ϑ is computed by minimizing the mean-
square error as

ϑopt = arg min
ϑ

NF
∑

k=0

(φim(k)-Exp − φim(k)-Mod-ϑ)2 . (35)

The estimation results of ϑopt for the Ne = Nv = 1 case
are shown in Fig. 22 for both databases. The optimal value
of ϑopt is 1.11 for db1 and 1.17 for db2. For both databases,
ϑopt is very similar, which may indicate that the amount of de-
pendences between the feature components is relatively similar
for both databases. Furthermore, the (φim)-Exp pmf is better
estimated when compared with its first estimation disregarding
the feature-component dependences, as shown in Fig. 16(c) and
Fig. 17(c) for db1 and db2, respectively.

With the Gaussian approximation including the variance
correction with ϑopt, we have a better estimation of the φge

pmf by rewriting (33) as

φge(k) =
1

Ns

Ns
∑

i=1

1
√

2πσ2
cor

e

−(k−P̄
ge
e,i

NF)2

2σ2
cor (36)

with σ2
cor = ϑoptNFP̄ ge

e,i(1 − P̄ ge
e,i). Because of the Gaussian

approximation errors, it does not hold that the sum of the
probability mass is equal to one; therefore, we normalize it
according to

φ′
ge(k) =

1
NF
∑

k=0

φge(k)

φge(k). (37)

The estimation results using (37) for the cases of ϑ = 1
and ϑ = ϑopt are shown in Fig. 23. For the ϑ = 1 case,
the Gaussian approximation is used without the variance
correction. Fig. 23(a)–(d) shows that the φge(k) pmf estimation
has slightly improved. The Φ̄′

ge-Mod-ϑopt curve is closer to

φge(k)-Exp than Φ̄′
ge-Mod-ϑ1. This holds across the whole

curve for the Ne = Nv = 1 case and mainly for the right
tail for the Ne = Nv = 4 case. The same conclusions are
also shown by the DET curves of Fig. 23(e)–(f), where
each DET curve uses the same α curve, namely, the
experimentally obtained α-Exp, in order to isolate the φge(k)
pmf estimation errors. The DET curves in Fig. 23(g)–(h) use
the actual α curves, thus α-Mod-ϑ1 for the DET-Mod-ϑ1

curves and α-Mod-ϑopt for the DET-Mod-ϑopt curves,
respectively. The curves show that the DET-Mod-ϑopt curve

Fig. 23. Results of the proposed method incorporating both the dependence
and nonhomogeneous property of db1 and db2 for the cases Ne = Nv = 1
and Ne = Nv = 4, with NF = 31. (a)–(d) shows the φge estimations, while
(e)–(h) shows the DET curve estimation. The label Mod-ϑ1 indicates the new
modeling method but with ϑ = 1, hence using only the Gaussian approxima-
tion of the binomial pmf, including the nonhomogeneous property. The label
Mod-ϑopt indicates the cases where ϑ = ϑopt. In (e) and (f), all the DET
curves are plotted using the experimentally obtained α-Exp, while in (g) and
(h), we use the α-Exp for the Exp curves, α-Mod-ϑ1 for the Mod-ϑ1 curves,
and α-Mod-ϑopt for the Mod-ϑopt curves.

is clearly closer to DET-Exp curve because α-Mod-ϑopt is a
better approximation of α-Exp as we have shown earlier.

VII. PRACTICAL CONSIDERATIONS

In the previous sections, we have presented several analytical
models for estimating the DET performance curve. However, as
stated previously, because of the use of an ECC, the FRR is LB
bounded because of the limited number of bits the ECC can
correct. For the setting of NF = 31, which is equal to the code-
word length nc, the BCH ECC can correct up to 7 bits, as shown
in Table I. The experimentally achieved performance and its
analytical estimates at this operating point are given in Table V.
The results indicate that at this operating point, there is not a
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TABLE V
EXPERIMENTALLY (EXP) ACHIEVED α AND β AND ITS ANALYTICAL

ESTIMATES USING THE SIMPLISTIC MODEL (MOD), THE MODEL

RELAXING THE HOMOGENOUS PROPERTY (MOD2), AND THE

MODEL ALSO INCORPORATING THE FEATURE-COMPONENT

DEPENDENCES (MOD-ϑopt)

significant difference between the estimations using the Mod
and Mod2 models, while the Mod-ϑopt estimator leads to the
best estimation where its significant improvement is of the α.

Although we have presented an analytical framework
for analysis, it could also be used in practical cases. For
example, consider the scenario where a database has been
collected with a maximum of five samples per subject. Hence,
the performance could only be calculated for cases where
Ne + Nv ≤ 5. However, this restriction does not hold for
our proposed analytical framework. By estimating σ2

w, σ2
b,

κi, and ϑopt from the given database, the performance could
be estimated for the cases where Ne + Nv ≥ 5. Either the
performance could be estimated for a specific Ne and Nv

setting or the LB bounds of the Ne and Nv setting could
be estimated in order to obtain a certain performance or
better. Given the same scenario as with Table V where the
performance is estimated at the maximum error capability of
the ECC for both databases, db1 is expected to reach β ≤ 0.1
when Ne = Nv ≥ 8, while Ne = Nv ≥ 7 for db2.

VIII. CONCLUSION

We have proposed an analytical framework for estimating the
DET performance curve of a biometric system, based on binary
feature vectors, for different settings of Ne and Nv.

The first proposed estimation method used a simple PGC
framework for modeling the pdf of the real-valued features.
Each component has its own channel with the corresponding
additive Gaussian noise representing the biometric variability
and measurement noise, called the within-class variability.
The results showed significant estimation errors and were far
from optimal, mainly because of the homogeneous within-class
variance assumption. Consequently, we proposed a modified
framework to incorporate the nonhomogeneous property, which
in fact assumes that the within-class variance is different for
each subject. The estimation improved significantly, and the
remaining estimation error is thought to be caused by the es-
timation errors of the false acceptance curve due to dependence
between the feature components and corresponding bits. The
final proposed framework also incorporated feature-component
dependence, whose value was derived from the calculated
impostor HD pmf of the database. This method resulted in the
most optimum estimation of the DET performance curves.
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