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There is a significant possibility that astrophysical black holes with nearly extremal spins exist.

Numerical simulations of such systems require suitable initial data. In this paper, we examine three

methods of constructing binary-black-hole initial data, focusing on their ability to generate black holes

with nearly extremal spins: (i) Bowen-York initial data, including standard puncture data (based on

conformal flatness and Bowen-York extrinsic curvature), (ii) standard quasiequilibrium initial data (based

on the extended-conformal-thin-sandwich equations, conformal flatness, and maximal slicing), and

(iii) quasiequilibrium data based on the superposition of Kerr-Schild metrics. We find that the two

conformally flat methods (i) and (ii) perform similarly, with spins up to about 0.99 obtainable at the initial

time. However, in an evolution, we expect the spin to quickly relax to a significantly smaller value around

0.93 as the initial geometry relaxes. For quasiequilibrium superposed Kerr-Schild data [method (iii)], we

construct initial data with initial spins as large as 0.9997. We evolve superposed Kerr-Schild data sets with

spins of 0.93 and 0.97 and find that the spin drops by only a few parts in 104 during the initial relaxation;

therefore, we expect that superposed Kerr-Schild initial data will allow evolutions of binary black holes

with relaxed spins above 0.99. Along the way to these conclusions, we also present several secondary

results: the power-law coefficients with which the spin of puncture initial data approaches its maximal

possible value; approximate analytic solutions for large spin puncture data; embedding diagrams for single

spinning black holes in methods (i) and (ii); nonunique solutions for method (ii). All of the initial-data sets

that we construct contain subextremal black holes, and when we are able to push the spin of the excision

boundary surface into the superextremal regime, the excision surface is always enclosed by a second,

subextremal apparent horizon. The quasilocal spin is measured by using approximate rotational Killing

vectors, and the spin is also inferred from the extrema of the intrinsic scalar curvature of the apparent

horizon. Both approaches are found to give consistent results, with the approximate-Killing-vector spin

showing the least variation during the initial relaxation.
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I. INTRODUCTION

There is a significant possibility that black holes with

nearly extremal spins exist; by ‘‘nearly extremal,’’ we

mean that the spin S and massM of the hole satisfy 0:95 &

S=M2 & 1. Some models of black-hole accretion [1–3]

predict that most black holes will have nearly extremal

spins, and observational evidence for black holes with

nearly extremal spins includes, e.g., estimates of black-

hole spins in quasars [4] and estimates of the spin of a black

hole in a certain binary x-ray source [5]. There is consid-

erable uncertainty about whether black holes do in fact

typically have nearly extremal spins; e.g., some models [6–

8] of black-hole accretion do not lead to large spins. This

uncertainty could be reduced by measuring the holes’ spins

directly using gravitational waves.

This prospect of detecting the gravitational waves emit-

ted by colliding black holes, possibly with nearly extremal

spins, motivates the goal of simulating these spacetimes

numerically. Indeed, one focus of intense research has been

spinning black-hole binaries, including the discovery of

dramatic kicks when two spinning black holes merge [9–

17] as well as some initial exploration of the orbital dy-

namics of spinning binaries [18–23]. All of these simula-

tions start from puncture initial data as introduced by

Brandt and Brügmann [24].

The simplifying assumptions employed in puncture ini-

tial data make it impossible to construct black holes with

spins arbitrarily close to unity. The numerical value of the

fastest obtainable spin depends on which dimensionless

ratio is chosen to characterize ‘‘black-hole spin.’’ Often,

dimensionless spin is defined based on quasilocal proper-

ties of the black hole

� :¼ S

M2
; (1)

where S is taken to be nonnegative and is a suitable

quasilocal spin (e.g., obtained using approximate rotational

Killing vectors on the apparent horizon as described, for

example, in Appendix A) and M is a suitable quasilocal

mass. The latter may be obtained from Christodoulou’s

formula relating spin, area and mass of a Kerr black hole

M2 :¼ M2
irr þ

S2

4M2
irr

; (2)
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where we define the irreducible mass in terms of the area A

of the apparent horizon by Mirr :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A=16�
p

.

The quantity � is not preserved during an evolution.

Specifically, most black-hole initial data are not exactly in

equilibrium, which leads to transients and emission of an

artificial pulse of gravitational radiation early in numerical

simulations. The geometry in the vicinity of the black holes

relaxes on a time scale trelax (typically a fewM), and during

this relaxation, the spin changes by

�� :¼ �ðt ¼ 0Þ � �ðtrelaxÞ: (3)

When constructing a single spinning black hole with stan-

dard puncture data [24], for instance, �ðt ¼ 0Þ & 0:98,
which seems encouragingly large. However Dain et al.

[25,26] evolved standard puncture data with initial spin

close to this limit, and they find that the spin rapidly drops

to �ðtrelaxÞ � 0:93, i.e., �� � 0:05.
For single-black-hole spacetimes, another widely used

dimensionless spin measure is the ratio of total angular

momentum1 JADM and Arnowitt-Deser-Misner (ADM) en-

ergy EADM:

"J :¼
JADM
E2
ADM

: (4)

Dain et al. noted that �ðtrelaxÞ is close to "J and explained

this result as follows: The spacetime is axisymmetric,

which implies that the angular momentum JADM is con-

served and that the black hole’s spin equals JADM.
Moreover, so long as a negligible fraction of the space-

time’s energy is carried off by the spurious radiation, the

hole’s quasilocal mass will relax to a value of EADM, giving

�ðtrelaxÞ � "J. Thus conformally flat Bowen-York data

cannot be used to simulate black holes with nearly ex-

tremal equilibrium spins, even though the initial spins can

be made fairly close to � ¼ 1.
This paper examines three different approaches of con-

structing black-hole initial data with nearly extremal spin.

First, we revisit puncture initial data and inversion-

symmetric Bowen-York initial data. We show that for a

single, spinning black hole at rest, both approaches are

identical, and we determine spin limits based purely on

initial data more accurately than before:

"J � 0:928 200; �ðt ¼ 0Þ � 0:9837: (5)

We show that the limiting values of "J and �ðt ¼ 0Þ are
approached as power laws of the spin parameter (curiously,

with different powers). We furthermore give insight into

the geometric structure of these high-spin Bowen-York

initial-data sets through numerical study and approximate

analytical solutions and find that a cylindrical throat forms

which lengthens logarithmically with the spin parameter.

Second, we investigate the high-spin limit of another

popular approach of constructing initial data, the quasi-

equilibrium formalism [27–31] based on the conformal

thin sandwich equations [32,33]. For the standard choices

of conformal flatness and maximal slicing, we are able to

construct initial data with spins somewhat larger than the

standard Bowen-York limits given in Eq. (5):

"J & 0:94; �ðt ¼ 0Þ & 0:99: (6)

Once again "J is much lower than �ðt ¼ 0Þ, which sug-

gests that these data sets lead to equilibrium spins of

approximate magnitude � � 0:94. Interestingly, these

families of initial data are found to exhibit nonunique

solutions [34–36], and the largest spins are obtained along

the upper branch.

The third approach also utilizes the quasiequilibrium

formalism [27–31], but this time we make use of the free-

dom to choose arbitrary background data. Specifically, we

choose background data as a superposition of two Kerr-

Schild metrics. This approach is based on the original

proposal of Matzner and collaborators [37,38] and was

first carried over into the conformal thin sandwich equa-

tions in Ref. [39]; also, background data consisting of a

single, nonspinning Kerr-Schild black hole was used to

construct initial data for a black-hole–neutron-star binary

in Ref. [40]. For single black holes, these data simply

reduce to the analytical Kerr solution. For binary black

holes, we construct initial data with spins as large as

�ðt ¼ 0Þ ¼ 0:9997: (7)

We also present evolutions, demonstrating that our rapidly

spinning initial-data sets remain rapidly spinning after the

numerical evolution relaxes. In particular, we evolve an

orbiting binary with �ðt ¼ 0Þ ¼ 0:9275 and a head-on

merger with �ðt ¼ 0Þ ¼ 0:9701. In both cases, j��=�ðt ¼
0Þj is significantly smaller than 10�3. We conclude that the

conformally curved superposed Kerr-Schild (SKS) initial

data we present in this paper, in contrast with conformally

flat Bowen-York data, are suitable for simulating binary

black holes with nearly extremal spins.

Throughout the paper, we use two different techniques

to measure the dimensionless spin of black holes, which

are described in the appendixes. The first (Appendix A)

technique uses the standard surface-integral based on an

approximate rotational Killing vector of the apparent hori-

zon. We compute the approximate Killing vector with a

variation of the technique introduced by Cook and Whiting

[41], extended with new normalization conditions of the

approximate Killing vector, and we denote the resulting

spin ‘‘AKV spin’’ �AKV. The second approach

(Appendix B) is based on the shape of the horizon in the

form of its scalar curvature; specifically, the spin magni-

tudes are inferred from the minimum and maximum of the

1We define here JADM by an ADM-like surface integral at
infinity; in axisymmetry this definition coincides with the stan-
dard Komar integral for angular momentum (see Sec. II B for
details.)
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intrinsic Ricci scalar curvature of the horizon. We call the

spin inferred in this way the ‘‘scalar-curvature spin,’’ and

we label the spin magnitudes inferred from the scalar-

curvature minimum and maximum as �min
SC and �max

SC , re-

spectively. Typically, binary-black-hole initial data pro-

duce holes that are initially not in equilibrium. Therefore,

we use only the AKV spin to measure the initial black-hole

spin (Secs. III and IV.)We use both the AKVand the scalar-

curvature spin when we measure the spin after the holes

have relaxed to equilibrium (Sec. V).

We also monitor whether any of the constructed initial-

data sets have superextremal spins, as this may shed light,

for example, on the cosmic censorship conjecture. When

using the Christodoulou formula [Eq. (2)] to define M, the

quasilocal dimensionless spin � is by definition bounded

[42], � � 1. This can be seen most easily by introducing

the parameter � , defined as

� :¼ S

2M2
irr

; (8)

and then rewriting � as

� ¼ 1� ð1� �Þ2
1þ �2

: (9)

The ratio � is therefore not useful to diagnose super-

extremal black holes. A more suitable diagnostic is found

in the parameter � . For Kerr black holes, the first term on

the right-hand side of Eq. (2) is always smaller or equal to

the second, with equality only for extremal spin; i.e., � �
1, with equality for extremal spin. This motivates an alter-

native definition of extremality [42]: A black hole is said to

be superextremal if the second term in Eq. (2) is larger than

the first one, i.e., if � > 1. In this paper, we monitor � ,
which we call the spin-extremality parameter, along with

the dimensionless spin �. We find instances where � ex-

ceeds unity. Before this happens, however, a larger, sub-

extremal (� < 1) apparent horizon appears, enclosing the

smaller, superextremal horizon (Sec. IVB, Fig. 12).

This paper is organized as follows. Section II summa-

rizes the various formalisms that we use to construct initial

data. Section III investigates single-black-hole initial data,

followed by the construction of binary-black-hole initial

data in Sec. IV. Section V presents binary-black-hole evo-

lutions that show the good properties of superposed Kerr-

Schild data and the various spin diagnostics. We summa-

rize and discuss our results in Sec. VI. Finally,

Appendixes A and B present our techniques to define

black-hole spin.

II. INITIAL-DATA FORMALISM

Before constructing initial data for rapidly spinning

single (Sec. III) and binary (Sec. IV) black holes, we first

summarize the initial-data formalisms we will use. After

laying some general groundwork in Sec. II A, we describe

Bowen-York initial data (including puncture initial data) in

Sec. II B and quasiequilibrium extended-conformal-thin-

sandwich data in Sec. II C.

A. Extrinsic curvature decomposition

Initial-data sets for Einstein’s equations are given on a

spatial hypersurface � and must satisfy the constraint

equations

Rþ K2 � KijK
ij ¼ 0; (10)

rjðKij � gijKÞ ¼ 0: (11)

Here, gij is the induced metric of the slice �, with cova-

riant derivative ri, R :¼ gijRij denotes the trace of the

Ricci tensor Rij, and Kij denotes the extrinsic curvature of

the slice � as embedded into the spacetime manifold M.

The constraint equations (10) and (11) can be trans-

formed into elliptic partial differential equations using a

conformal transformation, e.g., [33]. One introduces a

conformal metric ~gij via

gij ¼ c 4~gij; (12)

with the strictly positive conformal factor c > 0.
Substituting Eq. (12) into Eq. (10) yields an elliptic equa-

tion for c . One furthermore decomposes the extrinsic

curvature into trace and trace-free parts

Kij ¼ Aij þ 1
3g

ijK (13)

and splits off a longitudinal part from the trace-free extrin-

sic curvature

Aij ¼ 1

�
ðLVÞij þMij: (14)

In Eq. (14), � is a strictly positive weight function, the

longitudinal operator is defined as ðLVÞij ¼ 2rðiVjÞ �
2
3g

ijrkV
k, and Mij is symmetric and trace-free.2 Finally,

one introduces the conformally scaled quantities� ¼ c 6 ~�
and Mij ¼ c�10 ~Mij, which allows the momentum con-

straint [Eq. (11)] to be rewritten completely in terms of

conformal quantities:

Aij ¼ c�10 ~Aij; (15)

~A ij ¼ 1

~�
ð~LVÞij þ ~Mij: (16)

The Hamiltonian and momentum constraints then become

~r 2c � 1
8
~R� 1

12K
2c 5 þ 1

8
~Aij

~Aijc�7 ¼ 0; (17)

~rj

�
1

~�
ð~LVÞij

�

� 2

3
c 6 ~riK þ ~rj

~Mij ¼ 0: (18)

2It is also possible, but not necessary, to require that Mij is
divergence-free.
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Given choices for ~Mij, K, ~gij and ~�, and also boundary

conditions, one can solve Eqs. (17) and (18) for c and Vi

and then assemble the (constraint-satisfying) initial data

gij and Kij.

Many important approaches to construct binary-black-

hole initial data can be cast in this form. The various

approaches differ in the choices for the freely specifiable

parts and the boundary conditions. Some choices of free

data aim for simplicity, such as Bowen-York initial data.

Other approaches aim to preserve freedom, resulting in

more complicated sets of equations but also more flexibil-

ity to control properties of the resulting initial data. The

quasiequilibrium extended-conformal-thin-sandwich ap-

proach falls into this second category, and we will exploit

precisely its inherent freedom in choosing the free data to

construct black holes with nearly extremal spins.

B. Bowen-York initial data

In this section, we describe two approaches of construct-

ing initial data based on the well-known Bowen-York

extrinsic curvature. These two approaches, puncture data

and inversion-symmetric data, differ in how they treat the

coordinate singularity at r ¼ 0; both can be obtained from

the general procedure outlined in Sec. II A by setting ~� �
1, K � 0, ~Mij � 0 and by using a conformally flat metric

~g ij ¼ fij: (19)

The momentum constraint [Eq. (18)] then reduces to
~rjð~LVÞij ¼ 0, which is solved by choosing the analytical

Bowen-York solutions [43,44].

The Bowen-York solutions can be written down most

conveniently in Cartesian coordinates, fij ¼ �ij:

Vi
P ¼ � 1

4r
½7Pi þ niPknk�; (20)

Vi
S ¼ � 1

r2
�ilmS

lnm; (21)

where r ¼ ðxixj�ijÞ1=2 is the coordinate distance to the

origin and ni ¼ xi=r is the coordinate unit vector pointing
from the origin to the point under consideration. The

spatially constant vectors Pi and Si parametrize the solu-

tions3

~A
ij
P ¼ 3

2r2
½2PðinjÞ � ð�ij � ninjÞPkn

k�; (22)

~A
ij
S ¼ 6

r3
nði�jÞklS

knl: (23)

The conformal factor c is then determined by the

Hamiltonian constraint [Eq. (17)], which simplifies to

~r 2c þ 1
8c

�7 ~Aij ~Aij ¼ 0: (24)

We would like to recover an asymptotically flat space; this

implies the boundary condition c ! 1 as r ! 1.

This boundary condition makes it possible to evaluate

the linear ADM-momentum and ADM-like angular mo-

mentum of Bowen-York initial data without solving

Eq. (24). These quantities are defined by surface integrals

at infinity

Jð�Þ ¼
1

8�

I

1
ðKij � gijKÞ�isjdA; (25)

where si is the outward-pointing unit normal to the inte-

gration sphere.4 By letting c ! 1 in Eq. (15), one can

replace Kij by ~Aij and then evaluate the resulting integrals.

The choice of vector �i determines which quantity is

computed: For instance, � ¼ êx corresponds to the x com-

ponent of the linear ADM momentum; � ¼ @� ¼ �xêy þ
yêx yields the z component of the ADM-like angular

momentum.5 For Eqs. (22) and (23), the results are

Pi
ADM ¼ Pi and JiADM ¼ Si, respectively.
The ADM energy is given by the expression

EADM ¼ 1

16�

I

1
rjðGi

j � �i
jGÞsidA; (26)

where Gij :¼ gij � fij, G :¼ Gijg
ij. For conformal flat-

ness, Eq. (26) reduces to

EADM ¼ � 1

2�

I

1
@rc dA: (27)

The derivative of the conformal factor is known only after

Eq. (24) is solved; therefore, in contrast with the linear and

angular momenta, EADM can be computed only after solv-

ing the Hamiltonian constraint.

We now turn our attention to inner boundary conditions.
~Aij
P and ~Aij

S are singular at r ¼ 0. This singularity is inter-

preted as a second asymptotically flat universe; when

solving Eq. (24), this can be incorporated in two ways:

3In Cartesian coordinates, upper and lower indices are equiva-
lent, so index positioning in Eqs. (20)–(23) is unimportant. To
find ~Aij

P=S in another coordinate system, first compute the
Cartesian components Eqs. (20)–(23) and then apply the desired
coordinate transformation.

4At infinity, the normal to the sphere si is identical to the
coordinate radial unit vector ni.

5As is common in the numerical relativity community, we
introduce the phrase ‘‘ADM angular momentum’’ to refer to an
angular momentum defined at spatial infinity in the manner of
the other conserved ADM quantities of asymptotically flat space-
times [45], despite the fact that (at least to our knowledge), no
such quantity is widely agreed to rigorously exist in general, due
to the supertranslation ambiguity that exists in four spacetime
dimensions. For recent research on this issue see [46] and
references therein. In the present paper, this subtlety can be
ignored, because we only compute this quantity in truly axisym-
metric spacetimes, with ~� the global axisymmetry generator, so
that JADM coincides with the standard Komar integral for angular
momentum.
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(i) Inversion symmetry.—The demand that the solution

be symmetric under inversion at a sphere with radius

Rinv centered on the origin [44] results in a boundary

condition for c at r ¼ Rinv, namely, @c =@r ¼
�c =ð2RinvÞ. The Hamiltonian constraint Eq. (24)

is solved only in the exterior of the sphere r �
Rinv, and the solution in the interior can be recovered

from inversion symmetry [44], e.g.,

c ðxiÞ ¼ Rinv

r
c

�
R2
inv

r2
xi
�

: (28)

(ii) Puncture data.—One demands [24] the appropriate

singular behavior of c for r ! 0 to ensure that the

second asymptotically flat end is indeed flat. That is,

c must behave as

c ðxiÞ ¼ mp

2r
þ 1þ uðxiÞ (29)

for some positive parameter mp (the ‘‘puncture

mass’’) and function uðxiÞ that is finite and continu-
ous inR3 and approaches 0 as r ! 1. Equation (24)

then implies an equation for u that is finite every-

where and can be solved without any inner bounda-

ries:

~r 2u ¼ � 1

8

~Aij
~Aijr7

ðrþ mp

2 þ urÞ7 : (30)

The majority of binary black hole simulations use

puncture data; see, e.g., Refs. [9–23].

Both approaches allow specification of multiple black

holes at different locations, each with different spin and

momentum parameters Si and Pi. For puncture data this is

almost trivial; this accounts for the popularity of puncture

data as initial data for black-hole simulations. In contrast,

for inversion-symmetric data, one needs to employ a rather

cumbersome imaging procedure6 (see, e.g., [47] for

details).

For a single spinning black hole at the origin, the ex-

trinsic curvature ~Aij
S given by Eq. (23) is identical for

inversion-symmetric and puncture data. For inversion-

symmetric data, the conformal factor has the usual falloff

at large radii:

c ðxiÞ ¼ 1þ EADM

2r
þOðr�2Þ; as r ! 1: (31)

Using Eq. (28) we find the behavior of c as r ! 0:

c ðxiÞ ¼ Rinv

r
þ EADM

2Rinv

þOðrÞ; as r ! 0: (32)

Comparison with Eq. (29) shows that this is precisely the

desired behavior for puncture data, if one identifies Rinv ¼
mp=2 and E=ð2RinvÞ ¼ 1þ uð0Þ. Because puncture data

have a unique solution, it follows that for single spinning

black holes, puncture data and inversion-symmetric data

are identical, provided mp ¼ 2Rinv.

For inversion-symmetric initial data for a single, spin-

ning black hole, it is well known [48] that the apparent

horizon coincides with the inversion sphere: rAH ¼ Rinv.

Therefore, we conclude that for puncture data for a single,

spinning black hole, the apparent horizon is an exact

coordinate sphere with radius rAH ¼ mp=2, despite ~Aij
S

and uðxiÞ not being spherically symmetric.

C. Quasiequilibrium extended-conformal-thin-

sandwich initial data

Another popular approach of constructing binary-black-

hole initial data is the quasiequilibrium extended-confor-

mal-thin-sandwich (QE-XCTS) formalism [27–31].

Instead of emphasizing the extrinsic curvature, the

conformal-thin-sandwich formalism [32] emphasizes the

spatial metric gij and its time derivative. Nevertheless, it is

equivalent [33] to the extrinsic curvature decomposition

outlined in Sec. II A. The vector Vi is identified with the

shift 	i,

Vi � 	i; (33)

and the weight functions � and ~� are identified (up to

factor 2) with the lapse and the conformal lapse, respec-

tively,

� � 2
; ~� � 2~
: (34)

The tensor ~Mij is related to the time derivative of the

spatial metric ~uij :¼ @t~gij by

~M ij �
1

2~

~uij: (35)

Because Mij is trace-free [Eqs. (13), (15), and (16)], we

require ~uij to be trace-free.

The conformal-thin-sandwich equations allow control of

certain time derivatives in the subsequent evolution of the

constructed initial data. If the lapse 
 and shift 	i from the

initial data are used in the evolution, for instance, then the

trace-free part of @tgij will be proportional to ~uij.

Therefore (see Refs. [27,30])

~u ij � 0 (36a)

is a preferred choice for initial-data sets that begin nearly in

equilibrium, such as binary-black-hole quasicircular orbits.

The evolution equation for K can be used to derive an

elliptic equation for the conformal lapse ~
 (or, equiva-

lently, for 
c ). Upon specification of

@tK � 0; (36b)

6Even for a single black hole with Pk � 0, Eq. (22) has to be
augmented by additional terms of Oðr�4Þ to preserve inversion
symmetry [44].
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this fifth elliptic equation is to be solved for ~
 simulta-

neously with Eqs. (17) and (18); cf. [27,30].

Our numerical code uses the conformal factor c , the

shift 	i, and the product of lapse and conformal factor


c ¼ ~
c 7 as independent variables, in order to simplify

the equation for @tK. Thus, the actual equations being

solved take the form

0 ¼ ~r2c � 1
8
~Rc � 1

12K
2c 5 þ 1

8c
�7 ~Aij ~Aij; (37a)

0 ¼ ~rj

�
c 7

2ð
c Þ ð
~L	Þij

�

� 2

3
c 6 ~riK � ~rj

�
c 7

2ð
c Þ ~u
ij

�

;

(37b)

0 ¼ ~r2ð
c Þ � ð
c Þ
� ~R

8
þ 5

12
K4c 4 þ 7

8
c�8 ~Aij ~Aij

�

þ c 5ð@tK � 	k@kKÞ; (37c)

with

~A ij ¼
c 7

2
c
ðð~L	Þij � ~uijÞ: (37d)

These equations can be solved only after

(1) specifying the remaining free data: i.e., the confor-

mal metric ~gij and the trace of the extrinsic curva-

ture K (we chose already ~uij � 0 and @tK � 0),
(2) choosing an inner boundary S which excises the

black holes’ singularities, and also an outer bound-

ary B, and

(3) choosing boundary conditions for c , 
c , and 	i on

B and S.
The initial data are required to be asymptotically flat,

and the outer boundary B is placed at infinity.7 If ~gij is
asymptotically flat, the outer boundary conditions are then

c ¼ 1 on B; (38a)


c ¼ 1 on B; (38b)

	i ¼ ð�0 � rÞi þ _a0r
i on B: (38c)

Here ri is the coordinate position vector. The shift bound-

ary condition consists of a rotation (parametrized by the

orbital angular velocity �0) and an expansion (parame-

trized by _a0); the initial radial velocity is necessary for

reducing orbital eccentricity in binary-black-hole initial

data [49].

The inner boundary condition on the conformal factor c

ensures that the excision surfaces S are apparent horizons

[27]:

~sk@kc ¼ � c�3

8~

~si~sj½ð~L	Þij � ~uij� �

c

4
~hij ~ri~sj

þ 1

6
Kc 3 on S: (39)

Here ~si :¼ c 2si, si is the unit vector normal to S and
~hij :¼ ~gij � ~si~sj is the induced conformal 2-metric on S.
The inner boundary condition on the shift is

	i ¼ 
si ��r�
i on S; (40)

where �isi ¼ 0. The first term on the right-hand side

ensures that the apparent horizons are initially at rest; the

tangential term determines the black hole’s spin [27–29].

References [27–29] chose the sign of the last term in

Eq. (40) such that positive values of�r counteract the spin

of the corotating holes that are obtained with �r ¼ 0.
Here, we are interested in large spins, and we reverse the

sign of the last term in Eq. (40) so that positive, increasing

�r results in increasing spins.

Two sets of choices for ~gij, K, S, and the boundary

condition for 
c on S are discussed in the next subsec-

tions. Each set of choices will be used to construct binary-

black-hole initial data in Sec. IV.

1. Conformal flatness and maximal slicing (CFMS)

The simplest choice for ~gij is a flat metric:

~g ij � fij: (41)

This choice has been used almost exclusively in the pre-

vious formulations of binary-black-hole initial data.

The simplest choice for K, also commonly used in prior

formulations of binary-black-hole initial data, is maximal

slicing, i.e.,

K � 0: (42)

Also for simplicity, we choose to make the excision

surface S consist of coordinate spheres:

S ¼
[n

a¼1

Sa; (43)

where Sa are surfaces of constant Euclidean distance rexc
about the center of each excised hole, and n ¼ 1 or 2 is the
number of black holes present in the initial data.

The boundary condition for the lapse on S determines

the temporal gauge; we adopt the condition given in

Eq. (59a) of Ref. [28]:

@

@ra
ð
c Þ ¼ 0 on Sa; (44)

where ra is the Euclidean distance from the center of hole

a. This type of initial data is used in Refs. [49,65,66].

2. Superposed Kerr-Schild

Single black holes with angular [50,51] or linear [52]

momentum do not admit conformally flat spatial slicings;

therefore, conformal flatness [Eq. (41)] is necessarily de-

ficient. This has motivated investigations of binary-black-

hole initial data whose free data have stronger physical

motivation, e.g., Refs. [37,38,53–59].

7In practice, B is a sphere with radius * 109 times the
coordinate radius of the black-hole horizons.
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In this subsection, we consider conformally curved data

that are in the same spirit as the SKS data of Refs. [37,38]

although here (i) we apply the idea to the QE-XCTS

formalism, and (ii) as discussed below, our free data is

very nearly conformally flat and maximally sliced every-

where except in the vicinity of the black holes.

The choices we make here generalize the conformally

curved data in Chapter 6 of Ref. [39] to nonzero spins.

Specifically, the free data and lapse boundary condition

will be chosen so that the conformal geometry near each

hole’s horizon is that of a boosted, spinning, Kerr-Schild

black hole. The conformal metric ~gij and the mean curva-

ture K take the form

~g ij :¼ fij þ
Xn

a¼1

e�r2a=w
2
aðgaij � fijÞ; (45)

K :¼
Xn

a¼1

e�r2a=w
2
aKa: (46)

Here gaij and Ka are the spatial metric and mean curvature,

respectively, of a boosted, spinning Kerr-Schild black hole

with mass ~Ma, spin ~Sa, and speed ~va.

Far from each hole’s horizon, the conformal metric is

very nearly flat; this prevents the conformal factor from

diverging on the outer boundary [39]. The parameter wa is

a weighting factor that determines how quickly the curved

parts of the conformal data decay with Euclidean distance

ra (a ¼ 1; 2; . . . ) from hole a; in this paper, the weight

factor wa is chosen to be larger than the size scale of hole a
but smaller than the distance d to the companion hole (if

any): Ma & wa & da. This is similar to the ‘‘attenuated’’

superposed Kerr-Schild data of Refs. [38,60], except that

here the weighting functions are Gaussians which vanish

far from the holes, while in Refs. [38,60] the weighting

functions go to unity far from the holes.

The excision surfaces Sa are not coordinate spheres

unless ~Sa ¼ 0 and ~va ¼ 0. Instead they are deformed in

two ways. (i) They are distorted so that they are surfaces of

constant Kerr radius rKerr, i.e.,

x2 þ y2

r2Kerr þ ~Sa
2= ~Ma

2
þ z2

r2Kerr
¼ 1; (47)

where x, y, and z are Cartesian coordinates on the S. Then,
(ii) the excision surfaces are Lorentz-contracted along the

direction of the boost.

The boundary condition for the lapse 
 on Sa is a

Dirichlet condition that causes 
 (and, consequently, the

temporal gauge) in the vicinity of each hole to be nearly

that of the corresponding Kerr-Schild spacetime, i.e.,


c ¼ 1þ
Xn

a¼1

e�r2a=w
2
að
a � 1Þ on Sa; (48)

where 
a is the lapse corresponding to the Kerr-Schild

spacetime a.

III. SINGLE-BLACK-HOLE INITIAL DATAWITH

NEARLY EXTREMAL SPINS

In this section, we examine to which extent the formal-

isms presented in Sec. II can generate single-black-hole

initial data with nearly extremal spin. We consider first

Bowen-York initial data and then conformally flat quasi-

TABLE I. Summary of the initial-data sets constructed in this paper. The first row (BY-Single) represents Bowen-York initial data for

single black holes of various spins. The next two rows (CFMS-Single and CFMS) are quasiequilibrium, conformally flat, maximally

sliced initial data for single and binary spinning black holes, respectively. All other data sets employ superposed Kerr-Schild

quasiequilibrium data with the second block of rows representing families of initial-data sets for various spins and the last block of

rows representing individual data sets to be evolved. The data sets SKS-0.93-E0 to SKS-0.93-E3 demonstrate eccentricity removal, and

SKS-Headon is used in a head-on evolution. The first block of columns gives the label used for each data set and the relevant section of

this paper devoted to it. The next block of columns lists the most important parameters entering the initial data. The last block of

columns lists some properties of those data sets that we evolve in Sec. V.

Label Section Figures n d �0 _a0 � 104 �r or S=m
2
p

~S j�AKVj Mirr M EADM

BY-Single III A 1–5, 8, and 19 1 � � � � � � � � � 0:01 � S=m2
p � 104 � � �

CFMS-Single III B 6–8 and 19 1 � � � � � � � � � 0 � �r � 0:191 � � �
CFMS IVA 9 and 13 2 32 0.007 985 0 0 � �r � 0:1615 � � �
SKS-0.0 IVB 11 and 13 2 32 0.006 787 0 0 � �r � 0:24 0

SKS-0.5 IVB 11 and 13 2 32 0.006 787 0 0 � �r � 0:27 0.5

SKS-0.93 IVB 11–13 2 32 0.006 787 0 0 � �r � 0:35 0.93

SKS-0.99 IVB 10–13 2 32 0.007 002 3.332 0:28 � �r � 0:39 0.99

SKS-0.93-E0 VB 14 2 32 0.006 787 0 0.28 0.93 0.9278 0.9371 1.131 2.243

SKS-0.93-E1 VB 14 2 32 0.007 0 0.28 0.93 0.9284 0.9375 1.132 2.247

SKS-0.93-E2 VB 14 2 32 0.006 977 3.084 0.28 0.93 0.9275 0.9395 1.134 2.249

SKS-0.93-E3 VC 10, 11, 13–16, and 19 2 32 0.007 002 3.332 0.28 0.93 0.9275 0.9397 1.134 2.250

SKS-Headon VD 10, 11, 13, and 17–19 2 100 0 0 0.3418 0.97 0.9701 0.8943 1.135 2.257
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equilibrium data. Since superposed Kerr-Schild data can

represent single Kerr black holes exactly, there is no need

to investigate single-hole superposed Kerr-Schild data. In

Sec. IV, we will both consider conformally flat and super-

posed Kerr-Schild data for binary black holes.

To orient the reader, the initial-data sets constructed in

this section, as well as the binary-black-hole data sets

constructed in Sec. IV, are summarized in Table I.

Unless noted otherwise, all spins presented in this sec-

tion are measured using the approximate-Killing-vector

spin �AKV described in Appendix A. Therefore, the sub-

script ‘‘AKV’’ in �AKV will be suppressed for simplicity.

A. Bowen-York (puncture) initial data

As discussed in Sec. II B, for a single spinning black

hole at rest, puncture initial data are identical to inversion-

symmetric initial data. Such solutions have been examined

in the past (e.g., [48,61]), and additional results were

obtained (partly in parallel to this work) in the study by

Dain, Lousto, and Zlochower [25].

We revisit this topic here to determine the maximum

possible spin of Bowen-York initial data more accurately

than before, to establish the power-law coefficients for the

approach to these limits with increasing spin parameter S,
and to present new results about the geometric structure of

Bowen-York (BY) initial data with a very large spin

parameter.

We solve Eq. (30) with the pseudospectral elliptic solver

described in Ref. [62]. The singular point of u at the origin

is covered by a small rectangular block extending from

	10�4mp along each coordinate axis. This block overlaps

four concentric spherical shells with radii of the boundaries

at 8� 10�5mp, 0:005mp, 0:3mp, 50mp, and 109mp. The

equations are solved at several different resolutions, with

the highest resolution using 203 basis functions in the cube,
L ¼ 18 in the spheres and 26 and 19 radial basis functions
in the inner and outer two spherical shells, respectively.

Because of the axisymmetry of the data set, the rota-

tional Killing vector of the apparent horizon is simply @�.

The integral for the quasilocal spin Eq. (A1) turns out to be

independent of c and can be evaluated analytically with a

result equal to the spin parameter S. Thus we can use this

initial-data set to check how well our spin diagnostics and

our ADM angular momentum diagnostic works (recall that

JADM is also equal to the spin parameter S). This compari-

son is performed in Fig. 1, which shows relative differences

between the numerically extracted values for the AKV

spin, the coordinate spin (defined with the AKV spin in

Appendix A), and the ADM angular momentum JADM
relative to the expected answer S. The figure also shows

differences between neighboring resolutions for the two

quantities of interest below: S=M2 ¼ � and S=E2
ADM ¼

JADM=E
2
ADM ¼ "J.

Figure 1 seems to show exponential convergence with

increased resolution N. Since puncture data are only C2 at

the puncture, one would rather expect polynomial conver-

gence. The effect of the nonsmoothness at the puncture is

mitigated by choosing a very high resolution close to the

puncture (a small cube with sides	10�4mp with 203 basis

functions). Therefore, for the resolutions considered in

Fig. 1, the truncation error is dominated by the solution

away from the puncture, and exponential convergence is

visible. If we used infinite-precision arithmetic and were

pushing toward higher resolution than shown in Fig. 1, then

wewould expect to eventually see polynomial convergence

dominated by the cube covering the puncture.

Next, we construct a series of initial-data sets with

increasing spin parameter S and compute �, "J, and �
for each initial-data set. The results are plotted in Fig. 2

and confirm earlier results [26,61]. In addition, the inset

shows that the asymptotic values �max ¼ 0:9837 and

"u;max ¼ 0:928200 are approached as power laws in the

spin parameter:

�max � � /
�
S

m2
p

��0:75
; (49)

"J;max � "J /
�
S

m2
p

��1:4
: (50)
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Single puncture BH, S/m
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2
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FIG. 1 (color online). Convergence test for a single puncture

black hole with a very large spin parameter S=m2
p ¼ 10 000.

Plotted are results vs resolution N, which is the total number of

basis functions. The solid lines show the relative differences of

three angular momentum measures to the analytically expected

value 10 000. The dashed lines show differences from the next-

higher resolution of two dimensionless quantities for which no

analytic answer is available.
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The exponents of these power laws are computed here for

the first time.

To confirm that the apparent horizon is indeed at r ¼
Rinv, we ran our apparent horizon finder on the high-spin

puncture initial-data sets. The horizon finder had great

difficulty converging, and the reason for this becomes clear

from Fig. 3. The main panel of this figure shows the area of

spheres with coordinate radius r. The area is minimal at

r ¼ mp=2, as it must be, sincemp=2 ¼ Rinv is the radius of

the inversion sphere. However, the area is almost constant

over a wide range in r—for S=m2
p ¼ 10 000 over about two

decades in either direction: 0:01 & r=Rinv & 100. Thus,
the Einstein-Rosen bridge (the throat) connecting the two

asymptotically flat universes lengthens as the spin in-

creases, giving rise to an ever-lengthening cylinder. If

this were a perfect cylinder, then the expansion would be

zero for any r ¼ const cross section. Because the geometry

is not perfectly cylindrical, the expansion vanishes only for

r ¼ mp=2 ¼ Rinv, but remains very small even a signifi-

cant distance away from r ¼ mp=2 ¼ Rinv. This is shown

in the inset, which plots the residual of the apparent hori-

zon finder at different radii.

With the lengthening of the throat, the interval in r with
small expansion lengthens, and the value of the expansion

within this interval reduces. Both effects make it harder for

the apparent horizon finder to converge. In Fig. 2, we have

used our knowledge of the location of the apparent horizon

to set rAH ¼ mp=2 rather than to find this surface numeri-

cally. Without this knowledge, which arises due to the

identification of puncture data and inversion-symmetric

data, computation of Fig. 2 would have been significantly

harder, perhaps impossible.

Let us assume for the moment that the solution c ðrÞ ¼
mp

2r þ 1þ uðrÞ is spherically symmetric (we give numerical

evidence below that this is indeed a good approximation).

Because gij ¼ c 4fij, the area of coordinate spheres is then

given by

AðrÞ ¼ 4�c 2ðrÞr: (51)

In the throat region, where AðrÞ � const, the conformal

factor must therefore behave like 1=
ffiffiffi
r

p
, as also argued

independently by Dain, Lousto, and Zlochower [25].

To extend on Dain, Lousto, and Zlochower’s analysis, let

us substitute Eq. (23) into Eq. (24) to obtain the well-

known equation

~r 2c ¼ � 9S2sin2�

4r6
c�7; (52)

where � is the angle between the spin direction and the

point xi. Continuing to assume that c is approximately
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FIG. 2 (color online). Properties of single, spinning puncture

black holes with spin parameter S and puncture mass mp. The

dimensionless spin � :¼ S=M2, ADM angular momentum "J :¼
JADM=E

2
ADM, and spin-extremality parameter � :¼ S=ð2M2

irrÞ are
plotted against the spin parameter S=m2

p. The horizon mass M is

related to the spin S and irreducible mass Mirr in Eq. (2).
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FIG. 3 (color online). Properties of coordinate spheres with

radius r for high-spin puncture initial data. Main panel: Area of

these spheres. Inset: Residual of the apparent horizon equation

on these spheres. The area is almost constant over several orders

of magnitude in r. The apparent-horizon residual vanishes at r ¼
Rinv but is very small over a wide range of r.
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spherically symmetric, we can replace the factor sin2� by

its angular average ð4�Þ�1
R
sin2�d� ¼ 2=3 and obtain

d2 �c

dr2
þ 2

r

d �c

dr
¼ � 3S2

2r6
�c�7: (53)

Here, we introduced an overbar �c to distinguish the spheri-

cally symmetric solution �c ðrÞ of Eq. (53) from the full

solution c ðxiÞ of puncture/inversion-symmetric initial

data. Following Dain, Lousto, and Zlochower [25] we

assume that the conformal factor behaves as a power law

[ �c ðrÞ ¼ Ar
] and substitute this into Eq. (53). We find that

Eq. (53) determines the power-law exponent 
 ¼ �1=2

and the overall amplitude A ¼ ð6S2Þ1=8, so that

�c ðrÞ ¼ ð6S2Þ1=8
ffiffiffi
r

p ¼ 961=8
�
S

m2
p

�
1=4

�
r

Rinv

��1=2
: (54)

In Eq. (54), we chose the scaling S=m2
p, which is com-

monly used in the puncture-data literature, but kept r=Rinv

to emphasize the inversion symmetry of the data in our

figures (in a log-plot using r=Rinv, the solution will appear

symmetric; see, e.g., Fig. 3). While �c ðrÞ solves the spheri-
cally symmetric Eq. (53) exactly, it must deviate from

c ðxiÞ for sufficiently large r because �c ! 0 as r ! 1,

whereas c ! 1. The deviation will become significant

when �c 
 1, i.e., at radius rx 

ffiffiffiffiffiffiffiffiffiffiffiffi

S=m2
p

q

. Because of in-

version symmetry, this implies a lower bound of validity at

1=rx, so that Eq. (54) holds for

�
S

m2
p

��1=2
&

r

Rinv

&

�
S

m2
p

�
1=2

: (55)

The circumference of the cylindrical throat is

C ¼ 2� �c ðrÞ2r ¼ 2�961=4
ffiffiffiffiffiffiffi

S

m2
p

s

Rinv; (56)

and its length is

L ¼
Z ðS=m2

pÞ1=2

ðS=m2
pÞ�1=2

�c 2ðrÞdr ¼ 961=4
ffiffiffiffiffiffiffi

S

m2
p

s

ln

�
S

m2
p

�

Rinv: (57)

Therefore, the ratio of length to circumference

L

C
¼ 1

2�
ln

�
S

m2
p

�

(58)

grows without bound as S=m2
p becomes large, albeit very

slowly. The scaling with ðS=m2
pÞ1=2 in Eqs. (55)–(57) might

seem somewhat surprising. However, in the large spin

limit, S=M2 is just a constant close to unity (namely,

�max ¼ 0:9837). Therefore, S1=2 � M, i.e., the scaling

S1=2 is effectively merely a scaling with mass.

Figure 4 shows the conformal factor c , the ‘‘puncture

function’’ u, and the estimate �c of Eq. (54) for three

different values of S=m2
p. There are several noteworthy

features in this figure. First, both c and u show clearly

three different regimes:

(i) For large r, c � 1 and u / 1=r. This is the upper

asymptotically flat end.

(ii) For intermediate r, c / 1=
ffiffiffi
r

p
and u / 1=

ffiffiffi
r

p
. This

is the cylindrical geometry extending symmetrically

around the throat. This region becomes more pro-

nounced as S increases.

(iii) For small r, c / 1=r and u � const. This is the

lower asymptotically flat end.

Figure 4 also plots the approximate solution �c [cf.

Eq. (54)] for its range of validity [given by Eq. (55)].

Note that slope and amplitude of �c fit very well the

numerical solution c . In fact, the agreement is much better

than with u.
One could also have started the calculation that led to

Eq. (54) with Eq. (30). Assuming spherical symmetry, and

assuming that u � mp=ð2rÞ þ 1, we would have derived

Eq. (53), but with �c replaced by u. We would then have

found the approximate behavior Eq. (54) for u. The dis-

advantage of this approach is the need for additional ap-

proximations, which reduce the accuracy of the result.

From Fig. 4 we see that, in the throat region, the dotted

0.001 0.01 0.1 1 10 100 1000

0.1

1

10

100

1000
ψ
u
Ψ

2r/m
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 = r /R

inv

S/m
p

2
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1000
100

FIG. 4 (color online). Solutions of high-spin puncture initial

data. Plotted are the conformal factor c and puncture function u
in the equatorial plane as a function of radius r. Furthermore, the

approximate solution �c is included, with solid circles denoting

the range of validity of this approximation; cf. Eq. (55). Three

curves each are plotted, corresponding from top to bottom to

S=m2
p ¼ 10 000, 1000, and 100.
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lines representing �c are close to the dashed lines of u. But
the agreement between c and �c is certainly better.

Finally, we note that the limits of validity of �c [Eq. (55)]

match very nicely the points where the numerical c di-

verges from �c .

To close this section, we present numerical evidence that

indeed c is approximately spherically symmetric, the

assumption that entered into our derivation of Eq. (54).

We decompose the conformal factor of the numerical

puncture-data solutions into spherical harmonics,

c ðr; �;�Þ ¼
X1

l¼0

Xl

m¼�l

c lmðrÞYlmð�;�Þ; (59)

and plot in Fig. 5 the sizes of the l � 0 modes relative to

the spherically symmetric mode c 00. Because of the sym-

metries of the problem, the only nonzero modes have m ¼
0 and even l. In the throat region, the largest non-

spherically symmetric mode c 20 is about a factor of 65

smaller than the spherically symmetric mode. With in-

creasing l, c lm decays very rapidly. Also, in both asymp-

totically flat ends, the non-spherically symmetric modes

decay more rapidly than the l ¼ 0 mode, as expected for

asymptotically flat data. This figure again shows nicely the

inversion symmetry of the data, under r=Rinv !
ðr=RinvÞ�1. Given the simple structure of the higher modes,

it should be possible to extend the analytical analysis of the

throat to include the nonspherical contributions. To do so,

one would expand c as a series in Legendre polynomials

in �; the c�7 term on the right-hand side of Eq. (52) would

result in a set of ordinary differential equations for those

coefficients. In the throat region, the radial behavior of

each mode should be / 1=
ffiffiffi
r

p
, and the ordinary differential

equations should simplify to algebraic relations.

B. Quasiequilibrium extended-conformal-thin-

sandwich data

We have seen in Sec. III A that puncture initial data for

single, spinning black holes can be constructed for holes

with initial spins of � � 0:9837. In this section, we address
the analogous question for excision black-hole initial data:

How rapid can the initial spin be for a single, spinning

black hole constructed using QE-XCTS initial data?

As noted previously, if the free data ~gij andK are chosen

to agree with the analytic values for a Kerr black hole, gKerrij

and KKerr, then the QE-XCTS initial data can exactly

represent a single Kerr black hole. In this case, � ¼ 1 is

obtained trivially by choosing ~S ¼ ~M2 ¼ 1, where ~M and
~S are the mass and spin, respectively, of the Kerr black hole

described by the conformal metric.

Setting aside this trivial solution, we construct CFMS

data for a single, spinning hole. We construct a family of

QE-XCTS initial-data sets for single spinning black holes

by numerically solving the XCTS equations [in the form

stated in Eqs. (37a)–(37c)] using the same spectral elliptic

solver [62] as in Sec. III A. The free data are given by

Eqs. (41) and (42) and by Eqs. (36a) and (36b).

On the outer boundary B, we impose Eqs. (38a)–(38c).

So that the coordinates are asymptotically inertial, we

choose �0 ¼ _a0 ¼ 0 in Eq. (38c).

We excise a coordinate sphere of radius rexc about the
origin, where

rexc ¼ 0:859 499 77 (60)

is chosen such that for zero spin M ¼ 1. On this inner

boundary S, we impose Eqs. (39), (40), and (44). The spin

is determined by Eq. (40): First, the vector �i is chosen to

be the coordinate rotation vector @�, making the spin point

along the positive z axis; then, the rotation parameter�r is

varied while the other parameters are held fixed. The spin

is measured on the apparent horizon using the

approximate-Killing-vector spin (Appendix A); because

in this case the space is axisymmetric, the ‘‘approximate’’

Killing vector reduces to the corresponding exact rota-

tional Killing vector.

Figure 6 show how the massM and AKV spin S depend

on �r. At �r ¼ 0, we find the spherically symmetric

solution with S ¼ 0 and Mirr ¼ M ¼ 1 [the mass is pro-

portional to the excision radius, and Eq. (60) sets it to

unity]. Using this spherically symmetric solution as an

initial guess for the elliptic solver, we find solutions for

increasing �r with spin increasing initially linearly with

�r and with approximately constant mass. Beyond some

critical �r;crit, the elliptic solver fails to converge, and

close to this point, all quantities vary in proportion to
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FIG. 5 (color online). Angular decomposition of the conformal

factor c ðr; �;�Þ for single-black-hole puncture data.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r;crit ��r

p
. These symptoms indicate a critical point

where the solutions ‘‘turn over’’ and continue towards

smaller �r. Analogous nonunique solutions of the XCTS

equations have been discovered before in Ref. [34]. To

construct solutions along the upper branch, one must

choose a sufficiently close initial guess for the elliptic

solver; we follow the steps outlined in Ref. [34] and are

able to find solutions along the upper branch for a wide

range of�r <�r;crit. As Fig. 6 shows, mass and spin of the

horizon in solutions along the upper branch increase with

decreasing �r, analogous to the findings in [34,35].

Figure 7 shows the dependence of � ¼ S=M2, "J ¼
JADM=E

2
ADM, and � ¼ S=ð2M2

irrÞ on �r. The curves reflect

again the nonunique solutions. The dimensionless spin �
increases continuously along the lower branch and reaches

� � 0:85 at the critical point. As�r is decreased along the

upper branch, � continues to increase, eventually reaching

values larger than 0.99. It appears � continues to increase

as �r ! 0. To find the limiting value, consider that the

behavior of the extremality parameter � in the inset of

Fig. 7. Assuming that � can be extrapolated to �r ! 0,
we find a limiting value of � � 0:88. By Eq. (9), this

implies a maximal value of � � 0:992.
In Figs. 6 and 7, the data sets on the lower branch appear

to be physically reasonable. For spins � & 0:85, the mass

M is nearly constant, and the dimensionless spin � in-

creases linearly with �r. Furthermore, as �r ! 0 the

lower branch continuously approaches the exact

Schwarzschild spacetime (see [28]). The upper branch

appears to be physically less reasonable; for instance, the

spin � increases for decreasing horizon frequency �r.

Comparing Figs. 2 and 7, we see that the QE-XCTS data

lead to somewhat larger values of � and "J relative to

puncture data. However, the values are not too different,

and similar trends remain. For instance, � is much closer to

unity than "J.
To investigate differences or similarities between punc-

ture data and QE-XCTS data further, we compute embed-

ding diagrams of the equatorial planes of these data sets.

The initial data for single black holes have rotational

symmetry about the z axis, so the metric (12) on the

initial-data hypersurface, when restricted to the equatorial

plane, can be written as

ds2 ¼ c 4ðdr2 þ r2d�2Þ; (61)

where r and � are the usual polar coordinates. This metric

is now required to equal the induced metric on the 2D

surface given by Z ¼ ZðRÞ embedded in a 3D Euclidean

space with line element
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FIG. 6 (color online). Conformally flat, maximally sliced,

quasiequilibrium initial-data sets with a single, spinning black

hole. We plot the horizon massM, irreducible massMirr, and the

(approximate-Killing-vector) spin S against the rotation parame-

ter �r [cf. Eq. (40)]. Only �r is varied in this figure; all other

parameters are held fixed. The upper and lower points with the

same �r are obtained numerically by choosing different initial

guesses. The inset shows a close-up view of the turning point,

which occurs at �r � 0:191.
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FIG. 7 (color online). Conformally flat, maximally sliced qua-

siequilibrium initial-data sets with a single spinning black hole:

The dimensionless spin �, dimensionless ADM angular momen-

tum "J, and spin-extremality parameter � plotted against �r [cf.

Eq. (40)]. Only �r is varied in this figure; all other parameters

are held fixed. The inset enlarges the area in the upper left

corner; we are able to generate data sets with �> 0:99, whereas
the largest spin obtainable on the lower branch is � � 0:85.
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ds2Euclidean ¼ dR2 þ R2d�2 þ dZ2: (62)

Setting dZ ¼ dZ
dR

dR, we obtain the induced metric on the

Z ¼ ZðRÞ surface

ds2 ¼
�

1þ
�
dZ

dR

�
2
�

dR2 þ R2d�2: (63)

Equating Eqs. (61) and (63), we find

R ¼ c 2r (64)

and
�

1þ
�
dZ

dR

�
2
�

dR2 ¼ c 4dr2: (65)

Combining (64) and (65) results in
�
dZ

dr

�
2
¼ �4rc 2 dc

dr

�

c þ r
dc

dr

�

: (66)

Since the pseudospectral elliptic solver gives c as a func-

tion of r, Eqs. (64) and (66) allow us to solve for the

embedding radius R and the embedding height Z in terms

of r.
Figure 8 shows embedding diagrams for three sets of

QE-XCTS and puncture data. We have set Z ¼ 0 at r ¼
rexc for QE-XCTS data and at r ¼ Rinv for puncture data.

This figure also contains the embedding of a plane through

Schwarzschild in Schwarzschild coordinates (i.e., the S ¼

0 limit of BY puncture data), given by R=M ¼
Z2=ð8M2Þ þ 2. Both puncture data and CFMS data exhibit

a lengthening throat with increasing spin S=M2. For punc-

ture data, this lengthening can be deduced from the ana-

lytical results in Sec. III A: As the spin parameter S of the

puncture data increases by a factor of 10 while mp � 1 is

held constant, we find from Eq. (57) that L=S1=2 should

increase by

�L=S1=2 ¼ 961=4

2
ln10 � 3:60; (67)

where the factor 1=2 arises because Rinv ¼ mp=2 ¼ 0:5.
The embedding diagram shows only the top half of the

throat, and S1=2 � M [cf. the discussion after Eq. (58)].

Therefore in Fig. 8 the S ¼ 100, 1000, and 10 000 lines for
BY (puncture) data should be spaced by �Z=M � 1:80 for
large R=M. This indeed is the case.

The CFMS data sets appear to scale proportionally to
ffiffiffi

S
p

, which is similar to the puncture data’s behavior.

Furthermore, the CFMS initial-data sets also develop a

lengthening throat as S becomes large (the effect is not

as pronounced as for puncture data, owing to the smaller

maximal S we achieved). Thus it appears that large spin

CFMS data might be similar to large spin puncture data.

However, the throats of the QE-XCTS data show a bulge

near the bottom, because for these data sets R actually

decreases with r in the immediate vicinity of rexc. This is
unlike the puncture data, which very clearly exhibit cylin-

drical throats, consistent with the discussion leading to

(58).
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FIG. 8 (color online). Embedding diagrams for puncture and

quasiequilibrium initial data. Plotted is the embedding height Z
as a function of the embedding radius R, both scaled by the mass

M. For quasiequilibrium data (dashed lines), Z ¼ 0 at r ¼ rexc;
for puncture data (solid lines), Z ¼ 0 at r ¼ Rinv. The thin solid

purple curve represents the embedding of a plane through a

Schwarzschild black hole in Schwarzschild slicing.
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FIG. 9 (color online). Main panel: Dimensionless spin �
[Eq. (1)] and spin-extremality parameter � [Eq. (8)] for the

family CFMS of spinning binary-black-hole initial data.

Inset: Enlargement of � toward the end of the upper branch,

with circles denoting the individual initial-data sets that were

constructed. Compare with Fig. 7.
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IV. BINARY-BLACK-HOLE INITIAL DATAWITH

NEARLY EXTREMAL SPINS

In this section, we construct binary-black-hole initial

data with rapid spins, confining our attention to the special

case of spins aligned with the orbital angular momentum.

In the limit of large separation, binary-black-hole puncture

initial data will behave like two individual puncture initial-

data sets. Specifically, we expect that it should be possible

to construct puncture binary-black-hole initial data with

initial spins �ðt ¼ 0Þ & 0:98, but the spins will rapidly

drop to � & 0:93 as the black holes settle down. For this

reason, and also because puncture data are not well-suited

to our pseudospectral evolution code, we will restrict our

attention to binary black holes constructed with the QE-

XCTS approach.

As laid out in Table I, we first construct a family (labeled

CFMS) of standard conformally flat initial data on maxi-

mal slices; then, we turn our attention to families (labeled

SKS) of superposed Kerr-Schild initial data. Finally, we

construct a few individual SKS-initial-data sets which we

evolve in Sec. V. All of the data sets represent equal-mass,

equal-spin black holes with spins parallel to the orbital

angular momentum.

In this section, unless otherwise indicated, all dimen-

sionless spins are the approximate-Killing-vector spin

�AKV (Appendix A), and the subscript AKV will be sup-

pressed for simplicity.

A. Conformally flat, maximal slicing data

To construct conformally flat binary-black-hole data, we

solve the same equations and boundary conditions as for

the single-black-hole case, as described in Sec. III B, with

the main difference being that we excise two spheres with

radius rexc [cf. Eq. (60)] with centers on the x axis at x ¼
	d=2. The initial spins of the holes are set by adjusting�r,

just as in the single-hole case. The parameters�0 and _a0 in
the outer boundary condition on the shift [Eq. (38c)] de-

termine the initial angular and radial motion of the holes,

which in turn determine the initial eccentricity e of the

orbit. We set �0 ¼ �0ez, where ez is a unit vector that

points along the positive z axis. For the CFMS family of

data sets considered here, we use values for�0 and _a0 that
should result in closed, fairly circular orbits, since our

choices of �0 and _a0 lead to data sets that approximately

satisfy the Komar-mass condition EADM ¼ MK (cf. [29]).

Specifically, on the lower branch of the resulting nonun-

ique family of initial data,

jEADM �MKj
EADM

& 1%; (68)

where the Komar mass is defined by [e.g., Eq. (35) of

Ref. [29]]

MK :¼ 1

4�

I

1
ðri
� 	jKijÞdA: (69)

(On the upper branch, EADM and MK differ by up to 3%.)

As the rotation parameter �r is varied (with the coor-

dinate separation d held fixed), we find that the CFMS

family of binary-black-hole initial data behaves qualita-

tively similarly to the analogous single-black-hole initial

data discussed in Sec. III B. There is a maximal�r;crit such

that no solutions can be found for �r >�r;crit; for values

of �r below �r;crit, two solutions exist. Figure 9 plots the

dimensionless spin � and the spin-extremality parameter �
against �r for this family of initial data. We only show

values for one of the holes, since the masses and spins are

equal. Spins larger than � � 0:85 appear on the upper

branch. The highest spin we have been able to construct

is larger than � ¼ 0:97.

B. Superposed Kerr-Schild data

In this section, we solve the same equations and bound-

ary conditions as in the conformally flat case, except that

we use SKS free data (Sec. II C 2) instead of conformally

flat free data. To construct the individual Kerr-Schild data,

we need to choose for each black hole the coordinate

location of its center, its conformal mass ~M, conformal

spin ~S, and its boost velocity. We center the black holes on

the x axis at x ¼ 	d=2, use the same mass ~M ¼ 1 for both
black holes, and set the boost velocity to ð0;	d�0=2; 0Þ.
The conformal spins are always equal and are aligned with

the orbital angular momentum of the holes.

In contrast to the CFMS data, there are now two parame-

ters that influence the black holes’ spins: (i) the rotation

parameter�r in Eq. (40) and (ii) the conformal spin ~S. For
concreteness, we choose to construct data for four different

values of the conformal spin: ~S= ~M2 ¼ 0, 0.5, 0.93, and
0.99. For each choice, we construct a family of initial-data

sets for different values of �r, which we label as SKS-0.0,

SKS-0.5, SKS-0.93, and SKS-0.99, respectively.

Other choices that went into the construction of the SKS

initial-data sets are as follows:

(i) The excision boundaries are chosen to be the coor-

dinate locations of the horizons of the individual

Kerr-Schild metrics; i.e., they are surfaces of con-

stant Kerr radius

rKerrexc ¼ ~rþ :¼ ~Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~M2 � ~S2

p

; (70)

length-contracted by the Lorentz factor appropriate

for the boost velocity of each black hole. This length

contraction accounts for the tangential motion of the

hole but neglects the much smaller radial motion.

(ii) When superposing the individual Kerr-Schild met-

rics, we use a damping length scale w ¼ 10rKerrexc [cf.

Eqs. (45) and (46)], except for the SKS-0.99 family,

which uses w ¼ d=3.
(iii) The orbital frequency �0 and radial expansion _a0

are held fixed along each family. We expect that our

choices for �0 and _a0 will lead to bounded, fairly

circular orbits, since
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jEADM �MKj
EADM

& 3%: (71)

In Sec. VB we reduce the orbital eccentricity for

one data set in the family SKS-0.93.

We again solve the XCTS equations using the spectral

elliptic solver of Ref. [62]; the families of SKS initial-data

sets that we construct are summarized in Table I. The

elliptic solver needs some initial guess for the variables

to be solved for; we superpose the respective single-black-

hole Kerr-Schild quantities, i.e.,

c ¼ 1; (72a)


c ¼ 1þ
Xn

a¼1

e�r2a=w
2
að
a � 1Þ; (72b)

	i ¼
Xn

a¼1

e�r2a=w
2
a	i

a; (72c)

where n ¼ 2 and 
a and 	i
a are the lapse and shift,

respectively, corresponding to the boosted, spinning Kerr-

Schild metrics gaij used in the conformal metric ~gij.

Convergence of the elliptic solver and spin is demonstrated

in Fig. 10 by showing the decreasing constraint violation8

and differences in spin with increasing resolution.

We now turn our attention to the physical properties of

the SKS initial-data sets. Figure 11 shows the horizon mass

M and the dimensionless spin � of either black hole for the

four families of SKS initial data. As expected, we find that

generally the spin � increases with increasing�r. For each

of the SKS families, we find that the elliptic solver fails to

converge for sufficiently large�r. We suspect that the SKS

families exhibit a turning point, similar to the CFMS-single

and binary-black-hole initial data shown in Figs. 7 and 9. If

this is the case, Fig. 11 only shows the lower branch of each

family, and an additional branch of solutions will be

present. Because we are satisfied with the spin magnitudes

that are possible along the lower branch, we do not attempt

to find the upper branch here.

In contrast to the CFMS data sets (where the lower

branch only allowed spins as large as � & 0:85), the SKS
initial data allow spins that are quite close to unity. For the

different SKS families, we are able to construct initial data

with spins as large as

(i) � � 0:95 for SKS-0,

(ii) � � 0:985 for SKS-0.5,

(iii) � � 0:998 for SKS-0.93,

(iv) � � 0:9997 for SKS-0.99.

These spins are far closer to extremal than possible with

Bowen-York initial data [� & 0:984 (Fig. 2)] or confor-

mally flat, maximally sliced XCTS initial data [� & 0:85

40 60 80

N
1/3

10
-10

10
-8

10
-6

10
-4

10
-2

12 16 20
L

AH

SKS-Headon
SKS-0.93-E3
SKS-0.99, Ω

r
=0.378

χ(L
AH

)-χ(L
AH

-2)Constraint violation

FIG. 10 (color online). Convergence of the spectral elliptic

solver. Left panel: The residual constraint violation as a function

of the total number of grid points N when running the elliptic

solver at several different resolutions. Right panel: Convergence

of the black-hole dimensionless spin � [Eq. (1)] with increasing

resolution LAH of the apparent horizon finder, applied to the

highest-resolution initial-data set of the left panel. The three

curves in each panel represent three different initial-data sets:

one from the family SKS-0.99, as well as the two initial-data sets

that are evolved in Sec. V.
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FIG. 11 (color online). The mass M (upper panel) and dimen-

sionless spin � (lower panel) of one of the holes for superposed

Kerr-Schild, binary-black-hole initial-data sets with spins

aligned with the orbital angular momentum. The mass and

spin are plotted against �r [Eq. (40)] for four different choices

of the conformal spin: ~S ¼ 0, 0.5, 0.93, and 0.99. Also shown are
the data sets SKS-0.93-E3—identical to the �r ¼ 0:28 ~M, ~S ¼
0:93 ~M2 data set on the solid curve but with lower eccentricity—

and SKS-Headon; both sets are evolved in Sec. V. The inset in

the lower panel shows a close-up of the spins as they approach

unity, with symbols denoting the individual data sets.

8The constraint violation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kCk2L2 þ kCkiL2kCkjL2�ij

q

, where C
and Ci are the residuals of Eqs. (10) and (11) and the L2 norm is
given by Eq. (73).
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or & 0:99 along the lower and upper branch, respectively

(Fig. 7)].

We note that the spins in the SKS binary-black-hole

initial-data families are only weakly dependent on the

orbital parameters �0 and _a0. This can be seen from the

individual data point labeled SKS-0.93-E3 shown in

Fig. 11. This data set uses different values for �0 and _a0
but is nevertheless close to the family SKS-0.93. The

initial-data sets SKS-0.93-E3 and SKS-Headon will be

discussed in detail in Sec. V.

The inset of Fig. 11 highlights a remarkable feature of

the SKS-0.93 and SKS-0.99 families: With increasing �r,

the spin initially increases but eventually decreases.

Figure 12 investigates this behavior in more detail, where

this effect is more clearly visible in the lower two panels:

Both the spin � and the extremality parameter � of the

apparent horizon change direction and begin to decrease.

For�r smaller than this critical value, the apparent horizon

finder always converges onto the excision surfaces, which

by virtue of the boundary condition Eq. (39) are guaranteed

to be marginally trapped surfaces. As �r is increased

through the critical value (at which � and � change direc-

tion), a secondmarginally trapped surface (solid line) splits

off from the excision surface (dashed line) and moves

continuously outward. This can be seen in the upper panels

of Fig. 12, which plot the minimal and maximal coordinate

radius and the irreducible mass of both the excision surface

and the outermost marginally trapped surface, which is by

definition the apparent horizon.

But what about the excision surface? The boundary

condition Eq. (39) forces the excision surface to be a

marginally trapped surface, independent of the value of

�r. For sufficiently large�r, however, the excision surface

is surrounded by a larger marginally trapped surface and

thus is not the apparent horizon. The dashed lines in Fig. 12

present data for the excision surface. These lines continue

smoothly across the point where the second marginally

trapped surface forms. The extremality parameter � for

the excision surface continues to increase and eventually

becomes larger than unity; the excision surface can then be

thought of as having a superextremal spin. However, for

the outer marginally trapped surface—the true apparent

horizon—the extremality parameter always satisfies � <
1. The irreducible massMirr of this surface increases faster

than the spin, and therefore � ¼ S=ð2M2
irrÞ decreases with

increasing �r.

One might interpret these results as support of the cos-

mic censorship conjecture. The XCTS boundary condi-

tions (39) and (40) control the location and the spin of

the excision surface. By appropriate choices for the shift

boundary condition (40), we can force the excision surface

to become superextremal. However, before this can hap-

pen, a new horizon appears, surrounding the excision

surface and hiding it from ‘‘our’’ asymptotically flat end

of the spacetime. The newly formed outer horizon always

remains subextremal.

C. Suitability for evolutions

In the previous sections, we have constructed a wide

variety of binary-black-hole initial-data sets. To get some

indication about how suitable these are for evolutions, we

consider the initial time derivatives of these data sets @tgij
and @tKij. Recall that solutions of the XCTS equations give

a preferred initial lapse and shift for the evolution of the

initial data; hence, the time derivatives @tgij and @tKij can

be computed by simply substituting the initial data into the

ADM evolution equations. We expect initial data with

smaller time derivatives to be closer to quasiequilibrium

and to have less initial spurious radiation.

Figure 13 presents the L2 norms of the time derivatives

k@tgijkL2 and k@tKijkL2 where the L2 norm of a tensor

Tijk���ðxÞ evaluated at N grid points xi is defined as

kTijk���kL2 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼0

�T2ðxiÞ
v
u
u
t ; (73)

where
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FIG. 12 (color online). The irreducible mass Mirr and

Euclidean coordinate radius r (upper panels) and dimensionless

spin � :¼ S=M2 and spin-extremality parameter � :¼ S=ð2M2
irrÞ

(lower panels) for one of the black holes in the SKS-0.93 (left)

and SKS-0.99 (right) initial-data-set families. These quantities

are computed on two surfaces: (i) the apparent horizon (solid

lines) and (ii) the excision boundary of the initial data (dashed

lines). Because we enforce that the excision surface is a mar-

ginally trapped surface, typically the apparent horizon and ex-

cision boundary coincide. However, if �r is increased beyond

the values where � approaches unity, the apparent horizon lies

outside of the excision surface. The excision surface can obtain

superextremal spins (� > 1) but only when it is enclosed by a

subextremal horizon.
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�T :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tijk...Ti0j0k0...�
ii0�jj0�kk0 . . .

q

: (74)

Figure 13 shows that generally @tKij is larger than @tgij.

This has also been found in previous work, e.g., [63], and is

not surprising, because the XCTS formalism allows some

control over the time derivative of the metric through the

free data ~uij ¼ @t~gij, whereas there is less control of @tKij.

We note that for CFMS data, the time derivatives are larger

and grow more rapidly with � than for SKS data; in

particular, the time derivatives on the upper branch are


10 times larger than for SKS-initial data, suggesting

that these data are much farther from equilibrium.

In the SKS case, the time derivatives of Kij have local

minima at particular values of�r; comparison with Fig. 11

gives spins � at these minima of k@tKijkL2 as follows:
(i) SKS-0.5: �r � 0:1, � � 0:45;
(ii) SKS-0.93: �r � 0:28, � � 0:93;
(iii) SKS-0.99: �r � 0:34, � � 0:98.

Note that these minima occur at values of�r such that � �
~S= ~M2; that is, transients in the initial data and presumably

the spurious radiation are minimized when the conformal

spin and AKV spin are consistent. For this reason, we

conclude that SKS initial data with � � ~S= ~M2 is prefer-

able; this is the type of initial data we will evolve in the

next section.

Also note that minimizing the spurious radiation has

purely numerical advantages: The spurious radiation typi-

cally has finer structure (and thus requires higher resolu-

tion) than the physical radiation. If such radiation is

minimized, the numerical evolutions may require less

resolution and will be more efficient. Conformally curved

initial data has been found to reduce the amount of spu-

rious radiation in Refs. [39,64].

V. EXPLORATORY EVOLUTIONS OF SKS INITIAL

DATA

So far, we have confined our discussion to black-hole

spins in the initial data. In this section, we compare the

initial spin to the value to which the spin relaxes after the

initial burst of spurious radiation, when the holes have

settled down. Recall, for instance, that for Bowen-York

puncture initial data with spins close to the maximal pos-

sible value [�ðt ¼ 0Þ � 0:98], the spins quickly relax by

about �� � 0:05 to a maximal possible relaxed value of

�ðtrelaxÞ � 0:93 (cf. [25]). While the SKS data presented in

Sec. IVB can achieve larger initial spins [�ðt ¼ 0Þ ¼
0:9997] than conformally flat puncture data, only evolu-

tions can determine �� and �ðtrelaxÞ.
Therefore, in this section we perform brief, exploratory

evolutions of some SKS initial-data sets to determine ��
for those data sets.9 Besides determination of �ðtrelaxÞ,
these evolutions will also allow us to demonstrate that

the technique of eccentricity reduction developed in

Ref. [49] is applicable to SKS initial data as well as to

compare the spin measures defined in Appendixes A and B.

The focus here lies on initial data, and we evolve only long

enough for our purposes. Longer simulations that continue

through merger and ringdown are the subject of ongoing

research.

This section is organized as follows. In Sec. VA, we

summarize the evolution code that we will use. In Sec. VB,

we perform eccentricity reduction on one of the data sets in

the SKS-0.93 family, which corresponds to an orbiting

binary black hole with equal masses and equal spins (of

magnitude � � 0:93) aligned with the orbital angular mo-

mentum. Then, in Sec. VC, we evolve the resulting low-

eccentricity data set (labeled SKS-0.93-E3). Finally, in

Sec. VD, we evolve a head-on plunge of SKS initial data

(labeled SKS-Headon) representing two widely separated

black holes with initial spins of magnitude � ¼ 0:970 and

direction normal to the equatorial plane.

A. Description of evolution code

The initial data are evolved using the Caltech-Cornell

pseudospectral evolution code SpEC [65]. The details of

the evolution methods, equations, and boundary conditions

that we use are the same as those described in Ref. [66].

The singularities are excised, with the excision surfaces
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FIG. 13 (color online). The time derivatives of the metric (left

panel) and extrinsic curvature (right panel). In the SKS data sets,

k@tKijkL2 has minima near values of �r for which the dimen-

sionless spin � is approximately equal to the spin ~S of the

conformal metric (cf. Fig. 11). On the upper branch of the

CFMS excision data, where the spin is � > 0:83 (Fig. 9), the

time derivatives become much larger than the SKS time deriva-

tives. The data sets SKS-0.93-E3 (with � � ~S ¼ 0:93) and SKS-
Headon (with � � ~S ¼ 0:97) are evolved in Secs. VC and VD;

the time derivatives are significantly lower for the set SKS-

Headon because of the larger coordinate separation of the holes

(d ¼ 100 vs d ¼ 32).

9Note that there is no universal value of ��—it will differ for
different initial-data sets, even within the same family of initial
data.
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chosen to lie slightly inside the black-hole horizons. Note

that whereas Ref. [66] excises coordinate spheres inside

the black holes’ apparent horizons, here we use Lorentz-

contracted ellipsoidal excision boundaries which are

adapted to the shape of the initial apparent horizons.

The highest-resolution initial-data set (with N � 853

grid points) is interpolated onto evolution grids labeled

N1, N2, and N3 with approximately 613, 673, and 743

grid points, respectively. The outer boundary is at a coor-

dinate radius of r ¼ 32d for the orbiting simulation dis-

cussed in Secs. VB and VC and at r ¼ 14d for the head-on
simulations discussed in Sec. VD. This translates to about

r ¼ 450EADM and r ¼ 620EADM for the orbiting and head-

on simulations, respectively. As in earlier simulations

[49,65,66], a small region of the evolution grid lies inside

the horizon and is not covered by the initial-data grid; we

extrapolate c , 
c , and 	i into this region and then com-

pute gij and Kij.

B. Eccentricity removal for orbiting SKS binaries

We obtain initial data with small orbital eccentricity

using the iterative method of Ref. [49], as refined in

Ref. [66], applied here for the first time to binary-black-

hole data with rapid spin. In this method, the choice of �0

and _a0 for the next iteration are made so that if the orbit

were Newtonian, the eccentricity would vanish. For the

non-Newtonian orbit here, successive iterations succeed in

reducing the orbital eccentricity.

This procedure is based on the proper separation s
between the apparent horizons, measured along a coordi-

nate line connecting the geometric centers of the apparent

horizons. The time derivative ds=dt is fitted to a five-

parameter curve that, together with the initial proper sepa-

ration sðt ¼ 0Þ, is used to define the eccentricity e and to

define improved values for �0 and _a0. Specifically,

ds

dt
:¼ A0 þ A1tþ B cosð!tþ ’Þ; (75a)

e :¼ B

!sðt ¼ 0Þ ; (75b)

�0;new :¼ �0 þ
B sin�

2sðt ¼ 0Þ ; (75c)

_a0;new :¼ _a0 �
B cos�

sðt ¼ 0Þ : (75d)

Heuristically, the eccentricity is embodied by the oscillat-

ing part of ds=dt.
Figure 14 illustrates the eccentricity reduction for one of

the data sets in family SKS-0.93. Plotted are the proper

separation s and its derivative ds=dt for evolutions of

several initial-data sets (summarized in Table I):

(i) set SKS-0.93-E0, which is identical to the set in

family SKS-0.93 with �r ¼ 0:28 (Fig. 11);

(ii) set SKS-0.93-E1, which is the same as SKS-0.93-E0

except that the orbital frequency �0 is manually

adjusted to lower the orbital eccentricity somewhat;

and

(iii) sets SKS-0.93-E2 and SKS-0.93-E3, which are

successive iterations (starting from set SKS-0.93-

E1) of the eccentricity-reduction scheme Eqs. (75).

The ad hoc adjustment of �0 was somewhat effective,

reducing e by about 50%. The subsequent iterations using

Eqs. (75) reduced e by factors of about 5 and 8, respec-

tively. Surprisingly, the lowest eccentricity, corresponding

to a smooth inspiral trajectory, is obtained with a positive

_a0 ¼ 3:332� 10�4. This is not due to insufficient resolu-

tion; for SKS-0.93-E3, we have verified that we obtain the

same eccentricity e
 0:001 for all three numerical reso-

lutions N1, N2, and N3.

Note that we choose to stop the evolutions at about t ¼
670EADM, which corresponds to about 1.9 orbits; this is

sufficient for reducing the eccentricity and for measuring

��. In the next subsection, we discuss the evolution of the
low-eccentricity set SKS-0.93-E3 in detail, focusing on the

relaxation of the spin �.

C. Low-eccentricity inspiral with � � 0:93

We evolved the data set SKS-0.93-E3 at three different

numerical resolutions for a duration of about 670EADM,

corresponding to about 1.9 orbits. From post-Newtonian

theory [67], we estimate that this simulation would proceed

through about 20 orbits to merger.

Figure 15 presents a convergence test for this run. The

lower panel of Fig. 15 shows the normalized constraint

violation [see Eq. (71) of Ref. [68] for the precise defini-

tion]. While the constraints are small, the convergence

seems poor until t � 500EADM. For this time period the
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FIG. 14 (color online). Eccentricity reduction for evolutions of
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proper separation s (upper panel) and its time derivative ds=dt
(lower panel) are plotted for initial-data sets SKS-0.93-E0,

-E1, -E2, and -E3, which have successively smaller eccentricities

e. All evolutions are performed at resolution N1.
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constraint violations at high resolution N3 are dominated

by the outgoing pulse of spurious radiation—i.e., far away

from the black holes—which we have not attempted to

adequately resolve. At t � 500EADM, the pulse of spurious

radiation leaves the computational domain through the

outer boundary; afterwards, the constraints decrease expo-

nentially with increasing resolution, as expected.

The upper panel of Fig. 15 shows the AKV spin �AKV ¼
S=M2 for the three runs with different resolutions N1, N2,

and N3. Based on the difference between N2 and N3, the

spin of the evolution N3 should be accurate to a few parts

in 104. For the time interval 5< t=EADM < 670, the mea-

sured spin on resolution N3 is consistent with begin con-

stant within its estimated accuracy. Very early in the

simulation, t < 5EADM, the spin � changes convergently

resolved from its initial value �ðt ¼ 0Þ ¼ 0:927 48 to a

relaxed value �ðtrelaxÞ ¼ 0:927 14 (see inset of Fig. 15).

Therefore, for SKS-0.93-E3, we find �� ¼ 0:000 34.
Contrast this result with the evolution of a binary-black-

hole puncture initial-data set with large spins, which is

reported in Ref. [25]: For that particular evolution, �ðt ¼
0Þ ¼ 0:967, �ðtrelaxÞ ¼ 0:924, i.e., �� ¼ 0:043, more than

a factor 100 larger than for the evolution of SKS-0.93-E3

reported here. This comparison is somewhat biased against

the puncture evolution in [25], which starts at a smaller

separation possibly resulting in larger initial transients.

However, even in the limit that the black holes are infi-

nitely separated (i.e., in the single-black-hole limit), the

spins in Bowen-York puncture data relax to values near

"J ¼ JADM=E
2
ADM; to achieve a final spin of �ðtrelaxÞ �

0:93, the initial spin of Bowen-York data must be �ðt ¼
0Þ � 0:98 (cf. Fig. 2 of Ref. [25]). We conclude that the

spin relaxes by a much smaller amount in the SKS case

than in Bowen-York puncture or inversion-symmetric data.

Figure 15 and the discussion in the previous paragraph

only address the behavior of the AKV spin, where the

approximate Killing vectors are computed from the mini-

mization problem [cf. Eq. (A10)]. We now compare the

different spin definitions we present in Appendixes A and

B. Figure 16 compares these different definitions of the

black-hole spin for the N3 evolution of initial-data set

SKS-0.93-E3. Shown are the AKV spin of one hole in

the binary, the scalar-curvature (SC) spins �min
SC and �max

SC

of Appendix B [Eqs. (B2a) and (B2b)], and also the spin

obtained by using Eq. (A1) with a coordinate rotation

vector instead of an approximate Killing vector (which

we call the ‘‘coordinate spin’’ here). After the holes have

relaxed, the SC spins track the AKV spin more closely than

does the coordinate spin. However, during very early times,

as the holes are relaxing and the horizon shape is very

distorted, the SC spins show much larger variations.

Consequently, the SC spin is a poorer measure of the

spin at early times than even the coordinate spin.

D. Head-on plunge with � � 0:97

In the previous subsection, we have seen that, for SKS

binary-black-hole initial data with � ¼ 0:93, the initial

spins change by only a few parts in 104. A spin � � 0:93
is roughly the largest possible equilibrium spin that is

obtainable using standard conformally flat, Bowen-York

puncture data (cf. the discussion at the beginning of

Sec. V). We now begin to explore binary-black-hole simu-

lations with spin magnitudes that are not obtainable with

Bowen-York initial-data methods.
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We construct and evolve SKS binary-black-hole data for

a head-on plunge of two equal-mass black holes with spins

of equal magnitude � ¼ 0:97 and with the spins orthogo-

nal to the line connecting the black holes. This data set,

labeled SKS-Headon, is summarized in Table I and was

briefly discussed in Sec. IVB; cf. Figs. 10, 11, and 13. As

for the orbiting evolution SKS-0.93-E3, we adjust the

rotation parameter �r so that conformal spin ~S= ~M2 and

AKV spin � are approximately equal. Starting such a

simulation at close separation results in rapid coordinate

motion of the apparent horizons during the first few EADM

of the evolution. These motions are currently difficult to

track with our excision code; therefore, we begin at a larger

separation d than we used in the nearly circular data sets

described previously.

Figure 17 presents a convergence test of the constraints

(lower panel) and the AKV spin �AKV (upper panel) during

the subsequent evolution. Again, we are interested in the

initial relaxation of the spins; therefore, we choose to stop

evolution at t � 120EADM. During this time, the black-hole

proper separation decreased from sðt ¼ 0Þ ¼ 47:6EADM to

sðt ¼ 120Þ ¼ 44:1EADM.

During the first 
10EADM, �AKV shows (a numerically

resolved) decrease of about 3� 10�5; this change arises

due to initial transients as the black holes and the full

geometry of the spacetime relax into an equilibrium con-

figuration. Subsequently, the spin remains constant to

within about 10�4, where these variations are dominated

by numerical truncation error.

Figure 18 compares our various spin measures for the

head-on simulation. Interestingly, the spin �coord computed

from coordinate rotation vectors agrees much better with

�AKV than for the SKS-0.93-E3 evolution, perhaps because

the black holes here are initially at rest. The SC spins �min
SC

and �max
SC , derived from the scalar curvature of the apparent

horizon [Eqs. (B2a) and (B2b)], show some oscillations at

early times; after the initial relaxation, the SC spin agrees

with the AKV spin to about 1 part in 104.

VI. DISCUSSION

A. Maximal possible spin

In this paper, we have examined a variety of methods for

constructing black-hole initial data with a particular em-

phasis on the ability to construct black holes with nearly

extremal spins. These are spins for which the dimension-

less spin � ¼ S=M2 and spin-extremality parameter � ¼
S=ð2M2

irrÞ are close to unity.

When discussing black-hole spin, one needs to distin-

guish between the initial black-hole spin and the relaxed

spin of the holes after they have settled down. Using

conformally flat BY data (both puncture data or

inversion-symmetric data) for single black holes, the larg-

est obtainable spins are � � 0:984, � � 0:833 (cf.

Ref. [61] and Fig. 2). With CFMS, QE-XCTS data, we

are able to obtain initial spins as large as � � 0:99, � �
0:87 for single black holes (Fig. 7). The limitations of BY

puncture data and CFMS QE-XCTS data are already

present when constructing highly spinning single black

holes; therefore, we expect the methods to be able to

construct binary-black-hole data with similar spins as for

single holes—i.e., up to about 0.98. Construction of CFMS

QE-XCTS binary-black-hole initial data confirms this con-

jecture (compare Fig. 9 with Fig. 7).

For SKS initial data, the situation is different. For single

black holes, SKS data reduce to the analytical Kerr solu-
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tion, without any limitations on the spin magnitude. Thus

limitations of SKS data will only be visible for binary-

black-hole configurations. As Secs. IV and V show, how-

ever, those limitations are quite minor. SKS data can in-

deed achieve initial spins that are much closer to

extremality than what is possible with BY data or CFMS

QE-XCTS data; we have explicitly demonstrated this by

constructing SKS data for binary black holes with � �
0:9997, � � 0:98, as can be seen from Figs. 11 and 12.

As the black-hole spacetimes settle into equilibrium and

emit spurious gravitational radiation, the initial spin �
decreases to a smaller relaxed spin �ðtrelaxÞ. Thus an inter-

esting quality factor for high-spin black-hole initial data is

�� ¼ �ðt ¼ 0Þ � �ðtrelaxÞ [Eq. (3)] considered as a func-

tion of the relaxed spin. The magnitude of �� is indicative

of the amplitude of any initial transients, whereas the

maximally achievable �ðtrelaxÞ gives the largest possible

spin which can be evolved with such initial data. Figure 19

presents this plot, with the circle and cross representing the

two evolutions of SKS data which were described in

Sec. V.

We have not evolved high-spin puncture data nor high-

spin CFMS-XCTS data; therefore, we do not know pre-

cisely �� for these initial data. We estimate �� for

puncture data by noting that evolutions of single-hole,

BY puncture data with large spins show [25] that the

black-hole spin � :¼ S=M2 relaxes approximately to the

initial value of "J :¼ JADM=E
2
ADM. Therefore, for BY

puncture data, we approximate

�� � "J � �ðt ¼ 0Þ; (76)

�ðtrelaxÞ � "J: (77)

This curve is plotted in Fig. 19. Because high-spin single-

black-hole, CFMS QE-XCTS initial data and BY puncture

data have quite similar values of �ðt ¼ 0Þ and "J, as well
as similar embedding diagrams (cf. Fig. 8), we conjecture

that Eqs. (76) and (77) are also applicable to CFMS QE-

XCTS data. This estimate is also included in Fig. 19. We

see that both types of initial data result in a �� of similar

magnitude which grows rapidly with �relaxed.

Perhaps the most remarkable result of Fig. 19 is the

extremely small change in black-hole spin during the

relaxation of SKS initial data, even at spins as large as � ¼
0:97. The small values of �� combined with the ability to

construct initial data with initial spins �ðt ¼ 0Þ as large as
0.9997 (cf. Fig. 11) makes it highly likely that SKS initial

data are capable of constructing binary black holes with

relaxed spins significantly closer to unity than 0.97.

Evolutions of initial data with spins �much closer to unity,

i.e., farther into the regime that is inaccessible to confor-

mally flat data, are a subject of our ongoing research.

In summary, the two main results of this paper are as

follows:

(i) SKS initial data can make binary black holes that

initially have nearly extremal spins, and

(ii) for SKS initial data, the relaxed spin is quite close to

the initial spin, even when the spin is large.

B. Additional results

While working toward the main results discussed in the

previous subsection, we have also established several addi-

tional interesting results. We have considered spinning,

single-black-hole, puncture data which is identical to

single-black-hole, spinning, inversion-symmetric data.

Using this correspondence and our accurate spectral ellip-

tic solver, we revisited the relation between black-hole spin

�, specific total angular momentum of the spacetime "J,
and the spin parameter S for BY puncture data and estab-

lished in Fig. 2 that both � and "J approach their limits for

S ! 1 as power laws; cf. Eqs (49) and (50). We have also

extended the analytical analysis of Dain, Lousto, and

Zlochower [25] of the throat region of high-spin puncture

data toward more quantitative results, including the precise

amplitudes of the conformal factor, throat circumference

and throat length, as well as their scaling with spin pa-

rameter S and puncture mass mp [Eqs. (54)–(58)].

Furthermore, Ref. [25] implicitly assumed that the throat

region is approximately spherically symmetric; our Fig. 5

presents explicit evidence in support of this assumption but

also shows that the throat is not precisely spherically

symmetric.

We have also examined high-spin QE-XCTS initial data

employing the common approximations of CFMS. With
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FIG. 19 (color online). The change �� in black-hole spin �
during the initial relaxation of black-hole initial data plotted as a

function of the black-hole spin after relaxation. The SKS initial

data constructed in this paper have smaller transients and allow

for larger relaxed spins.
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increasing angular frequency �r of the horizon, we dis-

cover nonunique solutions. Thus, the nonuniqueness of the

XCTS equations can be triggered not only by volume terms

(as in [34]) but also through boundary conditions [in this

case, by Eq. (40)]. Interestingly, CFMS QE-XCTS data

appear to be very similar to BY puncture data, in regard to

nearly extremal spins. Both data formalisms result in simi-

lar maximal values of �ðt ¼ 0Þ and "J (Figs. 2, 7, and 19)

and have embedding diagrams which develop a length-

ening throat as the spin is increased (Fig. 8).

We also have found an interesting property of the hori-

zon geometries for SKS data, which one might interpret as

support of the cosmic censorship conjecture. Specifically,

we find that by increasing �r sufficiently we can in fact

force the excision boundaries of the initial data to be

‘‘horizons’’ (i.e., marginally trapped surfaces) with super-

extremal spin (� > 1). However, these superextremal sur-

faces are always enclosed by a larger, subextremal (� < 1)
apparent horizon.

To measure black-hole spins, we have employed and

compared several different techniques to measure black-

hole spin. Primarily, we use a quasilocal spin definition

based on (approximate) Killing vectors [Eq. (A1)]. This

formula requires the choice of an approximate Killing

vector, and we have used both straightforward coordinate

rotations to obtain �coord and solved Killing’s equation in a

least-squares sense to obtain �AKV (see Appendix A for

details). Furthermore, we introduced a new technique to

define black-hole spin which does not require choice of an

approximate Killing vector and is invariant under spatial

coordinate transformations and transformations associated

with the boost gauge ambiguity of the dynamical horizon

formalism. This new technique is based on the extrema of

the scalar curvature of the apparent horizon. Figures 16 and

18 show that all four spin measures agree to good preci-

sion, but differences are noticeable. The spin measures

based on the horizon curvature exhibit more pronounced

variations during the initial transients, and the quasilocal

spin based on coordinate rotations is off by several tenths

of a percent. The quasilocal spin based on approximate

Killing vectors �AKV has the smallest initial variations.

Finally, we would like to point out that a modified

version of the SKS-initial data has been very successfully

used to construct black-hole–neutron-star initial data [69].
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APPENDIX A: QUASILOCAL SPIN USING

APPROXIMATE KILLING VECTORS (AKV SPIN)

In this appendix and the one that follows, we address the

task of defining the spin of a dynamical black hole, given

gij and Kij. We use two different measures. The first,

defined here, is a standard quasilocal angular momentum

defined with approximate Killing vectors which corre-

spond to approximate symmetries of a black hole’s hori-

zon. The second measure, defined in Appendix B, infers

the spin from geometrical properties (specifically, from the

intrinsic scalar curvature R
�
) of the apparent horizon, as-

suming that the horizon is that of a single black hole in

equilibrium, (i.e., that the horizon is that of a Kerr black

hole). Note that quantities relating to the geometry of the

two-dimensional apparent horizon surface H are denoted

with a ring above them, to avoid confusion with the analo-

gous quantities on the spatial slice �.
It has become standard in the numerical relativity com-

munity to compute the spin angular momentum of a black

hole with the formula [70–72]

S ¼ 1

8�

I

H
�isjKijdA; (A1)

where si is the outgoing normal of H embedded in � and
~� is an ‘‘azimuthal’’ vector field, tangent to H . The

azimuthal vector field ~� carries information about the

‘‘axis’’ about which the spin is being computed. There

are, however, far more vector fields on a two-sphere than

there are axes in conventional Euclidean space. We must

find suitable criteria for fixing these azimuthal vector fields

in numerical simulations, so that they reduce to the stan-

dard rotation generators when considered on a metric

sphere.

Because angular momentum is generally thought of as a

conserved charge associated with rotation symmetry—and

indeed the quantity given in (A1) can be shown to be

conserved under time evolution [70,72] when ~� is a

Killing vector of the dynamical horizon world tube—it

makes sense to consider Killing’s equation to be the essen-

tial feature of the azimuthal vector field. If a Killing vector

on a dynamical horizon is a tangent to each (two-

dimensional) apparent horizon, then the vector field must

be a Killing vector of each apparent horizon. However in a

general spacetime, on an arbitrary apparent horizon, there

is no reason to expect any Killing vectors to exist. So in the
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cases of most interest to numerical relativity, when there

are no true rotation symmetries, we must relax the sym-

metry condition and find those vector fields that come

‘‘closest’’ to generating a symmetry of the apparent hori-

zon. In other words, we seek optimal approximate Killing

vectors of the apparent horizon.

In [73], a practical method for computing approximate

Killing vectors was introduced, which has since been

applied on numerous occasions, e.g., [18,19,29,74]. This

method involves integrating the Killing transport equations

along a predetermined network of coordinate paths. The

resulting vector field is guaranteed to be a Killing vector

field if such a field exists and coincides with the computed

field at any point on the network. However if no true

Killing field exists, the integral of the Killing transport

equations becomes path-dependent. This means that the

computed vector field will depend in an essential way on

the network of paths chosen for the integral. Perhaps even

more serious, if there is no true Killing field, then the

transport of a vector around a closed path will not neces-

sarily be an identity map. As a result, the computed vector

field cannot be expected to reduce to any smooth vector

field in the limit that the network becomes more refined.

This kind of approximate-Killing-vector field is simply not

mathematically well-defined in the continuum limit.

Here we will describe a kind of approximate-Killing-

vector field that, as well as having a well-defined contin-

uum limit, is actually easier to construct than those of the

Killing transport method, at least in our particular code.

Our method is extremely similar to that described by Cook

and Whiting [41] but was actually developed indepen-

dently by one of the current authors [75].

1. Zero expansion, minimal shear

Killing’s equation

DðA�BÞ ¼ 0 (A2)

has two independent parts: the condition that ~� be

expansion-free

� :¼ g
�ABDA�B ¼ 0 (A3)

and the condition that it be shear-free

�AB :¼ DðA�BÞ � 1
2g
�
AB� ¼ 0; (A4)

where uppercase Latin letters index the tangent bundle to

the two-dimensional surface, g
�
AB is the metric on that

surface, and DA is the torsion-free covariant derivative

compatible with that metric.

When constructing approximate Killing vectors, a ques-

tion arises: Which condition is more important, zero ex-

pansion or zero shear? Shear-free vector fields (conformal

Killing vectors) are simply coordinate rotation generators

in the common case of coordinate spheres in a conformally

flat space. They are therefore readily available in that

context. Avery interesting and systematic approach to their

use has been given by Korzynski [76], and they have been

used in the construction of conformally flat binary-black-

hole initial-data sets [28,29]. However, in the case of a

general surface in a general spatial slice, the conformal

Killing vectors are not known a priori, and they are more

difficult to construct than expansion-free vector fields.

Expansion-free vector fields have the additional benefit

of providing a gauge-invariant spin measure on a dynami-

cal horizon [70],10 so we restrict attention to the expansion-

free case.

Any smooth, expansion-free vector field tangent to a

topological two-sphere can be written as

�A ¼ �ABDBz; (A5)

where �AB is the Levi-Civita tensor and z is some smooth

potential function.

We assume that the function z has one local maximum,

one local minimum, and no other critical points. This is

equivalent to the assumption that the orbits of ~� are simple

closed loops. In order for �A�A to have the proper dimen-

sions, z must have dimensions of area. For the case of the

standard rotation generators of the metric two-sphere, the

three z functions are the three ‘ ¼ 1 spherical harmonics,

multiplied by the square of the areal radius of the sphere.

Within this space of expansion-free vector fields, we

would now like to minimize the following positive-definite

norm of the shear:

k�k2 :¼
I

H
�BC�

BCdA: (A6)

Substituting Eq. (A5) for ~� in this expression and integrat-

ing twice by parts, k�k2 takes the form of an expectation

value:

k�k2 ¼
I

H
zHzdA; (A7)

where H is the self-adjoint fourth-order differential opera-

tor defined by

Hz ¼ D4zþ R
�
D2zþDAR

�
DAz; (A8)

and D2 is the Laplacian on the (not necessarily round)

sphere, D4 is its square, and R
�
is the Ricci scalar curvature

of the sphere. In our sign convention, R
� ¼ 2 on the unit

sphere, so we can immediately see that Hz ¼ 0 when z is

10The dynamical horizon is essentially the world tube foliated
by the apparent horizons. The gauge freedom is that of extending
the foliation off of this world tube. The fact that this gauge
invariance occurs when ~� is expansion-free can most easily be
shown by expressing the factor sjKij in Eq. (A1) in terms of the
ingoing and outgoing null normals to the two-surface. The boost
freedom in these null normals has no effect on the spin when ~� is
expansion-free.
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an ‘ ¼ 1 spherical harmonic and therefore that their asso-

ciated vector fields are shear-free.

It is now tempting to minimize the functional k�k2 in

(A7) with respect to z. However, doing so will simply

return the condition that z lie in the kernel of H. If there

are no true Killing vectors, this will mean that z is a

constant and therefore that ~� vanishes. We need to restrict

the minimization procedure to cases that satisfy some

normalization condition. In this case, we require that the

norm of the vector field

I

H
�A�AdA (A9)

take some given positive value. This restriction can be

made with the use of a Lagrange multiplier. Specifically,

the functional we wish to minimize is

I½z� :¼
I

H
zHzdAþ �

�I

H
DAzDAzdA� N

�

(A10)

for some yet undetermined positive parameter N. Note that

� is the Lagrange multiplier and we have made use of the

fact that Eq. (A5) implies that ~� � ~� ¼ ~Dz � ~Dz.
Minimizing the functional I with respect to z returns a

generalized eigenvalue problem:

Hz ¼ �D2z: (A11)

It is at this point that we can most easily clarify the

difference between our construction of approximate

Killing vectors and that of Cook and Whiting in [41].

The difference lies in the choice of norm in which the

minimization problem is restricted. Rather than fixing the

norm (A9) to take some fixed value in the minimization,

Cook and Whiting instead fix the dimensionless norm:

I

H
R
�
�A�AdA: (A12)

In general, we see no particular reason to prefer either

norm over the other, but for the current purposes we have

at least an aesthetic preference for (A9), which is positive-

definite even at high spin, whereas (A12) is not, because

the scalar curvature R
�
of the horizon becomes negative

near the poles at high spin. If the norm (A9) in Eq. (A10) is

replaced by (A12), the result is the problem described in

[41]:

Hz ¼ �ðR�D2zþDAR
�
DAzÞ: (A13)

In our numerical code, we discretize (A11) [or, option-

ally, (A13), but not for any results published here] and

solve the resulting linear algebra problem with a LAPACK

routine [77]. Note, however, one technical peculiarity: The

operators H and D2 in (A11) share a kernel, the space of

constant functions. This means that this generalized eigen-

value problem is singular, a fact that can cause consider-

able difficulties for the numerical solution [78]. The same

can be said of (A13). For our purposes, this complication is

easily evaded. Since we are working with a spectral code, it

is easiest to discretize the problem using expansion into the

spectral basis functions (coordinate spherical harmonics).

When this is done, the space of constant functions—the

shared kernel of the two operators—is simply the span of a

single basis function: the constant Y00. This basis function

can easily be left out of the spectral expansion and thereby

removed from the numerical problem.

Expansion into coordinate spherical harmonics has an-

other practical advantage. As noted earlier, for metric

spheres in standard coordinates, the Killing vectors arise

when z is given by an ‘ ¼ 1 spherical harmonic. Thus,

assuming our horizon is nearly round, and noticeably so in

the given coordinates, the lowest basis functions (the ‘ ¼ 1
spherical harmonics) should nicely approximate the in-

tended eigenfunctions. The higher basis functions should

simply provide small corrections.

In summary, the approach that we take to finding ap-

proximate Killing vectors begins with a spectral decom-

position of Eq. (A11). This problem, of course, provides as

many eigenvectors as there are elements of the spectral

decomposition. We restrict attention to the three eigenvec-

tors with smallest eigenvalues (ignoring the vector corre-

sponding to the constant eigenfunction, which is physically

irrelevant and removed from discretization), as these are

the ones corresponding to vector fields with the smallest

shear, and, at least for spheres that are only slightly de-

formed, the orbits of these vector fields are smooth closed

loops.

It must be noted that only the eigenvector with the

smallest eigenvalue corresponds to a vector field with

strictly minimum shear: Even locally, all other eigenvec-

tors are saddle points of the minimization problem. The

three of them taken together, however, provide a geomet-

rically defined subspace of the vector space of expansion-

free vector fields, a natural generalization of the rotation

generators on metric spheres. Using these three vector

fields (normalized as described in the next subsection),

one can define ‘‘components’’ of the spin angular momen-

tum of a black hole11 and from these components infer the

spin around an arbitrary axis or even a spin ‘‘magnitude’’

using a metric on this three-dimensional space of general-

ized rotation generators. In practice, we have found no

need to go quite so far. As mentioned in [41], the approxi-

mate Killing vectors generally adapt themselves so well to

the horizon that one of the components is much larger than

the other two, so this is considered the spin magnitude, and

11In fact, using the higher eigenvectors, one could in principle
compute higher-order multipole moments. We see this as a
natural extension of the method laid out in [74] for defining
the higher multipole moments of axisymmetric black holes.
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the associated approximate Killing vector is considered to

define the spin axis.

2. Normalization

Solutions to the eigenproblem (A11) can only determine

the approximate Killing vectors up to a constant scaling.

Fixing this scaling is equivalent to fixing the value of N in

(A10). The standard rotation generators of metric spheres

are normalized such that, when considered as differential

operators along their various orbits, they differentiate with

respect to a parameter that changes by a value of 2� around

each orbit. Naively one would like to fix the normalization

of approximate Killing vectors in the same way, but a

subtlety arises: We can only rescale the vector field by a

fixed, constant value. Rescaling differently along different

orbits would introduce extraneous shear and would remove

the vector field from the pure eigenspace of (A11) in which

it initially resided. If an approximate-Killing-vector field

has different parameter circumferences around different

orbits, then it is impossible to rescale it such that the

parameter distance is 2� around every orbit. The best

one can ask is that 2� is the average of the distances

around the various orbits.

To consider this in detail, introduce a coordinate system,

topologically the same as the standard spherical coordi-

nates on the metric sphere but adapted to the potential

function z so that the latitude lines are the level surfaces

of z (and, in particular, the poles are at the two critical

points we have assumed z to have). More precisely, choose

z for the zenith coordinate on the sphere and an arbitrary

rotational coordinate—say, the azimuthal angle in the en-

compassing spatial slice, describing rotations about the

axis connecting the critical points of z—for the azimuthal

coordinate ’ on the sphere. If the parameter  is defined

such that ~� ¼ ðd=dÞz¼const, then in the basis related to

these coordinates, the components of ~� are

�zðz; ’Þ ¼
�
dz

d

�

z¼const
¼ 0; (A14)

�’ðz; ’Þ ¼
�
d’

d

�

z¼const
: (A15)

Around a closed orbit CðzÞ, at fixed z, the parameter 
changes by a value of

ðzÞ ¼
Z

CðzÞ

d’

�’ðz; ’Þ (A16)

¼
Z

CðzÞ

d’

�’z@zz
(A17)

¼
Z

CðzÞ

ffiffiffi

g
�

q

d’; (A18)

where g
�
is the determinant of the surface metric, evaluated

in the ðz; ’Þ coordinates. Note that Eq. (A18) follows from
Eq. (A17) by the fact that the condition g

�
ABg

�
CD�

AC�BD ¼
2 implies �’z ¼ 1=

ffiffiffi

g
�

q

. The average value of , over the

various orbits, is

hi ¼ 1

zmax � zmin

Z zmax

zmin

Z

CðzÞ

ffiffiffi

g
�

q

d’dz (A19)

¼ A

zmax � zmin

; (A20)

where A is the surface area of the apparent horizon.

Requiring this average to equal 2�, we arrive at the nor-

malization condition:

2�ðzmax � zminÞ ¼ A: (A21)

This normalization condition requires finding the mini-

mum and maximum values of the function z, which is only
computed on a discrete grid. In our spectral code, in

particular, this numerical grid is quite coarse, so numerical

interpolation is needed, in combination with an optimiza-

tion routine. We have implemented such routines to search

for zmin and zmax, but a numerically cheaper normalization

condition would be of interest. Such a condition arises

when one assumes that the black hole under consideration

is approximately Kerr. In the Kerr metric, for the function z
generating the true rotation generator of the Kerr horizon,

the following identity holds:

I

H
ðz� hhziiÞ2dA ¼ A3

48�2
; (A22)

where hhzii is the average of z over the sphere. The existence
of an identity of this form is somewhat nontrivial: The fact

that the right side is given purely by the horizon area, and

that it does not involve the spin of the Kerr hole, is what

makes this identity useful as a normalization condition.

This normalization is much easier to impose and requires

significantly less numerical effort.

To close the discussion of spin computed from approxi-

mate Killing vectors, we demonstrate the effectiveness of

the method in a simple test case: an analytic Kerr black

hole in slightly deformed coordinates. We begin with a

Kerr black hole of dimensionless spin parameter � ¼ 1=2,
in Kerr-Schild coordinates, but we rescale the x axis by a

factor of 1.1. This rescaling of the x coordinate causes the

coordinate rotation vector x@y � y@x to no longer be the

true, geometrical rotation generator. Indeed, when we

compute the quasilocal angular momentum (A1) on the

horizon using this coordinate vector, the result converges to

a physically inaccurate value, as demonstrated by the black

dotted curve in Fig. 20. If, however, the approximate

Killing vectors described above are used, the result is not

only convergent but physically accurate. Because the ac-

curacy is slightly better with the normalization condition of
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Eq. (A22), that is the condition we use for all results

presented in this paper.

APPENDIX B: SCALAR-CURVATURE SPIN

In this appendix, we define a spin measure in terms of

the intrinsic geometry of the horizon, which we compare

with the AKV spin in Sec. V. The AKV spin described in

Appendix A is a well-defined measure of black-hole spin,

even when the holes’ horizons have only approximate

symmetries. At times sufficiently before or after the holes

merge, however, the horizons will not be too tidally dis-

torted and thus will not be too different from the exactly

axisymmetric horizons of Kerr black holes.

By assuming that the geometric properties of the horizon

behave precisely as they do for a Kerr black hole, one can

infer the hole’s spin from those properties. For instance, it

is common to measure polar and equatorial circumferences

of the apparent horizon; the spin is then obtained by finding

the Kerr spacetime with the same circumferences [79–81].

To avoid introducing coordinate dependence by defining

‘‘polar’’ and ‘‘equatorial’’ planes, we infer the spin from

the horizon’s intrinsic scalar curvature R
�
. The horizon

scalar curvature R
�
has previously been studied analytically

for Kerr-Newman black holes [82] and for Kerr black holes

perturbed by a distant moon [83]. Numerical studies of R
�

have focused attention on the quasinormal ringing of

single, perturbed, black holes [79] as well as on the shape

of the individual and common event horizons in Misner

data [84]. To our knowledge, the scalar curvature R
�
has not

been previously used to infer the horizon spin in numerical

simulations.

At a given point on a Kerr black hole’s horizon, the

horizon scalar curvature R
�
depends only on the hole’s mass

M and spin S. The extrema of R
�
can be expressed in terms

of the irreducible mass and dimensionless spin of the Kerr

black hole via Eqs. (1) and (2) as

minðR� Þ ¼ �1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

2M2
irr

; (B1a)

maxðR� Þ ¼ � 2

M2
irr�

4
ð�2þ �2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
q

Þ: (B1b)

Solving for � and requiring it to be real yields � as a

function of Mirr and either minðR� Þ or maxðR� Þ. We take

these functions as definitions of the spin, even when the

spacetime is not precisely Kerr:

ð�min
SC Þ2 :¼ 1� ½12 þM2

irr minðR� Þ�2; (B2a)

ð�max
SC Þ2 :¼ �2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M2
irr maxðR� Þ

q

M2
irrmaxðR� Þ

: (B2b)

The definitions of the spin given by Eqs. (B2a) and (B2b)

are manifestly independent of spatial coordinates and are

well-defined for black holes that are tidally deformed.

Also, as they only involve the intrinsic two-dimensional

geometry of the apparent horizon, they are also manifestly

independent of boost gauge, in the sense described in the

previous appendix.

We expect �min
SC and �max

SC to be reasonable measures only

if tidal forces can be neglected. Tidal forces scale with the

cube of the separation of the holes; for binary with holes of

equal massM and separation d, tidal coupling is negligible

when maxðR� Þ �minðR� Þ � M=d3.

We find it convenient to compute R
�
from (i) the scalar

curvature R associated with the three-dimensional metric

gij of the spatial slice � and (ii) the outward-pointing unit-

vector field si that is normal to H . This can by done by

means of Gauss’s equation [e.g., Eq. (D.51) of Ref. [85]

(note that the Riemann tensor in Ref. [85] disagrees with

ours by an overall sign)]

R
� ¼ R� 2Rijs

isj � K
�
2 þ K

�
ijK

�
ij; (B3)

where Rij and R were defined after Eq. (11) and where K
�
ij

denotes the extrinsic curvature of the apparent horizon H
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FIG. 20 (color online). Error, relative to the analytic solution,

of the spin on the horizon of a Kerr black hole in slightly

deformed coordinates. The vertical axis represents j�computed �
�analyticj, and data are shown for the spin computed with the

standard coordinate rotation vector (in deformed coordinates, so

not a true Killing vector) and with our AKVs using both the

extremum norm Eq. (A21) and the integral norm Eq. (A22). The

spin computed from the coordinate rotation vector quickly con-

verges to a physically inaccurate result. The spin from approxi-

mate Killing vectors converges in resolution LAH to the correct

value � ¼ 1=2. Curves are also shown for the two spin measures

defined in Appendix B. These spin measures also converge

exponentially to the physically correct result.
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embedded in � (not to be confused with Kij, the extrinsic

curvature of the slice � embedded in M). The horizon

extrinsic curvature is given by

K
�

ij ¼ risj � sis
krksj: (B4)

Inserting Eq. (B4) into Eq. (B3) shows that R
�

can be

evaluated exclusively in terms of quantities defined on

the three-dimensional spatial slice �.

The accuracy of these spin measures is demonstrated in

Fig. 20, which shows a Kerr black hole with � ¼ 1=2 in

slightly deformed coordinates so that the coordinate rota-

tion vector no longer generates a symmetry. Again, both

�min
SC and �max

SC converge exponentially to the physically

accurate result.
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[54] W. Tichy, B. Brügmann, M. Campanelli, and P. Diener,

Phys. Rev. D 67, 064008 (2003).

[55] S. Nissanke, Phys. Rev. D 73, 124002 (2006).

[56] N. Yunes, W. Tichy, B. J. Owen, and B. Brügmann, Phys.
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