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Abstract

In classical statistical learning theory, one of the most well-studied problems is that of binary classification. The information-

theoretic sample complexity of this task is tightly characterized by the Vapnik-Chervonenkis (VC) dimension. A quantum

analog of this task, with training data given as a quantum state has also been intensely studied and is now known to

have the same sample complexity as its classical counterpart. We propose a novel quantum version of the classical binary

classification task by considering maps with classical input and quantum output and corresponding classical-quantum

training data. We discuss learning strategies for the agnostic and for the realizable case and study their performance to obtain

sample complexity upper bounds. Moreover, we provide sample complexity lower bounds which show that our upper bounds

are essentially tight for pure output states. In particular, we see that the sample complexity is the same as in the classical

binary classification task w.r.t. its dependence on accuracy, confidence and the VC-dimension.
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1 Introduction

The fields of machine learning and of quantum computation

provide new ways of looking at computational problems

and have seen a significant increase in academic as well as

practical interest since their origins in the 1970s and 1980s.

More recently, attention was directed to paths for combining

ideas from these two fruitful research areas. This gave rise

to new approaches under different names such as “quantum

machine learning” or “quantum learning theory”.

In classical statistical learning theory, one of the most

influential frameworks is that of probably approximately

correct (PAC) learning due to Vapnik and Chervonenkis

(1971) and Valiant (1984). It is particularly well studied for

the task of binary classification. For this problem the so-

called VC-dimension Vapnik and Chervonenkis (1971) is

known to characterize the sample complexity of learning

a function class (Blumer et al. 1989; Hanneke 2016).

Motivated by these strong theoretical results, a quantum

analog of this problem was soon defined and studied in
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a series of papers (an overview over which is given in

Arunachalam and de Wolf (2017)), which culminated in

the results of Arunachalam and de Wolf (2018). There it

is shown that the information-theoretic complexity of the

task of quantum PAC learning a 0-1-valued function class is

characterized by the VC-dimension in exactly the same way

as for the classical scenario.

The scenario studied in Arunachalam and de Wolf (2018)

assumes the training data available to the learner to be

given in a specific quantum form and allows the learner to

perform quantum computational operations on that training

data. The functions to be learned, however, still map

classical inputs to classical outputs. We propose a different

quantum version of the binary classification task by not

only considering the possibility of quantum training data

but by allowing the objects to be learned to be inherently

quantum. More specifically, we consider functions that map

classical inputs to one of two possible quantum output states

(“quantum labels”). These maps describe state preparation

procedures. A more general learning task of this type,

for which our problem can be seen as a toy model,

could be relevant for cases in which state preparation is

either costly or time-consuming, e.g., preparing thermal

states at low temperatures (see Brandão and Kastoryano

2019; Chowdhury 2020, and references therein). Here, one

could first produce sample data, learn a predictor, and

then reproduce the preparation more efficiently using the

predictor.
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1.1 Main results

We consider maps f : X → {σ0, σ1} that assign to points

in a classical input space X one of two labelling quantum

states {σ0, σ1}. (Here, σ0 and σ1 are, in general, mixed

states described by density matrices.) Let F be a function

class consisting of such functions. We assume the training

data to be given as a classical-quantum state about which,

according to the laws of quantum theory, we can only gain

information by performing measurements.

Our learning model is that of PAC-learning with accuracy

ε and confidence δ. Here, we require a learning algorithm,

given as input classical-quantum training data generated

according to some unknown underlying distribution, to

output with probability ≥ 1 − δ over the choice of training

data a hypothesis that achieves accuracy ε. (Accuracy is

measured in terms of the trace distance.)

We present a learning strategy that (ε, δ)-PAC learns

F ⊆ {f : X → {σ0, σ1}} in the agnostic scenario from

classical-quantum training data of size O

(
d

ε2 + log 1/δ

ε2

)

,

where d is the VC-dimension of the {0, 1}-valued function

class F̃ ⊆ {f̃ : X → {0, 1}} induced by F via

σi �→ i, i = 0, 1. Here, “agnostic” means that there

need not be a function in F that would achieve perfect

accuracy. We also show that solving this learning problem

requires training data size Ω
(

d

ε2 + log 1/δ

ε2

)

, so our strategy

is optimal w.r.t. the sample complexity dependence on ε, δ

and d .

For the realizable scenario of the quantum learning

problem, i.e., under the assumption that perfect accuracy

can be achieved using F , we prove a sample complexity

upper bound of

O

(
1

ε(1− 2 max{tr[E0σ1], tr[E1σ0]})2
(d + log 1/δ)

)

,

where {E0, E1} is the Holevo-Helstrom measurement for

distinguishing σ0 and σ1, and a sample complexity lower

bound of Ω
(

d
ε
+ log 1/δ

ε

)

. Also here, these bounds coincide

w.r.t. their dependence on ε, δ and d . The prefactor (1 −
2 max{tr[E0σ1], tr[E1σ0]})−2 in the upper bound comes

from our procedure trying to distinguish σ0 and σ1 by

measuring single copies. (Note: Even though we formulate

this in terms of the Holevo-Helstrom measurement, we

could use any other two-outcome POVM {Ẽ0, Ẽ1} that

satisfies max{tr[Ẽ0σ1], tr[Ẽ1σ0]} < 1/2.).

In proving the sample complexity upper bound for the

realizable scenario, we combine algorithms from Laird

(1988) and Hanneke (2016) to show that O

(
1

ε(1−2ηb)
2

(d + log 1/δ)) classical examples with two-sided classi-

fication noise, i.e., in which each label is flipped with

probability given by a noise rate, suffice for classical (ε, δ)-

PAC learning a function class of VC-dimension d in the

realizable scenario if the noise rate is bounded by ηb <

1/2. This upper bound has, to the best of our knowledge,

not been observed before and, when combined with the

lower bound from Arunachalam and de Wolf (2018), estab-

lishes the optimal sample complexity of this classical noisy

learning problem.

As is common in statistical learning theory, our main

focus lies on the information-theoretic complexity of the

learning problem, i.e., the necessary and sufficient number

of quantum examples, whereas we do not discuss the com-

putational complexity. Our proposed strategies are “semi-

classical” in the following sense: After initially performing

simple tensor product measurements, in which each tensor

factor is a two-outcome POVM, the remaining computa-

tion is done by a classical learning algorithm. In particular,

the procedure does not require (possibly hard to implement)

joint measurements and its computational complexity will

be determined by the (classical) computational complexity

of the classical learner used as a subroutine.

1.2 Overview over the proof strategy

We first sketch how we obtain the sample complexity upper

bounds. We propose a simple (semi-classical) procedure

that consists of first performing local measurements on

the quantum part of the training data examples to obtain

classical training data and then applying a classical learning

algorithm.

We observe that the learning problem for which the

classical learner is applied, can then be viewed as a classical

binary classification problem with two-sided classification

noise, i.e., in which the labels are flipped with certain error

probabilities determined by the outcome probabilities of

the performed quantum measurements. Therefore, we have

reduced our problem to obtaining sample complexity upper

bounds for a classical learning problem with noise.

In the general (so-called agnostic) case, we can use

known sample complexity bounds formulated in terms of a

complexity measure called Rademacher complexity to show

that classical empirical risk minimization w.r.t. a suitably

modified loss function (as suggested in Natarajan et al.

2013) achieves optimal sample complexity for this classical

learning problem with noise.

In the realizable case, i.e., under the assumption that

any non-noisy training data set can be perfectly represented

by some hypothesis in our class F̃ , the optimal sample

complexity for binary classification with two-sided clas-

sification noise has not been established in the literature.

We combine ideas from Laird (1988) and Hanneke (2016)

to exhibit an algorithm that achieves information-theoretic

optimality for this scenario.

To obtain the sample complexity lower bounds, we apply

ideas from Arunachalam and de Wolf (2018). Namely, we
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observe that for sufficiently small accuracy parameter, any

quantum strategy that solves our learning problem indeed

has to be able to distinguish between the possible different

training data states with high success probability.

In the simple case of distinguishing between two quan-

tum states, arising from two different “hard-to-distinguish”

underlying distributions, this probability can be upper

bounded in terms of the trace distance of the states. In the

more general case of many states, we do not study this

success probability directly. Instead, we consider the infor-

mation contained in the quantum training data about the

choice of the underlying distribution, again chosen out of a

set of “hard-to-distinguish” distributions.

1.3 Related work

Bshouty and Jackson (1998) introduced a notion of quantum

training data for learning problems with classical concepts

and used it to learn DNF (Disjunctive Normal Form)

formulae w.r.t. the uniform distribution. This was extended

to product distributions by Kanade et al. (2019). Using

ideas from Fourier-based learning, this type of quantum

training data was also studied in the context of fixed-

distribution learning of Boolean linear functions (Bernstein

and Vazirani 1993; Cross et al. 2015; Ristè et al. 2017;

Grilo et al. 2017; Caro 2020), juntas Atıcı and Servedio

(2007), and Fourier-sparse functions (Arunachalam et al.

2019a). Arunachalam and de Wolf (2017) and Arunachalam

et al. (2019b) study the limitations of these quantum

examples. A broad overview over work on quantum learning

classical functions is given in Arunachalam and de Wolf

(2017).

Also for the model of learning from membership queries,

a quantum counterpart can be considered. Servedio and

Gortler (2004) showed that the number of required classical

queries is at most polynomially larger than the number of

required quantum queries. Recently,this polynomial relation

was improved upon in Arunachalam et al. (2019a). A

more specific scenario, namely that of learning multilinear

polynomials more efficiently from quantum membership

queries, is studied in Montanaro (2012).

Similarly, also a quantum counterpart of the classical

model of statistical query learning can be defined. This was

recently studied in Arunachalam et al. (2020).

Another line of research at the intersection of learning

theory and quantum information focuses on applying

classical learning to concept classes arising from quantum

theory, e.g., from states or measurements. This was initiated

by Aaronson (2007) and studied further by Cheng et al.

(2016) and Aaronson (2018), and Aaronson et al. (2018).

Our learning model is similar to the one studied in Chung

and Lin (2018). Also there, the inputs are assumed to be

classical and the outputs are quantum states. The crucial

difference to our scenario is that we assume that there

are only two possible label states and these are known in

advance. In Chung and Lin (2018), there can be a continuum

of possible label states.

Our additional assumption allows us to study infinite

function classes F , whereas the results in Chung and Lin

(2018) are for classes of finite size. (We expect that the

reasoning of Chung and Lin (2018) can be extended to

infinite classes using the so-called “growth function” when

restricting to a finite set of possible target states. This

might lead to a learning procedure that can be applied

in our scenario without prior knowledge of the possible

quantum label states.) As a further difference between the

approaches, whereas the strategy of Chung and Lin (2018)

requires the ability to perform measurements in random

orthonormal bases, the measurements in our procedures can

be taken to be fixed and of product form and are thus

potentially easier to implement.

The classical problems to which our quantum learning

problems are reduced are problems of learning from noisy

training data. These were first proposed by Angluin and

Laird (1988) and Laird (1988) and studied further, e.g., by

Aslam and Decatur (1996) and Cesa-Bianchi et al. (1999)

and Natarajan et al. (2013).

1.4 Structure of the paper

In Section 2 we recall some notions from learning theory

as well as from quantum information and computation. The

central learning problem of this contribution is formulated

in Section 3. The next section exhibits strategies for solving

the task and establishes sample complexity upper bounds.

In doing so, we derive a tight upper bound on the sample

complexity of classical binary classification with two-

sided classification noise (see Appendix 4). The quantum

sample complexity upper bounds are complemented by

lower bounds in Section 5. We conclude with open questions

and the references.

2 Preliminaries

2.1 Basics of quantum information and computation

A finite-dimensional quantum system is described by a

(mixed) state and mathematically represented by a density

matrix of some dimension d ∈ N, i.e., an element of

S (Cd) := {ρ ∈ C
d×d | ρ ≥ 0, tr[ρ] = 1}. Here, ρ ≥

0 means that ρ is a self-adjoint and positive semidefinite

matrix. The extreme points of the convex set S (Cd) are

the rank-1 projections, the pure states. We employ Dirac

notation to denote a unit vector ψ ∈ C
d also by |ψ〉 ∈ C

d

and the corresponding pure state by |ψ〉〈ψ |.
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To make an observation about a quantum system, a

measurement has to be performed. Measurements are

built from the set of effect operators E (Cd) := {E
. For our purposes it suffices to

consider a measurement as a collection {Ei}ℓi=1 of effect

operators Ei ∈ E (Cd) s.t. . (For the

more general notion of a POVM see Nielsen and Chuang

(2009) or Heinosaari and Ziman (2012).) When performing

a measurement {Ei}ℓi=1 on a state ρ, output i is observed

with probability tr[Eiρ]. A projective measurement is one

where the effect operators are rank-1 projections, i.e., there

exists an orthonormal basis {|i〉}di=1 s.t. Ei = |i〉〈i|.
When multiple quantum systems with spaces C

di are

considered, the composite system is described by the tensor

product
⊗n

i=1 C
di ≃ C

∏

i di and the set of states becomes

S (
⊗n

i=1 C
di ). Given a state ρAB ∈ S (CdA ⊗ C

dB ) of a

composite system, we can obtain states of the subsystems

as partial traces ρA = trB [ρAB ], ρB = trA[ρAB ].
Here, the partial trace is defined as satisfying the relation

.

The dynamics of a quantum system are usually described

by unitary evolution or, more generally, by quantum

channels. For our purposes, these dynamics will not have

to be discussed explicitly since they can be considered

as part of the performed measurement by changing to

the so-called Heisenberg picture (see Nielsen and Chuang

2009). We will take this perspective in proving our sample

complexity lower bounds because it allows us to restrict our

attention to proving limitations of measurements rather than

of channels.

We will also make use of some standard entropic quanti-

ties which have been generalized from their classical origins

Shannon (1948) to the realm of quantum theory. We denote

the Shannon entropy of a random variable X with proba-

bility mass function p by H(X) = −
∑

x p(x) log(p(x)),

the conditional entropy of a random variable Y given X as

H(Y |X) =
∑

x,y p(x, y) log
(

p(x,y)
p(x)

)

and the mutual infor-

mation between X and Y as I (X : Y ) = H(X) + H(Y) −
H(X, Y ). Similarly, the von Neumann entropy of a quan-

tum state ρ will be denoted as S(ρ) = −tr[ρ log ρ] and

the mutual information for a bipartite quantum state ρAB as

I (ρAB) = I (A : B) = S(ρA) + S(ρB) − S(ρAB). All the

standard results and inequalities connected to these quanti-

ties which appear in our arguments can be found in Nielsen

and Chuang (2009) or in Wilde (2013).

2.2 Basics of the PAC framework and the binary
classification problem

The setting of Probably Approximately Correct (PAC)

learning was introduced by Vapnik and Chervonenkis

(1971) and Valiant (1984). The general setting is as follows:

Let X , Y be input and output space, respectively, let

F ⊂ Y X be a class of functions, a concept class, and

let ℓ : Y × Y → R+ be a loss function. A learning

algorithm (to which X , Y , F and ℓ are known) has access

to training data of the form S = {(xi, yi)}mi=1, where (xi, yi)

are drawn i.i.d. from a probability measure μ ∈ Prob(X ×
Y ). Moreover, the learner is given as input a confidence

parameter δ ∈ (0, 1) and an accuracy parameter ε ∈ (0, 1).

Then a learner must output a hypothesis h ∈ Y X s.t., with

probability ≥ 1− δ w.r.t. the choice of training data,

E(x,y)∼μ[ℓ(y, h(x))] ≤ inf
f∈F

E(x,y)∼μ[ℓ(y, f (x))] + ε.

(2.1)

Note that the first term on the right-hand side vanishes

if there exists an f ∗ ∈ F s.t. μ(x, y) = μ1(x)δy,f ∗(x)

∀(x, y) ∈ X ×Y . In this case, we call the learning problem

realizable, otherwise we refer to it as agnostic.

Both in the agnostic and in the realizable scenario, a

learning algorithm that always outputs a hypothesis h ∈
F is called a proper learner, and otherwise it is called

improper.

A quantity of major interest is the number of examples

featuring in such a learning problem. Given a learning

algorithm A , the smallest m = m(ε, δ) ∈ N s.t. the

learning requirement (2.1) is satisfied with confidence 1− δ

and accuracy ε is called the sample complexity of A . The

sample complexity of the learning problem is the infimum

over the sample complexities of all learning algorithms

for the problem. This characterizes, from an information-

theoretic perspective, the hardness of a learning problem,

but leaves aside questions of computational complexity.

The binary classification problem now arises as a special

case from the above if we specify the output space Y =
{0, 1} and take the loss function to be ℓ(y, ỹ) = 1−δy,ỹ , the

0-1-loss. This setting is well studied and a characterization

of its sample complexity is known. At its core is the

following combinatorial parameter:

Definition 1 (VC-Dimension Vapnik and Chervonenkis

(1971)) Let F ⊆ {0, 1}X . A set S = {x1, . . . , xn} ⊂ X

is said to be shattered by F if for every b ∈ {0, 1}n there

exists fb ∈ F s.t. fb(xi) = bi for all 1 ≤ i ≤ n.

The Vapnik-Chervonenkis (VC) dimension of F ⊂
{0, 1}X is defined to be

VCdim(F ) := sup{n ∈ N0 | ∃S ⊂ X s.t. |S| = n and S is

shattered by F }.

The main insight of VC-theory lies in the fact that

learnability of a {0, 1}-valued concept class is equivalent

to finiteness of its VC-dimension. Even more, the sample
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complexity can be expressed in terms of the VC-dimension.

This is the content of the following

Theorem 1 (see, e.g., Blumer et al. 1989; Hanneke 2016;

Shalev-Shwartz and Ben-David 2014; Vershynin 2018)

In the realizable scenario, the sample complexity of

binary classification for a function class F of VC-

dimension d is m = m(ε, δ) = Θ
(

1
ε
(d + log 1/δ)

)

.

In the agnostic scenario, the sample complexity of binary

classification for a function class F of VC-dimension d is

m = m(ε, δ) = Θ
(

1
ε2 (d + log 1/δ)

)

.

The proof of the sample complexity upper bound in

the agnostic case typically goes via a different complexity

measure, the Rademacher complexity, which is then related

to the VC-dimension. As this will reappear later on in our

analysis, we also recall this definition here.

Definition 2 (Rademacher Complexity (see Bartlett and

Mendelson 2002)) Let Z be some space, F ⊆ R
Z , z ∈ Zn.

The empirical Rademacher complexity of F w.r.t. z is

R̂(F ) := E
σ∼U({−1,1}n)

[

sup
f∈F

1
n

n∑

i=1

σif (zi)

]

= E
σ∼U({−1,1}n)

[

sup
f∈F

1
n
〈σ, f (z)〉

]

,

where U({−1, 1}n) denotes the uniform distribution on

{−1, 1}n.

If we consider n i.i.d. random variables Z1, ..., Zn

distributed according to a probability measure μ on Z and

write Z = (Z1, ..., Zn), the Rademacher complexities of F

w.r.t. μ are defined to be Rn(F ) := EZ∼μn

[

R̂F

]

, n ∈ N.

3 The binary classification problem
with classical instances and quantum labels

We introduce a generalization of the classical binary classi-

fication problem to the quantum realm by allowing the two

labels to be quantum states. Thus let σ0, σ1 ∈ S (Cn) be

two (possibly mixed) quantum states, write D = {σ0, σ1}.
We assume that classical descriptions of these states (their

density matrices) are known to the learning algorithm as

well as the fact that only these two quantum labels appear.

The class to be learned is now a class of functions F ⊂
{f : X → D} and the underlying distribution will be a

μ ∈ Prob(X × D), where X is some space of classical

objects.

We now deviate from the standard PAC setting: We

assume the training data to be S = {(xi, ρi)}mi=1, m ∈ N,

where the (xi, ρi) are drawn independently according to

μ (in particular, ρi ∈ D for all i). Here, the ρi are the

actual quantum states, not classical descriptions of them.

Therefore, our learning problem is not a classical one, we

have to perform measurements on the quantum labels to

extract information from them. Equivalently, we represent

an example (xi, ρi) drawn from μ as the classical-quantum

state

∑

x,ρ

μ(x, ρ)|x〉〈x| ⊗ ρ,

with {|x〉}x∈X orthonormal.

Note that this model for the training data differs from

the one introduced by Bshouty and Jackson (1998), where

the training data consists of copies of a superposition state.

Instead, here we assume copies of a mixture of states.

This is done mainly for two reasons: First, it allows us to

naturally talk about maps with mixed state outputs. Second,

it is debatable whether assuming access to superposition

examples as in Bshouty and Jackson (1998) is justified

(see, e.g., Ciliberto et al. 2018, section 5), and this problem

remains when considering maps with quantum outputs. In

contrast, the mixtures assumed in our model arise naturally

as statistical ensembles of outputs of state preparation

procedures, if the parameters of the preparation are chosen

according to some (unknown) distribution. In that sense,

the form of classical-quantum training data assumed here

is both a straightforward generalization of classical training

data, given the standard probabilistic interpretation of mixed

states, and can (at least in the realizable scenario) be easily

imagined to be obtained as outcome of multiple runs of

a state preparation experiment with different parameter

settings.

A quantum learner for F with confidence 1 − δ and

accuracy ε from m = m(ε, δ) quantum examples has to

output, for every μ ∈ Prob(X × D), with probability

≥ 1− δ over the choice of training data of size m according

to μ, a hypothesis h ∈ DX s.t. Rμ(h) ≤ inf
f∈F

Rμ(f ) + ε.

As before, we can consider agnostic versus realizable and

proper versus improper variants of this learning model.

Here, we define the risk of a hypothesis h ∈ F w.r.t. a

distribution μ ∈ Prob(X ×D) as

Rμ(h) :=
∫

X ×D

1

2
‖ρ − h(x)‖1 dμ(x, ρ),

where ‖ρ − σ‖1 = tr[|ρ − σ |] = tr[
√

(ρ − σ)∗(ρ − σ)] is

the Schatten 1-norm.
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Note that our assumption on F implies that h(x) ∈
D ∀x ∈ X and therefore we can easily rewrite

Rμ(h) = ‖σ0 − σ1‖1

2
P(x,ρ)∼μ[h(x) �= ρ],

which is just the 0-1-risk multiplied by a constant. We

choose the slightly more complicated looking definition for

Rμ(h) for two reasons. On the one hand,
‖σ0−σ1‖1

2
is a

measure for the distinguishability of σ0 and σ1 and thus a

natural scale w.r.t. which to measure the prediction error.

(Note: If σ0, σ1 are orthogonal pure states and thus perfectly

distinguishable, the classical scenario is recovered.) On

the other hand, our definition of risk can be motivated

operationally as we discuss in Appendix 2.

Example 1 Here, we describe a physically motivated prob-

lem that is captured by our scenario. The idea is as follows:

Suppose we have available a (possibly complicated) ground

state preparation procedure. Using this, we want to pre-

pare a ground state |ϕ0〉 of a Hamiltonian H . However,

H is perturbed by noise about which we have only partial

information. We want to learn more about the noise and its

influence on the prepared ground state.

We make this idea more concrete. We consider a (self-

adjoint) Hamiltonian H ∈ C
(d+2)×(d+2) of the form

, where , with (non-unique) ground

state |ϕ0〉 :=
(

0 1
)T ⊕ 0. Suppose that we have a ground

state preparation procedure that, if run with Hamiltonian

H , prepares |ϕ0〉. When implementing this procedure, we

have to fix values of a parameter vector x ∈ R
D . (Think,

e.g., of D = 3 and x denoting the location at which the

experiment is set up.) But due to the laboratory being only

imperfectly shielded, there is an unknown region R ⊂ R
D

in which the system is subject to noise. For simplicity, we

assume that only two types of noise can occur and lead to the

location-dependent Hamiltonian ,

with noise Hamiltonians H (0) =
(

1 0

0 −1

)

⊕ 0, H (1) =
(

0 1

1 0

)

⊕ 0.

The noise can lead to a perturbation of the ground state.

Namely:

– For x �∈ R, |ϕ0〉 is a ground state of H
(i)
x . (This is the

case of no effective noise.)

– For x ∈ R, |ϕ0〉 is the unique ground state of H
(0)
x .

Hence, the noise H (0) is benign from the perspective of

ground state preparation.

– For x ∈ R, |ϕ1〉 := 1√
2

(

1 −1
)T ⊕ 0 is the unique

ground state of H
(1)
x . Hence, the noise H (1) is malicious

from the perspective of ground state preparation.

Thus, we describe the ground state preparation by

a function f
(i)
R : R

D → {|ϕ0〉〈ϕ0|, |ϕ1〉〈ϕ1|},
. With this

formulation, gaining information about the noise region R

and the noise type i can be phrased as the problem of

(PAC-)learning an unknown element of the (known) func-

tion class F =
{

f
(i)
R

}

i=0,1, R∈R
⊆ {|ϕ0〉〈ϕ0|, |ϕ1〉〈ϕ1|}R

D
,

where R is the class of possible error regions.

Note that |ϕ0〉 and |ϕ1〉 are not orthogonal and thus

cannot be perfectly distinguished. Therefore, we cannot

phrase the learning problem as one of binary classification

with classical labels.

We return to this setting in Examples 2 and 3 to illustrate

our learning strategies.

We want to conclude this section by discussing a drawback

of our model. We assume F ⊂ DX , i.e., outputs of

any f ∈ F are either σ0 or σ1. Considering the convex

structure of the set of quantum states, which is intimately

tied to the probabilistic interpretation of quantum theory,

this restriction can be considered unnatural. We nevertheless

make it, for two reasons: First, it is easy to show using a

Bayesian predictor that, under the assumption of μ being

supported on D (which could, of course, also be contested),

the optimal choice of predictors among all functions (S

(Cd))X is actually a function in DX . Second, it is the most

direct analog of the classical scenario with binary labels and

we consider it a sensible first step that, as demonstrated in

Example 1, can already be of physical relevance.

4 Sample complexity upper bounds

4.1 The agnostic case

Our learning strategy is motivated by interpreting the clas-

sical training data arising from performing a measurement

on the label states as noisy version of the true training

data. Before describing the learning strategy, we recall our

assumption that classical descriptions of the label states σ0,

σ1 are known to the learner. Based on this knowledge, the

learner can derive the optimal measurement {E0, E1} for

minimum error distinction between the two states, the so-

called Holevo-Helstrom measurement (see Watrous 2018,

Theorem 3.4), by choosing E0 to be the orthogonal projector

onto the eigenspaces of σ0 − σ1 corresponding to nonnega-

tive eigenvalues. This step is where knowledge of the states

σ0 and σ1 is used.

The learning strategy is now the following, in which we

use the Holevo-Helstrom measurement to produce classical

training data and thus obtain a classical learning problem:
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Note that the only non-classical step in the strategy is step

(1), which consists only of performing local two-outcome

measurements.

The modification of the loss function in step (3) gives an

unbiased estimate of the true risk:

Lemma 1 (see Natarajan et al. 2013, Lemma 1)

Fix x ∈ X . With the notation introduced above, for every

z ∈ {0, 1} it holds that

We can use a standard generalization bound in terms

of Rademacher complexities (see, e.g., Theorem 26.5 of

Shalev-Shwartz and Ben-David (2014)) to obtain: With

probability ≥ 1 − δ over the choice of training data S =

{(xi, yi)}mi=1 according to ν, we have that for all f̃ ∗ ∈ F̃

E(x,y)∼ν[ℓ̃(ĝ(x), y)] − E(x,y)∼ν[ℓ̃(f̃ ∗(x), y)]

≤ 2R̂(G̃)+ 5

1− η0 − η1

√

2 ln 8/δ

m
,

where we used that |ℓ̃(y1, y2)| ≤ 1
1−η0−η1

and defined the

function class

G̃ := {X × {0, 1} ∋ (x, y) �→ ℓ̃(f̃ (x), y) | f̃ ∈ F̃ }.
Next, we relate the empirical Rademacher complexity of

G̃ to that of F̃ .

Lemma 2 For any training data set S = {(xi, yi)}mi=1,

viewed as an element of (X × {0, 1})m, we have

R̂(G̃) ≤ 2

1− η0 − η1
R̂(F̃ ).

Proof (Sketch) The proof uses some standard steps that

are typically used for example in proving the Lipschitz

contraction property of the Rademacher complexity and

in studying the Rademacher complexity in a binary

classification scenario.

See Appendix 1 for a detailed proof.

With this, we now reformulate the above result in terms

of the VC-dimension. Suppose VCdim(F̃ ) = d < ∞.

Then R̂(F̃ ) ≤ 31

√

d
m

(see, e.g., Vershynin 2018, Theorem

8.3.23). Therefore, we obtain that, with probability ≥ 1− δ

over the choice of training data S = {(xi, yi)}mi=1 according

to ν,

E(x,y)∼ν[ℓ̃(ĝ(x), y)] − inf
f̃∈F̃

E(x,y)∼ν[ℓ̃(f̃ (x), y)]

≤ 124

1− η0 − η1

√

d

m
+ 5

1− η0 − η1

√

2 ln 8/δ

m
.

Note that, using Lemma 1, we can now bound

Now we can set this equal to ε and rearrange to conclude

that a sample size of

m ≥
‖σ0 − σ1‖2

1

4ε2

(
124

1− η0 − η1

√
d + 5

1− η0 − η1

√

2 ln 8/δ

)2
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suffices to guarantee that, with probability≥ 1−δ, Rμ(ĥ)−
inf

f∈F
Rμ(f ) ≤ ε.

If we now observe that 1
1−η0−η1

≤ 4
‖σ0−σ1‖1

, we obtain

the sample complexity upper bound

m = m(ε, δ) = O

(
d

ε2
+ log 1/δ

ε2

)

.

Remark 1 The naive version of our learning strategy

would be to perform Holevo-Helstrom measurements and

then apply a classical learning strategy, like empirical

risk minimization, without correcting for the noise in the

resulting classical labels. Actually, this learning strategy

already performs reasonably well and, in certain special

cases, even allows to reduce the quantum learning problem

to a fully classical one. For a detailed analysis of the

performance of this simpler strategy, the reader is referred

to Appendix 3.

Example 2 We illustrate our agnostic learning strat-

egy for the scenario of Example 1. As discussed in

Appendix 3, as both label states |ϕ0〉〈ϕ0| and |ϕ1〉〈ϕ1|
are pure, we can actually dispense with the modifi-

cation of the classical loss function and simply take

the 0-1-loss. Therefore, the Holevo-Helstrom strategy

will look as follows: We first perform local Holevo-

Helstrom measurements with measurement operators E0 ∝
(

−1+
√

2 1
)T (

−1+
√

2 1
)

⊕ 0, . This

gives rise to classical training data. With that data, we then

perform (classical) empirical risk minimization over the

class F̃ =
{

f̃
(i)
R

}

i=0,1, R∈R
, where f̃

(i)
R : RD → {0, 1},

. Note that f
(0)
R is

the zero-function for every R ∈ R.

Both the optimization procedure and the generalization

capability depend on the class R of possible noise regions.

Concerning the generalization performance, observerve

that, if ∅ ∈ R, then VCdim(F̃ ) = VCdim(F̃R), where we

take to be the class

of indicator functions of sets from R. The VC-dimension of

such classes is well known for different geometric classes

R. E.g., if R is the class of axis-aligned rectangles or that

of Euclidean balls in R
D , then VCdim(F̃R) scales linearly

in D and thus the dependence of the sample complexity

upper bound on the number of parameters D is linear. If,

however, we take R to be the class of compact and convex

subsets of R
D , then VCdim(F̃R) = ∞ and the sample

complexity upper bound becomes void. This is congruent

with the intuition that without prior assumptions on the

structure of the regions that can be influenced by noise,

learning the noise (in particular its region) will be hard and

maybe infeasible.

4.2 The realizable case

The strategy from the previous subsection uses a general-

ization bound via the Rademacher complexity and yields a

sample complexity bound depending quadratically on 1/ε.

In the classical binary classification problem it is known

(see Theorem 1) that under the realizability assumption this

can be improved to 1/ε, but this typically requires a differ-

ent kind of reasoning via ε-nets. (Compare section 28.3 of

Shalev-Shwartz and Ben-David (2014)). In Theorem 6 we

show how the reasoning by Hanneke (2016) can be com-

bined with results by Laird (1988) to achieve the 1/ε-scaling

also in the case of two-sided classification noise. This sam-

ple complexity upper bound is seen to be optimal in its

dependence on the VC-dimension d , the error rate bound

η, the confidence δ and the accuracy ε by a comparison

to the lower bound in Theorem 27 of Arunachalam and de

Wolf (2018).

If, as in the previous subsection, we consider the classical

training data obtained by measuring the quantum training

data as noisy version of a true sample, we can exchange

step 3 in the Holevo-Helstrom strategy by the minimum

disagreement-based classical learning strategy achieving the

optimal sample complexity bound of Theorem D.2. This

directly yields the following

Theorem 2 Let σ0, σ1 ∈ S (Cn) be (distinct) quantum

states. Let ε ∈ (0, 1), δ ∈ (0, 2 · ( 2e
d

)d), where d is the

VC-dimension of F ⊂ {0, 1}X . Then

m=O

(
1

ε(1−2 max{tr[E0σ1], tr[E1σ0]})2
(d + log 1/δ)

)

quantum examples of a function in F are sufficient for

binary classification with classical instances and quantum

labels σ0, σ1 with accuracy ε and confidence 1− δ.

Example 3 When considering this learning strategy in the

setting of Example 1, we first perform the Holevo-Helstrom

measurements as in Example 2 to obtain classical data.

Again, this is followed by a classical learning procedure for

the class F̃ =
{

f̃
(i)
R

}

i=0,1, R∈R
.

Whereas the sample complexity bound derived for the

agnostic case in Section 4.1 applies to any (noise-corrected)

classical empirical risk minimization, the procedure leading

to the bound in Theorem 2 is a specific one, presented in the

proof of Theorem D.2. First, the classical data is processed,

using the subsampling algorithm of Hanneke (2016) (see

Algorithm 2), to generate a collection of subsamples. For

each of those subsamples, we then apply Algorithm 1: We

use a first part of the subsample to group the elements of

F̃ into equivalence classes (according how they act on that

part of the subsample), and the remainder is used to test
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the performance of each equivalence class. Afterwards, we

output as hypothesis for that subsample a representative of

the equivalence class that performs best in that test, i.e.,

that minimizes the number of disagreements with the part

of the subsample used for testing. Whether and how the

grouping into equivalence classes and finding minimum

disagreement strategies can be done (efficiently) depends on

F̃ , and thus on R. Finally, we take a majority vote over all

the subsample hypotheses to get the output hypothesis of the

classical learning procedure.

The dependence of the sample complexity on F̃ via the

VC-dimension of the class of indicator functions of sets

from R is analogous to Example 2.

Remark 2 From the description of our noise-corrected

Holevo-Helstrom strategy (either in the form of Section 4.1

or that of this subsection), we can directly see that whether

it is a proper or an improper learner depends on whether

the classical learning algorithm in step (3) is. As the

classical learning algorithm used in Section 4.1 is a simple

Empirical Risk Minimization, it is in particular proper.

So our noise-corrected Holevo-Helstrom strategy for the

agnostic case is proper as well. The classical learner used in

this subsection, however, is in general improper. So also the

noise-corrected Holevo-Helstrom strategy for the realizable

case is in general improper.

5 Sample complexity lower bounds

Whereas the goal of the previous section was to give strate-

gies for solving the binary classification problem with clas-

sical instances and quantum labels and to prove upper bounds

on the sufficient number of classical-quantum examples, we

now turn to the complementary question of lower bounds on

the number of required examples. In this section, we derive

lower bounds that match the respective upper bounds from

the previous section, and therefore, we conclude that the

procedures described in Section 4 are optimal w.r.t. sample

size in terms of the dependence on ε, δ, and d .

5.1 The agnostic case

We prove the sample complexity lower bounds in two parts,

the first depending on the confidence parameter δ but not on

the VC-dimension of the function class and conversely for

the second.

We establish the VC-dimension-independent sample

complexity lower bound in the following

Lemma 3 Let σ0, σ1 ∈ S (Cn), let ε ∈ (0,
‖σ0−σ1‖1

2
√

2
),

δ ∈ (0, 1). Let F ⊂ DX be a non-trivial concept class.

Suppose A is a learning algorithm that solves the binary

classification task with classical instances and (distinct)

label states σ0, σ1 and concept class F with confidence

1 − δ and accuracy ε using m = m(ε, δ) examples. Then

m ≥ Ω
(

‖σ0 − σ1‖2
1

log 1/δ

ε2

)

.

Proof (Sketch) As F is non-trivial, there exist concepts

f, g ∈ F and a point x ∈ X s.t. f (x) = σ0 and g(x) = σ1.

Let λ = ε
2‖σ0−σ1‖1

∈ (0, 1). Define probability distributions

μ± on X ×D via

μ±(x, f (x)) = 1± λ

2
, μ±(x, g(x)) = 1∓ λ

2
.

By explicitly evaluating the risk R±(h), we see that

achieving an excess risk ≤ ε with probability ≥ 1 − δ,

requires the learner to distinguish between the underlying

distributions μ±, and thus the corresponding training data

states ρ⊗m
± , with probability ≥ 1− δ.

It is well known (see, e.g., Nielsen and Chuang 2009,

chapter 9) that the optimal success probability of this

quantum distinguishing task is given by

popt =
1

2
(1+ 1

2

∥
∥ρ⊗m

+ − ρ⊗m
−

∥
∥

1
).

Via the Fuchs-van de Graaf inequalities, which state that

1

2

∥
∥ρ⊗m

1 − ρ⊗m
2

∥
∥

1
≤

√

1− F(ρ⊗m
1 , ρ⊗m

2 )2 =
√

1− F(ρ1, ρ2)2m,

this can be upper bounded using lower bounds on

the fidelity F(ρ⊗m
+ , ρ⊗m

− ) = F(ρ+, ρ−)m. The fidelity

F(ρ+, ρ−) can be lower-bounded using its strong concavity

and the explicit expressions for ρ±. The result then follows

by comparing the obtained upper bound with the required

lower bound popt ≥ 1− δ.

See Appendix 1 for a detailed proof.

For the proof of the VC-dimension-dependent part of the

lower bound we need a well known observation about the

eigenvalues of a statistical mixture of two pure quantum

states, which is the content of the following

Lemma 4 Let |ψ〉, |φ〉 ∈ C
n be distinct pure quantum

states. Let α, β ≥ 0 be real numbers. Then the non-zero

eigenvalues of the mixture ρ := α|ψ〉〈ψ | + β|φ〉〈φ| are

given by

λ1/2(ρ) = α + β ±
√

(α − β)2 + 4αβ|〈ψ |φ〉|2
2

.

With this we can now prove a sample complexity lower

bound for the case of pure label states.

Theorem 3 Let σ0 = |ψ0〉〈ψ0|, σ1 = |ψ1〉〈ψ1| ∈ S (Cn)

be (distinct) pure quantum states, let ε ∈ (0,
‖σ0−σ1‖1

8
),
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δ ∈ (0, 1 − H
(

1
4

)

). Let F ⊂ DX be a non-trivial

concept class s.t. F̃ has VC-dimension d . Suppose A is a

learning algorithm that solves the binary classification task

with classical instances and (distinct) label states σ0, σ1 and

concept class F with confidence 1−δ and accuracy ε using

m = m(ε, δ) examples. Then m ≥ Ω
(

d

ε2

)

.

Proof (Sketch) We follow the information-theoretic proof

strategy from Arunachalam and de Wolf (2018). Let S =
(s1, . . . , sd) ∈ X be a set shattered by F̃ , for each a ∈
{0, 1}d define the distribution μa on {1, . . . , d} × {0, 1} via

μa(i, b) := 1

2d

(

1+ (−1)ai+b 8ε

‖σ0 − σ1‖1

)

.

Note that ∀a ∈ {0, 1}d ∃fa ∈ F̃ : fa(si) = ai by

shattering and that fa is a minimum error concept w.r.t. μa .

By evaluating the excess error of an fã compared to fa , we

see that solving the learning problem with confidence 1− δ

requires the learner to output, with probability ≥ 1 − δ, a

hypothesis described by a string whose Hamming distance

to the true underlying string is ≤ d
4

. We can use this

observation to obtain the lower bound I (A : B) ≥ Ω(d) on

the mutual information between underlying string A (drawn

uniformly at random) and corresponding quantum training

data B.

We can also upper bound the mutual information. A

standard argument shows I (A : B) ≤ m · I (A : B1), where

m is the number of copies of the quantum example state

and B1 describes a single quantum example state. Using

Lemma 4 and the explicit expression for a quantum example

state, we can compute I (A : B1) and use Taylor expansion

to see that I (A : B1) ≤ O(ε2). Comparing the lower and

upper bounds on I (A : B) now gives m ≥ Ω
(

d

ε2

)

.

See Appendix 1 for a detailed proof.

If we now combine Lemma 3 and Theorem 3 with the

result of Section 4.1 we obtain

Corollary 1 Let σ0, σ1 ∈ S (Cn) be (distinct) pure

quantum states, let ε ∈ (0,
‖σ0−σ1‖1

8
), δ ∈ (0, 1 − H

(
1
4

)

).

Let F ⊂ DX be a non-trivial concept class s.t. F̃ has

VC-dimension d . Then a sample size of Θ
(

d

ε2 + log 1/δ

ε2

)

is

necessary and sufficient for solving the binary classification

task with classical instances and quantum labels σ0, σ1 and

hypothesis class F with confidence 1− δ and accuracy ε.

Therefore, we have shown that the strategy from Section 4.1

is, for pure states, optimal in sample complexity w.r.t. its

dependence the VC-dimension, the accuracy and the con-

fidence. But we do not make a statement on optimality

w.r.t. the dependence on the distinguishability of the label

states, because the parameter ‖σ0 − σ1‖1 is lacking from

our lower bound.

5.2 The realizable case

We now show analogous lower bounds for the sample

complexity in the realizable scenario with the same proof

strategy.

Lemma 5 Let σ0, σ1 ∈ S (Cn), let ε ∈ (0,
‖σ0−σ1‖1

2
),

δ ∈ (0, 1
2
). Let F ⊂ DX be a non-trivial concept class.

Suppose A is a learning algorithm which solves the binary

classification task with classical instances and (distinct)

label states σ0, σ1 and concept class F with confidence

1 − δ and accuracy ε using m = m(ε, δ) examples in the

realizable scenario. Then m ≥ Ω
(

log 1/δ
ε

)

.

Proof This can be proved similarly to Lemma 3. See

Appendix 1 for a detailed proof.

We now provide the analog of Theorem 3 for the realiz-

able case.

Theorem 4 Let σ0 = |ψ0〉〈ψ0|, σ1 = |ψ1〉〈ψ1| ∈ S (Cn)

be (distinct) pure quantum states, let ε ∈ (0,
‖σ0−σ1‖1

8
), δ ∈

(0, 1
2
). Let F ⊂ DX be a non-trivial concept class s.t. F̃

has VC-dimension d+1. Suppose A is a learning algorithm

which solves the binary classification task with classical

instances and (distinct) label states σ0, σ1 and concept class

F with confidence 1− δ and accuracy ε using m = m(ε, δ)

examples in the realizable case. Then m ≥ Ω
(

d
ε

)

.

Proof This can be proved similarly to Theorem 3. See

Appendix 1 for a detailed proof.

Thus, we have obtained a sample complexity lower bound

that matches the upper bound proved in Section 4.2 in the

dependence on the VC-dimension, the confidence and the

accuracy, but we do not make a statement about optimality

w.r.t. the dependence on ‖σ0 − σ1‖1.

Remark 3 As already discussed in Section 2.1, in prov-

ing the sample complexity lower bounds we resort to the

Heisenberg picture, which allows us to absorb the inter-

mediate quantum channels performed by a learner into the

measurement. These lower bounds therefore even hold for

quantum learning algorithms that perform coherent and

adaptive measurements on the training data. In particular,

the information-theoretic complexity of our learning prob-

lem does not change if we restrict the quantum learner

to only performing two-outcome POVMs locally (i.e., on

one subsystem only). This is maybe not too much of a
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surprise, since the optimal measurement for distinguishing

states drawn uniformly at random from {
⊗m

i=1 σxi
}x∈{0,1}m

can, using the Holevo-Yuen-Kennedy-Lax optimality crite-

rion (Holevo 1973; Yuen et al. 1975), be seen to be exactly

given by local Holevo-Helstrom measurements.

6 Conclusion and outlook

We have proposed a novel way of modifying the classical

binary classification problem to obtain a quantum counter-

part. The conceptual difference to the framework of quan-

tum PAC learning as discussed in Arunachalam and de Wolf

(2017) is that we work with maps whose outputs are them-

selves quantum states, not classical labels. This naturally

gives rise to training data given by quantum states, which

is one aspect in which our setting differs from Aaronson

(2007).

Using results from classical learning theory on dealing

with classification noise in the training data, we exhibited

learning strategies (based on the Holevo-Helstrom mea-

surement) for binary classification with classical instances

and quantum labels. The learning strategies consist of two

main steps: First, classical information is extracted from

the training data by performing a (localized) measurement.

Second, classical learning strategies are applied. We com-

plemented these procedures by sample complexity lower

bounds thereby establishing the information-theoretic opti-

mality of these strategies for pure label states w.r.t. the

dependence on VC-dimension, confidence and accuracy.

We conclude with some open questions that we leave

open for further research:

– Can we derive sample complexity lower bounds which

explicitly incorporate factors related to the hardness of

distinguishing σ0 and σ1, e.g., in terms of ‖σ0 − σ1‖1

or max{tr[E0σ1], tr[E1σ0]}? Or can the corresponding

factors in the upper bounds be eliminated? Could this

be related to another complexity measure from classical

learning theory, the “fat-shattering dimension” of the

class

{X × E (Cd) ∋ (x, E) �→ tr[Ef (x)] | f ∈ F }?

– Our analysis is focused on the information-theoretic

part of the learning problem, i.e., the sample complex-

ity. Can we improve the computational complexity?

– For deriving our sample complexity upper bounds, we

used specific classical learning procedures applied to

the post-measurement training data. In the agnostic

case, we use empirical risk minimization, in the

realizable case we use a combination of a minimum

disagreement approach with a subsampling procedure.

In both cases, we decided for these algorithms to

achieve the (essentially) optimal sample complexity

characterized via the VC-dimension.

However, we could use other classical learning

procedures for “post-processing”. Can we identify

situations in which procedures like structural risk

minimization, compression schemes, or stable learning

procedures yield useful sample complexity bounds?

– We considered the case of classical instances. Can

this be extended to a scenario of quantum instances

with classical (or even quantum) labels? Whereas we

were able to study the case of classical instances and

quantum labels with methods from learning with label

noise, once the instances themselves are quantum, we

might have to employ ideas from learning models

with restricted access to the instances such as that of

“learning with restricted focus of attention” proposed in

Ben-David and Dichterman (1998).

– Our strategy uses the Holevo-Helstrom measurement

which can be understood as inducing the minimum

amount of noise. However, in classical learning theory it

is well known that adding noise to the training data can

be helpful in preventing overfitting. In this spirit, can we

justify other measurements than the Holevo-Helstrom

measurement?

– We assumed throughout our analysis that the learning

algorithm has to output a hypothesis that maps into

{σ0, σ1}. What if we allow for hypotheses that map into

conv ({σ0, σ1}) or S (Cd)?

– Finally, we assume throughout that the label states

σ0, σ1 are known in advance. Can this assumption be

removed? Here, it might be helpful that Theorem 6 does

not need explicit knowledge of the error rates η0, η1, but

merely of an upper bound ηb on them.

Appendix 1. Proofs

Proof of Lemma 2 Let z = ((xi, yi))
m
i=1 ∈ (X ×

{0, 1})m. If we use and

, then we can rewrite

R̂(G̃) = Eσ [ sup

f̃∈F̃

1

m

m
∑

i=1

σi ℓ̃(f̃ (xi), yi)]

= Eσ

⎡

⎣ sup

f̃∈F̃

1

m

m
∑

i=1

σi

1

1− η0 − η1

×
(

(1− η1⊕yi
)
1− (1− 2f̃ (xi))(1− 2yi)

2

− ηyi

1+ (1− 2f̃ (xi))(1− 2yi)

2

)]

.
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Next, we use that Eσ [σi] = 0 and that σi and (1− 2yi)σi

have the same distribution for all i. With this we obtain from

the above

R̂(G̃) = 1

1− η0 − η1
Eσ

⎡

⎣ sup

f̃∈F̃

1

m

m
∑

i=1

σi(1− η1⊕yi
+ ηyi

)f̃ (xi)

⎤

⎦

= 1

2(1− η0 − η1)
Eσ2,...,σm

⎡

⎢
⎢
⎣

sup

f̃ ,f̃ ′∈F̃

1

m
(1− η1⊕y1

+ ηy1
)(f̃ (x1)− f̃ ′(x1))

︸ ︷︷ ︸

≤2|f̃ (x1)−f̃ ′(x1)|

+ 1

m

m
∑

i=2

σi(1− η1⊕yi
+ ηyi

)(f̃ (xi)+ f̃ ′(xi))

]

≤ 1

1− η0 − η1
Eσ

⎡

⎣ sup

f̃∈F̃

2

m
σ1f̃ (x1)+

1

m

m
∑

i=2

σi(1− η1⊕yi
+ ηyi

)f̃ (xi)

⎤

⎦ ,

where the last step used that the expression is invariant

w.r.t. interchanging f̃ and f̃ ′, so we can drop the absolute

value. Now we can iterate this reasoning for i = 2, . . . , m

and obtain

R̂ ( G̃ ≤ 2

1− η0 − η1
Eσ

⎡

⎣ sup

f̃∈F̃

1

m

m
∑

i=1

σi f̃ (xi)

⎤

⎦

= 2

1− η0 − η1
R̂(F̃ ),

the desired inequality.

Proof of Lemma 3 As F is non-trivial, there exist concepts

f, g ∈ F and a point x ∈ X s.t. f (x) = σ0 and g(x) = σ1.

Let λ ∈ (0, 1) (to be chosen appropriately later in the proof).

Define probability distributions μ± on X ×D via

μ±(x, f (x)) = 1± λ

2
, μ±(x, g(x)) = 1∓ λ

2
.

The risk of a hypothesis h ∈ DX w.r.t. these probability

measures is given by

R±(h) = 1± λ

4
‖σ0 − h(x)‖1 +

1∓ λ

4
‖σ1 − h(x)‖1

=
{

1±λ
4
‖σ0 − σ1‖1 if h(x) = σ1

1∓λ
4
‖σ0 − σ1‖1 if h(x) = σ0

,

in particular the optimal achievable risk is 1−λ
4
‖σ0 − σ1‖1.

Note that a hypothesis which predicts the suboptimal label

state for x has an excess risk of

1+ λ

4
‖σ0 − σ1‖ −

1− λ

4
‖σ0 − σ1‖1 =

λ

2
‖σ0 − σ1‖1 .

So if we pick λ = ε
2‖σ0−σ1‖1

< 1, then in order to

achieve an excess risk ≤ ε with probability ≥ 1 − δ, the

learning algorithm has to be able to distinguish between the

underlying distributions μ± with probability ≥ 1− δ.

As the algorithm has access to the underlying distribution

only via the training data, this means that the algorithm

has to be able to distinguish the corresponding training data

ensembles with probability ≥ 1 − δ. Here, we observe

that the training data being drawn i.i.d. according to μ±
is equivalent to the learning algorithm having access to m

copies of the state

ρ± := μ±(x, f (x))|x〉〈x| ⊗ σ0 + μ±(x, g(x))|x〉〈x| ⊗ σ1,

because this mixed state simply describes the statistical

mixture. The optimal success probability for distinguishing

between two quantum states is a well-studied object in

quantum information theory. It can be characterized by the

trace distance between the two states and is given (in our

case) by (see, e.g., Nielsen and Chuang 2009)

popt =
1

2
(1+ 1

2

∥
∥ρ⊗m

+ − ρ⊗m
−

∥
∥

1
).

As the trace distance of tensor products is not that easy to

deal with, we will instead work with the fidelity defined as

F(ρ, σ ) := tr[
√

ρ
1
2 σρ

1
2 ].

According to the Fuchs-van de Graaf inequalities we have

1

2

∥
∥ρ⊗m

+ − ρ⊗m
−

∥
∥

1
≤

√

1− F(ρ⊗m
+ , ρ⊗m

− )2

=
√

1− F(ρ+, ρ−)2m,

where the last steps uses multiplicativity of the fidelity

under tensor products. Now we require popt ≥ 1 − δ and

rearrange to obtain

F(ρ+, ρ−)2m ≤ 4δ(1− δ)
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or equivalently after taking logarithms

m ≥ log(4δ(1− δ))

log(F (ρ+, ρ−)2)
.

By strong concavity of the fidelity, we have

F(ρ+, ρ−) ≥
√

1+ λ

2

1− λ

2
F(|x〉〈x| ⊗ f (x), |x〉〈x| ⊗ f (x))

+
√

1− λ

2

1+ λ

2
F(|x〉〈x| ⊗ g(x), |x〉〈x| ⊗ g(x))

=
√

1− λ2.

This now implies

m≥ log(4δ(1− δ))

log(F (ρ+, ρ−)2)
=

log
(

1
4δ(1−δ)

)

log
(

1
F(ρ+,ρ−)2

) ≥
log

(
1

4δ(1−δ)

)

log
(

1
1−λ2

) .

Thus, we obtain (after Taylor-expanding the logarithm in the

denominator)

m ≥ Ω

⎛

⎝‖σ0 − σ1‖2
1

log
(

1
δ

)

ε2

⎞

⎠ ,

as desired.

Proof of Lemma 4 Pick an orthonormal basis {|k〉}k=1,...,n

of Cn s.t. |ψ〉 = |0〉 and |φ〉 = cos(ϕ)|0〉 + sin(ϕ)|1〉 for an

angle 0 ≤ ϕ < 2π . Then, when restricting to the relevant

subspace spanned by |0〉 and |1〉, we get

ρ|span{|0〉,|1〉} =
(

α + β cos2(ϕ) β cos(ϕ) sin(ϕ)

β cos(ϕ) sin(ϕ) β sin2(ϕ)

)

=: A.

We now easily see that

det(A) = αβ sin2(ϕ)
!= λ1λ2 and tr[A] = α + β

!= λ1 + λ2,

where λ1, λ2 are the two non-zero eigenvalues of ρ. We can

solve the second of these two equations for λ2 and plug this

back into the first equation to obtain

λ2
1 − λ1(α + β)+ αβ sin2(ϕ) = 0.

We now solve this quadratic equation and obtain the two

eigenvalues

λ1/2 =
α + β ±

√

α2 + β2 + 2αβ(2 cos2(ϕ)− 1)

2

= α + β ±
√

(α − β)2 + 4αβ|〈ψ |φ〉|2
2

,

where we used that | cos(ϕ)| = |〈ψ |φ〉|.

Detailed Proof of Theorem 3 Let S = (s1, . . . , sd) ∈ X

be a set shattered by F̃ , for each a ∈ {0, 1}d define the

distribution μa on {1, . . . , d} × {0, 1} via

μa(i, b) := 1

2d

(

1+ (−1)ai+b 8ε

‖σ0 − σ1‖1

)

.

Note that ∀a ∈ {0, 1}d ∃fa ∈ F̃ : fa(si) = ai by shattering

and that for each a ∈ {0, 1}d , fa is a minimum error concept

w.r.t. μa and a concept fã has additional error

dH (a, ã)
8ε

d ‖σ0 − σ1‖1

· ‖σ0 − σ1‖1

2
= dH (a, ã)

4ε

d

compared to fa . Hence, in order to solve the learning

problem with confidence 1 − δ and accuracy ε the

algorithm A has to output, with probability ≥ 1 − δ, a

hypothesis (generated from the training data arising from

the underlying string) that when evaluated on S yields a

vector that is d
4

-close to the underlying string in Hamming

distance.

Let A be a random variable distributed uniformly on

{0, 1}d (corresponding to the unknown underlying string a).

Let B = B1 . . . Bm be the training data with each example

generated independently from μa described by the quantum

ensemble

Ea = {μa(i, b), |si〉〈si | ⊗ σb}i=1,...,d, b=0,1,

or, equivalently, by the quantum state

ρa =
d

∑

i=1

|si〉〈si | ⊗ (μa(i, 0)σ0 + μa(i, 1)σ1) .

In particular, the composite system of underlying string and

corresponding training data is described by the quantum

state

σAB =
1

2d

∑

a∈{0,1}d
|a〉〈a| ⊗ ρ⊗m

a .

We follow the information-theoretic proof strategy from

Arunachalam and de Wolf (2018), i.e., we first show a lower

bound on the mutual information I (A : B) which arises

from the learning requirement, then observe that I (A :
B) ≤ m · I (A : B1) and finally upper bound the mutual

information I (A : B1).

First for the mutual information lower bound. Let h(B) ∈
{0, 1}d denote the label vector assigned to S by the

hypothesis produced by the learner upon input of training

data B. Let . If Z = 1, then

by the above deliberations we conclude dH (A, h(B)) ≤
d
4

and thus, given h(B), A ranges over a set of size
d
4∑

i=0

(
n
i

)

≤ 2
H

(
1
4

)

d
. Thus, we get (using data processing and

the definition of conditional entropy)

I (A : B) ≥ I (A : h(B)) = H(A)−H(A|h(B))

≥ H(A)−H(A|h(B), Z)−H(Z)
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= H(A)− P[Z = 1]
︸ ︷︷ ︸

≤1

H(A|h(B), Z = 1)
︸ ︷︷ ︸

≤H
(

1
4

)

d

−P[Z = 0]
︸ ︷︷ ︸

≤δ

H(A|h(B), Z = 0)
︸ ︷︷ ︸

≤d

−H(Z)
︸ ︷︷ ︸

≤H(δ)

≥ d −H

(
1

4

)

d − δd −H(δ)

=
(

1−H

(
1

4

)

− δ

)

d −H(δ),

in particular I (A : B) ≥ Ω(d). (Here we use our assump-

tion on δ.)

Now we show I (A : B) ≤ m · I (A : B1). We reproduce

the reasoning provided in Arunachalam and de Wolf (2018)

for completeness:

I (A : B) = S(B)− S(B|A)

= S(B)−
m∑

i=1

S(Bi |A)

≤
m∑

i=1

S(Bi)− S(Bi |A)

=
m∑

i=1

I (A : B1).

Here, the first step is by definition, the second uses the

product structure of the subsystem B, the third follows

from subadditivity of the entropy and the last is again by

definition.

And finally, we prove an upper bound on I (A : B1). To

this end, we have to study the reduced state

σAB1
= 1

2d

∑

a∈{0,1}d
|a〉〈a| ⊗ ρa .

More precisely, we have

I (A : B1) = S(A)+ S(B1)− S(AB1),

and thus have to study the entropies of σAB1
as well

as those of the reduced states σA and σB1
. As A ∼

Uniform
(

{0, 1}d
)

, we have S(A) = d . Now we consider the

reduced state

σB1
= 1

2d

∑

a∈{0,1}d
ρa

=
d

∑

i=1

|si〉〈si | ⊗

⎛

⎝

⎛

⎝
1

2d

∑

a∈{0,1}d
μa(i, 0)

⎞

⎠ |ψ0〉〈ψ0|

+

⎛

⎝
1

2d

∑

a∈{0,1}d
μa(i, 1)

⎞

⎠ |ψ1〉〈ψ1|

⎞

⎠ .

Here, we have

1

2d

∑

a∈{0,1}d
μa(i, 0) = 1

2d
= 1

2d

∑

a∈{0,1}d
μa(i, 1).

By Lemma 4 we know that 1
2d
|ψ0〉〈ψ0| + 1

2d
|ψ1〉〈ψ1| has

non-zero eigenvalues μ1/2 = 1
2d

(1 ± |〈ψ0|ψ1〉|) and due

to the block-diagonal structure of σB1
we conclude that

the non-zero eigenvalues of σB1
are also μ1/2, each of

multiplicity d . In particular, we have

S(σB1
) = d · (−μ1 log(μ1)− λ2 log(μ2))

= log(2d)− 1

2

(

log(1− |〈ψ0|ψ1〉|2)

+ |〈ψ0|ψ1〉| log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

))

.

Similarly, we see that the non-zero eigenvalues of σAB1

are

1

2d
λ1/2 =

1

2d
· 1

2d

(

1± |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

)

,

each of multiplicity d · 2d and that therefore

S(σAB1
) = d + log(2d)− 1

2

⎛

⎜
⎜
⎝

log

(

1− |〈ψ0|ψ1〉|2
(

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

))

+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

log

⎛

⎜
⎜
⎝

1+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1

· 1−|〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

1− |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1

· 1−|〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

.

If we combine these expressions for the different entropies,

we obtain
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I (A : B1) = S(A)+ S(B1)− S(AB1)

= 1

2

(

log

(

1− |〈ψ0|ψ1〉|2 −
64ε2

‖σ0 − σ1‖2
1

(1− |〈ψ0|ψ1〉|2)
)

− log
(

1− |〈ψ0|ψ1〉|2
)
)

+|〈ψ0|ψ1〉|
2

⎛

⎜
⎜
⎝

√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

log

⎛

⎜
⎜
⎝

1+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1

· 1−|〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

1− |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1

· 1−|〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

⎞

⎟
⎟
⎠

− log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)

⎞

⎟
⎟
⎠

.

We now use Taylor’s theorem to understand the scaling

of the different terms with ε. First, we have (by Taylor-

expanding log(1− |〈ψ0|ψ1〉|2 − x) around x = 0)

log

(

1− |〈ψ0|ψ1〉|2 −
64ε2

‖σ0 − σ1‖2
1

(1− |〈ψ0|ψ1〉|2)
)

− log
(

1− |〈ψ0|ψ1〉|2
)

= 1

1− |〈ψ0|ψ1〉|2
· 64ε2

‖σ0 − σ1‖2
1

(1− |〈ψ0|ψ1〉|2)+ O(ε4)

= − 64ε2

‖σ0 − σ1‖2
1

+ O(ε4).

Moreover, using the Taylor expansions

log

(

1+ a
√

1+ x

1− a
√

1+ x

)

= log

(
1+ a

1− a

)

+ ax

1− a2
+ O(x2)

around x = 0 (with a > 0) and

√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

= 1+ 1

2
· 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

+ O(ε4)

we now obtain

√

1+ 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

log

⎛

⎜
⎜
⎝

1+ |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1

· 1−|〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

1− |〈ψ0|ψ1〉|
√

1+ 64ε2

‖σ0−σ1‖2
1

· 1−|〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

⎞

⎟
⎟
⎠

− log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)

=
(

1+ 1

2
· 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

+ O(ε4)

)

·
(

log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)

+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|2

· 64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
|〈ψ0|ψ1〉|2

+ O(ε4)

)

− log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)

= 64ε2

‖σ0 − σ1‖2
1

(
1

|〈ψ0|ψ1〉|
+ 1− |〈ψ0|ψ1〉|2

2|〈ψ0|ψ1〉|
log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

))

+ O(ε4).

Plugging these approximations back in gives us

I (A : B1) =
64ε2

‖σ0 − σ1‖2
1

· 1− |〈ψ0|ψ1〉|2
4|〈ψ0|ψ1〉|

× log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

)

+ O(ε4) = O(ε2).

Now combining our mutual information lower and upper

bounds yields

Ω(d) ≤ I (A : B) ≤ m · I (A : B1) ≤ m · O(ε2),

which after rearranging becomes

m ≥ Ω

(
d

ε2

)

,
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as desired.

Detailed Proof of Lemma 5 As F is non-trivial, there exist

f1, f2 ∈ F and x1, x2 ∈ X s.t. f1(x1) = f2(x1) = σ0 and

f1(x2) = σ0 �= σ1 = f2(x2). Now consider the distribution

μ on X defined by

μ(x1) = 1− λ, μ(x2) = λ,

where λ ∈ (0, 1) is to be chosen later in the proof.

The risk of a hypothesis h ∈ DX w.r.t. μ if the target

concept is fi is given by

Rμ,fi
(h) = 1− λ

2
‖h(x1)− fi(x1)‖1+

λ

2
‖h(x2)− fi(x2)‖1 ,

so in particular we have

Rμ,fi
(fj ) =

{

0 if i = j
λ
2
‖σ0 − σ1‖1 if i �= j

.

So if we choose λ = 2ε
‖σ0−σ1‖1

< 1, then the learning

requirement for A implies that with probability ≥ 1− δ, A

correctly identifies whether the target concept is f1 or f2.

As the algorithm has access to the underlying distribution

only via the training data, this means that the algorithm

has to be able to distinguish the corresponding training data

ensembles with probability ≥ 1 − δ. Here, we observe

that the training data being drawn i.i.d. according to μ±
is equivalent to the learning algorithm having access to m

copies of the state

ρi = (1− λ)|x1〉〈x1| ⊗ σ0 + λ|x2〉〈x2| ⊗ fi(x2), i = 1, 2.

The optimal success probability for distinguishing between

two quantum states is a well-studied object in quantum

information theory. It can be characterized by the trace

distance between the two states and is given (in our case) by

(see Nielsen and Chuang 2009)

popt =
1

2
(1+ 1

2

∥
∥ρ⊗m

1 − ρ⊗m
2

∥
∥

1
).

As the trace distance of tensor products is not that easy to

deal with, we will instead work with the fidelity defined as

F(ρ, σ ) := tr[
√

ρ
1
2 σρ

1
2 ]. According to the Fuchs-van de

Graaf inequalities (see Nielsen and Chuang 2009, Section

9.2.3) we have

1

2

∥
∥ρ⊗m

1 − ρ⊗m
2

∥
∥

1
≤

√

1− F(ρ⊗m
1 , ρ⊗m

2 )2

=
√

1− F(ρ1, ρ2)2m,

where the last steps uses multiplicativity of the fidelity

under tensor products. Now we require popt ≥ 1 − δ and

rearrange to obtain

F(ρ1, ρ2)
2m ≤ 4δ(1− δ)

or equivalently after taking logarithms

m ≥ log(4δ(1− δ))

log(F (ρ1, ρ2)2)
.

Now we use again the Fuchs-van de Graaf inequalities

which tell us (after rearranging)

1− 1

2
‖ρ1 − ρ2‖1 ≤ F(ρ1, ρ2) ≤

√

1− 1

4
‖ρ1 − ρ2‖2

1

to obtain that

m ≥ log(4δ(1− δ))

log(F (ρ1, ρ2)2)
=

log
(

1
4δ(1−δ)

)

log
(

1
F(ρ1,ρ2)

2

)

≥
log

(
1

4δ(1−δ)

)

log

(

1

(1− 1
2
‖ρ1−ρ2‖1)

2

) ≥ log(4δ(1− δ))

2 log(1− 1
2
‖ρ1 − ρ2‖1)

.

It is easy to see that ‖ρ1 − ρ2‖1 = λ ‖σ0 − σ1‖1 = 2ε. Now

Taylor expansion of the logarithm gives

m ≥ Ω

⎛

⎝

log
(

1
δ

)

ε

⎞

⎠ ,

as desired.

Detailed Proof of Theorem 4 Let S = (s0, . . . , sd) ∈ X be

a set shattered by F̃ , define

μ(s0) = 1− λ, μ(si) =
λ

d
∀1 ≤ i ≤ d,

with λ ∈ (0, 1) to be chosen later. By shattering, ∀a ∈
{0, 1}d ∃fa ∈ F̃ s.t.

fa(s0) = 0 and fa(si) = ai ∀1 ≤ i ≤ d .

Observe that w.r.t. a distribution μ and target concept fa ,

another concept fb has error

dH (a, b) · λ

d
· ‖σ0 − σ1‖1

2
.

So if we pick λ = 8ε
‖σ0−σ1‖1

, then by the learning

requirement, with probability ≥ 1 − δ, A has to output a

hypothesis h that when evaluated on S yields a label vector

that is d
4

-close to the true underlying string in Hamming

distance.

Denote by A ∼ Uniform
(

{0, 1}d
)

a random variable

describing the unknown underlying string, let B =
B1 . . . Bm be the corresponding quantum training data

system. We want to repeat the three-step reasoning from the

proof of Theorem 3. The first two steps work exactly as

before. Step 3 will be slightly different. Again we have

I (A : B1) = S(A)+ S(B1)− S(AB1), and S(A) = d .
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In this case, the relevant composite state is

σAB1
= 1

2d

∑

a∈{0,1}d
|a〉〈a| ⊗ ρa,

where ρa =
d∑

j=0

μ(sj )|sj 〉〈sj | ⊗ fa(sj ) = (1− λ)|s0〉〈s0| ⊗

σ0 + λ
d

d∑

j=1

|sj 〉〈sj | ⊗ σaj
.

We now again use Lemma 4 to compute eigenvalues and

thus entropies. (Here our assumption that σ0 and σ1 are pure

enters the proof.) We obtain

– Each ρa has non-zero eigenvalues 1− λ of multiplicity

1 and λ
d

of multiplicity d .

– σB1
= 1

2d

∑

a∈{0,1}d
(

(1− λ)|s0〉〈s0| ⊗ σ0 + λ
d

d∑

j=1

|sj 〉〈sj | ⊗ σaj

)

= (1 −

λ)|s0〉〈s0|⊗σ0+ λ
d

d∑

j=1

|sj 〉〈sj |⊗
(

1
2
σ0 + 1

2
σ1

)

has non-

zero eigenvalues 1 − λ of multiplicity 1 and λ
d
λ1/2 of

multiplicity d , where λ1/2 = 1±|〈ψ0|ψ1〉|
2

.

– σAB1
has non-zero eigenvalues 1

2d (1−λ) of multiplicity

2d and λ
d·2d of multiplicity d · 2d .

With this we can now compute the relevant entropies and

obtain

S(B1) = S(σB1
)

= −(1− λ) log(1− λ)+ d

(

−λ

d
λ1 log

(
λ

d
λ1

)

− λ

d
λ2 log

(
λ

d
λ2

))

= −(1− λ) log(1− λ)− λ

(

λ1 log

(
λ

d
λ1

)

+λ2 log

(
λ

d
λ2

))

,

as well as

S(AB1) = S(σAB1
)

= 2d

(

− 1

2d
(1− λ) log

(
1

2d
(1− λ)

)

− d · λ

d · 2d
log

(
λ

d · 2d

))

= −(1− λ) log

(
1− λ

2d

)

− λ log

(
λ

d · 2d

)

.

Hence, we now have

I (A : B1) = S(A)+ S(B1)− S(AB1)

= −λ

2

(

log

(
1− |〈ψ0|ψ1〉|2

4

)

+ |〈ψ0|ψ1〉| log

(
1+ |〈ψ0|ψ1〉|
1− |〈ψ0|ψ1〉|

))

︸ ︷︷ ︸

≤0 because |〈ψ0|ψ1〉|∈[0,1]
= O(ε).

Now we can finish the proof by combining steps 1, 2 and 3

as before.

Appendix 2. A physical motivation
for our notion of risk

In our definition of the risk Rμ we use the trace distance. As

the latter is a well-established measure of distinguishability

of quantum states, it presents itself as a natural candidate

loss function. Here, we give a more explicit operational

reasoning as to why we choose to use the trace distance.

Imagine the learning task as a competition between two

parties, a learner and a teacher. We assume that both parties

obey the laws of quantum physics. The teacher knows (a

classical description of) the probability distribution μ ∈
Prob(X ×D) and will provide corresponding training data

to the learner during a training phase. The learner’s goal is

to persuade the teacher in a test phase that she has managed

to learn the distribution μ, which was unknown to her in

advance, i.e., that she has produced a good hypothesis h :
X → D .

We first give an informal description of the test phase:

The teacher prepares another (independent) example (x, ρ)

drawn from μ. She then sends x to the learner. The latter

applies her hypothesis h to prepare the quantum state h(x)

which she then sends back to the teacher. The teacher now

uses this one copy of h(x) and her knowledge of μ to

evaluate whether the learner made a good prediction. As

also the teacher is restricted by quantum theory, she can only

do so by performing a measurement.

We now discuss the choice of measurement of the teacher

in more detail. On the one hand, the teacher wants to

maximize the probability of detecting a wrong prediction.

On the other hand, she does not want to be unfair, so at the

same time she tries to maximize the probability of detecting
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a correct prediction. In summary, the teacher wants to

choose a 2-outcome measurement {Eaccept , Ereject } that

maximizes

tr[Eacceptσi] + tr[Erejectσj ],

where σi = ρ and σj ∈ D \ {ρ}. As she knows (a

classical description of) the state ρ ∈ D and that h(x) ∈ D ,

she can achieve this by picking {Eaccept , Ereject } to be the

optimal measurement for minimum error discrimination of

D (where the states are taken with equal prior probabilities

(see Watrous 2018, Theorem 3.4)). The measurement is

basically the same independently of whether ρ = σ1 or

ρ = σ2, only the outcome labels are interchanged.

Now the expected probability of the trainer rejecting the

learner’s prediction is
∫

X×D

tr[Ereject (ρ)h(x)] dμ(x, ρ).

The optimal measurement satisfies

tr[Eacceptσi] + tr[Erejectσj ] =
1

2

(

1+ 1

2
‖σ0 − σ1‖1

)

.

It is easy to see that under the additional assumption that

σ0 and σ1 have the same purity, i.e., tr[σ 2
0 ] = tr[σ 2

1 ], the

rejection probabilities are symmetric, namely

tr[Eacceptσj ] = tr[Erejectσi] =
1

2

(

1− 1

2
‖σ0 − σ1‖1

)

and similarly

tr[Eacceptσi] = tr[Erejectσj ] =
1

2

(

1+ 1

2
‖σ0 − σ1‖1

)

.

With this we now obtain when comparing the achieved with

the optimal expected rejection probability
∫

X×D

tr[Ereject (ρ)h(x)] dμ(x, ρ)

− inf
g:X →D

∫

X×D

tr[Ereject (ρ)g(x)] dμ(x, ρ)

=
∫

X×D

‖ρ − h(x)‖1

4
dμ(x, ρ) = 1

2
Rμ(h).

So we have recovered our notion of risk, at least in the case

of states of equal purity, from a more basic analysis of the

test phase.

Note that a similar analysis could be performed also in

the case of more than two quantum labels. There, the

teacher’s measurement would be the optimal measure-

ment for minimum error discrimination of ρ and 1
|D |−1∑

σ∈D\{ρ} σ . Unfortunately, no closed-form expressions for

the corresponding success probabilities are known. We do,

however, see that in this scenario, using the trace distance as

loss function would be too pessimistic from the perspective

of the learner. As the teacher does not know the predic-

tion state prepared by the learner, the teacher has to solve a

state discrimination problem taking into account all possible

label states.

Appendix 3. The Holevo-Helstrom strategy

The naive learning strategy based on the Holevo-Helstrom

measurement is the following:

The remainder of this section is devoted to studying the

performance of this simple learning procedure. Note that

we leave open for now the classical learning algorithm to

be used, we first work towards characterizing the true risk

Rμ(h) in terms of the intermediate classical risk R̃ν(g).

In the following we will often make use of the fact that

when identifying i ↔ σi , the probability measure μ on

X × D gives rise to a probability measure on X × {0, 1}.
We will abuse notation and also denote the latter measure
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by μ, however, which measure is meant will always be clear

from the context.

Recall that Rμ(h) = ‖σ0−σ1‖
2

P(x,ρ)∼μ[h(x) �= ρ]. We

now derive a similar expression for R̃ν(g).

Lemma C.1 With the notation as in the Holevo-Helstrom

strategy (in particular h(x) = σg(x)) it holds that

R̃ν(g) = ‖σ0 − σ1‖1

2
P(x,ρ)∼μ[h(x) �= ρ] + tr[σ0E1]

+(tr[σ1E0] − tr[σ0E1])Eμ1
[g].

Proof This can be shown by direct computation using the

definition of ν:

R̃ν(g) =
∫

X ×{0,1}

|y − g(x)|dν(x, y)

=
∫

X

⎛

⎜
⎝

∫

{0,1}

|y − g(x)|dν(y|x)

⎞

⎟
⎠ dν1(x)

=
∫

X

(|1− g(x)|(μ(σ1|x)tr[σ1E1] + μ(σ0|x)tr[σ0E1])

+ |g(x)|(μ(σ1|x)tr[σ1E0] + μ(σ0|x)tr[σ0E0])) dμ1(x)

Now we use the specific property of the Holevo-Helstrom

measurement that tr[(σ1 − σ0)E1] = ‖σ0−σ1‖
2

. Moreover,

as g(x) ∈ {0, 1}, we have |1 − g(x)| = 1 − g(x) and

|g(x)| = g(x). Thus, we obtain

R̃ν(g) = ‖σ0 − σ1‖
2

∫

X

((1− g(x))μ(σ1|x)+ g(x)μ(σ0|x)) dμ1(x)

+
∫

X

((1− g(x))tr[σ0E1] + g(x)tr[σ1E0]) dμ1(x)

= ‖σ0 − σ1‖
2

P(x,ρ)∼μ[h(x) �= ρ] + tr[σ0E1]

+(tr[σ1E0] − tr[σ0E1])Eμ1
[g],

where the last step uses h(x) = σg(x).

This allows us to easily compare the true and the inter-

mediate risk and obtain

R̃ν(g)− Rμ(h) = tr[σ0E1](1− 2Eμ1
[g])

+
(

1− ‖σ0 − σ1‖
2

)

Eμ1
[g].

As g(x) ∈ {0, 1} ∀x ∈ X and in particular 0 ≤ Eμ1
[g] ≤ 1,

this gives rise to the following

Corollary 2 With the notation as in the Holevo-Helstrom

strategy it holds that

R̃ν(g)−max{tr[σ0E1], tr[σ1E0]} ≤ Rμ(h) ≤ R̃ν(g)

−min{tr[σ0E1], tr[σ1E0]}.

We can extend this to a comparison between the excess

risks

Rμ(h)−R∗
μ,F := Rμ(h)− inf

η∈F
Rμ(η) and R̃ν(g)− R̃∗

ν,F̃

:= R̃ν(g)− inf
γ∈F̃

R̃ν(γ )

which are the quantities of interest for agnostic learning

scenarios.

Corollary 3 With the notation as in the Holevo-Helstrom

strategy it holds that

R̃ν(g)−R̃∗
ν,F̃

−|tr[σ0E1] − tr[σ1E0]|≤Rμ(h)−R∗
μ,F

≤ R̃ν(g)− R̃∗
ν,F̃

+ |tr[σ0E1] − tr[σ1E0]|

So we see that solving the classical learning task in step 3

of the Holevo-Helstrom strategy does not necessarily imply

success at the overall learning task if the target accuracy is

ε < |tr[σ0E1] − tr[σ1E0]|. This problem is addressed by

the noise-corrected Holevo-Helstrom strategy presented in

Section 4.

Remark 4 We want to shortly discuss a special case in

which the connection between Rμ(h) and R̃ν(g) takes

a particularly appealing form. Namely, assume that σ0

and σ1 are such that the corresponding Holevo-Helstrom

measurement produces equal probabilities of error, i.e.,

tr[E0σ1] = tr[E1σ0]. This is clearly not true in general,

take, e.g., σ0 = |0〉〈0| and σ1 = 1
2
(|0〉〈0| + |1〉〈1|). It does,

however, hold true in certain special cases, e.g., if both σ0

and σ1 are pure or if σ0 and σ1 have the same (non-trivial)

purity and tr[E0] = tr[E1]. (The latter is, e.g., satisfied if σ0

and σ1 are qubit states of the same (non-zero) purity.)

In this simple case our previous discussion yields

Rμ(h) = R̃ν(g), in particular, if we succeed at the classical

binary classification task in step 3, then we also succeed

at the overall classification task with quantum labels, so

the quantum learning task is reduced to a classical learning

problem.

Appendix 4. Sample complexity of binary
classification with two-sided classification
noise

Here, we discuss the sample complexity of the PAC learning

task of binary classification in the presence of (two-sided)

classification noise in the realizable scenario. To be in

congruence with the literature on this and related problems,

we will use a slightly different notation than in the main

body of the paper. Namely, we will consider classical input
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space X and classical target space {0, 1}, a concept class

F ⊂ {0, 1}X , a probability measure μ ∈ Prob(X ), and

noise probabilities 0 ≤ η0, η1 < 1
2
, with which labels are

flipped. Moreover, we will work with the 0-1-loss function

and denote the corresponding risk of a hypothesis h w.r.t. a

target concept f by errμ(h; f ) = μ[h(x) �= f (x)]. Finally,

any training data sample S splits the concept class F into

so-called S-equivalence classes, where f1, f c ∈ F are

equivalent if and only if f1(x) = f2(x) ∀x ∈ X s.t.

∃y ∈ {0, 1} with (x, y) ∈ S.

The basic learning strategy underlying our discussion

is Algorithm 1. It is the natural analog of searching for

a consistent function in the case of noisy labels. Namely,

as such a consistent function will in general not exist, it

searches for a function that disagrees with the training data

on as few examples as possible.

Theorem 4.1 (see Laird 1988, Theorems 5.7 and 5.33)

The output hypothesis h of Algorithm 1 satisfies

errμ(h; f ) ≤ ε.

Laird’s original proof that this algorithm solves the PAC

learning problem is for the case η0 = η1. It is, however,

easily generalized to our case because we still assume the

same noise bound on both error rates. (We only have to

adapt the expression for the error rate and the corresponding

Hoeffding bounds.)

In order to apply the reasoning by Hanneke (2016) we

need to slightly reformulate the result of this algorithm

s.t. we obtain a bound on the error in terms of the sample

size. When following the proof of Theorem 5.7 in Laird

(1988) we see that m1 is used to ensure that there is a

hypothesis which performs better than some given error

threshold and m2 is used to ensure that such a hypothesis is

actually chosen. In particular, if we use the error bound by

Blumer et al. (1989) in terms of the sample size, we see that

m2 depends on m1 as follows:

m2 = 2

1− exp(− 1
2
(1− 2ηb)2)

· m1

2
· 1

d log
(

2em1
d

)

+ log
(

2
δ

)

· ln
(

1

δ
(md

1 + 1)

)

.

Remark 5 Note that we cannot directly use the tighter

error bound in terms of the sample complexity proved by

Hanneke (2016) here because Laird’s proof explicitly makes

use of the strategy employed by Blumer et al. (1989) which

works via consistency with a given training sample.

We can now easily bound

m = m1 +m2 ≤ m1 ·

⎛

⎜
⎜
⎜
⎜
⎝

1+ 1

1− exp(− 1
2
(1− 2ηb)2)

· 1

log(e)
· 1

1−
d log

(
d
2e

)

d log(m1)+log
(

2
δ

)

⎞

⎟
⎟
⎟
⎟
⎠

.

If we now further assume that δ > 0 is chosen

s.t. log
(

2
δ

)

> 2d log
(

d
2e

)

, then we can continue upper

bounding this and obtain

m = m1 +m2 ≤ (1+ C(ηb))m1,
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where we defined C(ηb) := 2

1−exp(− 1
2 (1−2ηb)

2)
. It is easy to

check that for 0 ≤ ηb < 1
2
, C(ηb) ≤ 4

(1−2ηb)
2 , which well

be used later on.

Hence, using a sample of size m ≥ 2(1 + C(ηb)) for

the minimum disagreement strategy with m2 = ⌈ C(ηb)
1+C(ηb)

m⌉
and m1 = m − m2 gives - using m

2(1+C(ηb))
≤ m1 ≤

m
1+C(ηb)

≤ m2
C(ηb)

—an error guarantee of

errμ(h; f ∗) ≤ 4

m1

(

d log

(
2em1

d

)

+ log

(
2

δ

))

(4.1)

≤ 8 · (1+ C(ηb))

m

(

d log

(
2em

d · (1+ C(ηb))

)

+ log

(
2

δ

))

. (4.2)

With this suboptimal base learner we will now follow

the strategy by Hanneke (2016) in order to build a better

learner from it. Note that Hanneke’s proof includes several

steps in which the existence of a function consistent with

the respective subsample is ensured. This is not necessary in

our case because the minimum disagreement strategy does

not require a consistent function to exist.

We recall the algorithm for preprocessing the training

data to generate subsamples as introduced in Hanneke

(2016) in our Algorithm 2.

Theorem 4.2 Let ε ∈ (0, 1), δ ∈ (0, 2 · ( 2e
d

)d)

and ηb ∈ (0, 1
2
). Let F ⊂ {0, 1}X be a func-

tion class of VC-dimension d . Then m = m(ε, δ) =
O

(
1

ε(1−2ηb)
2

(

d + log
(

1
δ

)))

noisy examples from a func-

tion in F are sufficient for binary classification in the

presence of two-sided classification noise with error prob-

abilities 0 ≤ η0, η1 < ηb with accuracy ε and confidence

1− δ.

Proof This proof is analogous to the proof of Theorem

2 in Hanneke (2016) with some minor simplifications

and adaptations and is given here only for the sake of

completeness.

Fix an f ∗ ∈ F and a probability measure μ over X .

Denote by S = S1:m the corresponding noisy training data.

For any classifier h denote by ER(h) = {x ∈ X |h(x) �=
f ∗(x)} the set of instances on which h errs.

Fix c = 7200. We will show by strong induction that

∀m′ ∈ N, ∀δ′ ∈ (0, . . .) and for all finite sequences T ′ with

probability ≥ 1− δ′ the classifier

ĥm′,T ′ = Majority
(

L(A(S1:m′; T ′))
)

satisfies the error bound

errμ(ĥm′,T ′ , f
∗) ≤ cC(ηb)

1+m′

(

d + ln

(
18

δ′

))

. (4.3)

As base case consider m′ ≤ C(ηb)c · ln(18e) − 1. In this

case, for any δ′ ∈ (0, 1) and for any finite sequence T ′, we

trivially have

errμ(ĥm′,T ′ , f
∗) ≤ 1

≤ c · C(ηb)

1+m′ (d + ln(18))

≤ c · C(ηb)

1+m′

(

d + ln

(
18

δ′

))

,

as desired.

For the induction step, assume that for some m >

C(ηb)c · ln(18e) − 1 for all m′ ∈ N with m′ < m,

for all δ′(0, 2 · ( 2e
d

)d) and for all finite sequences T ′ with

probability ≥ 1− δ′, (4.3) holds.

Note that by our choice of c we have C(ηb)c · ln(18e)−
1 ≥ 3. Thus, |S1:m| ≥ 4 and therefore A (S1:m; T ) returns

in step 3. Let S0, S1, S2, S3 be as in A(S; T ). Denote T1 =
S2 ∪ S3 ∪ T , T2 = S1 ∪ S3 ∪ T , T3 = S1 ∪ S2 ∪ T and

hi = Majority (L(A(S0; Ti))) for each i ∈ {1, 2, 3}.
Note that S0 = S1:(m−3⌊m

4 ⌋). As m ≥ 4, 1 ≤ m−3⌊m
4
⌋ <

m. Also, hi = ĥ(m−3⌊m
4 ⌋),Ti

. So by the induction hypothesis

applied under the conditional distribution given S1, S2, S3,

which are independent of S0, combined with the law of total

probability, for every i ∈ {1, 2, 3} there exists an event Ei

of probability ≥ 1− δ
9

on which

μ[ER(hi)] ≤
cC(ηb)

1+ |S0|

(

d + ln

(
9 · 18

δ

))

≤ 4cC(ηb)

m

(

d + ln

(
9 · 18

δ

))

. (4.4)
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Next, fix an i ∈ {1, 2, 3} and write {(X̃i,1, Ỹi,1), . . . ,

(X̃i,Ni
, Ỹi,Ni

)} := Si ∩ (ER(hi) × Y ). As hi and Si are

independent, X̃i,1, . . . , X̃i,Ni
are conditionally independent

given hi and Ni . Therefore, we can apply the error bound

(4.2) for our base learner L under the conditional distribu-

tion given hi and Ni to conclude: There exists an event E′
i

of probability ≥ 1 − δ
9

s.t., if Ni > 0, then the output h of

the base learner L upon input of Si∩(ER(hi)×Y ) satisfies

errμ(·|ER(hi ))(h, f ∗) ≤ 8(1+ C(ηb))

Ni

(d log

×
(

2eNi

d(1+ C(ηb))

)

+ log

(
18

δ

))

.

In particular, on E′
i (if Ni > 0) every h ∈

⋃

j∈{1,2,3}\{i}
L

(

A(S0; Tj )
)

satisfies

μ[ER(h) ∩ ER(hi)]
= μ[ER(hi)]μ[ER(h)|ER(hi)] (4.5)

= μ[ER(hi)]errμ(·|ER(hi ))(h, f ∗) (4.6)

≤ μ[ER(hi)]
8(1+ C(ηb))

Ni

×
(

d log

(
2eNi

d(1+ C(ηb))

)

+ log

(
18

δ

))

. (4.7)

Using Chernoff bounds we get that there exists an event E′′
i

of probability ≥ 1 − δ
9

s.t., if μ[ER(hi)] ≥
2( 10

3 )2

⌊m
4 ⌋

ln
(

9
δ

)

,

then Ni ≥ 7
10

μ[ER(hi)]⌊m
4
⌋. In particular, on E′′

i we have

the implication

μ[ER(hi)] ≥
2( 10

3
)2

⌊m
4
⌋ ln

(
9

δ

)

⇒ Ni > 0.

If we now combine this with (4.4) and (4.7), then we see:

On Ei ∩E′
i ∩E′′

i , if μ[ER(hi)] ≥
2( 10

3 )2

⌊m
4 ⌋

ln
(

9
δ

)

, then every

h ∈
⋃

j∈{1,2,3}\{i}
L
(

A(S0; Tj )
)

satisfies

μ[ER(h) ∩ ER(hi)]

≤ 80 · C(ηb)

7⌊m
4
⌋

(

d log

(

2e · 7
10
· μ[ER(hi)]⌊m

4
⌋

dC(ηb)

)

+ log

(
18

δ

)
)

≤ 80 · C(ηb)

7⌊m
4
⌋

⎛

⎝d log

⎛

⎝

7e
5
· c

(

d + ln
(

9·18
δ

))

d

⎞

⎠+ log

(
18

δ

)
⎞

⎠

≤ 80 · C(ηb)

7⌊m
4
⌋

(

d log

(
2

5
c

(
7

2
e + 7e

d
ln

(
18

δ

)))

+ log

(
18

δ

))

≤ 80 · C(ηb)

7 ln(2)⌊m
4
⌋

(

d ln

(
9ec

5

)

+ 8 ln

(
18

δ

))

,

where the last step uses the technical Lemma 5 from the

Appendix of Hanneke (2016). As m > C(ηb)c · ln(18e) −

1 > 3200, we have ⌊m
4
⌋ > m−4

4
> 799

800
m
4

> 799
800

3200
3201

m+1
4

.

We use this relaxation and compute the logarithmic factors

to obtain from the above that

μ[ER(h) ∩ ER(hi)] ≤
600 · C(ηb)

m+ 1

(

d + ln

(
18

δ

))

.

Moreover, if μ[ER(hi)] < 23
⌊m

4 ⌋
ln

(
9
δ

)

, then simply

because μ is a probability measure, we conclude

μ[ER(h) ∩ ER(hi)] ≤ μ[ER(hi)] <
23

⌊m
4
⌋ ln

(
9

δ

)

<
600 · C(ηb)

m+ 1

(

d + ln

(
18

δ

))

.

Hence, no matter what value μ[ER(hi)] takes, on the event

Ei ∩ E′
i ∩ E′′

i we have for all h ∈
⋃

j∈{1,2,3}\{i}
L
(

A(S0; Tj )
)

that

μ[ER(h) ∩ ER(hi)] ≤
600 · C(ηb)

m+ 1

(

d + ln

(
18

δ

))

.

Now denote hmaj = ĥm,T = Majority(L(A(S; T ))) for

S = S1:m. By definition of the majority function, for any

x ∈ X at least 1
2

of the classifiers h in the sequence

L(A(S; T )) satisfy h(x) = hmaj(x). So by the strong form

of the pigeon hole principle, there exists an i ∈ {1, 2, 3} s.t.

hi(x) = hmaj(x). Also, since each A(S0; Tj ) contributes an

equal number of entries to A(S; T ), for each i ∈ {1, 2, 3},
at least 1

4
of the classifiers h ∈

⋃

j∈{1,2,3}\{i}
L
(

A(S0; Tj )
)

satisfy h(x) = hmaj(x).

In particular, if I is a random variable independent of the

training data and distributed uniformly on {1, 2, 3} and if h̃

is a random variable conditionally given I and S uniformly

distributed on
⋃

j∈{1,2,3}\{I }
L
(

A(S0; Tj )
)

, then for any fixed

x ∈ ER(hmaj), with conditional probability ≥ 1
12

, hI (x) =
h̃(x) = hmaj(x) and thus x ∈ ER(hI ) ∩ ER(h̃).

Hence, for a random variable X ∼ μ independent of the

data, of I and of h̃ we can now conclude
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So on the event
⋂

i∈{1,2,3}
Ei ∩ E′

i ∩ E′′
i it holds that

errμ(hmaj; f ∗) ≤ 12E[μ[ER(hi) ∩ ER(h̃)]|S]
≤ 12 max

i∈{1,2,3}
max

j∈{1,2,3}\{i}
max

h∈L(A(S0;Tj ))

×μ[ER(hi) ∩ ER(h)]

<
7200 · C(ηb)

m+ 1

(

d + ln

(
18

δ

))

= c · C(ηb)

m+ 1

(

d + ln

(
18

δ

))

.

Since by the union bound the event
⋂

i∈{1,2,3}
Ei ∩E′

i ∩E′′
i has

probability ≥ 1− δ, the induction step is complete.

It remains to use the claim just proven by induction to

derive the desired sample complexity upper bound. For this,

take T = ∅ and note that for m ≥ ⌊ cC(η)
ε

(

d + ln
(

18
δ

))

⌋
the right-hand side of (4.3) is ≤ ε. Therefore, such

a sample size suffices for successful learning using

Majority(L(A(·; ∅))). Now recall the discussion before the

Theorem, where we observed that C(ηb) ≤ 4
(1−2ηb)

2 , to

finish the proof.
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