
Binary Coding of Speech Spectrograms Using a Deep Auto-encoder

L. Deng1, M. Seltzer1, D. Yu1, A. Acero1, A. Mohamed2, and G. Hinton2

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052, US
2 University of Toronto, Toronto, Ontario, Canada

{deng|mseltzer|dongyu|alexac}@microsoft.com; {asamir|hinton}@cs.toronto.edu

Abstract
This paper reports our recent exploration of the layer-by-layer
learning strategy for training a multi-layer generative model of
patches of speech spectrograms. The top layer of the
generative model learns binary codes that can be used for
efficient compression of speech and could also be used for
scalable speech recognition or rapid speech content retrieval.
Each layer of the generative model is fully connected to the
layer below and the weights on these connections are pre-
trained efficiently by using the contrastive divergence
approximation to the log likelihood gradient. After layer-by-
layer pre-training we “unroll” the generative model to form a
deep auto-encoder, whose parameters are then fine-tuned
using back-propagation. To reconstruct the full-length speech
spectrogram, individual spectrogram segments predicted by
their respective binary codes are combined using an overlap-
and-add method. Experimental results on speech spectrogram
coding demonstrate that the binary codes produce a log-
spectral distortion that is approximately 2 dB lower than a sub-
band vector quantization technique over the entire frequency
range of wide-band speech.
Index Terms: deep learning, speech feature extraction, neural
networks, auto-encoder, binary codes, Boltzmann machine

1. Introduction
A recent advance in training methods for multilayer neural
networks has led to renewed interest in exploring deep, multi-
layer networks for a number of machine learning problems
including encoding [8][9], retrieval [12], as well as the
problems associated with classification and regression that
involves image [8][9], language [16][17] and speech
[10][11][15]. The deep networks are first pre-trained, one
layer at a time, to form a good generative model of the input
data. After pre-training has discovered multiple layers of non-
linear features that are good at capturing the structure in the
input domain, the whole network is discriminatively fine-
tuned. The discriminative fine-tuning can be used to make the
network perform good classification or regression, but it can
also be used to make the network be good at reconstructing its
input from a compact code. While speech researchers have
long embraced the concepts of generative modeling and of
exploiting the multiple layers of non-linear transformations in
the human speech generation process (e.g., [1][2][3][4][5][6])
it was not until the introduction of generative, layer-by-layer
pre-training that the full power of generative modeling became
apparent. The potential of this approach is illustrated by the
strong performance in phonetic recognition, with 78%
phonetic recognition accuracy on the TIMIT task, which can
be achieved by deep, generative pre-training followed by
discriminative fine-tuning [10][11]. Compared with [10][11]
which focus on recognition, the current work focuses on the
encoding aspect of the new generative modeling paradigm,
and it uses log power spectra instead of cepstra to capture
greater fine detail of the speech signal.

The work reported in this paper was inspired by the
successful use of deep auto-encoders for dimensionality
reduction [8][9] and the extension of this work to the
discovery of efficient binary codes in information retrieval
[12]. It is also motivated by the potential benefits of using
discrete representations of speech derived from an almost
unlimited supply of unlabeled data in future-generation speech
recognition and retrieval systems. In parallel with this work,
we are currently also developing discrete speech codes using
vector-quantization (VQ) techniques. In particular, we
compare coding errors between these two classes of discrete
codes.

This paper is organized as follows. In Section 2, we
describe the layer-by-layer approach to learning deep
generative models introduced in [8]. In section 3, we show
how a deep generative model can be used to initialize a deep
auto-encoder. We outline the construction of VQ codes as the
baseline technique in Section 4. Experimental results showing
properties of the codes from the auto-encoder and comparative
coding results with the VQ codes are reported in Section 5.
Finally, we discuss the implications of results and the potential
applications of the discrete speech codes developed from this
work in Section 6.

2. Learning a Deep Belief Net
We learn a deep generative model of patches of spectrograms
that contain 256 frequency bins and 1, 3, 9, or 13 frames. We
first learn an undirected graphical model called a Gaussian-
binary restricted Boltzmann machine (RBM) that has one
visible layer of linear variables with Gaussian noise and one
hidden layer of 500 to 3000 binary latent variables. There is
full connectivity between layers, but no connections within
either layer. The connection weights (and biases) can be
learned efficiently using the contrastive divergence
approximation to the log likelihood gradient. For a Gaussian-
binary RBM, the conditional density of visible vector, �, given
a hidden binary vector, �, is

�(�|�) = �(�; � + ����,)
and the element-wise conditional distribution of � given � is

(ℎ� = 1|�) = (� + ���)
where (�) = (1 + ���)��. The two conditional distributions
can be shown to correspond to the generative model

�(�, �) =
1

�
exp(−�(�, �))

where �(�, �) =
�

�
(� − �)�(� − �) − ��� − ����, and Z is

the normalization factor, often called the partition function .
 After learning the Gaussian-Binary RBM we treat the
activation probabilities of its hidden units, when they are being
driven by data, as the data for training a binary-binary RBM
[8]. These two RBM’s can then be composed to form a deep
belief net (DBN) in which it is easy to infer the states of the
second layer of binary hidden units from the input in a single
forward pass [8][7]. The DBN used in this work is illustrated

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan

INTERSPEECH 2010

1692

on the left side of Figure 1, where the two RBMs are shown in
separate boxes.

The binary states, which are the hidden units of the top
RBM, form the code for the input and achieve lower distortion
than sub-band VQ (see section 5). Even lower distortion can
be achieved by a further step of fine-tuning which we describe
now.

3. From Deep Belief Nets to Autoencoders
To fine-tune, we first “unroll” the DBN by using its weight
matrices to create a deep, five-layer network whose lower
layers use the matrices to encode the input and whose upper
layers use the matrices in reverse order to decode the input.
This auto-encoder is then fine-tuned using back-propagation of
error-derivatives to make its output as similar as possible to its
input, as shown on the right side of Figure 1. In our
experiments, conjugate gradient is used for the fine-tuning.
Details of the training process, including the division of the
training set into mini-batches, number of training passes
(epochs) in pre-training and fine-tuning, learning rate,
momentum, weight decay, and the threshold used to force
binary codes, etc., are found to be important to obtain good
coding results.

After both pre-training and fine-tuning, we encode and
reconstruct any variable-length spectrogram as follows. First,
N consecutive overlapping frames of 256-point log power
spectra are each normalized to zero-mean and unit-variance to
provide the input to the auto-encoder. The first hidden layer
then uses the logistic function to compute real-valued
activations. These real values are fed to the next, coding layer
to compute “codes”. The real-valued activations of hidden
units in the coding layer are quantized to be either zero or one
with 0.5 as the threshold. These binary codes are then used to
reconstruct the original spectrogram, where individual fixed-
frame patches are reconstructed first using the two upper
layers of network weights. Finally, we use the overlap-and-add
technique to reconstruct the full- length speech spectrogram
from the outputs produced by applying the autoencoder to
every possible window of N consecutive frames.

Fig.1. Left: Illustration of pre-training of the DBN that consists of two
RBMs used in this work. Right: Illustration of fine tuning that produces
the final deep auto-encoder.

4. Sub-Band VQ Codes
In order to evaluate the discrete codes generated by the
autoencoder described in the previous section, we have also

created a method of encoding the N-frames of spectral
information using a more traditional approach based on sub-
band vector quantization (VQ). Unlike most previous work
that uses VQ for speech coding, we are attempting to create a
discrete representation for the entire speech spectrum, rather
than the smoothed spectrum produced by LPC parameters or
MFCC feature vectors. As in the auto-encoder setup, we wish
to encode vectors of K*N points, where K is the number of
frequency components and N is the number of consecutive
frames in a patch. For typical values of K=256 and N=9,
performing VQ on such large vectors would be complicated by
data sparsity and poor local minima. To prevent this, we
divide the spectrum into overlapping spectral bands and
quantize the log power spectral coefficients in each sub-band
independently. We experimented with both linearly spaced
sub-bands and the sub-bands spaced according to the Mel
scale, as is common in speech recognition.

In our experiments, the sub-band VQ was performed as
follows. Each segment of N consecutive frames of power
spectral vectors was divided into 24 patches. The patches
represented the spectral content across N frames in each of 24
overlapping frequency ranges. The sub-bands were created
using triangular windows similar to the Mel filter-bank. The
patches were then windowed in time also using triangular
windows. After windowing in time and frequency, the energy
in the patch was computed and used to normalize all
components in the patch. A two-dimensional DCT was then
applied to the logarithm of the patch values and all
components except the zero-th coefficient (which is constant
for all patches) were retained. The 2D DCT components were
then quantized using conventional VQ with the LBG
algorithm. The energy components were then scalar quantized.
Thus, each of the 24 sub-bands had an associated VQ
codebook for the 2D DCT coefficients and a scalar
quantization codebook for the energy terms. In our
experiments all sub-bands used a codebook size of 2^8 = 256
for the spectral patch information and a codebook size of 2^5
= 32 for the energy values. For 24 sub-bands, this results in a
representation in which 24*(8+5) = 312 bits are used to
represent the spectral information in a segment of N=9
consecutive frames.

5. Experiments and Results
We have examined properties of the deep autoencoder
discussed above, and conducted experiments to compare its
coding errors with the better established VQ technique. We
would like to capture the fine structures of speech such as
harmonics and also the acoustic-phonetic cues that are
identifiable in speech spectrograms. We thus moved away
from the commonly used Mel-cepstrum coefficients and
explored the use of the full power spectrum. The coding errors
were found to be unusually large, due partly to the positivity
of the data which conflicts with the Gaussian distribution
assumed by the linear units in the first and last layers of the
autoencoder. We therefore tried using the logarithmic power
spectra (spectrogram) and achieved the most encouraging
results. We report these results in this section, using 480 male
sentences in TIMIT’s training set as the training data, and 192
sentences (128 males and 68 females) in TIMIT’s core test set
as the test data. We also used subsets of male and female
speakers, as well as the full mixed set, as our training data in
training the auto-encoder, all reaching the same conclusions.

We first qualitatively examine the nature of the codes that
the deep auto-encoder uses to represent the real-valued speech
data. During the pre-training of the top-level, binary-binary
RBM, the code layer is forced to use stochastic binary values

1693

for reconstructing its inputs, so it learns to make good use of
binary values. During the deterministic fine-tuning, however,
the 312 code units (identical bits to the VQ codes) transmit the
real-valued probabilities to the next layer instead of sampling.
If many of these probabilities are far from 1 and 0, quantizing
them to a single bit may cause large distortions. In Fig. 2, we
show the histogram, for a typical utterance in TIMIT, of the
input speech data (normalized log power spectra) at the top
row. This is followed by the histograms of the 312 code-layer
units excited by the speech input, with N-frame windows
where N=1, 3, 9, and 13, respectively. The units behave in a
fairly binary way for reasonably long windows (9 and 13), but
not for short windows.

 Fig. 2. Top: the distribution of the input data. Remaining: the
distributions of the activations of the 312 code units for input window
sizes of 1, 3, 9, and 13, respectively.

For each of the histograms in Fig. 2, we show the
corresponding spectrograms in Fig. 3. At the top is the original
speech, followed by the reconstructed speech utterances with
forced binary values (zero or one) at the 312 unit code layer
for encoding window lengths of N=1, 3, 9, and 13,
respectively. The lower coding errors for N=9 and N=13 are
clearly seen, which relate to the low quantization errors at the
coding layer as demonstrated in Fig. 2.

Fig. 3. Top to Bottom: Original spectrogram; reconstructions
using input window sizes of 1, 3, 9, and 13 (forcing the coding
units to be zero or one)

We then qualitatively examine the encoding accuracy of
the auto-encoder in comparison with the more traditional VQ
codes detailed in Section 4. In Fig.4, we use a typical test
utterance to demonstrate the various aspects of encoding
accuracy. At the top is the original speech utterance’s
spectrogram. The next two spectrograms are the blurry
reconstruction from the 312-bit VQ and the much sharper
reconstruction from the 312-bit auto-encoder. Coding errors
from both coders, plotted as a function of time, are shown
below the spectrograms, demonstrating that the auto-encoder
(red curve) is producing lower errors than the VQ coder (blue
curve) throughout the entire span of the utterance. The final
two spectrograms show the detailed coding error distributions
over both time and frequency bins.

Fig. 4. Top to bottom: Original spectrogram from the test set;
reconstruction from the 312-bit VQ coder; reconstruction from the
312-bit auto-encoder (2304-1000-312); coding errors as a function of
time for the VQ coder (blue) and auto-encoder (red); spectrogram of
the VQ coder residual; spectrogram of the auto-encoder residual.

Next, we investigate how the quantitative encoding
accuracy of a 312-bit auto-encoder is affected by the number
of units in the other two hidden layers and by the use of fine-
tuning. The five-layer deep auto-encoders (“Auto” in Table 1)
are trained with 480 male utterances in TIMIT’s training set
and tested on the male, female, and combined sets (“All” in
Table 1) of test utterances. “DBN” in table 1 refers to the
DBN that was used to initialize the weights of the auto-
encoder. Auto-encoders’ architectures are denoted by 2304-
yyyy-312, where yyyy=500, 1000, 1500, 3000. Specifically,
the architecture 2304-1000-312 corresponds to the auto-
encoder with a 2304-dimensional input vector (256 frequency
bins times 9 frames), 1000 hidden units, and 312 coding units.
Note that during fine-tuning, the auto-encoder’s architecture
becomes 2304-yyyy-312-yyyy-2304.

Ave. Log Spectral

Distortion
Males Females All

VQ: 312-bits per frame 7.53 dB 7.99 dB 7.68 dB

Auto 2304-500-312 5.57 dB 6.56 dB 5.90 dB
DBN 2304-500-312 6.19 dB 7.01 dB 6.46 dB
Auto 2304-750-312 5.40 dB 6.45 dB 5.73 dB
DBN 2304-750-312 5.93 dB 6.82 dB 6.23 dB
Auto 2304-1000-312 5.42 dB 6.44 dB 5.76 dB
DBN 2304-1000-312 5.82 dB 6.75 dB 6.13 dB
Auto 2304-1500-312 5.69 dB 6.67 dB 6.02 dB
DBN 2304-1500-312 6.11 dB 6.98 dB 6.40 dB
Auto 2304-3000-312 6.46 dB 7.32 dB 6.72 dB
DBN 2304-3000-312 7.22 dB 7.97 dB 7.47 dB

Table 1. Comparison of coding errors of the VQ technique, the deep
auto-encoder with fine-tuning (Auto), and the pre-trained generative
model (DBN) that is unrolled to initialize the auto-encoder weights.
312-bit codes are used in all cases. The error measure is mean-square-
error of log spectral distortion.

Examining the encoding errors measured by the standard
log spectral distortion (in dB) averaged over all utterances, all
frames of each utterance, and over frequency bins, we have the
following observations. First, even without fine-tuning as an
auto-encoder, all architectures for the pre-trained deep belief
net (DBN) that is used to initialize the auto-encoder give lower
distortion than the VQ coder using the same number of code
bits. Second, fine-tuning as an auto-encoder achieves about
twice the reduction in distortion compared with just pre-
training the DBN. Third, the auto-encoder’s performance

1694

depends on the number of the hidden units. This dependency
can be a function of the amount of training data and its
statistical structure.

The results shown in Table 1 were obtained using a subset
of TIMIT training data, due partly to the slow computation
with the program written in Matlab run on a CPU. After we
acquired a GPU unit, we ran the training on the full TIMIT
training set. Similar results were produced. For example, for
the 2304-1000-312 auto-encoder shown in Table 1, the error is
reduced from 5.76 dB to 5.42 dB. The corresponding VQ
coder’s error is reduced from 7.68 dB to 7.58 dB. Both are due
to the increase of about nine folds in training data.

Finally, we examine in more detail the encoding errors
across the frequency range. In the upper graph of Fig. 5, we
plot the average log spectral distortions of the VQ and the
auto-encoder as a function of frequency. The average is over
all frames in all 192 test utterances. Over the entire frequency
range, the auto-encoder produces lower errors than the VQ
coder. Another measure of coding errors, signal-to-noise ratio
or SNR, is also used to compare the two coders, with the
comparison results shown in the lower graph of Fig. 5 and
with a similar conclusion to the use of log spectral distortion
as the error measure.

Fig. 5. Comparison of Autoencoder, DBN, and VQ codes using
coding error measures of log spectral distortion (upper) and
signal-to-noise ratio (lower) as a function of frequency.

6. Summary and Conclusion
The research reported in this paper is a first step towards the
automatic discovery of good, discrete representations or
“codes” for speech that capture its essential properties for
downstream processing such as scalable speech recognition
and rapid speech retrieval. We compare the codes found by a
more traditional VQ technique with those found by a DBN and
by a deep auto-encoder whose parameters are initialized from
the DBN using a technique developed originally for image
coding and document retrieval [8][12]. It is satisfying to
observe that for speech, improvement over a VQ-based coder
achieved by using a deep auto-encoder is about the same as
previously demonstrated for coding image patches [8].

While strong preliminary results have been obtained, we
note that the overlapping property of the input speech data has
not been exploited in the current encoding scheme described in
this paper. Taking into account how the super vector
consisting of N frames is constructed and organized from the
raw spectral sequences, we should be able to further improve
the encoding effectiveness of the auto-encoder. In addition,
our future work aims at the exploitation of the distributed
binary codes developed in this work for rapid speech content
retrieval and for speech recognition that is scalable over ever-
increasing amounts of (unlabeled) training data. To this end,
not only do we pay attention to the encoding errors as the
focus of this study, but more importantly, we aim to extract
essential features that help discriminate different (broad)
classes of speech sounds. Some form of discriminative

learning commonly used in speech recognition (e.g., [1][7])
need to be modified to adapt to the DBN framework, where an
additional class-discriminative term in the objective function is
needed for training the auto-encoder with the reconstruction of
unlabeled data serving the role of regularization. Also, it is
important to condition the discriminative deep auto-encoder’s
parameters on specific variability factors (e.g., [2][13][14]).
These techniques are expected to slightly increase the
encoding error but to provide a means to automatically
discover powerful and efficient discriminative long-range
features to aid downstream applications.

7. References
[1] Baker, J., et. al. “Research developments and directions

in speech recognition and understanding,” IEEE Sig.
Proc. Mag., vol. 26, May 2009, pp. 75-80.

[2] Baker, J., et. al. “Updated MINDS report on speech
recognition and understanding,” IEEE Sig. Proc. Mag.,
July 2009, vol. 26, pp. 78-85.

[3] Bell, G., Fujisaki, H., Heinz, J., Stevens, K., and House,
A. “Reduction of speech spectra by analysis-by synthesis
techniques,” J. Acoust. Soc. Am., vol. 33, 1961, pp.
1725-1736.

[4] Deng, L. “Computational Models for Speech
Production,” chapter in Computational Models of
Speech Pattern Processing, pp. 199-213, Springer, 1999.

[5] Deng, L., Yu, D., and Acero, A. “Structured speech
modeling,” IEEE Trans. Audio, Speech & Language
Proc., vol. 14, no. 5, pp. 1492-1504, September 2006.

[6] Halle, M. and Stevens, K. “Speech recognition: A model
and program for research,’’ IRE Trans. Information
Theory, 1962.

[7] He, X., Deng, L., Chou, W. “Discriminative Learning in
Sequential Pattern Recognition --- A Unifying Review
for Optimization-Oriented Speech Recognition,” IEEE
Sig. Proc. Mag., vol. 25, 2008, pp. 14-36.

[8] Hinton, G., Osindero, S., and Teh, Y. “A fast learning
algorithm for deep belief nets,” Neural Computation,
vol. 18, pp. 1527-1554, 2006.

[9] Hinton, G. and Salakhutdinov, R. “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313. no. 5786, pp. 504 - 507, July 2006.

[10] Mohamed,A.,Dahl, G.,Hinton, G. “Deep belief networks
for phone recognition,”Proc.NIPS Workshop, Dec. 2009.

[11] Mohamed, A., Yu, D., and Deng, L. “Investigation of
full-sequence training of deep belief networks for speech
recognition,” Proc. Interspeech, Sept. 2010.

[12] Salakhutdinov R. and Hinton, G. “Semantic hashing,”
Proc. SIGIR Workshop on Information Retrieval and
Applications of Graphical Models, 2007.

[13] Yu, D., Deng, L., Gong, Y. and Acero, A. “A novel
framework and training algorithm for variable-parameter
hidden Markov models,” IEEE Trans. Audio, Speech
and Language Processing, vol. 17, 2009, pp. 1348-1360.

[14] Yu, D. and Deng, L. “Solving nonlinear estimation
problems using Splines,” IEEE Sig. Proc. Mag., vol. 26,
2009, pp. 86-90.

[15] Yu, D. and Deng, L. “Deep-structured hidden
conditional random fields for phonetic recognition,”
Proc. Interspeech, Sept. 2010.

[16] Yu, D., Deng, L., and Wang, S., “Learning in the deep-
structured conditional random fields,” Proc. NIPS
Workshop, Dec. 2009.

[17] Yu, D., Wang, S., Karam, Z., Deng, L. “Language
recognition using deep-structured conditional random
fields,” Proc. ICASSP, April 2010, pp. 5030-5033.

1695

