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Abstract 
This paper reports our recent exploration of the layer-by-layer 
learning strategy for training a multi-layer generative model of 
patches of speech spectrograms. The top layer of the 
generative model learns binary codes that can be used for 
efficient compression of speech and could also be used for 
scalable speech recognition or rapid speech content retrieval. 
Each layer of the generative model is fully connected to the 
layer below and the weights on these connections are pre-
trained efficiently by using the contrastive divergence 
approximation to the log likelihood gradient. After layer-by-
layer pre-training we “unroll” the generative model to form a 
deep auto-encoder, whose parameters are then fine-tuned 
using back-propagation. To reconstruct the full-length speech 
spectrogram, individual spectrogram segments predicted by 
their respective binary codes are combined using an overlap-
and-add method. Experimental results on speech spectrogram 
coding demonstrate that the binary codes produce a log-
spectral distortion that is approximately 2 dB lower than a sub-
band vector quantization technique over the entire frequency 
range of wide-band speech. 
Index Terms: deep learning, speech feature extraction, neural 
networks, auto-encoder, binary codes, Boltzmann machine 

1. Introduction 
A recent advance in training methods for multilayer neural 
networks has led to renewed interest in exploring deep, multi-
layer networks for a number of machine learning problems 
including encoding [8][9], retrieval [12], as well as the 
problems associated with classification and regression that 
involves image [8][9], language [16][17] and speech 
[10][11][15]. The deep networks are first pre-trained, one 
layer at a time, to form a good generative model of the input 
data. After pre-training has discovered multiple layers of non-
linear features that are good at capturing the structure in the 
input domain, the whole network is discriminatively fine-
tuned. The discriminative fine-tuning can be used to make the 
network perform good classification or regression, but it can 
also be used to make the network be good at reconstructing its 
input from a compact code. While speech researchers have 
long embraced the concepts of generative modeling and of 
exploiting the multiple layers of non-linear transformations in 
the human speech generation process (e.g., [1][2][3][4][5][6]) 
it was not until the introduction of generative, layer-by-layer 
pre-training that the full power of generative modeling became 
apparent. The potential of this approach is illustrated by the 
strong performance in phonetic recognition, with 78% 
phonetic recognition accuracy on the TIMIT task, which can 
be achieved by deep, generative pre-training followed by 
discriminative fine-tuning [10][11]. Compared with [10][11] 
which focus on recognition, the current work focuses on the 
encoding aspect of the new generative modeling paradigm, 
and it uses log power spectra instead of cepstra to capture 
greater fine detail of the speech signal. 

The work reported in this paper was inspired by the 
successful use of deep auto-encoders for dimensionality 
reduction [8][9] and the extension of this work to the 
discovery of efficient binary codes in information retrieval 
[12]. It is also motivated by the potential benefits of using 
discrete representations of speech derived from an almost 
unlimited supply of unlabeled data in future-generation speech 
recognition and retrieval systems. In parallel with this work, 
we are currently also developing discrete speech codes using 
vector-quantization (VQ) techniques.  In particular, we 
compare coding errors between these two classes of discrete 
codes.  

This paper is organized as follows. In Section 2, we 
describe the layer-by-layer approach to learning deep 
generative models introduced in [8]. In section 3, we show 
how a deep generative model can be used to initialize a deep 
auto-encoder. We outline the construction of VQ codes as the 
baseline technique in Section 4. Experimental results showing 
properties of the codes from the auto-encoder and comparative 
coding results with the VQ codes are reported in Section 5. 
Finally, we discuss the implications of results and the potential 
applications of the discrete speech codes developed from this 
work in Section 6.  

2. Learning a Deep Belief Net 
We learn a deep generative model of patches of spectrograms 
that contain 256 frequency bins and 1, 3, 9, or 13 frames. We 
first learn an undirected graphical model called a Gaussian-
binary restricted Boltzmann machine (RBM) that has one 
visible layer of linear variables with Gaussian noise and one 
hidden layer of 500 to 3000 binary latent variables. There is 
full connectivity between layers, but no connections within 
either layer. The connection weights (and biases) can be 
learned efficiently using the contrastive divergence 
approximation to the log likelihood gradient. For a Gaussian-
binary RBM, the conditional density of visible vector, �, given 
a hidden binary vector, �, is  

�(�|�) = �(�;  � + ����, 	) 
and the element-wise conditional distribution of � given � is 


(ℎ� = 1|�) = (� + ���) 
where (�) = (1 + ���)��. The two conditional distributions 
can be shown to correspond to the generative model 

�(�, �) =
1

�
exp(−�(�, �))  

where �(�, �) =
�

�
(� − �)�(� − �) − ��� − ����, and Z is 

the normalization factor, often called the partition function . 
     After learning the Gaussian-Binary RBM we treat the 
activation probabilities of its hidden units, when they are being 
driven by data, as the data for training a binary-binary RBM 
[8]. These two RBM’s can then be composed to form a deep 
belief net (DBN) in which it is easy to infer the states of the 
second layer of binary hidden units from the input in a single 
forward pass [8][7]. The DBN used in this work is illustrated 
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on the left side of Figure 1, where the two RBMs are shown in 
separate boxes. 

The binary states, which are the hidden units of the top 
RBM, form the code for the input and achieve lower distortion 
than sub-band VQ (see section 5). Even lower distortion can 
be achieved by a further step of fine-tuning which we describe 
now. 

3. From Deep Belief Nets to Autoencoders 
To fine-tune, we first “unroll” the DBN by using its weight 
matrices to create a deep, five-layer network whose lower 
layers use the matrices to encode the input and whose upper 
layers use the matrices in reverse order to decode the input. 
This auto-encoder is then fine-tuned using back-propagation of 
error-derivatives to make its output as similar as possible to its 
input, as shown on the right side of Figure 1. In our 
experiments, conjugate gradient is used for the fine-tuning.  
Details of the training process, including the division of the 
training set into mini-batches, number of training passes 
(epochs) in pre-training and fine-tuning, learning rate, 
momentum, weight decay, and the threshold used to force 
binary codes, etc., are found to be important to obtain good 
coding results. 

After both pre-training and fine-tuning, we encode and 
reconstruct any variable-length spectrogram as follows. First, 
N consecutive overlapping frames of 256-point log power 
spectra are each normalized to zero-mean and unit-variance to 
provide the input to the auto-encoder. The first hidden layer 
then uses the logistic function to compute real-valued 
activations. These real values are fed to the next, coding layer 
to compute “codes”. The real-valued activations of hidden 
units in the coding layer are quantized to be either zero or one 
with 0.5 as the threshold. These binary codes are then used to 
reconstruct the original spectrogram, where individual fixed-
frame patches are reconstructed first using the two upper 
layers of network weights. Finally, we use the overlap-and-add 
technique to reconstruct the full- length speech spectrogram 
from the outputs produced by applying the autoencoder to 
every possible window of N consecutive frames. 

Fig.1. Left: Illustration of pre-training of the DBN that consists of two 
RBMs used in this work. Right: Illustration of fine tuning that produces 
the final deep auto-encoder.  

4. Sub-Band VQ Codes 
In order to evaluate the discrete codes generated by the 
autoencoder described in the previous section, we have also 

created a method of encoding the N-frames of spectral 
information using a more traditional approach based on sub-
band vector quantization (VQ). Unlike most previous work 
that uses VQ for speech coding, we are attempting to create a 
discrete representation for the entire speech spectrum, rather 
than the smoothed spectrum produced by LPC parameters or 
MFCC feature vectors. As in the auto-encoder setup, we wish 
to encode vectors of K*N points, where K is the number of 
frequency components and N is the number of consecutive 
frames in a patch. For typical values of K=256 and N=9, 
performing VQ on such large vectors would be complicated by 
data sparsity and poor local minima. To prevent this, we 
divide the spectrum into overlapping spectral bands and 
quantize the log power spectral coefficients in each sub-band 
independently. We experimented with both linearly spaced 
sub-bands and the sub-bands spaced according to the Mel 
scale, as is common in speech recognition.  

In our experiments, the sub-band VQ was performed as 
follows. Each segment of N consecutive frames of power 
spectral vectors was divided into 24 patches. The patches 
represented the spectral content across N frames in each of 24 
overlapping frequency ranges. The sub-bands were created 
using triangular windows similar to the Mel filter-bank. The 
patches were then windowed in time also using triangular 
windows. After windowing in time and frequency, the energy 
in the patch was computed and used to normalize all 
components in the patch. A two-dimensional DCT was then 
applied to the logarithm of the patch values and all 
components except the zero-th coefficient (which is constant 
for all patches) were retained. The 2D DCT components were 
then quantized using conventional VQ with the LBG 
algorithm. The energy components were then scalar quantized. 
Thus, each of the 24 sub-bands had an associated VQ 
codebook for the 2D DCT coefficients and a scalar 
quantization codebook for the energy terms. In our 
experiments all sub-bands used a codebook size of 2^8 = 256 
for the spectral patch information and a codebook size of 2^5 
= 32 for the energy values. For 24 sub-bands, this results in a 
representation in which 24*(8+5) = 312 bits are used to 
represent the spectral information in a segment of N=9 
consecutive frames.    

5. Experiments and Results 
We have examined properties of the deep autoencoder 
discussed above, and conducted experiments to compare its 
coding errors with the better established VQ technique. We 
would like to capture the fine structures of speech such as 
harmonics and also the acoustic-phonetic cues that are 
identifiable in speech spectrograms. We thus moved away 
from the commonly used Mel-cepstrum coefficients and 
explored the use of the full power spectrum. The coding errors 
were found to be unusually large, due partly to the positivity 
of the data which conflicts with the Gaussian distribution 
assumed by the linear units in the first and last layers of the 
autoencoder. We therefore tried using the logarithmic power 
spectra (spectrogram) and achieved the most encouraging 
results. We report these results in this section, using 480 male 
sentences in TIMIT’s training set as the training data, and 192 
sentences (128 males and 68 females) in TIMIT’s core test set 
as the test data. We also used subsets of male and female 
speakers, as well as the full mixed set, as our training data in 
training the auto-encoder, all reaching the same conclusions. 

We first qualitatively examine the nature of the codes that 
the deep auto-encoder uses to represent the real-valued speech 
data. During the pre-training of the top-level, binary-binary 
RBM, the code layer is forced to use stochastic binary values 
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for reconstructing its inputs, so it learns to make good use of 
binary values. During the deterministic fine-tuning, however, 
the 312 code units (identical bits to the VQ codes) transmit the 
real-valued probabilities to the next layer instead of sampling. 
If many of these probabilities are far from 1 and 0, quantizing 
them to a single bit may cause large distortions. In Fig. 2, we 
show the histogram, for a typical utterance in TIMIT, of the 
input speech data (normalized log power spectra) at the top 
row. This is followed by the histograms of the 312 code-layer 
units excited by the speech input, with N-frame windows 
where N=1, 3, 9, and 13, respectively. The units behave in a 
fairly binary way for reasonably long windows (9 and 13), but 
not for short windows. 

 Fig. 2. Top: the distribution of the input data. Remaining: the 
distributions of the activations of the 312 code units for input window 
sizes of 1, 3, 9, and 13, respectively. 

For each of the histograms in Fig. 2, we show the 
corresponding spectrograms in Fig. 3. At the top is the original 
speech, followed by the reconstructed speech utterances with 
forced binary values (zero or one) at the 312 unit code layer 
for encoding window lengths of  N=1, 3, 9, and 13, 
respectively. The lower coding errors for N=9 and N=13 are 
clearly seen, which relate to the low quantization errors at the 
coding layer as demonstrated in Fig. 2.  

Fig. 3.  Top to Bottom: Original spectrogram; reconstructions 
using input window sizes of 1, 3, 9, and 13 (forcing the coding 
units to be zero or one) 

We then qualitatively examine the encoding accuracy of 
the auto-encoder in comparison with the more traditional VQ 
codes detailed in Section 4. In Fig.4, we use a typical test 
utterance to demonstrate the various aspects of encoding 
accuracy. At the top is the original speech utterance’s 
spectrogram. The next two spectrograms are the blurry 
reconstruction from the 312-bit VQ and the much sharper 
reconstruction from the 312-bit auto-encoder. Coding errors 
from both coders, plotted as a function of time, are shown 
below the spectrograms, demonstrating that the auto-encoder 
(red curve) is producing lower errors than the VQ coder (blue 
curve) throughout the entire span of the utterance. The final 
two spectrograms show the detailed coding error distributions 
over both time and frequency bins.   

 
Fig. 4. Top to bottom: Original spectrogram from the test set; 
reconstruction from the 312-bit VQ coder; reconstruction from the 
312-bit auto-encoder (2304-1000-312); coding errors as a function of 
time for the VQ coder (blue) and auto-encoder (red); spectrogram of 
the VQ coder residual; spectrogram of the auto-encoder residual. 

Next, we investigate how the quantitative encoding 
accuracy of a 312-bit auto-encoder is affected by the number 
of units in the other two hidden layers and by the use of fine-
tuning.  The five-layer deep auto-encoders (“Auto” in Table 1) 
are trained with 480 male utterances in TIMIT’s training set 
and tested on the male, female, and combined sets (“All” in 
Table 1) of test utterances.  “DBN” in table 1 refers to the 
DBN that was used to initialize the weights of the auto-
encoder. Auto-encoders’ architectures are denoted by 2304-
yyyy-312, where yyyy=500, 1000, 1500, 3000. Specifically, 
the architecture 2304-1000-312 corresponds to the auto-
encoder with a 2304-dimensional input vector (256 frequency 
bins times 9 frames), 1000 hidden units, and 312 coding units.  
Note that during fine-tuning, the auto-encoder’s architecture 
becomes 2304-yyyy-312-yyyy-2304.  

 
Ave. Log Spectral 

Distortion 
Males Females All 

VQ: 312-bits per frame     7.53 dB 7.99 dB 7.68 dB 

Auto  2304-500-312 5.57 dB 6.56 dB 5.90 dB 
DBN  2304-500-312 6.19 dB 7.01 dB 6.46 dB 
Auto  2304-750-312 5.40 dB 6.45 dB 5.73 dB 
DBN  2304-750-312 5.93 dB 6.82 dB 6.23 dB 
Auto  2304-1000-312 5.42 dB 6.44 dB 5.76 dB 
DBN  2304-1000-312 5.82 dB 6.75 dB 6.13 dB 
Auto  2304-1500-312 5.69 dB 6.67 dB 6.02 dB 
DBN  2304-1500-312 6.11 dB 6.98 dB 6.40 dB 
Auto  2304-3000-312 6.46 dB 7.32 dB 6.72 dB 
DBN  2304-3000-312 7.22 dB 7.97 dB 7.47 dB 

Table 1. Comparison of coding errors of the VQ technique, the deep 
auto-encoder with fine-tuning (Auto), and the pre-trained generative 
model (DBN) that is unrolled to initialize the auto-encoder weights.  
312-bit codes are used in all cases. The error measure is mean-square-
error of log spectral distortion.  

Examining the encoding errors measured by the standard 
log spectral distortion (in dB) averaged over all utterances, all 
frames of each utterance, and over frequency bins, we have the 
following observations. First, even without fine-tuning as an 
auto-encoder, all architectures for the pre-trained deep belief 
net (DBN) that is used to initialize the auto-encoder give lower 
distortion than the VQ coder using the same number of code 
bits.  Second, fine-tuning as an auto-encoder achieves about 
twice the reduction in distortion compared with just pre-
training the DBN. Third, the auto-encoder’s performance 

1694



depends on the number of the hidden units. This dependency 
can be a function of the amount of training data and its 
statistical structure. 

The results shown in Table 1 were obtained using a subset 
of TIMIT training data, due partly to the slow computation 
with the program written in Matlab run on a CPU. After we 
acquired a GPU unit, we ran the training on the full TIMIT 
training set. Similar results were produced. For example, for 
the 2304-1000-312 auto-encoder shown in Table 1, the error is 
reduced from 5.76 dB to 5.42 dB. The corresponding VQ 
coder’s error is reduced from 7.68 dB to 7.58 dB. Both are due 
to the increase of about nine folds in training data.  

Finally, we examine in more detail the encoding errors 
across the frequency range. In the upper graph of Fig. 5, we 
plot the average log spectral distortions of the VQ and the 
auto-encoder as a function of frequency. The average is over 
all frames in all 192 test utterances. Over the entire frequency 
range, the auto-encoder produces lower errors than the VQ 
coder. Another measure of coding errors, signal-to-noise ratio 
or SNR, is also used to compare the two coders, with the 
comparison results shown in the lower graph of Fig. 5 and 
with a similar conclusion to the use of log spectral distortion 
as the error measure.  

Fig. 5. Comparison of Autoencoder, DBN, and VQ codes using 
coding error measures of log spectral distortion (upper) and 
signal-to-noise ratio (lower) as a function of frequency.  

6. Summary and Conclusion 
The research reported in this paper is a first step towards the 
automatic discovery of good, discrete representations or 
“codes” for speech that capture its essential properties for 
downstream processing such as scalable speech recognition 
and rapid speech retrieval. We compare the codes found by a 
more traditional VQ technique with those found by a DBN and 
by a deep auto-encoder whose parameters are initialized from 
the DBN using a technique developed originally for image 
coding and document retrieval [8][12]. It is satisfying to 
observe that for speech, improvement over a VQ-based coder 
achieved by using a deep auto-encoder is about the same as 
previously demonstrated for coding image patches [8]. 

While strong preliminary results have been obtained, we 
note that the overlapping property of the input speech data has 
not been exploited in the current encoding scheme described in 
this paper. Taking into account how the super vector 
consisting of N frames is constructed and organized from the 
raw spectral sequences, we should be able to further improve 
the encoding effectiveness of the auto-encoder. In addition, 
our future work aims at the exploitation of the distributed 
binary codes developed in this work for rapid speech content 
retrieval and for speech recognition that is scalable over ever-
increasing amounts of (unlabeled) training data. To this end, 
not only do we pay attention to the encoding errors as the 
focus of this study, but more importantly, we aim to extract 
essential features that help discriminate different (broad) 
classes of speech sounds. Some form of discriminative 

learning commonly used in speech recognition (e.g., [1][7]) 
need to be modified to adapt to the DBN framework, where an 
additional class-discriminative term in the objective function is 
needed for training the auto-encoder with the reconstruction of 
unlabeled data serving the role of regularization. Also, it is 
important to condition the discriminative deep auto-encoder’s 
parameters on specific variability factors (e.g., [2][13][14]). 
These techniques are expected to slightly increase the 
encoding error but to provide a means to automatically 
discover powerful and efficient discriminative long-range 
features to aid downstream applications. 

7. References 
[1] Baker, J., et. al. “Research developments and directions 

in speech recognition and understanding,” IEEE Sig. 
Proc. Mag., vol. 26, May 2009,  pp. 75-80. 

[2] Baker, J., et. al. “Updated MINDS report on speech 
recognition and understanding,” IEEE Sig. Proc. Mag., 
July 2009, vol. 26, pp. 78-85. 

[3] Bell, G., Fujisaki, H., Heinz, J., Stevens, K., and House, 
A. “Reduction of speech spectra by analysis-by synthesis 
techniques,” J. Acoust. Soc. Am., vol. 33, 1961, pp. 
1725-1736. 

[4] Deng, L. “Computational Models for Speech 
Production,” chapter in Computational Models of 
Speech Pattern Processing, pp. 199-213, Springer, 1999. 

[5] Deng, L., Yu, D., and Acero, A. “Structured speech 
modeling,” IEEE Trans. Audio, Speech & Language 
Proc., vol. 14, no. 5, pp. 1492-1504, September 2006. 

[6] Halle, M. and Stevens, K. “Speech recognition: A model 
and program for research,’’ IRE Trans. Information 
Theory, 1962. 

[7] He, X., Deng, L., Chou, W. “Discriminative Learning in 
Sequential Pattern Recognition --- A Unifying Review 
for Optimization-Oriented Speech Recognition,” IEEE 
Sig. Proc. Mag., vol. 25, 2008, pp. 14-36. 

[8] Hinton, G., Osindero, S., and Teh, Y. “A fast learning 
algorithm for deep belief nets,” Neural Computation, 
vol. 18, pp. 1527-1554, 2006. 

[9] Hinton, G. and Salakhutdinov, R. “Reducing the 
dimensionality of data with neural networks,” Science, 
vol. 313. no. 5786, pp. 504 - 507, July 2006. 

[10] Mohamed,A.,Dahl, G.,Hinton, G. “Deep belief networks 
for phone recognition,”Proc.NIPS Workshop, Dec. 2009. 

[11] Mohamed, A.,  Yu, D., and Deng, L. “Investigation of 
full-sequence training of deep belief networks for speech 
recognition,” Proc. Interspeech,  Sept. 2010. 

[12] Salakhutdinov R. and Hinton, G. “Semantic hashing,” 
Proc. SIGIR Workshop on Information Retrieval and 
Applications of Graphical Models, 2007. 

[13] Yu, D., Deng, L., Gong, Y. and Acero, A. “A novel 
framework and training algorithm for variable-parameter 
hidden Markov models,” IEEE Trans. Audio, Speech 
and Language Processing, vol. 17, 2009, pp. 1348-1360. 

[14] Yu, D. and Deng, L. “Solving nonlinear estimation 
problems using Splines,” IEEE Sig. Proc. Mag., vol. 26, 
2009, pp. 86-90. 

[15] Yu, D. and Deng, L. “Deep-structured hidden 
conditional random fields for phonetic recognition,” 
Proc. Interspeech, Sept. 2010. 

[16] Yu, D., Deng, L., and Wang, S., “Learning in the deep-
structured conditional random fields,” Proc. NIPS 
Workshop, Dec. 2009. 

[17] Yu, D., Wang, S., Karam, Z., Deng, L. “Language 
recognition using deep-structured conditional random 
fields,” Proc. ICASSP, April 2010, pp. 5030-5033. 

1695


