
Binary Compatibility of Shared Libraries Implemented in C++ on GNU/Linux Systems.

Pavel Shved

Institute for System Programming, RAS

email: shved@ispras.ru

Denis Silakov

Institute for System Programming, RAS

email: silakov@ispras.ru

Abstract

A shared library is a file that contains library code and

data in binary form. Application built against the library

references the data via symbols and the contents of what’s

being referenced get known only during the application

startup. Library is shipped with header file(s) the program

is compiled with.

The problem of the binary compatibility (sometimes called

,,backward compatibility”) arises when the new version of

library is installed into system and the program, having not

been recompiled, is attempted to run in the environment with

the new library. The incompatibility may result in fatal errors

during the startup or even during the runtime.

In this article we deduce the rules that must be followed

in order to keep the binary compatibility of a shared library.

Unlike most of researches in this area, we also assume

that the library may contain its own restrictions upon its

usage, more powerful than restrictions of C++ language

itself. So the possible restrictions are analyzed as well, and

we attempt to weaken the rules of binary compatibility when

such restrictions are enforced.

As a conclusion we list the rules a programmer should

follow to keep his or her library binary compatible. We also

conclude that possible restrictions limiting the use of library

allow to weaken these rules in relatively small number of

cases.

For the purpose of this study, we create formal notation

for the process of building and using a library, introduce

formal definitions of source and binary compatibility and of

program behavior. We base the assumptions about mapping

source code entities to binary level on the Itanium C++ ABI

standard, which describes gcc’s way of emitting binary code

and data.

Index Terms

Languages, Software libraries

1. Introduction

1.1. Premise

C++ nowadays is one of the most popular programming

languages [1]. It is complex, but the complexity made it

become one of the most powerful multiparadigm language,

that can combine low-level efficient code with high-level

concepts of generic and object-oriented programming.

Like any serious programming language, C++ needs the

concept of ,,library”. One of the doctrines of C++ design was

compatibility with C language at the source level (with a few

exceptions only) and with interfaces of C shared libraries.

The decision was necessary to make language more popular

by ability to re-use of existing C code [2]. But the questions

of C compatibility is still urgent since C is also one of the

most popular programming languages ([1]). So, the concepts

of C++, that are absent in C, use the same binary interface

architecture: the memory the object file occupies is addressed

with strings—,,symbols”. Their semantics is (as in C) not

described in binary file, but rather is enforced at compile-

time by the header file of the library.

But, compared with C++, libraries have notable peculiar-

ities. They can contain the code of a subroutine provided

either at source or at binary level (some libraries, like boost

or stdc++, contain few binary code; most of code is inlined

and instantiated in compile time). Further, C++ concepts are

much more complex than C’s ones, hence the semantics of

data being referenced by plain old symbols is also more

complex.

Sooner or later, each library faces the question of compat-

ibility with previous versions. For compiled languages the

library author should maintain not only source compatibility

(i.e. the ability to successfully compile same program code

with the new library headers), but also binary compatibility,

which lets the program to run with the new binaries of the

library without recompilation and to produce the same results

as with older version.

Maintaining binary compatibility is a complex task, and

it’s also important as it takes considerable time to generate

effective low-level code out of C++ source. But new versions

of popular libraries are released quite often, because every

library has numerous bugs that are to be fixed, improvements

that are to be implemented and new concepts that allow to

create better applications in the future. And the popularity

of the library also means that there exist many applications,

that use it. They all would have required recompilation if

binary compatibility would break with every new release.

Furthermore, in the new environment applications may also

work differently, but their developers usually promise fixed

behavior in advertisements and documentation.

Hence the binary compatibility problem is very important

Table 1. Special symbols used in this paper

→֒ A →֒ B A class is an (indirect) base of B

B C.B set of all bases of C

BV C.BV set of all direct virtual bases of C

P C.P most derived primary base of C

V C.V array of C’s virtual tables.

− C.to − C.from offset

for C++ libraries. However, popular articles on this question

are not complete. Instead, they introduce mere list of rules

one should follow, the rules usually coming out of practice

and the completeness of their set never being claimed. No

wonder that these lists differ in such researches. No article

also takes into account that, apart from the restrictions of

C++ language, that are expressed in header files, a library

can have additional restrictions, imposed in free form by

documentation.1 It is possible for these additional restrictions

to widen the set of compatible library code.

This article aims to fill these gaps and use a formal

approach to binary compatibility problem. We first describe

the compiling and building process of library and applica-

tions that use it, then we study how the new environment

affects the application behavior. It is GNU/Linux system

and its default instruments: gcc compiler(,,GNU Compiler

Collection”) and ld, ,,The GNU Linker”. The toolset being

used is chosen to be best specified and popular enough ([6],

[7]).

We use [4] as a formal ground for binary analysis; GCC

follows this standard.

We will not study the questions of inter-compiler and

inter-platform compatibility. Also we keep aside compatible

exception handling (as most of libraries do not use them).

What we will concentrate our forces on compatibility of

classes and functions, which code is placed into object files.

1.2. Notation

To denote the objects discussed we decided to mix math-

ematical formalism and the notation used in object-oriented

programming. To denote subobjects of compound objects we

use C++ notation, where L.c means c subobject in L. The

same rule holds for member functions; for example, x.f(y)
may be treated as f(x, y).

Finally, the table that shows how special symbols are used

and what they mean is shown on figure 1.

1.3. Basic Concepts

1.3.1. GNU/Linux System. In this section the objects in-

volved in program life cycle in GNU/Linux system are

described in a formal way. In outline, there are compiler,

assembler, linker and underlying semantics of objects they

manipulate, regardless of whether they reside in RAM or on

disk.

1. Sometimes these restrictions are considerably significant. For
example, destructors of widget classes in Qt library, are called
during the destruction of parent widget. That forces programmer
to create widgets with new operator only and prevents user classes
from having widget members.

1.3.2. Compilation. Let’s mark out the stages involved in

compilation and running of a C++ program.

Source code of an application consists of several source

files (cpp files). Some of them have relevant header files

describing their interfaces. Each source file may include

headers both from the application in subject and from other

libraries. Then each cpp-file f.cpp is preprocessed and stored

in RAM. The preprocessed code, being then independent of

other program entities or environment, is compiled, resulting

in the object file f.o.

We combine these stages and will write as follows:

f.o = f.c.compile(f.h, lib.h).

As arguments this compile function takes header files f.c
includes. Indeed, if f.cpp contains #include <lib.h>

line, then preprocessed source will change subject to lib.h
contents. This change is represented in a natural way—as an

argument to function. For example, f.c.compile(f.h, lib′.h)
denotes that the contents of header file included via the

particular line with ,,include” statement are changed, its name

acting as reference only and being invariant.

After all sources are compiled, the work flow proceeds to

linking stage. Its result is an executable file f.exe, in which

the code of all object files and statically linked libraries is

comprised. We denote it as

f.exe = f.o.link (f1.o, f2.o ...fn.o) ,

where f.o is an arbitrarily chosen object file from the set of

all ones being compiled.

However f.exe still doesn’t ultimately define the code that

will be executed. If the application was compiled with a

shared library, then, at the start of its execution, dynamic

loader’s code is run. Its purpose is to link the symbols

used in application executable as references to the actual

code and data addresses in RAM. The libraries to be loaded

dynamically are chosen from the current environment via

sonames and may differ from the ones linked to during

preparing the application executable (see [5] for details).

Therefore, similarly to the compile function notation, the

dynamic linking function should also take shared objects as

arguments: f.exe.dynlink(lib1.so, lib2.so, ...).

The result of running an application and its consequent

possible dynamic linking is application context. The context

then consumes input data and produces output data. ,,Input

data” comprises very broad range of data: OS state, sequence

of random numbers returned by corresponding functions,

command line arguments, filesystem state and environment

variables. In other words, input data unambiguously define

output data.

The application context obtained is therefor a map from

set of all input data to set of output data. We denote it like

an usual function:

f.exe(input) = output (1)

f.exe.dynlink(lib.so)(input) = output (2)

1.3.3. Notes on Specifications. Talking over binary com-

patibility, not only we require the application to run in new

environment, but expect it to yield the correct results. The

most common way to define correctness of the behavior is to

use concept of specifications. Program behavior is described

by its context, which is a map from input to output. So, it’s

natural to define specification of a program as map from

correct input to output, the mapping being conformant to

library code.

Correct input is an input that doesn’t cause precondition

violation 2 for shared library functions, as if abstract C++

machine defined in C++ standard [3] is run.

By conformant mapping we mean the mapping, that exe-

cuting the library functions on abstract machine in such way,

that their return values and side effects are conformant to the

relevant library specifications.

Therefore we can define, that program conforms to spec-

ifications (,,works correct”) if its context and specification,

restricted to the set of correct inputs, are equal. We denote

it like this:

f.exe.dynlink(lib.so)
∩
= spec (3)

Contract library specifications may govern not only func-

tion calls but virtually every way of using of concepts defined

in header files. The consequences were discussed in .

A program or a library may be ,,badly written”, i.e. have

empty set of correct inputs. In further analysis we only take

,,well written” libraries and programs into account, their set

is denoted as P.

1.3.4. Shared Libraries. Let’s define our subject. A shared

library Lib is a structure

Lib = 〈H = {hi} , CPP = {cppj} , so, soname, spec〉 ,

where

• hi are header files;

• cppj are source code files that contains definitions of

(some) functions and variables declares in header files;

• so = link(..., cppj .compile(hj1 , hj2 ...), ...).makeso
— an object file compiled in a special way, which can

be used as an argument for dynamic linking function;

• soname is a library name via which the so-file is found

by dynamic linker;

• spec is an encapsulated object with the sense discussed

in 1.3.3.

The definition requires cpp files to comply with header

files declarations—i.e. compile without errors.

2. Binary Compatibility

2.1. Definition

To simplify the further study we will consider program p,

that consists only from one source file, and a library L, that

also consists from one source and one header file.

2. a library documentation practically doesn’t use the word ,,pre-
condition”. But its sense is comprised in phrases like ,,the value of
this parameter shall be more than zero” or ,,the behavior for NULL
pointer is unspecified”.

Table 2. Symbol versioning example

A′.h B′.h

namespace libA{

#include <A.h>

}

using namespace libA;

namespace libA{

#include <A.h>

}

namespace libB{

#include <B.h>

}

using namespace libB;

Let’s assume that a new version is released — L′. Then

L′ library is binary compatible with L, 3 if

∀p ∈ P→p.cpp.compile(L.h).link(L.so).

dynlink(L.so)
∩
=

∩
= p.cpp.compile(L.h).

link(L.so).dynlink(L′.so) (4)

If we would recompile program in the new environment

its context would look like that:

p.cpp.compile(L′.h).link(L′.so).dynlink(L′.so).

The behavior in new environment may hence differ; that’s

what we are to evade.

The definition of binary compatibility doesn’t really con-

strain itself to the cases where it’s useful. For example,

there’s no obstacle that prevents us from investigating the

issues of compatibility of math library and window manager

library. Therefore we should lay down one more condition,

namely source code compatibility.

Library L′ is source compatible with L, if

∀p ∈ P → (∃p.o = p.cpp.compile(L.h)) (5)

⇒
`

∃p′.o = p.cpp.compile(L′.h)
´

.

Later on we will discuss only binary compatibility of

source compatible libraries.

2.2. Symbol Versioning Approach

Let’s examine first the following method referred to as

symbol versioning. We will now show that any libraries may

be made binary compatible even if they’re of different kind.

Indeed, assume A and B are libraries. Then let’s create A′

library, that’s source compatible with A, and such B′ source

compatible to B that it is binary compatible with A′.

To achieve this we keep cpp files intact, and link the

objects files into single so file, having rewritten the header

files as shown on figure 2.4

The libraries produced are binary compatible and same

programs may be compiled with them. Source compatibility

between B′ and A′ is equivalent to that between B and A.

However this approach suffers from the code duplication.

3. we say that the new version is compatible with the old one,
and not vice versa

4. C language doesn’t have namespaces, but gcc introduces the
other symbol versioning mechanism for C language; see [5]

Note that symbol versioning can not be used with every

bugfix release, as each bugfix forces us to create a new

function instance. Symbol versioning is used (for example, in

glibc) with major releases, the functions in bugfix releases

sharing the same version and having to be binary compatible.

To prevent duplication we might use aliases for duplicat-

ing code and data. But how can we be sure that code is

duplicated? The question of whether the code of function

is duplicated with version change is essentially equivalent

to the question of binary compatibility. Therefore, symbol

versioning doesn’t govern all binary compatibility problems

and further study is necessary.

2.3. Causes of Binary Incompatibility

There are different ways to build an run application:

p.cpp.compile(L.h).link(L.so).dynlink(L.so) (6)

p.cpp.compile(L.h).link(L.so).dynlink(L′.so) (7)

p.cpp.compile(L′.h).link(L′.so).dynlink(L′.so) (8)

Contexts (6) and (7) differ only in dynamic linking func-

tion arguments, i.e. in the set and internals of the symbols the

library exports. In C language it only means that during the

calls to the functions with external linkage the other code will

be executed. However, C++ libraries contain more symbols

than those of functions and static data, and some of auxiliary

symbols are used in an unobvious way. Binary compatibility

is caused by the difference between symbol sets and contents

in different versions of library.

According to the definitions of building the application the

object file p.cpp.compile(L.h) already contains information

about symbols it might need in the shared library. However,

an only source of information about the library so far is

header file L.h. Therefore, the set and internal structure of

symbols exported are completely defined by header file. The

source file L.cpp only defined internal code and some data

these symbols point to.

However, during the linking with L.so no code or data

defined in L.cpp is inlined into p.exe. This code is loaded on

dynamic linking stage only. But at this stage the application

requires the presence of symbols defined in L.h, but the

library L′.so the program’s being linked to provides sym-

bols, defined by L′.h. That’s one of the causes of binary

incompatibility.

Furthermore, if a code defined in cpp file is called via

symbol, the callee will consider that arguments are laid out

like in callee’s native header file, L′.h. However, the caller

assumes that all library data is laid out like in L.h—the file

the program was compiled with. That’s an important matter,

because the semantics may stay unchanged from the user

point of view (summarized in C++ ,,source” standard [3]), it

could change from binary point of view (ABI standard [4]).

We can now divide the causes of incompatibility into the

following groups:

1) implementation change, the case when constant or

function whose signature remains intact, changed its

definition;

2) compiled code notions incompatibility, the case

when the notion the function in cpp file has of layout

of its arguments has changes due to alteration of

declarations in header file. These alterations only

depend on L.h → L′.h change and may be studied

separately from 1.

3) altering or removing of special symbol, which def-

inition is deduced by the compiler based on header

file. The data the symbol refers to could be used in

application binary code as in notions given by L.h,

but handled in L′.so as in L′.h.

4) errors during dynamic linking, caused by absence

of definition of an entity from L.h in L′.cpp hence

L′.so.

3. Study of Incompatibility Sources

Let’s thoroughly study the sources described in 2.3.

3.1. Errors During Dynamic Linking

After the application is built against L.so, no static linking

errors can arise. However, at the time it’s run dynamic linker

tries to link it with L′.so instead (because L.soname =
L′.soname), so it may lack symbols the application refer-

ences and abnormally terminate before it has any chance to

run its code.

Dynamic linker searches all external dependencies of

f.exe in the libraries loaded. They’re fixed at compile-time

and marked at link time as external, when the linker finds

definition of symbol in a shared library rather than in static

one or application’s object file. Here the linker ensures

that all dependencies are satisfied. The dependency may be

global variable’s symbol, non-inline function, non-template

function of fully-instantiated template function.

We well use term ,,use symbol” instead of ,,use declaration

the symbol relates to”.

We should note that, among external dependencies, there

can be the symbols allowed to be used in userspace code.

Userspace code is a code that compiler takes as an input. It

therefore contains f.cpp and L.h; and inline functions de-

fined in L.h in particular. The rules for keeping compatibility

will be formulated in terms of userspace code, so the library

developer must follow the rules in his own inline functions

code as well.

We should also note that for a member function call

not only its own symbol may be required, but also virtual

table (vtable) may be involved for virtual functions and for

non-virtual member functions of virtual bases calls. Among

the other info (see 3.4.2 for details) it contains pointers to

virtual functions definitions as symbols, that are resolved in

runtime.

L′.cpp may lack symbol described in L.h only because

that symbol is not deduced from L′.h (by the property of

shared library definition — see 1.3.4). Among explicit non-

auxiliary symbols only non-inline functions and global data

present in header file. If one of such symbols is withdrawn,

and it can be used in p.exe, L′ would then be incompatible

with L′. As it is obligatory to explicitly use such symbol

Table 3. Similar functions but different external names

L.h L′.h

typedef int Type;

void function(Type);

typedef float Type;

void function(Type);

for dependency to appear, the incompatibility of library

is equivalent to the plausibility of this symbol usage in

userspace.

Therefore, it’s impossible to withdraw from header file a

symbol that is allowed to use in userspace code.

A symbol name is constructed out of its declaration

through use of ,,mangling”. The mangling procedure is fully

described in section 5.1 of [4]; here we only outline some

key conclusions.

A symbol (external) name for a declaration for GCC

compiler is uniquely and unambiguously defined by the

conjunction of the following properties:

1) filly-qualified name of declaration, the name of dec-

laration and fully-qualified name of enclosing scope

(class or namespace)5;

2) vector of argument types and vector of template

parameter types (for instantiations). The types with

all typedefs substituted are considered for this pur-

pose, however, structures, classes and unions are not

expanded—their name is taken only. For example the

functions shown on the figure 3 have different external

names.

All fully-substituted types are encoded in unique way,

the types and member functions being also distin-

guished by cv-qualifiers.

3) return type of a template function. If template

function is instantiated, its return type is also encoded

into external name.

4) set of function’s thunks. For functions that require

adjustment to this pointer (overloaded functions of

non-primary base, separately for virtual bases, virtual

base subobjects6 and all other bases) or to return value

(for covariant return types) special entry points are

created and then used in the function call algorithm.

Special functions called ,,thunks” for different ways to

call the functions are emitted into object file7.

The application, that doesn’t derive the defining class,

can’t have them as direct dependencies, because the

calls to them can only be encountered through use of

vtable. But if application is allowed to derive a class

with such functions and it actually does, then the use of

them in derived class’ members definitions will require

adjustment and henceforth the relevant dependency.

The set of thunks define the rules of confronting the

function call operator and the symbol that references

the actual code. Therefore, if the number of entry

points or the causes of their appearance is changed,

5. treat this as recursive definition

6. the term ,,morally virtual” is used to name such classes

7. they don’t have to be separate functions, sometimes they’re
merely different entry points into single piece of code

it should be encountered as symbol name change. 8

Let’s formulate the rule: let the virtual function C::f,

be such that C ∈ D.B. Then the alteration of

any of the following properties will cause binary

incompatibility:

• whether it has covariant return type or, if it has,

the return type itself

• whether C = D.P;

• if C 6= D.P , whether C ∈ D.BV ;

• class W , such that for W holds

W ∈ D.BV , C →֒ W →֒ D (9)

W /∈ D.P (10)

∀W ′ ∈ D.B →
“

C →֒ W ′ →֒ W ⇒ W ′ /∈ D.BV
”

(11)

Compatibility issues that arise from thunks’ contents

are discussed in 3.4.1.

So, if a property of the definition alternates, the library los-

es binary compatibility. One of the most stunning examples

of it, described in [8], is when one adds default argument,

the mechanism initially designed to keep compatibility (un-

luckily, source one). Indeed, when you add a new default

argument to the function, its vector of arguments changes

and hence the external name changes as well.

In this list the property ,,whether function is inline” is

absent, because there’s no external names for inline functions

at all. However, many developers do treat it as function prop-

erty, so here’s the rule for that: to keep binary compatibility

the inline qualifier must not be added to the function

allowed to be called from the userspace code.

3.2. Implementation Change

New versions of libraries are released to add the new or

to remove the obsolete functionality, fix bugs or improve

the underlying implementation algorithms. From a newbie’s

point of view bugfixes do not cause any harm. because it

hardly changes anything, especially in the set of external

names. From a formal point of view only the improvement

of existing algorithm is insignificant as long as it doesn’t

change the contract of function. What we call ,,a bugfix”

is actually a change of specification and a confession that

L’s specification is not L.spec defined by help files, but

something else, and only L′.spec made true specifications

coincide with the alleged one.

When developer changes symbol specifications, the ap-

plication calls the new implementation, namely the one in

L′.so and may change behavior, what leads to losing binary

compatibility. It also may not.

Consider the following example. L contains a streq

function, that compares strings. L′ introduces a new feature

to compare them case-insensitively, if the global trigger vari-

able bool case_insen was set to true, its initial value

being false. The specifications and behavior of streq()

8. The set of thunks may be treated as a single ,,multisymbol” for
the current one.

are changed, but no program compiled with L is capable to

use the new L′’s functionality and actually yield improper

behavior.

The change of function implementation doesn’t lead to

binary incompatibility iff the new functionality is unreach-

able from any correct executable linked to prior library

version.

From this point of view bugfixing is a binary noncom-

pliance. The program will work better, but in the other way.

Sometimes bugfixes in L cause errors in p, if p implemented

a workaround for the bug fixed and it became broken with

the new version9. However bugfixes are considered useful

rather than harmful, because the abstraction of the code into

third-party libraries intends to separate the workflow of the

application and of the code it uses as backend.

We should note that sometimes binary compatibility is

understood as the ability of a program to behave in the new

way in the environment with the new library version. Of

course, from this point of view, bugfixes do not affect binary

compatibility.

However we think that this approach is incorrect. First of

all, the part of L and the notion about it is anyway inlined

into the application’s executable (as a side effect it could

even reduce the number of compatible libraries in the other

cases, if the alternative definition of compatibility is used).

Secondly, as it was said in the intro, an application developer

should fix the behavior of the program in a help file of

sorts, so the library changes would reduce the separation of

application and underlying library.

3.3. Compiled Code Notions Incompatibility

In this section we will look for the such ways of altering

the header file, that cause L′.cpp’s code, that implements

data access accordingly to L′.h’s notion, to access the same

data that are laid out as in L.h. In the other words, we will

study the raw memory layout semantics and how to prevent

incorrect access to it.

We can separate two different directions:

1) access to the library’s memory from the userspace

through global variables and specifications-compliant

operations with them;

2) the access to the application-allocated memory from

the library; the memory’s having been allocated for

the library’s types declared in L.h through functions

in L′.so.

In the point 1 we mean direct access to global variables.

Indirect access to the memory through interface functions is

under the library’s control and doesn’t cause incompatibility

directly (i.e. is studied somewhere else). Just as well, calls

to class static members or global variable’s members don’t

cause incompatibility immediately.

All operations considered are equivalent to reading the

variable of integral type and to direct writing to it or to

complex structure as a whole. When recording the structure,

9. The known example nowadays is a bug in Qt 4.4 fixed in
version 4.5, but many KDE 4 applications contained a workaround
and become incorrect

if its copy implementation is deduced by compiler (i.e. the

copy constructor is not overloaded) only semantic violation

errors my arise. Therefore, binary compatible access to

variable, that may be accessed from the userspace for

reading and writing, is possible only if the alignment of

T ′ coincides with alignment of T on the first sizeof(T)
bytes. In the other words, you only can add fields to T class,

but you can’t alter the ones defined in L.h.

The analysis of 2 should be more elaborative.

It differs from the point 1 by the capability of library to

call its own types with arbitrary class of operations that’s

broader (at least not more narrow) than what is possible from

outside the library. The ultimate principle can be formulated

like this: L′.cpp should be created in the way for it to be able

to distinguish the origin of the data being handled, whether

it’s L.h or L′.h. 10 This approach is equivalent to symbol

versioning, which, as shown in section 1.3.4, still requires

further study of what can be done without it.

Let’s assume that a function takes one value as an argu-

ment (member functions are implemented as simple C-like

functions that take pointer to this as its first argument),

the type (possibly, indirectly, via pointers and references)

depending on T type, declared in L.h and L′.h. Let’s call

T ′ what T became in L′.

If the argument is passed by value, then in binary com-

patible application T = T ′, because these types should have

equivalent sizes (as the memory in stack for them is allocated

via caller) and semantics on first sizeof(T ′) bytes. There-

fore, only the types that are passed via pointer/reference to

the library functions may be altered.

The rules from 1 are applicable also to the types, that

are returned by value from library routines, because caller is

responsible for copying values back from stack.

If object of type T is passed by reference into the function,

that expects reference to T ′, it can control the access to

memory access within the object.

However, if it’s possible for T to be allocated into au-

tomatic storage in userspace (that includes being base class

or class member), the pointer to it may address less memory

than T ′ denotes; the behavior being undefined upon access to

it. Moreover, if a class has an explicit constructor, its call may

lead to memory access violation. Therefore, the following

rule holds: the increase of size of a class that can be

allocates in the automatic storage in the userspace causes

binary incompatibility if the functionality, that accesses

the new memory, is reachable keeping the conformance to

,,old” library specifications. Note that new members may not

extend class size; that’s especially notable for bitfields (see

[8] for bitfields as a technique to maintain compatibility).

Note also, that class size may be increased not only with

new members, but with new bases as well. If such new

class requires more memory (it may not for a nonempty, but

relatively small class; however it may require for an empty

class as well; refer to [4]), then new memory is laid out

10. as an example, one may require to explicitly specify the
version of library used in the application by the special function
call or global variable or something else.

before any of the members, all data members shifting. For

a class with at least one accessible data field that causes

incompatibility.

Therefore, practically, the paragraph above means that

adding a new base that increases the size of the class leads

to binary incompatibility.

There are several techniques that allow adding functionali-

ty to the class maintaining binary compatibility: ,,d-pointer”,

described in [8], techniques that emulate interpreted lan-

guages elements (see [8], ,,Adding new data members to

classes without d-pointer”). One can avoid problems by disal-

lowing to allocate memory in automatic storage in userspace,

hence forbidding to derive the class, but that undermines the

basis of OOP and has limited use.

The conclusion follows: The change of class hierarchy

(except cases when it involves the change of size of

no bases), change of members’ order, size and increase

(change, in case the class can be passed to or returned

from library function by value) of their amount leads to

binary incompatibility.

To apply this rule into practice you might want to exper-

iment with size of your structures, but that’s hardly will be

useful. Empty bases (and these are nearly all bases that don’t

make class change) are best served virtual and the restrictions

on virtual bases are more strong, what you will see in section

3.3.

3.4. Auxiliary Symbols Change

Along with symbols described in 3.1, GNU C++ compiler

adds auxiliary symbols to binary level. They are used in

virtual functions call algorithm (vtables), expose support for

low-level inheritance-related code generation (VTT, several

variants of constructors and destructors) and several thunks.

This section investigates the class of L.h alterations that

don’t cause binary incompatibility through auxiliary symbols

alterations. The key problem is that part of C++ low-level

code support mechanisms are generated in compile-time and

the symbols are assumed to be laid out as in L.h. During the

dynamic linking the application references these symbols in

the way described in L′.h, what causes incorrect program

behavior. The bodies of these symbols also can change, but

part of these changes, namely L.cpp → L′.cpp, has already

been studied in 3.1 and 3.2; we will elaborate the other part

here.

Let’s study how each symbol type influences the compat-

ibility.

3.4.1. Symbols Introduced via Functions.

• Constructors and destructors cause compiler to emit

symbols for compete object constructor with and with-

out memory allocation and for base object constructor

(for construction of non-static members and non-virtual

bases); the same symbols are created for destructor (but

with freeing the memory instead of its allocation). These

symbols should have played an important role in binary

compatibility, but unfortunately it’s not always possi-

ble to encapsulate memory allocation procedure in the

shared library. Therefore the possibility of compatibility

Table 4. Thunk names

_ZThn8_N7Derived3virEv non-virtual

_ZTv0_n48_N7Derived3virEv virtual

_ZTvn8_n48_N7Derived3virEv virtual+vbase offset

violation is restricted to matters discussed in 3.3, and

to that, upon withdrawing of all virtual bases (which

causes incompatibility, as we will see in 3.4.2), relevant

symbols also disappear from library, causing link-time

error.

• thunks. Thunks are described in section 3.1. Here we

will assume that set of thunks didn’t change; only actual

offsets could.

Part of these values, that concern this adjustment,

are described in 3.2.3 section of [4]. It clearly shows

that adjustment is done with different offset values,

that, as described in section 5.1.4 of that standard, are

encoded into external names of thunks, examples shown

on figure 4.

According to comments in gcc code11, entry point body

only depends on these values, on whether covariant type

presents and on external name of the function the thunk

is associated to.

In the other words for thunks with same names equiva-

lent bodies are emitted (limited to the possible discrep-

ancy in the actual function’s body).

As any shift of classes through the hierarchy is incom-

patible (see 3.3), thunk bodies will coincide in L.so
and L′.so if the other binary compatibility conditions

are held.

3.4.2. Vtables. In this section we will use concept of class

hierarchy, the tree, that depicts the class’ direct bases, then

their bases and so on, the edged representing direct deriva-

tion. Some rules will also be formulated in terms of class

hierarchy. The developer should remember that when the

hierarchy of C is alternated, hierarchies of some class-

es that derive C may also change (and most of them

will, unless the change is adding a new virtual base that

already presents in all classes derived from C before it

in preorder). Practically that means that without additional

internal requirements to inheritance (we’ve just outlined one

possible rule in parentheses) these rules are useless and it’s

best to prototype and check them, or apply to classes which

derivations developer can control.

Vtables is a structure that supports virtual function call al-

gorithm, virtual base access and RTTI for dynamic_cast.

In C++ all static types are known in compile time, therefore

virtual tables are referenced through pointers, each for every

primary base group. Every pointer references some data

placed in the translation unit, where first virtual function

body is emitted.

Vtable structure is fully described in [4], section 2.5. We

will only give some general information.

11. check the description in files gcc/cp/cp-tree.h,
line 3317, and gcc/cp/method.c, make_thunk(); function.

Table 5. Vtable group layout example

Classes Entry Offset

C vcall offset for B2 :: f3 −72

C vbase offset for D1 −64

C vbase offset for B1 −56

C B3 vcall offset for B2 :: f3 −40

C B3 vbase offset for B1 −32

C B3 B2 vbase offset for B1 −24

C B3 B2 B1 offset-to-top (zero) −16

C B3 B2 B1 RTTI (of C) −8

C B3 B2 B1 B1 :: f1 0

C B3 B2 B1 B1 :: f2 8

C B3 B2 B1 B2 :: f3 16

C B3 B2 B2 :: g1 24

C B3 B2 B2 :: g2 32

C B3 B2 B2 :: f3 40

C B3 B3 :: h1 48

C B3 B3 :: h2 56

C B3 B3 :: h3 64

C D2 vbase offset for D1 −24

C D2 D1 offset-to-top (nonzero) −16

C D2 D1 RTTI (of C) −8

C D2 D1 D1 :: g1 0

C D2 D1 D1 :: g2 8

C D2 D2 :: h1 16

C D2 D2 :: h2 24

Let’s consider vtable group C.V of C class. They’re laid

out consequently, in the same order the base classes are

placed in C’s body. Every vtable V ∈ C.V is aligned

around the point of origin referenced by C.ptrto(V); it

relates to the primary base group B1 →֒ B2 →֒ . . . Bn.

Immediately before the zero, with negative offset, RTTI

pointer and C−C.ptrto(V) offset (offset-to-top) are places.

Then, for i := 1..n, are appended the pointers to final virtual

function overriders of the functions first introduces into Bi.

To the beginning, at negative offset, if Bi.B
V 6= ∅, offsets

Bi.B
V
j −C.ptrto(V) (vbase offsets) are appended; the less

i is, the closer to point of origin offset’s placed. Then, for

each virtual function, declared in base S of Bi.Bj , such that

∀D : K →֒ D →֒ Bi.Bj ⇒ D /∈ V , and that it’s finally

overridden in Kk, the offsets Bi.B
V
j −Kk (vcall offsets) are

appended in the same way as vbase offsets, but after them

in the ,,negative” direction.

So the information about primary bases is ,,sliced” so they

share vtable and vtable for base class is, at the memory such

vtable is allowed to access, coincides with vtable as if it was

allocated separately. See the example of vtable layout on

figure 5 (the hierarchy is B1 is a primary virtual base of B2,

which is primary base of B3, which is primary virtual base

of C, which also derives D2, which has a primary virtual

base D1; virtual function f3 is defined in B1 and overloaded

in B2).

We can see, that pointers to functions, offsets and data

pointers present in the vtable. It’s irrelevant if they all

have different sizes because they can’t intermix due to

carefully elaborated vtable layout. However as vtable group

is referenced by only one symbols, the size of each can’t

change, as offsets from the first vtable to any otherC.Vi are

precompiled in f.exe.

Hence C.V depends on mutual location of virtual base

groups, on the order of classes within these groups and on

their virtual functions.

Therefore an only C.V change possible is to add new

vtables or extend the last one in the group (C.V|C.V|).

However, if that’s the table of V such that V ∈ C.BV ,

developer can’t add virtual functions overridden in derived

classes as it would ass vcall offset shifting table the shift

to which is precompiled. But unfortunately the function will

most likely be added to virtual base as their vtables are places

at the end of C.V .

Furthermore, when you derive the class in the userspace,

the derived vtable is constructed like in L.h, but the library

functions will implement virtual functions call algorithm ac-

cording to L′.h notion. So, extension of vtable is impossible

without compatibility loss, if extending the table functions

or classes are used in userspace code. We will assume that

this rule holds. Let’s study the ways of table extending.

1) New base class

The extension may be achieved by increasing the

amount of dynamic bases; whenever a class made

virtual or a first virtual function is added to one of

them. But the new class can’t be virtual as it would

add vbase offset to the beginning of vtable. As change

of class mutual interposition is forbidden as well, only

two options remain.

a) Add class N that will share virtual table C.V|C.V|

with other classes. This would just add a new

,,slice” to the vtable. Such a change is only

compatible when nothing would be added to the

,,negative” side of vtable. That’s in turn possible

only when non-virtual dynamic class is added,

the class having no virtual derivant (otherwise

virtual functions of N would cause new vbase

offsets). Non-virtual class, that doesn’t define

virtual functions is not dynamic, therefore an

only compatible way to add a class sharing the

last vtable in the group, is adding a nonvirtual

base in case when C.BV = ∅
b) Add class N , that yields new vtable in the group.

As it’s non-virtual class, C.BV = ∅; and N will

be added after all dynamic classes in preorder.

The overload of virtual functions by other classes

will be studied in point 4, and the conclusion will

be that it won’t cause incompatibility. Therefore,

non-virtual dynamic class can be added to the

end (in preorder) of hierarchy of class without

virtual bases.

2) Adding a completely new virtual function

Let a virtual function be added to subclass B, the

virtual function being added not overriding and being

overridden by any other function. It can only be added

to the very end of vtable group, i.e. to the most

derived class of this group. Such an addition can’t

cause vcall offset only if B is virtual and B doesn’t

have virtual bases. However, if B does have virtual

derivants, C.BV 6= ∅, i.e. B, as most derived class of

C.V|C.V| group, is virtual base itself, what proves that

new vcall offsets would never be added.

Therefore, adding not overloaded and not overloading

virtual function to the end of the most derived class

of the last group of virtual base doesn’t break binary

compatibility.

3) Withdrawing a virtual function

The withdrawing of function may retain compatibility

if adding of it to the resultant classes causes appending

to the very end of virtual table. Of course, the same

rules as in 3.1 apply to the function being withdrawn,

if the function can be called from the userspace. But in

some cases virtual function’s symbol isn’t referenced

directly, so there’s no external dependency on it.

Okay, let’s assume that the function is called through

virtual table. If the class can be derived in userspace,

then the new vtable is created for it at compile time

and, upon the call of the virtual function in subject

through that vtable, it will fail. But then the call will

fail in runtime due to absence of the proper symbol.

Therefore an only conclusion possible is that with-

drawing a virtual function (and making nonvirtual a

virtual function12) breaks binary compatibility.

4) Adding an overloading virtual function

Let the new function K :: f be such that it overloads a

(probably pure) virtual function of some base class. In

case of covariant overloading it requires a new vtable

entry; point 2 applies in this case. Otherwise it’s re-

quired to overwrite all pointers to function by replacing

them with the relevant entry points; this doesn’t cause

binary incompatibility. An only condition remaining is

for a function not to add new vcall offsets. Therefore,

adding a virtual function to K class doesn’t cause

binary incompatibility iff the function doesn’t covari-

antly overload and ∀V ∈ C.BV ⇒ K /∈ V.B.

5) Adding a function becoming overloaded

Assume a function is added that doesn’t overload any

other. As this function is added relatively close to

vtable’s point of origin it can only keep compatibility

if its derivants the class is a primary base for do not

add more functions to the vtable and if this function

doesn’t add more vcall offsets (see 4).

3.4.3. VTT. VTT13 is a structure that keeps pointers to

virtual tables during construction. These tables do not possess

own symbols; it is only VTT they can be referenced through.

Each VTT entry refers to a vtable keeping information about

the state of object during construction within larger object.

The virtual function pointers will only point to the routines of

class constructed so far (in the process of complex hierarchy

initialization), its RTTI will be proper and vbase offsets will

point to virtual bases allocated as in bigger object. Only the

latter is the reason of introducing the new entities compared

to the usual vtables; therefor it’s only classes with more than

12. C++ rules state that if function f is declared as virtual in B
class, then ∀C : B ∈ C.B, C :: f is also virtual

13. most likely, it’s an abbreviation of ,,virtual tables table”

one (indirect) virtual base who have VTT assigned.

Where VTT is used is construction code for derived

classes. Let’s consider a class that can be derived in the

userspace code. Taking the conclusions of section 3.4.2

into account, we reduce the analysis to adding non-virtual

dynamic classes to the hierarchy of class that doesn’t contain

any virtual bases. However, no VTT is created for such

classes. Therefore study of VTT doesn’t yield any results.

4. Conclusion

4.1. How to Keep Compatibility

Let’s sum our study up. We have studied enough to

formulate the rules the developer is to follow to retain

binary compatibility with the old version of shared C++

library in GNU system, assuming that additional constraints

in addition to C++ rules apply. We called the code compiled

into application userspace code; it includes inline functions

of library headers and application code itself. The classes that

are allowed to be instantiated in userspace code are called

userspace classes, other classes are internal. The functions

that can be called from the userspace code are referred to as

userspace functions.

Let us have L library that we’re going to alternate and

get L′ library, the new version. Then, L′ will be binary

compatible with L, if all following rules apply:

1) any userspace function with ,,external linkage”

shall retain its external name (1.3.4). Therefore, you

should keep true arguments type as they appear after

all typedef substitutions and their number. To learn

what changes external name, refer to 3.1.

2) no userspace function may be removed or made

inline, either member or global, virtual or non-

virtual; no virtual function may be removed even

for internal class. Refer to sections 3.1 and, for virtual

function discussions, to point 3 of section 3.4.2;

3) no function implementation defined in cpp file may

be changed in incompatible way, i.e. if user calls

new functions in an old way, that must be plausible

and behavior must be the same (section 3.2). A special

exception holds for bugfixes, but note, that they may

break workarounds;

4) layout of the first sizeof(T) bytes of types of

directly accessible userspace global data must be

the same; this holds for both static class variables and

for internal classes (3.3, point 1);

5) the size of userspace class must be the same if it has

non-inline constructors; if all constructors are inline,

you should use symbol versioning of sorts to prevent

access to new part of the type layout from the new

function;

6) classes in hierarchy of all userspace classes must be

the same and in the same order unless the classes

being moved through hierarchy are empty bases of

non-dynamic class (but you still need an experiment

to ensure that sizes are the same). See 3.3 and 3.4.2;

7) dynamicity of classes in hierarchy of userspace class

must be the same except for userspace class without

virtual bases, where you can make non-dynamic

class after all dynamic classes in preorder see (3.3

and point 1 of section 3.4.2);

8) you can introduce new virtual functions overloading

the old ones, except for the case of covariant over-

loading and overloading of function of a virtual base

(point 4 of section 3.4.2). You should be assured that

the call to this function will yield the same results as

if it were called in a way allowed by L specifications;

9) a completely new virtual function may be added to

the end of the most derived class if its hierarchy

doesn’t contain any virtual base (point 2 of section

3.4.2).

4.2. Conclusion

We may compare the rules deduced by us and summarized

in 3.4.3 with the compatibility guide [8] suggested by the

KDE developers and known to be most complete.

We see that our formal approach didn’t yield more results

than the developers deduced from the practical experience.

It appears that requirements for binary compatibility can’t

be relaxed due to additional restrictions on the library use

except for a limited number of cases. Namely, there’s more

freedom for internal classes, that can’t be instantiated in

automatic memory or derived by user. However, such classes

can’t be considered as exhaustively using C++’s OOP flavors,

although implement quite a popular ,,singleton” concept

(see [9]).

Therefore we conclude that the current C++ ABI is in-

capable to provide more compatibility even with additional

restrictions upon the use of C++ constructs provided by

library’s headers.

We should also note that the current gcc ABI is influenced

by the desire to keep away from inserting elements of

interpreted languages into ABI and by ,,incremental” way of

binary representation (the architecture when the most com-

mon cases—single inheritance and simple virtual functions—

induce more simple and fast binary representation). As a

result, complex concepts are both considered unsafe and their

uncareful use causes incompatibility.

Perhaps, the other ABI model would better fit compatibil-

ity aims, but this question needs further research to discover

the best balance between maintainibility and performance,

and it also needs careful cost estimation, as the benifits of

its change should be greater than the expenses required to

adopt it.

References

[1] TIOBE Programming Community Index for January 2009.

http://www.tiobe.com/index.php/

content/paperinfo/tpci/index.html;

[2] Bjarne Stroustrup. A History of C++: 1979-1991. History

of Programming Languages conference, 1993;

[3] ISO/IEC 14882:2003. Programming languages — C++

[4] “informal industry coalition consisting of (in alphabetical

order) CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red

Hat, and SGI”. Itanium C++ ABI (Revision: 1.86)

[5] Urlich Drepper. How To Write Shared Libraries. 2006.

[6] B. Guptill, B. McNee. Booming Support for Mission-

Critical Application Workloads on Linux.

http://research.saugatech.com/fr/researchalerts/304RA.pdf

[7] IDC. Open Source in Global Software: Market Impact,

Disruption, and Business Models.

http://www.idc.com/getdoc.jsp?containerId=202511

[8] Binary Compatibility Issues With C++.

http://techbase.kde.org/Policies/

Binary Compatibility Issues With C%2B%2B

[9] E. Gamma et. all Design Patterns: Elements of Reusable

Object-Oriented Software

[10] Using the GNU Compiler Collection (GCC), chapter 8.

http://gcc.gnu.org/onlinedocs/gcc/Compatibility.html

