
To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

Binary Decision Diagrams and Neural Networks

P.W.C. Prasad Ali Assi Azam Beg
College of Information

Technology,
United Arab Emirates

University,
UAE

College of Information
Technology,

United Arab Emirates
University,

UAE

Department of Electrical
Engineering,

United Arab Emirates
University,

UAE
prasadc@uaeu.ac.ae

abeg@uaeu.ac.ae

ali.assi@uaeu.ac.ae

Abstract

This paper describes a neural network approach that gives an estimation method for
the space complexity of Binary Decision Diagrams (BDDs). A model has been
developed to predict the complexity of digital circuits. The formal core of the
developed neural network model (NNM) is a unique matrix for the complexity
estimation over a set of BDDs derived from Boolean logic expressions with a given
number of variables and Sum of Products (SOP) terms. Experimental results show
good correlation between the theoretical results and those predicted by the NNM,
which will give insights to the complexity of Very Large Scale Integration
(VLSI)/Computer Aided Design (CAD) designs. The proposed model is capable of
predicting the maximum BDD complexity (MaxBC) and the number of product terms
(NPT) in the Boolean function that corresponds to the minimum BDD complexity
(MinBC). This model provides an alternative way to predict the complexity of digital
VLSI circuits.

Keywords: Binary Decision Diagrams, Neural Network, Complexity estimation,
BDD complexity

1. Introduction

Logic level simulation is still one of the most often used operations in digital
systems during both design and test stages [1]. With the rapid increase of the amount
of circuitries on a single chip, there is a need for greater optimization and efficiency in
the design process [2]. According to Moore’s law [3] the number of transistors on a
single chip doubles every year, and it has withstood the test of time since Gordon
Moore made this observation in 1965. Boolean function representation has a direct
influence on the computation time and space requirements of digital circuits and most
of the problems in VLSI/CAD designs can be formulated in terms of Boolean
functions. The efficiency of any method used depends on the complexity of Boolean
functions [4]. Research on the complexity of Boolean functions in non-uniform
computation models is now part of one of the most interesting and important areas in
theoretical computer science [4], [5], [6]. Mathematicians and computer scientists
kept trying to classify Boolean functions according to various complexity measures,
such as the minimal size of circuits needed to compute specific functions [7].
 During the last two decades, BDDs have gained great popularity as efficient
method for representing Boolean functions [8], [9]. BDD in general is a direct acyclic
graph representation of Boolean functions proposed by Akers [8] and further
generalized by Bryant [9]. In many applications, the efficiency of BDD

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

representations is determined by the size of the BDD defined as the number of nodes
in the BDD for a given Boolean function f .
 BDDs can be represented by algorithms that travel through all the nodes and
edges of the directed graph in some order and therefore take polynomial time in the
current size of the graph. However, when new BDDs are created, it might
significantly increase the number of nodes in the BDD, depending on the node
placement in the graph, which can lead to exponential memory and run time
requirements [9] The choice of BDD variable order has a direct impact on the size of
the BDD, and determining an optimal variable ordering is an NP-hard problem [10].
In general, it is hard to predict the effect of variable ordering on the BDD size, this
requiring the trial of all possible ordering methods. It is also hard to find the best
order for a given Boolean function. However, there are some observations that help in
finding a good variable ordering.

The width of the BDD is defined as the maximum number of nodes at a certain
level, where the level consist of nodes to which the same variable is assigned. The
success of this technique has attracted researchers in the area of VLSI CAD systems
[11], [12] and BDDs became very popular data structures. Evaluation of the space
complexity of Boolean functions can be performed by determining the area of the
BDD. Since the number of nodes in the BDD represents the space required for the
function represented by the BDD, a function that produces higher number of nodes
has higher space complexity than a function that produces lesser number of nodes.
Building the complete BDD will increase the time complexity in the design process,
more time is needed to implement, verify and test the design. Modeling is considered
to be a time-efficient alternative to actual simulations and prototyping especially for
non-linear and multi-variable systems. Predicting complexity of Boolean functions
that represent a digital circuit could be a good indication to its feasibility prior to
engaging in any further development and implementation. There have been a lot of
research works [13], [14], [15] done on the estimation of combinational and
sequential circuit parameters from the exact Boolean function describing the circuit. A
mathematical model to predict the complexity of Boolean functions, XOR/XNOR
min-terms and the path length of BDDs using empirical fit were introduced in papers
[16], [17], [18], [19], [20], and here we propose an alternative way to tackle this
problem using neural networks (NNs).
 NNs have been showing amazing usefulness in the area of pattern recognition and
prediction applications. Apart from this lot of research works has been done on the
computational properties of neural networks [21], [22]. The measure of efficiency of
the circuit have been addressed in relation with the area of circuit implementation
[21],[23], where the complexity of Boolean functions is analyzed in terms of their
implementation using different kind of circuits, from those with simple SOP, to feed
forward neural network with threshold functions. In solving these problems the
important contribution of the neural networks is their capacity for learning from
experience. The main objective of this paper is to introduce a BDD complexity
estimation methodology based on NNs. The resulting model will enable the design
feasibility and performance to be analyzed without building the BDD. This model has
produced competitive results against the mathematical prediction of the BDD
complexity. In the second section, we provide background information pertaining to
the BDD and NNs. Section three reviews the previous works done by the same
authors on the estimation of BDD complexity. The proposed NNM for the estimation
of BDD complexity is explained in the fourth, fifth and sixth sections. Section seven

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

explains the NNM for the estimation of the MaxBC and the NPT of MinBC, follows
with BDD Complexity comparison of NNM and Mathematical models for ISCAS
Benchmark circuits in section eight. . Finally, we conclude our paper with our future
developments in this research work.

2. Preliminaries
2.1 Binary Decision Diagram (BDD)

Basic definitions for binary decision diagrams are detailed in [5], [8], [9], [11].
The following is a summary of some of these definitions.

Definition 1: A BDD is a directed acyclic graph (DAG). The graph has two sink nodes
labeled 0 and 1, representing the Boolean functions 0 and 1. Each non-sink node is
labeled with a Boolean variable v, and has two out-edges labeled 1 (or then) and 0 (or
else). Each non-sink node represents the Boolean function corresponding to its 1 edge
if v=1, or the Boolean function corresponding to its 0 edge if v=0.

Definition 2: An Ordered Binary Decision Diagram (OBDD) is a BDD in which each
variable is encountered no more than once in any path and always in the same order
along each path.

Definition 3: A Reduced Ordered Binary Decision Diagram (ROBDD) is an OBDD
where each node represents a distinct logic function. It has the following two
properties:

(i) There are no redundant nodes in which both of the two edges leaving the node
point to the same next node are present within the graph. If such a node exists, it
is removed and the incoming edges redirected to the following node.

(ii) If two nodes point to two identical sub-graphs (i.e. isomorphic sub-graphs), then
one sub−graph will be removed and the remaining one will be shared by the two
nodes.

Variable Ordering
 The size of a BDD is largely affected by the choice of the variable ordering [9],
[11]. This is illustrated by the following example:

Example: Let nn xxxxf 21221 ⋅++⋅= − . If the variable ordering is given
by),......,,(21 nxxx , i.e. iixi ∀=)(π , the size of the resulting BDD is n2 . The number of
nodes in the graph varies linearly or exponentially depending on variable ordering.
Fig. 1 shows the effect of variable ordering on the size of BDDs for the Boolean
expression (1):
 431432121 xxxxxxxxxf ⋅⋅+⋅⋅⋅+⋅= (1)

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

 (a) 4321 xxxx (b) 4231 xxxx

Figure 1 Effect of variable ordering on the size of BDDs, in term of number of nodes

2.2 Neural Networks (NNs)
NN mimic the ability of a human brain to find patterns and uncover hidden

relationships in data. NNs can be more effective than statistical techniques for
organizing data and predicting results, and are very efficient in modeling non-linear
systems [24], [25], [26]. A NN is defined as a computational system comprising of
simple but highly interconnected processing elements (PEs) (or neurons) (Figure 2)
[27]. PEs are NN equivalents of biological neurons. Similarly, neural network
interconnections are equivalents of synapses that connect a neuron to others.
Information is processed by the PE’s by dynamically responding to their inputs.
Unlike conventional computers that process instruction and data stored in the memory
in a sequential manner, the NNs produce outputs based on a weighted sum of all
inputs in a parallel fashion.

Figure 2. Processing element (PE) – building block of a neural network

 In Figure 1 the inputs (i(0)..i(n-1)) to a PE are scaled with weights (w(0) .. w(n-1))
and summed up before being passed through an activation function. The activation
function determines whether a PE activates (fires) or not. A sigmoid (non-linear)
activation function has an s-shaped output between the limits [0, 1]. The function (2)
is defined as [28]:

)e(1
1 y x-+

= (2)

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

Each input of an NN corresponds to a single attribute of the system being modeled.
The output of the NN is the prediction we are trying to make.

Figure 3. Topology of a simple 5-layer feed-forward neural network. The first is a 2-input layer
followed by 3 hidden layers. A single output neuron makes the last layer.

 Figure 3 shows the topology of a simple 5-layer feed-forward NN with 2 inputs
and one output. The NN has 2 input neurons (PE(ip1), PE(ip2)), three hidden layers
with 5 neurons each (PE(hnm) is the mth neuron in nth hidden layer), and one neuron
in the output layer (PE(op1)) [24]. The NNM is fully-connected, meaning; all neurons
in one layer connect to all neurons in the next layer.
 NNs use different types of learning (or training) mechanisms, the most common
of them being supervised learning. In this method of learning, a set of inputs is
provided to the NN and its output is compared with the desired output. The difference
between the actual and the desired outputs is used to adjust the weights (Figure 1) to
different PEs in the network. The process of adjusting weights is repeated until the
output falls within an acceptable range. To ensure a robust NN design, the set of input
data and corresponding output data has to be chosen carefully. The input-output data
set for an NN is called a training set. Additionally, special attention has to be paid to
the formatting and scaling of the data for effective NN training [24]. The available
data is divided into training and validation sets. An NN is only trained with the
training set. Validation set is run on the NN to verify that the inputs are producing
desirable outputs. If the validation phase produces large deviations, the training set or
the network structure needs to be re-examined; re-training is required in this case [24].

3. Previous work
In this section we will briefly describe about background concept and results

achieved in the area of the estimation of BDD complexity prior to introducing our
NNM.

3.1 Relation between the Size of a Boolean function and the BDD Complexity
 The complexity of the ROBDD mainly depends on the number of nodes
represented by the BDD. An experiment was done in [16], [17] to analyze the
complexity variation in BDDs i.e. the relation between the number of product terms
and the number of nodes for any number of variables. The experimental and equation
graph (Figure 4) shows that the complexity of the BDD can be modeled
mathematically by (3).

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

1)(+⋅⋅= ⋅− γβα NPTeNPTNN (3)

where, NN is the number of nodes that represents the complexity of the BDD,
NPT is the number of non-repeating product terms in the Boolean function,α ,β and
γ are three constants. Using curve fitting techniques, the variations ofα, β and γ were
mathematically modeled and represented by the following equations (4), (5) and (6).

)063.0(51.1
9855.0 NVe ⋅⋅=α (4)

)2985.1()01551933.0(2072.67031149.1 NVNV ee ⋅−⋅− ⋅+⋅=β (5)
)5072.1()4187691.0(9723.41962297281.0 NVNV ee ⋅−⋅− ⋅+⋅=γ (6)

Where, NV is the Number of Variables.

Figure 4. Simulation vs. mathematically predicted BDD complexity for 11 variables

4. Analysis of Boolean Function Complexity

For each variable count n between 1 and 14 inclusive and for each term count
between 1 and 2n-1, 100 SOP terms were randomly generated and the Colorado
University Decision Diagram (CUDD) package [29] was used to determine the BDD
complexity. This process was repeated until the BDD complexities (i.e. number of
nodes) became 1. Then the experimental graphs for BDD complexity (Example: for
10 variables, as shown in Figure 5) were plotted against the product term count for
each number of variables.

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

0

20

40

60

80

100

120

140

160

1 51 101 151 201 251 301 351 401 451 501 551 601

Number of Product terms

B
D

D
 C

om
pl

ex
ity Simulation using

CUDD

Figure 5. Simulation results for Boolean complexity for 10 variables

The above graphs indicate that the BDD complexity in general increases as the
number of product terms increases. This is clear from the rising edge of the curve. At
the end of the rising edge in the graph reaches a maximum complexity. This peak
indicates the maximum BDD complexity (134) that any Boolean function with 10
variables can have independently of the number of product terms. Apart from that the
peak also specifies the number of product terms (critical limit) of a Boolean function
that leads to the MaxBC for any Boolean function with 10 variables.
 The number of product terms that leads to the maximum for 10 variables is 54. If
the number of product terms increases above the critical limit, as expected, the
product terms starts to simplify and the BDD complexity will reduce. The BDD
Complexity graph shown in Figure 5 indicates that as the number of product terms
increases the complexity of the BDD decreases at a slower rate and ultimately reaches
1 node.

5. Neural Network Modeling Methodology

We have used here an NN-modeling software package called Brain Maker (Ver.
3.75 for MS Windows) [30] to create and test our NNMs. Brain Maker’s back-
propagation NNs were fully connected, meaning all inputs were connected to all
hidden neurons, and all hidden neurons were connected to the outputs. The activation
function for the hidden and output layer was a sigmoid function. The difference
between the network’s actual output and the desired output was treated as the error to
be minimized. We stopped the NN training sessions, when the earliest of these
conditions were met [30].

a) 98% of the facts were learnt with less than 5% mean squared error or
b) When training iterations count (epochs) reached 10000

For the sake of training ease, we chose to develop two separate models, one for

predicting the BDD complexity and the other for predicting the MaxBC and the NPT
for MinBC for a given number of variables.

6. Application of Neural Network to BDD Complexity Modeling
 This section covers the definition and implementation of the Neural Network
Model (NNM) for modeling the BDD complexity (Figure 6).

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

Figure 6. NNM for BDD complexity. The NNM has two inputs (number of variables, and number of
min-terms) and one output (BDD complexity).

6.1 Data Collection and Processing

For the NNMs in this paper, the training and validation data sets were obtained by
the experiment done in section 3.1. Pre-processing the training and validations sets
takes a considerable amount of resources for a practical and reliably functioning
NNM [26], [30]. In our research, the first data pre-processing step was to transform
the data set in such a way that inputs have equitable distribution of importance. In
other words, the larger absolute values of an input should not have more influence
than the inputs with smaller magnitudes [31]. The need of such equitable distribution
can be explained with the set of figures shown below. Figure 7 shows the raw
(original) data for 2 to 14 variables. Notice that the plots for 2- to 9-variables are
hardly visible when all variables are plotted on the same scale. If the data were
presented to the NN for training in this case, only 10- to 14- variable cases could be
learnt by the NN and 2- to 9-variables values could be ignored. So in order to provide
similar importance to all variable values (2 to 14), we did a logarithmic
transformation of the product terms (min-terms) and complexity (number of nodes)
inputs. The resulting data is plotted in Figure 8. As we can see now all different plots
(from 2 to 14 variables) are in similar ranges and make it easier for NN to learn them.

6.2 Training and Testing of NNM for BDD Complexity
 In order to ‘use’ or ‘run’ a trained NN, de-normalization and de-transformation has
to be done to restore the predicted outputs to the original ranges. Steps employed in
'training' and 'running' the networks are summarized here:

6.2.1 Steps for Training the NNM:
a) Take logarithm of actual values of the inputs and output
b) Train the NN with values from step (a)

6.2.2 Steps for Using/Running the NNM:
a) Take logarithm of the actual values of the input
b) Present the values from step (a) to the NNM
c) Apply anti-logarithm to the output of the NNM to get the actual result

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

Figure 7. Raw (untransformed) data. Notice that the smaller variable (2, 3, etc.) curves are not as visible
as the larger values.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4
Number of Product terms (log)

B
D

D
 C

om
pl

ex
ity

 (l
og

)

2 var

14 var

Figure 8. Log-scaled (transformed) data. All curves are now on a similar scaled which improves the
NNM prediction accuracy.

We acquired a total of 19044 data sets (also called facts/training facts) during our
simulations of Boolean Functions. 90% of the data sets (facts) were used as the
training set, while the remaining 10% were used as the validation set. We stopped the
NN training sessions, when 98% of the facts were learnt with less than 5% mean
squared error [30].

A general rule is that as the number of hidden layers increases, the prediction
performance goes up, but only up to a certain point, after which the NNM
performance starts to deteriorate [30]. To find the optimum topologies for our NNMs,
we experimented with up to 3 hidden layers; each layer consisted on a different
number of neurons. The details of some of our NNMs experiments are listed in Table
1. The performance metric for an NNM was the "percentage of facts learnt with 95%
(or more) accuracy". We chose a 5-layer NNM (#8 in the table) with 5 neurons in each
of its hidden layers.

Table 1
 Configuration & Training Statistics for BDD-Complexity NNMs *

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

CONFIGURATION TRAINING STATISTICS

No.
Input
Layer

Neurons

Hidden
Layer 1
Neurons

Hidden
Layer 2
Neurons

Hidden
Layer 3
Neurons

Output
Layer

Neurons

Facts
Learnt

Facts Not
Learnt

%
Facts

Learnt
Epochs

1 2 10 1 12524 4789 72.3% 1047
2 2 20 1 16208 1105 93.6% 623
3 2 25 1 16059 1254 92.8% 745
4 2 30 1 15844 1469 91.5% 630
5 2 5 5 1 16889 424 97.6% 681
6 2 7 7 1 15261 2052 88.1% 2133
7 2 20 20 1 16987 326 98.1% 100
8 2 5 5 5 1 17028 285 98.4% 98
9 2 5 10 5 1 17049 264 98.5% 24
10 2 20 20 20 1 17079 234 98.6% 17

* Brain Maker training parameters: Training tolerance = 0.05; testing tolerance = 0.05; learning rate
adjustment type = heuristic. (See [35] for detailed explanation of these settings).

This configuration provided nearly the same training accuracy as its much larger

3-layer counterparts (#9 and #10). The matrices containing weights for different layers
of the chosen 5-5-5 neuron NNM (#5) are given in tables 2.1-2.4.

Table 2.1

Weight Matrix – Input Neuron Layer to Hidden Neuron Layer-1
 ip1 ip2

h11 0.915 3.255
h12 -6.639 -7.992
h13 3.511 7.981
h14 -5.674 7.983
h15 -6.618 -7.992

Table 2.2

Weight Matrix – Hidden Neuron Layer-1 to Hidden Layer-2
 h11 h12 h13 h14 h15

h21 2.811 -7.999 -1.437 -7.636 -7.999
h22 6.195 -7.996 -0.372 -7.999 -7.998
h23 -7.999 7.994 -7.949 1.305 7.999
h24 -4.474 -7.998 -7.339 -2.447 -7.681
h25 1.567 H 3.280 0.197 -7.999

Table 2.3

Weight Matrix – Hidden Neuron Layer-2 to Hidden Layer-3
 h21 h22 h23 h24 h25 h26

h31 -1.397 -2.336 -3.671 7.999 -2.518 5.084
h32 7.108 0.165 -7.999 1.441 4.130 -7.657
h33 -7.999 -7.999 5.342 -6.485 -1.831 -7.996
h34 -5.675 0.421 2.268 0.539 -2.678 5.324
h35 -0.130 3.669 -2.209 1.186 -0.938 0.138

Table 2.4

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

Weight Matrix – Hidden Neuron Layer-3 to Output Layer
 h31 h32 h33 h34 h35

op1 -4.417 6.338 7.999 -6.016 4.531

The weight matrices for the trained NNM (#8) Table 1 are shown in Tables 2.1-
2.4. Refer to Figure 9 for details on different neuron layers. For example, weight in
ip1-h11 cell in the Table 2.1 refers to weight between the input “ip1” and “h11”
neuron of the first hidden layer. Similarly, in the Table 2.2 the weight at the h11-h21
location refers to the weight between the first layer neuron “h11” and the 2nd hidden
layer “h21”.

6.3 NN Modeling Results and Analysis

Due to the inherent nature of NNMs, the input values used for running an NNM
should be kept somewhat close to, but not necessarily the same as, the input values in
the training set. Any significant deviations of the running set from the training set can
provide misleading results. We used an arbitrary set of values for number-of-variables
and NPT and used the NNM to predict the number of nodes (BDD complexity).
Figure 9 indicates the comparison for experimental results and NNM predictions of
BDD complexity for 10 variables. It can be inferred that the NNM result provides a
very good approximation of the BDD complexity.

0

20

40

60

80

100

120

140

160

1 101 201 301 401 501 601

Number of Product terms

 B
D

D
 C

om
pl

ex
ity

Simulation using
CUDD
Neural Network
Model

Figure 9. Complexity analyses of simulation and NNMs for 10 variables

The same work has been repeated for Boolean functions with 2 to 15 variables.
Figure 10, 11, and 12 illustrate experimental and predicted NNM results for variables
7, 12 and 14 respectively.

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

1

10

100

1 14 27 40 53 66 79 92 105 118 131 144

Number of Product terms

B
D

D
 C

om
pl

ex
ity

Simulation using
CUDD
Neural Netiwork
Model

Figure 10. Complexity analyses of simulation and NNMs for 7 variables

1

10

100

1000

1 161 321 481 641 801 961 1121 1281 1441

Number of Product terms

B
D

D
 C

om
pl

ex
ity

Simulation using
CUDD
Neural Network
Model

Figure 11. Complexity analyses of simulation and NNMs for 12 variables

1

10

100

1000

10000

1 501 1001 1501 2001 2501 3001 3501

Number of Product terms

B
D

D
 C

om
pl

ex
ity

Simulation using
CUDD
Neural Network
Model

Figure 12. Complexity analyses of simulation and NNMs for 14 variables

Figure 13 shows the efficiency of the proposed NNM, which produces very close
fit as the mathematical model [17] for the prediction of BDD complexity. It can be
inferred that the NNM was able to match the experimental curve with minimum error
for most of the Product terms.

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

0

20

40

60

80

100

120

140

160

1 76 151 226 301 376 451 526 601

Number of Product terms

B
D

D
 C

om
pl

ex
ity

Simulation using CUDD

Neural Network Model

Mathematical Model

Figure 13. Comparison of actual simulations with mathematical and NN models

7. Application of Neural Networks to the Modeling of MaxBC and

NPT of MinBC
 This section covers the definition and implementation of the NNM for modeling
the MaxBC and NPT of MinBC (Figure 14).

Figure 14. NNM for MaxBC and the NPT of MinBC. There is a single input (number of variables) to
the NNM which predicts two values (number of product terms for the lowest BDD complexity, and the
maximum BDD complexity).

 Just like the NNM in the previous section, the training and validation data sets
were obtained by the experiment done in section 5.

7.1 Training and Testing of NNM for BDD Complexity
 For NN training purposes, we pre-processed the input data by taking its logarithm
(the reason for doing so has been explained in section 6).
In summary the steps used to train and run the network are given here:

7.1.1 Steps for Training the NNM:
a) Take logarithm of actual values of the inputs and output
b) Train the NN with values from step (a)

7.1.2 Steps for Using/Running the NNM:
a) Take logarithm of the actual values of the input
b) Present the values from step (a) to the NNM
c) Apply anti-logarithm to the output of the NNM to get the actual result

To create the NNM, we only had a limited number of data sets, just 13 to be
specific. Here again, we experimented with up to 3 hidden layers; each layer consisted
of a different number of neurons. The details of some of our NNMs experiments are
listed in Table 2.5.

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

Table 2.5

Configuration & Training statistics for MaxBC and MinBC

No.
Input
Layer

Neurons

Hidden
Layer 1
Neurons

Hidden
Layer 2
Neurons

Hidden
Layer 3
Neurons

Output
Layer

Neurons

Facts
Learnt

Facts Not
Learnt

%
Facts

Learnt
Epochs

1 1 5 2 9 4 69.2% 10000
2 1 10 2 11 2 84.6% 10000
3 1 15 2 13 0 100.0% 10000
4 1 20 2 13 0 100.0% 10000
5 1 3 3 2 9 4 69.2% 10000
6 1 5 5 2 9 4 69.2% 10000
7 1 7 7 2 11 2 84.6% 10000
8 1 10 10 2 9 4 69.2% 10000
9 1 3 3 3 2 10 3 76.9% 10000

10 1 5 5 5 2 10 3 76.9% 10000
11 1 5 10 5 2 10 3 76.9% 10000

* Brain Maker training parameters: Training tolerance = 0.07; testing tolerance = 0.07; learning rate adjustment type = heuristic

We chose a 3-layer NNM (#3 in the table) with 15 neurons in its only hidden
layer. This configuration was able to model all data sets with the desired accuracy. (#4
also trained with the same accuracy, but with larger number of neurons). The matrices
containing weights for different layers of the chosen 1-5-2 neuron NNM (#3) are
given in Table 2.6-2.7. For example, weight in ip1-h1 cell in the Table 2.6 refers to
weight between the inputs “ip1” and “h1” neuron of the hidden layers. Similarly in
Table 2.7 the weight at the h1-op2 location refers to the weight between the hidden
“h1” neuron and the output neuron “op2”.

Table 2.6
Weight Matrix – Input Neuron Layer to Hidden Neuron Layer

 ip1
h1 0.832
h2 -3.196
h3 -4.047
h4 -7.061
h5 -5.283
h6 -2.455
h7 0.228
h8 -3.753
h9 0.036
h10 -1.035
h11 3.762
h12 -3.082
h13 -0.986
h14 -1.950
h15 -2.382

Table 2.7

Weight Matrix – Hidden Neuron Layer to Output Neuron Layer
HIDDEN NEURON LAYER TO OUTPUT NEURON

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

 h1 h2 h3 h4 h5 h6 h7 h8
op1 0.602 -1.547 -3.286 -1.260 -0.899 -0.545 -1.768 -1.778
op2 1.112 -3.171 0.419 -0.566 -0.264 -2.824 2.053 -2.899

 h9 h10 h11 h12 h13 h14 h15
op1 0.912 -0.056 1.113 -1.889 4.172 -1.300 0.242
op2 -0.621 -0.297 0.151 -1.123 0.234 1.371 -1.167

8. BDD Complexity Analysis use of Benchmark Circuits

The validated results for NNM for selected ISCAS benchmark circuits are tabulated
in Table 1. The experimental results were obtained on a Pentium IV machine with 512
MB RAM running on Linux environment. Training of NNM with the experimental
data has an up-front once only cost, and then the NNM is quickly run (within a few
milliseconds or less) to predict the complexity of various functions with different
number of variables and product terms. Running the models is generally faster than
simulations, especially when larger benchmarks are involved (Hossain, et al., 2002).

The 1st Column indicates the ISCAS benchmark circuit name and the 2nd and 3rd
columns are for the maximum number of input variables and number of output
circuits for the respective benchmark circuit. In column 4, the actual BDD complexity
for the benchmark circuits have been calculated using CUDD package. The NNM
prediction was calculated for the each number of variables and number of product
terms for the each respective benchmark circuits. The columns 5, 6 and 7 illustrate the
BDD complexity prediction use of NNM, NNM prediction error with compare to the
actual BDD complexity results and the relative error respectively. The mathematical
model results for BDD complexity is given in column 8, follows with column 9 and
10 for Mathematical complexity error and relative error compared to the actual BDD
complexity value, respectively.

Table 1
NNM results for ISCAS benchmark circuits

BDD Complexity (Nodes)

Neural Network Model Mathematical Model
Circuit
Name

Max
Number
of Input

Variables

Number
of

Circuits
Actual
Values Predicted

Value
Prediction

Error
Relative

Error
Predicted

Value
Prediction

Error
Relative

Error

Apex4 9 19 1286 1137 -149 -0.116 1009 -277 -0.215
5xp1 7 10 90 100 10 0.111 85 -5 -0.056
apex7 48 55 344 349 5 0.015 289 -55 -0.160
Alu4 14 8 1162 1209 47 0.040 1426 264 0.227
B1 3 4 12 9 -3 -0.250 9 -3 -0.250
Cc 21 18 105 101 -4 -0.038 84 -21 -0.200
C8 28 17 149 157 8 0.054 189 40 0.268

decod 5 16 96 94 -2 -0.021 72 -24 -0.250
Clip 9 5 394 374 -20 -0.051 262 -132 -0.335

cm42a 3 13 50 46 -4 -0.080 31 -19 -0.380
cm138a 6 8 56 59 3 0.054 68 12 0.214
cm162a 11 6 66 79 13 0.197 122 56 0.848

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

cm163a 9 5 59 71 12 0.203 63 4 0.068
cm82a 5 3 19 16 -3 -0.158 15 -4 -0.211
Con1 6 2 18 17 -1 -0.056 14 -4 -0.222

Cu 14 11 89 75 -14 -0.157 74 -15 -0.169
majority 5 1 8 7 -1 -0.125 6 -2 -0.250
misex1 8 7 69 70 1 0.014 60 -9 -0.130
Rd53 5 3 24 18 -6 -0.250 19 -5 -0.208
Rd73 7 3 38 40 2 0.053 33 -5 -0.132
Rd84 8 4 54 41 -13 -0.241 24 -30 -0.556
Sao2 10 4 171 190 19 0.111 215 44 0.257
Sqrt8 8 4 43 45 2 0.047 46 3 0.070
Sct 14 15 177 215 38 0.215 213 36 0.203

squar5 5 8 57 49 -8 -0.140 52 -5 -0.088
X2 10 7 68 70 2 0.029 80 12 0.176
x1 25 35 557 732 175 0.314 691 134 0.241

xor5 5 1 6 5 -1 -0.167 5 -1 -0.167
I6 5 67 413 355 -58 -0.140 345 -68 -0.165
I7 6 67 493 598 105 0.213 501 8 0.016

Pm1 9 13 80 105 25 0.313 88 8 0.100
C17 4 2 10 8 -2 -0.200 9 -1 -0.100
Alu2 10 6 249 290 41 0.165 265 16 0.064
Cht 47 36 192 176 -16 -0.083 166 -26 -0.135
i3 132 6 138 186 48 0.348 173 35 0.254
i8 133 81 2498 3148 650 0.260 3482 984 0.394

cm150a 21 1 78 93 15 0.192 98 20 0.256
b12 15 9 97 106 9 0.093 131 34 0.351
cmb 16 4 59 61 2 0.034 65 6 0.102
b9 41 21 310 301 -9 -0.029 287 -23 -0.074

Total 605 RMS Error 0.163 0.260

The RMS relative error was computed as an estimation of the deviation of the
measured from predicted values.

valuemeasuredCUDD
valuemeasuredCUDDvaluepredictederrorrelative)(−=

n

errorrelative
errorrms

n

i
i∑

= =1

2)(

The computed deviation for Boolean function complexity estimation use of NNM

for complete set of 610 circuits was 0.163, which indicates that the NNM provides a
close match with the actual complexity values for the benchmark with maximum of
133 input variables. It can be inferred from the benchmark circuit validation, that all
the benchmarks are mostly consist of product terms of 1-13 variables, even though the
number of inputs goes up to much high than 14. It was also observed that most of the
benchmarks do not have product terms which can produce the maximum Boolean
function complexity for the variable of that product terms. The NNMs were more

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

effective compared to the mathematical model RMS error of 0.260 for the same
benchmark circuits.

It can be concluded from these results that the training set had a statistically
significant number of samples to present to a neural network and it allowed NNM to
be adequately trained within a user-define accuracy, therefore NNM was able to
predict the BDD complexity for variables beyond the experimental data limits.

9. Conclusion
In this research work, we have proposed a new BDD complexity prediction

methodology based on neural network as another alternative to the CUDD simulation
and the mathematical models presented by the same authors. An advantage of this
model is that it is a single integrated model for different number of variables and
number of product terms. The results show the capabilities of training algorithms in
neural networks, which produce a close match for the CUDD simulation with
minimum errors of 4.22%, 1.32% and 0.39% for the calculation of the BDD
complexity, the MaxBC and the NPT of MinBC respectively. Once NNMs had been
developed, they could be used to conduct further experiments with different types of
inputs, in a fraction of the time what a circuit simulator would take. The NNM was
capable of providing useful clues about the complexity of the final design, which will
leads to a great reduction in time complexity for digital circuit’s designs. The NNM
RMS error of 0.161 for ISCAS benchmark circuit justifies the efficiency of the NNM
compared to the mathematical model. In light of the results, we conclude that the
NNM proposed in this work could be a valuable tool for exploring the complex
computational capabilities of neural network. We are currently exploring the
extension of this work to other complexity applications.

References
 [1] M. Alexander. Digital Logic Testing and Simulation, Chapter 2: "Combinational Logic Test,"

Harper and Row, New York, 1986.
[2] M. Thornton and V.S.S. Nair. Iterative Combinational Logic synthesis Techniques using Spectral

Data. Technical report, Southern Methodist University, 1992.
[3] G. E. Moore. Progress in Digital Integrated Electronics. IEEE IEDM, pp. 11-13, 1975.
[4] I. Wegener. The Complexity of Boolean Functions. John Wiley and Sons Ltd,.
[5] C. Meinel and A. Slobodova. On the Complexity of constructing Optimal Ordered Binary Decision

diagrams. Proc. of 19th Inter. Symposium on Mathematical Foundation of Computer Science, 515-
524, 1994.

[6] S. Tani, K. Hamaguchi and S. Yajima. The Complexity of the Optimal Variable Ordering
Problems of a Shared Binary Decision Diagram. IEICE Transactions on Information and Systems,
Vol. 4, 271-281, 1996.

[7] M. Nemani, and F.N. Najm. High-level power estimation and the area complexity of Boolean
functions. Proc. of IEEE Intl. Symposium on Low Power Electronics and Design, pp: 329-334,
1996.

[8] S. B. Akers. Binary Decision Diagram. IEEE Trans. Computers, Vol. 27, pp. 509-516, 1978.
[9] R. E. Bryant. Graph−Based Algorithm for Boolean Function Manipulation. IEEE Trans.

Computers, Vol. 35, pp. 677-691, 1986.
[10] J.E. Harlow, and F. Brglez. Design of experiments and evaluation on of BDD ordering heuristics.

Intl. J. Software Tools for Tech. Transfer., 3: 193-206, 2001
[11] S. Minato. Binary Decision diagrams and Applications for VLSICAD. Kluwer Academic

Publishers, Dordrecht, 1995.

To be published as:
P. W. C. Prasad, A. Assi, and A. Beg, "Binary Decision Diagrams and Neural
Networks," The Journal of Supercomputing, vol. 39, p. 20, March 2007.

[12] K. Priyank. VLSI Logic Test, Validation and Verification, Properties & Applications of Binary

Decision Diagrams. Lecture Notes, Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT 84112.

[13] P. E. Dunne, and W. van der Hoeke. Representation and Complexity in Boolean Games. proc. 9th
European Conference on Logics in Artificial Intelligence, LNCS 3229, Springer-Verlag, pages
347-35, 2004.

[14] N. Ramalingam, S. Bhanja. Causal Probabilistic Input Dependency Learning for Switching model
in VLSI Circuits. proceedings of ACM Great Lakes Symposium on VLSI, pp. 112-115, 2005.

[15] S. Bhanja, K. Lingasubramanian and N. Ranganathan. Estimation of Switching Activity in
Sequential Circuits using Dynamic Bayesian Networks. proceedings of VLSI Design 2005, pp.
586-591, 2005.

[16] M. Raseen, P.W.C. Prasad and A. Assi. Mathematical Model to Predict the Number of Nodes in
an ROBDD. The 47th IEEE Inter. Midwest Symposium on Circuit and Systems (MWSCAS), Vol.
III, 431-434, 2004.

[17] M. Raseen, P.W.C. Prasad, and A. Assi. An Efficient Estimation of the ROBDD's Complexity.
accepted for Publication in Integration - the VLSI journal, Elsevier Publication, May 2005

[18] P.W. C. Prasad , M. Raseen and S. M. N. A. Senanayake. XOR/XNOR Functional Behavior on
ROBDD Representation. Proc. of The 14th IASTED Inter. Conf. on Applied Simulation and
Modeling, pp. 115-119, 2005.

[19] P.W. C. Prasad , M. Raseen, A. Assi, B.I. Mills, and S. M. N. A. Senanayake. Evaluation time
estimation for Pass Transistor Logic Circuits. accepted for publication in the proceedings in 3rd
IEEE Inter. Workshop on Electronic Design, Test and Applications (DELTA’06), January 2006.

[20] A. Assi, P.W. C. Prasad, B. Mills, and A. El-chouemi. Empirical Analysis and Mathematical
Representation of the Path Length Complexity in Binary Decision Diagrams. Journal of computer
Science, Science Publications, Vol. 2(3), pp. 236-244, 2005.

[21] I. Parberry. Circuit Complexity and Neural Networks. MIT Press (1994).
[22] K. Y. Siu, V. P. Roychowdhury and T. Kailath, Discrete Neural Computation – A theoretical

Foundation. Prentice Hall, 1995.
[23] I. Wegener. The Complwexity of Boolean functions. Wiley and Sons. Inc., 1987.
[24] M., Caudill. AI Expert: Neural Network Primer. Miller Freeman Publications 1990.
[25] R. E., Uhrig. Introduction to Artificial Neural Networks. Proceedings of the 1995 IEEE IECON 21st

International Conference on Industrial Electronics, Control and Instrumentation, 1995, Vol. 1, Nov. 1995.
[26] K. Yale. Preparing the right data for training neural networks. IEEE Spectrum, Vol. 34, Issue 3, pp. 64-66,

Mar. 1997.
[27] G. Stegmayer and O. Chiotti. The Volterra representation of an electronic device using the Netural Network

parameters. Latin American Conference on Informatics (CLEI’2004), Sep. 2004.
[28] http://www.eco.utexas.edu/faculty/Kendrick/frontpg/NeuralNets.htm
[29] F. Somenzi. CUDD: CU Decision Diagram Package. ftp://vlsi.colorado.edu/ pub/., 2003.
[30] J. Lawrence. Introduction to Neural Networks – Design, Theory and Applications. California Scientific

Software Press, 1994.
[31] T. Masters. Signal and Image Processing with Neural Networks. John Wiley & Sons, Inc., 1994.

