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Highlights

• Novel feature selection approaches based on Binary Dragonfly Algorithm (BDA) are
proposed.

• Eight time varying S-shaped and V-shaped transfer functions are proposed.

• The leverage of using time-varying transfer functions on exploration and exploitation
behaviors is investigated.

• Extensive tests are made to assess the proposed algorithms on the datasets to prove
their merits
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Abstract

The Dragonfly Algorithm (DA) is a recently proposed heuristic search algorithm that
was shown to have excellent performance for numerous optimization problems. In this
paper, a wrapper-feature selection algorithm is proposed based on the Binary Dragonfly
Algorithm (BDA). The key component of the BDA is the transfer function that maps
a continuous search space to a discrete search space. In this study, eight transfer func-
tions, categorized into two families (S-shaped and V-shaped functions) are integrated into
the BDA and evaluated using eighteen benchmark datasets obtained from the UCI data
repository. The main contribution of this paper is the proposal of time-varying S-shaped
and V-shaped transfer functions to leverage the impact of the step vector on balanc-
ing exploration and exploitation. During the early stages of the optimization process, the
probability of changing the position of an element is high, which facilitates the exploration
of new solutions starting from the initial population. On the other hand, the probability
of changing the position of an element becomes lower towards the end of the optimization
process. This behavior is obtained by considering the current iteration number as a pa-
rameter of transfer functions. The performance of the proposed approaches is compared
with that of other state-of-art approaches including the DA, binary grey wolf optimizer
(bGWO), binary gravitational search algorithm (BGSA), binary bat algorithm (BBA),
particle swarm optimization (PSO), and genetic algorithm in terms of classification ac-
curacy, sensitivity, specificity, area under the curve, and number of selected attributes.
Results show that the time-varying S-shaped BDA approach outperforms compared ap-
proaches.

Preprint submitted to Knowledge-based systems August 4, 2018
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1. Introduction

In the past decades, metaheuristic and evolutionary algorithms were shown to be
very successful for solving various optimization problems [1, 2, 3, 4, 5]. The Dragonfly
Algorithm (DA) is a recent metaheuristic, which is inspired by the behavior of dragon-
flies [6]. The DA can be regarded as a recently successful algorithm that can outperform
other well-regarded optimizers. The DA has been applied to several real-world problems
such as economic emission dispatch in power systems [7, 8], simulation building [9], wire-
less node localization in computer networks [10] and machine learning [11, 12]. The DA
has shown an excellent performance for several continuous, discrete, single-objective and
multi-objective optimization problems compared to several state-of-the-art metaheuristic
and evolutionary algorithms such as Particle Swarm Optimization (PSO) and Differential
Evolution (DE).

Up to 2018, several works have utilized the DA or improved its performance to tackle
practical tasks such as photovoltaic systems [13], extension of RFID network lifetime [14],
0-1 knapsack problems [15], and economic emission dispatch problem [16]. In 2017, KS
and Murugan [17] proposed a memory-based hybrid DA that integrates concepts of PSO
for dealing with global optimization cases. Song and Li [18] proposed a modified DA with
elite opposition learning for global optimization.

Recently, a binary version of the DA called BDA was proposed by Mirjalili [6], which
applies a transfer function (TF) to map a continuous search space to a discrete one. The
potential of BDA was initially evaluated on some feature selection problems and results
have shown that this method has acceptable performance [19].

In general, a TF must map a continuous search space to a discrete space. In this
regard, selecting a suitable TF is an important decision for improving the performance of
binary velocity-based algorithms (e.g. PSO and DA) [20, 21]. Using TFs is recommended
in several works due to several reasons [20, 22]. Firstly, TFs are algorithm independent
and do not impact the search behavior of an algorithm. Secondly, the computational
complexity of the algorithm does not change since the TF is calculated for each solution
during each iteration. Thirdly, exploration and exploitation can be boosted when using
a TF. The core drawback of a TF comes from the nature of this component. Transfer
functions map velocity to probability. Hence, an algorithm should have a velocity vector.
In other words, it is not a generic operator that can be used for all optimization algorithms.
The other drawback of typically employed TFs within binary optimizers (e.g. the sigmoid,
tangent and log-sigmoid functions [21, 20, 23]) is that they do not adapt exploration and
exploitation in an evolutionary way during the search for solutions. They calculate the
probability of changing the value of parameters in a non-adaptive way.

The operators of population-based algorithms are the only components that guide ex-
ploration and exploitation. Improving the performance of any population-based optimizer
such as the DA requires to select an appropriate balance between exploration (diversifica-
tion) and exploitation (intensification). Generally speaking, exploration is more important
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than intensification during the early stages of the selection process, to explore promising
regions of the feature space. But during the later stages, exploitation becomes more im-
portant because we need to increase the probability of discovering better solutions, close to
those found in the previous phases. To solve challenging and high-dimensional problems,
where a good balance between exploration and exploitation is required, hybrid methods
can be developed. However, such techniques normally increase the computational cost of
the whole optimization process.

Based on the aforementioned observations and since DA utilizes velocity vectors for
updating solutions, the main contribution of this paper is to propose several time-varying
TFs for the DA for binary tasks. This work demonstrates and argues that how a TF
can be utilized to fine-tune and control the exploration and exploitation behavior of an
optimizer is important. In other words, a TF can play a key role in tuning the exploration
and exploitation phases of an optimizer rather than just converting a continuous search
space to a binary one.

Based on this idea, this study proposes the use of a controlling parameter that has
a gradually decreasing influence over the course of iterations, and that idea is applied
to BDA. To assess the performance of BDA, this paper considers the task of feature
selection, as it is a fundamental binary optimization problem that is challenging and
high-dimensional, and has many applications.

This work proposes a wrapper feature selection approach that utilizes the recent BDA
as a search strategy and the K-Nearest Neighborhood (KNN) classifier as an evaluator.
The main aim of this study is to propose and investigate the effects of eight time-dependent
TFs on the efficiency of BDA. Moreover, the results from the eight proposed approaches
are compared with the original DA and some other state-of-the-art algorithms.

The contributions of this research can be summarized as follows:

• Several binary variants of the DA are proposed.

• This paper investigates the exploration and exploitation behavior of BDA with
existing TFs and identifies their possible negative effects on the balance between
exploration and exploitation.

• Various time-dependent S-shaped and V-shaped TFs are proposed to effectively
overcome the drawbacks of existing TFs, and provide a stable balance between
exploration and exploitation in BDA.

• The improved searching capabilities of the proposed time-dependent variants of the
BDA is evaluated on several well-regarded feature selection datasets, and excellent
results are obtained.

The rest of the paper is organized as follows. A theoretical background about feature
selection is presented and related work is reviewed in Section 2. Section 3 describes the
DA. Section 4 introduces the BDA. Section 5 presents the proposed approach. Experi-
mental results and discussion are presented in Section 6, and finally, a conclusion is drawn
and opportunities for future work are discussed in Section 7.
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2. Background on feature selection

Feature selection (FS) plays an important role in various machine learning and data
mining tasks such as object-based image classification [24], prediction of groundwater ni-
trate pollution [25], intrusion detection [26], automatic satire and irony detection [27], mu-
sic streaming recommendation [28], spam detection [29], financial distress prediction [30],
and classification [31]. Bolón-Canedo et al. [32] discussed challenges of FS in the context
of big data. FS aims at improving classification accuracy by eliminating redundant, irrel-
evant, and noisy data from a dataset. According to Liu and Motoda [33], FS algorithms
can be classified based on two main criteria: their subset evaluation procedure and their
searching procedure. In terms of the former, FS methods are categorized as filters and
wrappers [33]. Wrapper approaches utilizes a learning algorithm (e.g. classifier) to evalu-
ate feature subsets, while filters evaluate a feature subset using the data itself (e.g. using
a measure such as the information gain) [34].

Finding an optimal subset of features for FS problems is challenging due to the large
number of possible combinations. A naive approach to solve a FS problem is to apply
a brute-force search and generate all possible subsets of features to find the best one. If
the original dataset contains k features, then there are 2k-1 subsets to be generated and
evaluated.

Due to the exponential complexity of this approach, it is impractical when N is very
large. A more practical solution to solve FS problems is to utilize a heuristic search [35].
As the name suggests, the search is guided using heuristic information collected during
the optimization process. Although heuristic search techniques do not guarantee finding
the best subset of features, they can generally produce an acceptable solution quickly [36].

Metaheuristics are general purpose algorithms, which have been readily applied to a
wide range of problems [36]. Nature-inspired algorithms are mostly metaheuristics and
mimic the social and biological behaviors of creatures in nature. Various nature-inspired
algorithms have been utilized to tackle the FS problem in the literature such as GA [37],
PSO [38, 39, 40, 41], Ant Colony Optimization (ACO) [42], DE [43], Bacterial Foraging
Optimization (BFO) [44], and Artificial Bee Colony (ABC) [45].

Recently, new nature-inspired algorithms have been proposed and have shown im-
proved results for the FS problems. For instance, an Ant Lion Optimizer (ALO) [46],
which mimics the hunting behavior of antlions, has been employed as a wrapper FS
method [47, 48]. Grey Wolf Optimizer (GWO) is another recent algorithm [49, 50, 51]
that has been successfully employed for solving feature selection problems [52, 53]. Moth-
Flame Optimizer (MFO) [54] is an algorithm that mimics the navigation method of moths
and has been applied to the FS problem by Zawbaa et al. [55]. Multi-Verse Optimizer
(MVO) is another recent example of metaheuristics that was applied in combination with
classifiers to some FS problems Faris et al. [56].

Mafarja and Abdullah [57] proposed a mimetic filter FS approach that combines the
capability of Simulated Annealing (SA) as a local search algorithm with a GA.

In subsequent work in [58], SA was hybridized with the Whale Optimization Algo-
rithm (WOA) to form a wrapper FS approach. WOA was also recently used as a wrapper
FS approach in [59]. In that approach, evolutionary operators (i.e., crossover, mutation
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and selection) were employed to enhance both the exploration and exploitation capabili-
ties of the WOA. The reported results revealed the benefits of combining those operators
with WOA. In [48], the performance of the Ant Lion Optimizer (ALO) algorithm with
eight different TFs was investigated. Another study Faris et al. [60] proposed a novel
FS approach based on a recent metaheuristic algorithm called Multi-Verse Optimizer
(MVO). In 2018, Mafarja et al. [61] proposed an improved grasshopper optimization al-
gorithm (GOA) with new evolutionary-based operators, which is called GOA-EPD, to
develop an efficient wrapper FS method. Salp Swarm Algorithm (SSA) is another recent
metaheuristic that has been used in a wrapper FS method in [62].

3. Overview of the Dragonfly Algorithm

The Dragonfly Algorithm is a recently proposed swarm-based algorithm [6]. The DA
mimics the hunting and migration mechanisms of idealized dragonflies. The hunting
mechanism is called static swarm (feeding), in which the dragonflies fly in small groups
over a small area to search for food sources. The migration mechanism is called dynamic
swarm (migratory). In this phase, the dragonflies fly along one direction in larger groups
so that the swarm migrates. Static and dynamic swarms are illustrated in Fig 1. Similarly
to other nature-inspired algorithms, the DA consists of two phases: exploration, inspired
by the static swarming behavior, and exploitation, inspired by the dynamic swarming
behavior.

(a) Static swarm (b) Dynamic swarm

Figure 1: Static and dynamic swarming behaviors of dragonflies when foraging (each geometric figure
represents a class of search agents)

To model the swarming behavior of dragonflies, five individual behaviors are utilized
as follows. In the following equations, X represents the position of the current search
agent, Xj represents the j-th neighbor of the X search agent, and N is the neighborhood
size [63]:

• Separation is a mechanism that a search agent applies to stay away from other

7



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

neighboring search agents. This behavior is mathematically modeled as Eq. (1):

Si = −
N
∑

j=1

X −Xi (1)

• Alignment indicates how an individual matches its velocity with the velocity of other
neighboring individuals. This behavior is mathematically modeled as Eq. (2):

Ai =

∑N

j=1 Vj

N
(2)

where Vj represents the velocity of the j-th neighbor.

• Cohesion refers to the tendency of individuals to fly towards the neighboring center
of mass. This behavior is mathematically modeled as Eq. (3):

Ci =

∑N

j=1 xj

N
−X (3)

• Attraction refers to the tendency of individuals to fly towards the food source. The
attraction between the food source and the ith solution is mathematically modeled
as Eq. (4):

Fi = Floc −X (4)

where Floc represents the position of the food source.

• Distraction refers to the tendency of individuals to fly away from an enemy. The
distraction between the enemy and the ith solution is mathematically modeled as
Eq. (5):

Ei = Eloc +X (5)

where Eloc represents the enemy’s position.

In the DA, the food source fitness and location are supposed to be updated using
the best candidate (search agent) so far. In addition, the fitness and location of the
enemy should be updated using the worst candidate. This causes convergence to-
wards promising areas and divergence outwards non-promising regions of the search
space.

Based on the framework of the PSO algorithm, the DA uses two vectors to update
the position of a dragonfly: the step vector (∆X) that is similar to the velocity
vector in PSO and the position vector. The step vector represents the dragonflies’
movement direction. The step vector is modeled as Eq. (6):

∆Xt+1 = (sSi + aAi + cCi + fFi + eEi) + wXt (6)

where s, w, a, c, f , and e represent the weights of the separation Si, alignment
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Ai, cohesion Ci, attraction towards the food source Fi, and distraction from the
enemy Ei of the i-th individual’s respectively. These weights enable the DA to
achieve different exploration and intensification behaviors during optimization. An
extensive analysis of the effect of those parameters on the DA and their values can
be found in [6].

The position of an individual is updated as in Eq. (7):

Xt+1 = Xt +∆Xt+1 (7)

where t is the current iteration.

Algorithm 1 shows the pseudocode of the DA. The algorithm starts by creating a
random initial population. The positions and step vectors of dragonflies are randomly
defined. In each iteration, the algorithm repeatedly executes the following steps until a
termination criterion is satisfied. Firstly, each individual in the population is evaluated
using a fitness function. Secondly, the main coefficients are updated. Thirdly, the separa-
tion (S), alignment (A), and cohesion (C), food source (F ) and enemy (E) are updated
using Eqs. 1 to 5. Finally, the step vectors and the position are updated using Eqs 6 and
Eq. 7, respectively.

Finally, the best solution found so far is returned.

Algorithm 1 Pseudocode of the DA

Initialize the population Xi(i = 1, 2, . . . , n)
Initialize ∆Xi(i = 1, 2, . . . , n)
while (end condition is not satisfied) do

Evaluate each dragonfly
Update (F ) and (E)
Update the main coefficients (i., e., w, s, a, c, f, and e)
Calculate S,A,C, F , and E (using Eqs. (1 to 5))
Update step vectors (∆Xt+1) using Eq. (6)
Update Xt+1 using Eq. (7)

Return the best solution

4. Binary Dragonfly Algorithm (BDA)

In a binary optimization problem, the search space is considered as a hypercube, where
an individual can change its position from one location to another by changing one or
more bits of its position vector x = {x1, x2, ..., xd}. Since the original DA was designed
for handling continuous optimization problems, the position of an individual is updated
by adding the current position vector to the step vector. However, this mechanism cannot
be used to handle a binary optimization problem such as feature selection. According to
a previous study Mirjalili and Lewis [20], employing a transfer function is an effective and
convenient way of converting a continuous algorithm into a binary one. Transfer functions

9
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are categorized in two families according to their shapes: S-shaped and V-shaped. Fig. 2
depicts these two families of transfer functions.
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(a) S-shaped TF
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Figure 2: Transfer functions families (a) S-shaped and (b) V-shaped [20]

Generally speaking, transfer functions are used to generate the probability of changing
a position’s elements to 0 or 1 based on the value of the step vector (velocity) of the ith

search agent in the dth dimension in the current iteration (t) as an input parameter.
In a previous study [6], the transfer function of Eq. (8 was employed to calculate the
probability of changing the continuous positions to binary.

T (vid(t)) = |(vid(t))/
√

1 + (vid(t))
2| (8)

The result T (vik(t)), obtained from Eq. (8) is then used to convert the i-th element of
the position vector to 0 or 1 according to Eq. 9

X(t+ 1) =

{

¬Xt r < T (vik(t))
Xt r ≥ T (vik(t))

(9)

where r is a random number in the [0,1] interval.
The step vector indicates the momentum of the current individual and defines the

magnitude of movement. A lower step vector value indicates that the individual is very
close to the best solution and needs to move in smaller steps (exploitation). In contrast,
if the step vector value is large, the search agent is far from the best solution so far
and requires abrupt changes (exploration) [64]. In a binary algorithm, where one uses the
step vector to calculate the probability of changing positions, TFs significantly impact the
balance between exploration and exploitation. If the transfer function does not change,
probability will be calculated in the same manner throughout the optimization process.
Changing the TF has the potential to leverage the impact of the step vector on position
updates for exploring and exploiting the search space.

10
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5. The proposed approach

The first TF Eq. (10) was proposed by Kennedy and Eberhart [38]. This function
belongs to the S-shaped family.

T (vki (t)) =
1

1 + e−vk
i
(t)

(10)

where vik(t) represents the step vector of the i-th search agent at the t-th iteration in the
k-th dimension.

Each element of the vector representing the current individual will be changed accord-
ing to Eq. 11 based on the probability value T (vik(t)) obtained from Eq. 10.

xk
i (t+ 1) =

{

1 rand < T (vki (t+ 1))
0 rand ≥ T (vki (t+ 1))

(11)

An extensive study of the influence of TFs on the efficiency and final results of binary
PSO was recently presented in [22]. The study evaluated three classes of TFs including
S-shaped, V-shaped and linear normalized TFs.

By observing the sigmoid function in Eq. 10, it can be seen that the current version
of this function does not provide a good balance between exploration and exploitation,
where the exploration rate should be more than the exploitation rate at the beginning of
the optimization process. Thus, some promising areas inside the search space may remain
unexplored. As a result, there is a high possibility that the optimizer will get trapped in
local optima (LO). A similar phenomenon can also be observed during the exploitation
stage.

Inspecting the ordinary TFs (see Fig. 2), it can be seen that with the small absolute
values of inputs, the probability of flipping an element in the dth dimension of a solution
is high, while with the large absolute values of inputs the flipping probability is low.
Therefore, to better explore the search space at the early stages of the optimization
process, a small absolute value of step vector (close to zero) is preferable. On the other
hand, to better exploit the search space in the final stages of the optimization process,
a large absolute value of step vector is preferable. With the current form of the sigmoid
function, a high flipping probability is produced when a low probability is required.

As a result, there is a high probability that the optimizer will oversight good solutions
in the neighborhood of the solutions that have been found during the exploration phase.
All these issues are caused by the fact that a TF cannot map step vector values to
appropriate probability values without changing its shape during the optimization process.

Another TF that belongs to the V-shaped family (VT1) is represented in Eq. 12:

T (∆x) =

{

1− 2
1+e−2x x ≤ 0

2
1+e−2x − 1 x > 0

(12)

The position of the current search agent is changed in Eq. (13) according to the
probability value T (vik(t)) obtained from Eq. 12.

11
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Xk+1
id =







0 r ≤ T (∆xt+1)and∆xt+1 ≤ 0
1 r ≤ T (∆xt+1)and∆xt+1 ≥ 0
Xk

id r > T (∆xt+1)
(13)

where r is a random number in the [0,1] interval.
After examining VT1, one can see that the algorithm still suffers from biased stability

between the exploration and exploitation phases due to problems similar to those of the
S-shaped function. Inspired by [22], an effective strategy to mitigate this problem in the
BDA is to update the S-shaped TF in Eq. 10 and design a new model of TFs as shown
in Eq. 14. In the proposed TFs, a time-varying scheme is employed to achieve a better
balance between exploration and exploitation.

T (vki (t), τ) =
1

1 + e
−vk

i
(t)

τ

(14)

where τ is a time-varying variable that starts with an initial value and gradually decreases
over iterations as shown in Eq. 15.

τ =

(

1−
t

T

)

τmax +
t

T
τmin (15)

where τmin and τmax are the min and max values of the control parameter τ , T represents
the maximum number of iterations and tk+1 represents the current iteration.

The key fact about the newly proposed time-dependent TF is that its value can be
linearly increased as the step vector of search agents increases. During early stages (when
τ = τmax), the probability of changing the position’s element is higher, which provides
higher exploration capacities for the initial population. On the other hand, the probability
of changing the position’s element becomes very low once τ = τmin, which provides steadier
exploitation inclinations in latter stages of the run.

In previous work [22], only one TF was employed and tested on the 0-1 knapsack
problem, which was the improved sigmoid function. Authors of that study stated that
the V-shaped TF suffers from the same problem as the S-shaped TF, but they did not
study the possibility of adaptively updating this function over the iterations. In this work,
the original TF is modified by adding a time-varying parameter as shown in Eq. 16. The
proposed TF satisfies the design considerations mentioned in [22, 20].

T (∆x, τ) =

{

1− 2

1+e
−2x
τ

x ≤ 0
2

1+e
−2x
τ

− 1 x > 0
(16)

In this work, seven new TFs manipulating the coefficient of x are introduced.
Table 1 contains the mathematical formulations of the TFs proposed in this research.

Figure 3 and Figure 4 show the behaviors of the proposed time-dependent TFs.
Algorithm 2 shows the pseudocode of BDA. The algorithm starts by creating a random

initial population; the position and step vectors of dragonflies are randomly defined. In
each iteration, the algorithm repeatedly executes the following steps until a termination

12
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Table 1: TVS-shaped and TVV -shaped transfer functions

TVS family TVV family
Name Transfer function Name Transfer function

TVS1 T (x, τ) = 1

1+e
−2x
τ

TVV 1 T (x, τ) =

{

1− 2

1+e
−2x
τ

x ≤ 0
2

1+e
−2x
τ

− 1 x > 0

TVS2 T (x, τ) = 1

1+e
−x

τ

TVV 2 T (x, τ) =

{

1− 2

1+e
−x

τ

x ≤ 0
2

1+e
−x

τ

− 1 x > 0

TVS3 T (x, τ) = 1

1+e
−x

2τ
TVV 3 T (x, τ) =

{

1− 2

1+e
−x

2τ
x ≤ 0

2

1+e
−x

2τ
− 1 x > 0

TVS4 T (x, τ) = 1

1+e
−x

3τ
TVV 4 T (x, τ) =

{

1− 2

1+e
−x

3τ
x ≤ 0

2

1+e
−x

3τ
− 1 x > 0
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(b) TVS2
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(c) TVS3
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(d) TVS4

Figure 3: Demonstration of the time-varying S-shaped TFs when τmax =4 and τmin =0.01 during 100
iterations with time step 2. Note that more vertical curves belong to the lower values of τ .
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(c) TVV 3
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Figure 4: Demonstration of the time-varying V-shaped TFs when τmax =4 and τmin =0.01 during 100
iterations with time step 2. Note that more vertical curves belong to the lower values of τ .
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criterion is satisfied. Firstly, each individual in the population is evaluated using a fitness
function. Secondly, the main coefficients are updated. Thirdly, the separation (S), align-
ment (A), and cohesion (C), food source (F ) and enemy (E) are calculated using Eqs. 1
to 5. Finally, the step vectors, transfer and the position are updated using Eqs 6, 10, and
11.

Note that adding the time-varying S-shaped and V-shaped TFs does not change the
computational complexity of the DA since this component is run only once for each
solution and in each iteration. Therefore, the computational complexity of binary DA is
of O(tnd) where t is the number of iterations, n shows the number of solutions, and d
indicates the number of dimensions (variables). This complexity is identical to those of
other comparative algorithms in this work: PSO, bGWO, GA, BGSA, and BBA.

Algorithm 2 Pseudocode of the BDA algorithm

Initialize the population Xi(i = 1, 2, . . . , n)
Initialize ∆Xi(i = 1, 2, . . . , n)
Set τmax and τmin

Initialize τ using Eq. 15
while (end condition is not satisfied) do

Evaluate each dragonfly
Update (F ) and (E)
Update the main coefficients (i., e., w, s, a, c, f, ande)
Calculate S,A,C, F , and E (using Eqs. (1 to 5))
Update step vectors using Eq. (6)
Calculate T (∆X) using an equation from Table 1
Update Xt+1 using Eq. 11 or Eq. 13

Return the best solution

5.1. BDA for feature selection

Feature selection is considered as a binary optimization problem, where solutions are
restricted to binary values. Therefore, the binary version of the DA could be employed
to solve this problem. In this work, a vector of zeros and ones is used to represent a
solution to a FS problem, where a zero indicates that the corresponding feature is not
selected and a one indicates that the corresponding feature is selected. The length of
the solution vector is equal to the number of features in the original dataset. In this
work, eight wrapper feature selection approaches using the BDA are proposed. Each
approach utilizes a transfer function to convert a continuous value to a binary value. The
KNN classifier [65] evaluates the selected feature subsets. The fitness function considers
classification accuracy and the number of selected features, which fulfill the consideration
that FS is a multi-objective problem. The objective function is presented in Eq. 17:

↓ Fitness = αγR(D) + β
|C|

|N |
(17)
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where γR(D) represents the classification error rate, while |C| is the number of selected
features and |N | is the total number of features in the original dataset, α and β are two
parameters corresponding to the importance of classification quality and subset length, α
is in the [0,1] interval and β =(1 −α) is adapted from [59].

6. Experimental evaluation and discussion

6.1. Experimental setup

The proposed approaches were tested on eighteen feature selection datasets obtained
from the UCI data repository [66]. Table 2 shows characteristics of these datasets. The
datasets belong to different fields (e.g. biology, politics, games, physics, and chemistry)
and are of different sizes. The diversity of the selected datasets facilitates benchmarking
of the proposed approaches from different perspectives. In the proposed approach, to
validate the optimality of the results, the hold-out strategy was used, where each dataset
is randomly divided into two parts; training and testing, where 80% of each dataset is
used for training and the remaining 20% is for testing purposes [59]. All experiments were
repeated for 30 independent times to obtain statistically meaningful results. Furthermore,
each algorithm was implemented using MATLAB 2013 and was run on an Intel Core i5
machine, 2.2 GHz CPU and 4 GB of RAM.

Table 2: Details of datasets

Dataset No. of Attributes No. of Objects No. of Classes
Breastcancer 9 699 2
BreastEW 30 569 2
Exactly 13 1000 2
Exactly2 13 1000 2
HeartEW 13 270 2
Lymphography 18 148 4
M-of-n 13 1000 2
PenglungEW 325 73 7
SonarEW 60 208 2
SpectEW 22 267 2
CongressEW 16 435 2
IonosphereEW 34 351 2
KrvskpEW 36 3196 2
Tic-tac-toe 9 958 2
Vote 16 300 2
WaveformEW 40 5000 3
WineEW 13 178 3
Zoo 16 101 7

6.2. Parameter tuning

BDA is a metaheuristic algorithm that is highly dependent on the parameter values
when searching for the optimal solutions. Setting the suitable parameter values requires
an extra effort since it depends on the problem being solved. To determine the most
suitable values of the proposed approaches, the following empirical studies were conducted.
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The parameters that were included in these studies are population size, max number of
iterations, α and β (in the fitness function), the number of nearest neighbors (k) in the
k-NN classifier. In all initial empirical studies, the Leukemia dataset was used because it
revealed more sensitivity compared to other datasets.

6.3. Assessment of the impact of population size and number of iterations

Table 3 compares the performance of the optimizer as it is monitored for slight adjust-
ments in the parameter values. As it can be interpreted from Table 3, for a population size
of 10 and 100 iterations, the optimizer can obtain the best results in terms of classification
accuracy, and is very competitive in terms of selection ratio and time.

Table 3: Average accuracy, selection ration and time results, when using different combinations of popu-
lation sizes and number of iterations for the Leukemia dataset.

Pop Size Max Iterations Accuracy Selection Ration Time

10 100 1 0.485 212.11

20 100 0.938 0.481 455.18

30 100 1 0.474 698.32

50 100 1 0.473 1262.41

10 150 1 0.477 318.44

20 150 0.933 0.477 685.21

30 150 0.933 0.472 697.86

50 150 0.916 0.481 1891.88

6.4. Assessment of the impact of α and β on the fitness function

FS problems cover two contradictory objectives (i.e., classification accuracy (maxi-
mization) and selection ration (minimization)) in the optimization process. In the fitness
function (see Eq. 17), those two objectives are presented, and two values (α and β) were
used to represent their weights for the user. That is, α determines the weight of clas-
sification accuracy, while β corresponds to the weight of the features reduction rate. In
this section, an initial empirical study is presented to assess the influence of both α and
β on the performance of the BDA optimizer. Different values for α and β were used to
measure the classification accuracy and selection ration. The leukemia dataset was used
in all experiments in this section due to its sensitivity in comparison with other datasets.
Table 4 shows the classification accuracy and selection ration with different combinations
of α and β values. Inspecting the results in Table 4, it can be seen that accuracy rate
and the selection ration are changing with the different values of α and β. That is to
say, when increasing alpha, the classification accuracy increases and the selection ratio
decreases.

To make fair comparisons with the results obtained in previous works, we set α = 0.99
and β = 0.01 which are commonly used values in the literature [55].

In the experiments, the K-NN classifier (with K = 5 [59]), with the Euclidean distance
metric, was used to evaluate the feature subsets.

The parameters setting of the algorithms are outlined in Table 5.
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Table 4: Impact of α and β on the accuracy and selection ration results for the Leukemia dataset.

Alpha Beta Accuracy Selection Ration Time

0.5 0.5 0.956 0.476 212.21

0.7 0.3 0.967 0.474 212.30

0.9 0.1 0.936 0.477 212.15

0.99 0.01 1 0.471 211.91

Table 5: The parameter settings

Parameter Value

Population size 10
Number of iterations 100
Dimension Number of features
Number of runs for each technique 30
α in fitness function 0.99
β in fitness function 0.01
a in GWO [2 0]
Qmin Frequency minimum in BA 0
Qmax Frequency maximum in BA 2
A Loudness in BA 0.5
r Pulse rate in BA 0.5
G0 in GSA 100
α in GSA 20

6.5. Results and discussion

To study the influence of the newly proposed time-dependent TFs on the performance
of the BDA, this paper provides a comparison of the results obtained by BDA with eight
static TFs and BDA, and those obtained by BDA with eight time-dependent TFs. The
best reported approaches were then compared with state-of-the-art FS methods using two
phases. In the first phase, we implemented three recent FS techniques (i.e. BGSA, BBA,
and bGWO) and compared them with the proposed approaches. Then in the second phase
we used some previously published results of some well-known algorithms (GA, PSO, and
GWO). The comparisons are done using the following criteria:

• The mean classification accuracy was obtained from 30 runs. For each run, the
accuracy of the best solution is considered.

• The average selection size from 30 runs. In each run, the cardinality of the best
solution is considered.

• The average of the best fitness values obtained from each approach are reported.

• Statistical standard deviation (STD) is reported for all approaches to indicate the
stability and robustness of the optimizer.

• Wilcoxon signed-rank test to assess the significance of the results obtained from the
proposed approach.
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• Specificity, Sensitivity, and Area Under the ROC Curve (AUC) [67] for binary
datasets for each approach are reported.

Note that in the following tables, the best results are highlighted in bold.
The classification accuracy obtained from the approaches that are based on S-shaped

TFs are reported in Table 6, followed by the results of the approaches based on the V-
shaped TFs in Table 7. We named the approaches with the static TFs as S1 to S4 for
the S-shaped TFs, and V1 to V4 for the V-shaped TFs. Similarly, the time dependent
TFs are named as TVS1 to TVS4 for the S-shaped functions and TVV 1 to TVV 4 for the
V-shaped TFs.

In general, it is observed that the BDA with time-dependent TFs (TV −TFs) perform
better than those with fixed TFs. In Table 6, it is observed that TVS1 provided the best
results on 50% of the datasets, and on three datasets it provided the same results as S1.
In the case of TVS2, the traditional TFs approach performs better than the TV approach,
however, it can be found that TVS3 obtained the best results for eight datasets and is
competitive with S3 for five datasets, while S3 obtained the best results for only five
datasets. S4 and TVS4 obtained the same results. The results in Table 6 show that TV
approaches are robust since they have the smallest standard deviation.

By observing the results of Table 7, it is obvious that TV performs well compared to
traditional TFs based approaches. An exception is the case of V2 and TVV 2 that obtained
nearly the same results, while TVV 1 , TVV 3 and TVV 4 obtained the best results for 70%,
72% and 77% of the datasets, respectively. The time TV-TFs with V-shaped functions
highly improved the performance of the BDA. This is because a good balance is achieved
between exploration and exploitation. The robustness of TV-BDA approaches is also
observed as they obtained smaller values in terms of standard deviation.

In Tables 8 and 9, the ratio of kept feature to the total number of features using the
BDA that utilize the traditional TFs and TV-BDA are reported. Once again, the TV-
BDA outperforms TF-BDA approaches on the majority of the datasets. In particular,
TVS1 selected the minimal number features for 10 datasets and was competitive with other
approaches on the two other datasets.

The same observation can be made when studying the behaviors of TVS2, TVS3, and
TVS4, which achieved the best performance on 12, 13 and 11 datasets, respectively. Since
the main objective of FS is to minimize the number of selected features without decreas-
ing the classification accuracy as much as possible, we can say that S-shaped TV-BDA
approaches showed good performance since they obtained comparative classification ac-
curacy using a smaller number of features. The same observation can be made from Table
9, where TV-BDA approaches obtained comparative performance in terms of number of
selected features, while the classification accuracy of those approaches is much better than
TF-BDA approaches.

From Table 10, it is found that the S-shaped TV-BDA optimizers are better than
TF-BDA in terms of fitness measures. TVS1 obtained the best fitness value on 50% of
the datasets, and on two datasets it obtained the same results as S1. In the case of TVS3

and TVS4, it can be detected that they obtained the best results for 67% and 55% of the
datasets, respectively.
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Table 6: Comparison between the original S-shaped transfer functions and time dependent variants in
terms of accuracy

Benchmark Measure S1 TVS1 S2 TVS2 S3 TVS3 S4 TVS4

Breastcancer
AVG 0.9643 0.9786 0.9714 0.9852 0.9929 0.9929 0.9786 0.9786
STD 0.0000 0.0000 0.0000 0.0018 0.0000 0.0000 0.0000 0.0000

BreastEW
AVG 0.9839 0.9716 0.9889 0.9769 0.9822 0.9792 0.9564 0.9936
STD 0.0052 0.0072 0.0039 0.0075 0.0028 0.0049 0.0059 0.0056

Exactly
AVG 1.0000 1.0000 1.0000 0.9902 1.0000 1.0000 0.9998 1.0000
STD 0.0000 0.0000 0.0000 0.0539 0.0000 0.0000 0.0009 0.0000

Exactly2
AVG 0.7922 0.7892 0.7952 0.7630 0.7983 0.7725 0.7658 0.7508
STD 0.0141 0.0099 0.0100 0.0060 0.0040 0.0222 0.0116 0.0057

HeartEW
AVG 0.9154 0.9377 0.8691 0.8679 0.8846 0.8759 0.8759 0.9080
STD 0.0173 0.0091 0.0047 0.0193 0.0080 0.0139 0.0170 0.0191

Lymphography
AVG 0.9440 0.9667 0.9510 0.9608 0.9844 0.9922 0.9822 0.9889
STD 0.0218 0.0000 0.0168 0.0215 0.0169 0.0143 0.0169 0.0183

M-of-n
AVG 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

penglungEW
AVG 1.0000 0.9044 1.0000 1.0000 0.9289 1.0000 0.9889 0.9600
STD 0.0000 0.0336 0.0000 0.0000 0.0169 0.0000 0.0253 0.0332

SonarEW
AVG 0.9825 0.9992 1.0000 1.0000 0.9683 0.9841 0.9865 0.9651
STD 0.0165 0.0043 0.0000 0.0000 0.0144 0.0114 0.0135 0.0136

SpectEW
AVG 0.8685 0.9352 0.9049 0.8617 0.9228 0.8519 0.8741 0.8438
STD 0.0141 0.0117 0.0064 0.0094 0.0120 0.0109 0.0123 0.0093

CongressEW
AVG 0.9820 0.9977 0.9885 0.9502 0.9966 0.9866 0.9766 0.9751
STD 0.0065 0.0047 0.0000 0.0063 0.0061 0.0044 0.0021 0.0044

IonosphereEW
AVG 0.9634 0.9535 0.9582 0.9347 0.9728 0.9911 0.9639 0.9075
STD 0.0102 0.0092 0.0094 0.0094 0.0051 0.0094 0.0096 0.0121

KrvskpEW
AVG 0.9853 0.9858 0.9842 0.9912 0.9787 0.9794 0.9754 0.9840
STD 0.0030 0.0020 0.0031 0.0029 0.0048 0.0031 0.0040 0.0032

Tic-tac-toe
AVG 0.8431 0.8267 0.8594 0.8333 0.8323 0.8469 0.8490 0.8290
STD 0.0018 0.0049 0.0000 0.0000 0.0021 0.0064 0.0000 0.0099

Vote
AVG 0.9739 0.9694 0.9828 0.9850 0.9667 0.9894 0.9783 0.9994
STD 0.0084 0.0077 0.0030 0.0067 0.0000 0.0082 0.0078 0.0030

WaveformEW
AVG 0.7544 0.7630 0.7581 0.7733 0.7542 0.7580 0.7534 0.7621
STD 0.0078 0.0064 0.0074 0.0086 0.0078 0.0066 0.0058 0.0077

WineEW
AVG 1.0000 0.9750 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Zoo
AVG 1.0000 1.0000 0.9524 1.0000 1.0000 1.0000 1.0000 1.0000
STD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Ranking W|T|L 7|3|8 8|3|7 8|4|6 6|4|8 5|5|8 8|5|5 7|4|7 7|4|7
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Table 7: Comparison between the original V-shaped transfer functions and time dependent variants in
terms of accuracy results

Benchmark Measure V1 TVV 1 V2 TVV 2 V3 TVV 3 V4 TVV 4

Breastcancer
AVG 0.9786 0.9671 0.9805 0.9781 0.9569 0.9895 0.9619 0.9771
STD 0.0050 0.0036 0.0032 0.0072 0.0083 0.0070 0.0057 0.0047

BreastEW
AVG 0.9465 0.9582 0.9816 0.9658 0.9520 0.9801 0.9494 0.9740
STD 0.0146 0.0121 0.0070 0.0093 0.0091 0.0065 0.0119 0.0096

Exactly
AVG 0.8847 0.8605 0.9075 0.8947 0.9093 0.9137 0.8838 0.9290
STD 0.0860 0.0971 0.0891 0.0814 0.0873 0.0841 0.1051 0.0551

Exactly2
AVG 0.7230 0.7428 0.7190 0.7595 0.6985 0.7358 0.7417 0.7257
STD 0.0216 0.0214 0.0195 0.0166 0.0209 0.0216 0.0167 0.0200

HeartEW
AVG 0.8463 0.8617 0.8525 0.8525 0.7926 0.8321 0.8148 0.8858
STD 0.0234 0.0251 0.0269 0.0250 0.0235 0.0153 0.0188 0.0327

Lymphography
AVG 0.8877 0.8967 0.8673 0.7956 0.8744 0.9121 0.8611 0.8950
STD 0.0296 0.0308 0.0309 0.0287 0.0243 0.0268 0.0264 0.0321

M-of-n
AVG 0.9493 0.9523 0.9518 0.9450 0.9673 0.9578 0.9463 0.9732
STD 0.0383 0.0473 0.0373 0.0435 0.0301 0.0405 0.0557 0.0275

penglungEW
AVG 0.8733 0.9333 0.9778 0.9556 1.0000 0.9222 0.9333 0.8067
STD 0.0203 0.0000 0.0320 0.0320 0.0000 0.0466 0.0000 0.0441

SonarEW
AVG 0.9476 0.9214 0.9595 0.9587 0.9659 0.9563 0.9722 0.9952
STD 0.0229 0.0251 0.0243 0.0216 0.0162 0.0251 0.0199 0.0097

SpectEW
AVG 0.8580 0.8599 0.8525 0.8099 0.7796 0.8198 0.8969 0.8765
STD 0.0235 0.0232 0.0165 0.0279 0.0171 0.0168 0.0256 0.0164

CongressEW
AVG 0.9521 0.9586 0.9548 0.9713 0.9678 0.9705 0.9686 0.9950
STD 0.0091 0.0119 0.0113 0.0108 0.0093 0.0130 0.0074 0.0072

IonosphereEW
AVG 0.9535 0.9437 0.9582 0.9779 0.9042 0.9700 0.9131 0.9249
STD 0.0182 0.0133 0.0120 0.0096 0.0186 0.0121 0.0129 0.0130

KrvskpEW
AVG 0.9620 0.9664 0.9666 0.9581 0.9649 0.9733 0.9658 0.9705
STD 0.0100 0.0105 0.0082 0.0120 0.0119 0.0079 0.0163 0.0088

Tic-tac-toe
AVG 0.8153 0.8227 0.7939 0.8021 0.8347 0.8017 0.7915 0.8215
STD 0.0320 0.0238 0.0171 0.0269 0.0208 0.0225 0.0209 0.0196

Vote
AVG 0.9489 0.9544 0.9361 0.9733 0.9594 0.9683 0.9733 0.9617
STD 0.0131 0.0175 0.0146 0.0155 0.0129 0.0119 0.0136 0.0089

WaveformEW
AVG 0.7382 0.7456 0.7493 0.7554 0.7404 0.7496 0.7433 0.7488
STD 0.0111 0.0098 0.0105 0.0113 0.0089 0.0100 0.0125 0.0097

WineEW
AVG 0.9769 0.9537 0.9778 0.9778 0.9981 1.0000 0.9991 0.9991
STD 0.0105 0.0234 0.0153 0.0170 0.0070 0.0000 0.0051 0.0051

Zoo
AVG 1.0000 1.0000 0.9555 0.9984 0.9921 0.9825 0.9524 0.9825
STD 0.0000 0.0000 0.0121 0.0087 0.0181 0.0233 0.0354 0.0233

Ranking W|T|L 5|1|12 12|1|5 10|0|8 8|0|10 5|0|13 13|0|5 4|1|13 13|1|4
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Table 8: Comparison between the original S-shaped transfer functions and time dependent variants in
terms of minimum number of selected features

Benchmark Measure S1 TVS1 S2 TVS2 S3 TVS3 S4 TVS4

Breastcancer
AVG 6.00 7.00 5.00 4.93 5.00 5.00 4.00 4.00
STD 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00

BreastEW
AVG 12.83 12.63 13.43 11.47 13.07 11.50 13.00 13.33
STD 1.97 2.06 1.50 2.05 2.15 2.15 2.23 2.11

Exactly
AVG 6.00 6.00 6.03 5.97 6.13 6.00 6.33 6.00
STD 0.00 0.00 0.18 0.18 0.35 0.00 0.48 0.00

Exactly2
AVG 8.23 8.33 6.33 8.93 2.40 7.10 5.03 8.90
STD 3.07 2.96 2.68 0.58 1.52 2.72 4.11 1.42

HeartEW
AVG 4.97 7.30 6.60 5.93 6.63 5.77 6.40 6.63
STD 0.18 1.12 0.86 1.34 0.93 1.50 1.10 1.67

Lymphography
AVG 7.97 5.90 8.20 7.80 8.73 8.23 6.53 7.17
STD 2.14 1.49 1.52 2.07 1.05 2.73 2.27 1.76

M-of-n
AVG 6.00 6.00 6.00 6.00 6.13 6.03 6.20 6.00
STD 0.00 0.00 0.00 0.00 0.35 0.18 0.41 0.00

penglungEW
AVG 125.80 121.40 129.87 116.97 145.13 121.17 144.73 136.33
STD 4.58 8.29 5.16 3.76 6.97 4.71 8.69 9.35

SonarEW
AVG 31.23 27.73 26.73 22.53 28.00 25.57 27.87 25.40
STD 6.06 3.11 2.69 2.60 3.44 3.35 4.00 3.64

SpectEW
AVG 8.07 8.47 9.17 9.57 8.80 6.83 9.53 7.40
STD 2.26 1.57 1.18 2.28 1.86 2.56 1.72 2.65

CongressEW
AVG 6.13 4.50 2.17 6.87 5.43 5.53 6.53 5.70
STD 1.48 1.14 0.38 1.14 0.97 2.29 1.11 1.21

IonosphereEW
AVG 13.53 12.43 13.77 12.60 14.37 11.47 13.93 12.17
STD 2.70 2.43 2.54 2.27 2.82 1.89 2.41 2.91

KrvskpEW
AVG 22.50 19.67 21.37 21.17 22.57 20.67 21.53 20.67
STD 2.76 2.59 2.71 1.97 2.73 2.32 2.47 1.86

Tic-tac-toe
AVG 6.60 6.87 7.00 6.00 6.20 7.00 7.00 6.67
STD 1.04 0.35 0.00 0.00 0.41 0.00 0.00 0.76

Vote
AVG 4.13 5.30 6.30 5.83 4.73 3.37 5.57 5.83
STD 0.82 1.70 1.15 1.78 1.82 1.43 2.73 1.78

WaveformEW
AVG 26.07 25.03 23.97 25.53 23.53 23.00 23.37 21.33
STD 3.49 4.58 3.74 2.96 3.14 3.18 2.97 2.88

WineEW AVG 5.07 4.50 3.40 4.33 4.57 3.57 4.87 3.93
STD 0.25 0.82 0.86 0.48 0.50 0.63 0.63 0.64

Zoo AVG 4.87 2.70 6.17 3.77 3.43 4.43 1.73 3.17
STD 0.63 0.60 0.38 0.73 0.50 0.50 0.58 0.38

Ranking W|T|L 6|2|10 10|2|6 5|1|12 12|1|5 4|1|13 13|1|4 6|1|11 11|1|6
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Table 9: Comparison between the original V-shaped transfer functions and time dependent variants in
terms of minimum number of selected features

Benchmark Measure V1 TVV 1 V2 TVV 2 V3 TVV 3 V4 TVV 4

Breastcancer
AVG 5.23 5.63 4.60 5.23 4.77 5.27 5.47 5.37
STD 1.30 1.30 0.93 0.77 0.97 0.74 1.43 0.81

BreastEW
AVG 16.50 18.17 17.87 18.43 16.17 17.50 16.77 16.37
STD 2.89 3.03 2.64 3.57 2.64 2.56 2.19 2.47

Exactly
AVG 9.10 9.33 8.90 9.43 8.90 8.87 8.60 8.97
STD 1.32 1.30 2.09 1.45 1.30 1.14 1.16 0.93

Exactly2
AVG 8.87 6.90 8.87 5.53 7.37 9.27 8.57 9.67
STD 1.43 3.01 2.70 2.57 2.59 2.29 1.70 1.37

HeartEW
AVG 7.53 7.73 8.70 7.87 7.47 9.73 7.87 9.07
STD 2.10 1.68 1.84 1.68 1.83 1.48 1.50 1.53

Lymphography
AVG 11.77 13.00 10.30 11.20 11.33 10.47 11.03 10.80
STD 2.56 2.13 2.72 2.20 1.75 1.72 2.24 1.73

M-of-n
AVG 9.57 8.93 9.37 9.20 8.60 8.63 8.50 8.43
STD 1.65 1.46 1.16 1.10 0.77 1.10 1.41 1.14

penglungEW
AVG 151.90 155.50 171.83 161.57 156.03 174.20 152.17 165.40
STD 9.90 8.01 24.62 15.75 7.81 19.05 6.12 15.90

SonarEW
AVG 35.53 37.07 35.47 34.37 33.63 35.97 33.07 35.33
STD 4.59 4.62 4.15 5.18 3.97 4.19 2.89 4.88

SpectEW
AVG 12.53 12.33 12.63 11.73 10.63 13.60 12.77 11.20
STD 2.52 2.45 2.30 2.33 2.98 2.99 2.13 1.67

CongressEW
AVG 8.63 9.40 9.17 8.87 9.30 8.60 9.07 7.10
STD 1.40 2.62 1.72 1.61 1.62 2.11 1.78 1.95

IonosphereEW
AVG 18.73 19.40 20.67 18.57 18.23 18.37 18.13 17.53
STD 3.90 2.65 3.09 3.54 3.07 2.93 2.27 3.18

KrvskpEW
AVG 27.10 26.93 26.53 26.63 26.40 26.30 25.20 25.13
STD 2.25 2.05 2.49 3.36 2.16 2.81 3.07 2.60

Tic-tac-toe
AVG 7.33 6.70 6.87 7.10 7.30 6.40 6.30 6.53
STD 1.30 1.24 0.90 1.16 0.92 1.07 0.70 0.57

Vote
AVG 9.80 8.37 8.63 10.23 7.83 7.10 7.40 8.47
STD 2.04 1.63 1.88 2.27 1.46 2.04 1.81 2.01

WaveformEW
AVG 30.43 30.90 30.57 29.37 28.80 29.07 27.03 30.57
STD 3.88 4.00 3.11 3.05 3.94 3.32 4.42 3.86

WineEW AVG 8.20 7.37 7.00 7.57 7.50 7.40 7.10 6.67
STD 1.69 1.52 0.87 1.63 1.17 1.45 1.77 1.37

Zoo AVG 7.17 5.60 7.57 8.67 9.20 9.03 8.43 8.47
STD 1.32 1.30 1.33 1.52 1.99 1.90 1.57 1.36

Ranking W|T|L 10|0|8 8|0|10 9|0|9 9|0|9 9|0|9 9|0|9 8|0|10 10|0|8
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Given that TV-BDA approaches have the lowest standard deviation as presented in
Table 11, TV-based approaches can be considered as more robust than approaches based
on traditional TFs. According to results of Table 11, V-shaped TV-BDA approaches
outperform traditional V-shaped approaches for most datasets, where TVV 1 outperformed
V1 on 72% of the datasets, and TVV 1, and TVV 1 are better for 72% and 77% of the
datasets, respectively.

These results indicate how important is the role of the TF in BDA, since by selecting a
suitable function, the performance of the BDA can be remarkably increased. Moreover, it
is clear that adapting the behavior of the TF through the optimization process has a major
influence on improving the performance of the BDA. Furthermore, the good performance
of the BDA highlights its ability at searching the feature space for the most informative
features and avoid premature convergence that may be caused by falling in local optima.

In addition, the improved potential to balance between exploration and exploitation
throughout iterations is another reason for the BDA’s superiority. Since the only mod-
ification is the replacement of the traditional TFs with the TV-TFs, these results show
that the adaptive control of the TFs can significantly improve the search ability of the
BDA. Overall, we can say that TVS3 is the best approach when compared with S-shaped
approaches, while TVV 4) is the best among the V-shaped approaches. In the next subsec-
tion, we assess the performance of those two approaches by comparing their performances
with other well-known state-of-the-art FS algorithms.

6.6. Comparison with other metaheuristic based approaches

After analyzing the results of the proposed approaches, this section presents a com-
parison between the best two approaches proposed in this work (TVS3 and TVV 4) and the
most popular metaheuristics-based feature selection algorithms (BGWO, BGSA, BPSO,
BBA, and GA).

The performance of TVS3 and TVV 4 is compared in terms of average accuracy and
standard deviation. As per results in Table 12, TVS3 performs better than TVV 4. It
obtained the best results for 78% of the datasets. Moreover, we can observe that the
performance of the proposed TVS3 approach is better than all the other algorithms for
all datasets in terms of classification accuracy. Figure 5 compares TVS3, TVV 4 and other
approaches in terms of classification accuracy. Based on reduction rates presented in Table
13, it is observed that TVS3 outperforms other algorithms for 10 out of 18 datasets, while
the BBA and the BGSA obtained the best results for seven datasets and one dataset,
respectively. The obtained reduction rates are represented in Fig. 6. Table 14 shows the
superiority of TVS3, where the reported fitness combines both classification accuracy and
reduction rate, and showed that TVS3 had the best values for 14 out of 18 datasets.
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Table 10: Comparison between the original transfer S-shaped functions and time dependent S-shaped
variants in terms of best fitness values

Benchmark Measure S1 TVS1 S2 TVS2 S3 TVS3 S4 TVS4

Breastcancer
AVG 0.0420 0.0290 0.0338 0.0201 0.0126 0.0126 0.0257 0.0257
STD 0.0000 0.0000 0.0000 0.0015 0.0000 0.0000 0.0000 0.0000

BreastEW
AVG 0.0202 0.0323 0.0155 0.0267 0.0220 0.0244 0.0475 0.0108
STD 0.0049 0.0070 0.0038 0.0074 0.0028 0.0048 0.0056 0.0053

Exactly
AVG 0.0046 0.0046 0.0046 0.0143 0.0047 0.0046 0.0050 0.0046
STD 0.0000 0.0000 0.0001 0.0532 0.0003 0.0000 0.0011 0.0000

Exactly2
AVG 0.2121 0.2151 0.2077 0.2415 0.2015 0.2307 0.2357 0.2535
STD 0.0141 0.0099 0.0081 0.0058 0.0030 0.0202 0.0084 0.0048

HeartEW
AVG 0.0875 0.0673 0.1346 0.1353 0.1194 0.1273 0.1278 0.0962
STD 0.0171 0.0083 0.0052 0.0187 0.0078 0.0143 0.0166 0.0177

Lymphography
AVG 0.0598 0.0363 0.0530 0.0431 0.0203 0.0123 0.0212 0.0150
STD 0.0214 0.0008 0.0162 0.0210 0.0165 0.0133 0.0165 0.0180

M-of-n
AVG 0.0046 0.0046 0.0046 0.0046 0.0047 0.0046 0.0048 0.0046
STD 0.0000 0.0000 0.0000 0.0000 0.0003 0.0001 0.0003 0.0000

penglungEW
AVG 0.0039 0.0983 0.0040 0.0036 0.0749 0.0037 0.0155 0.0438
STD 0.0001 0.0331 0.0002 0.0001 0.0166 0.0001 0.0248 0.0327

SonarEW
AVG 0.0225 0.0054 0.0045 0.0038 0.0361 0.0200 0.0180 0.0388
STD 0.0157 0.0042 0.0004 0.0004 0.0141 0.0111 0.0131 0.0133

SpectEW
AVG 0.1338 0.0680 0.0983 0.1412 0.0804 0.1498 0.1290 0.1580
STD 0.0134 0.0118 0.0065 0.0086 0.0116 0.0100 0.0118 0.0085

CongressEW
AVG 0.0217 0.0051 0.0127 0.0536 0.0068 0.0167 0.0272 0.0282
STD 0.0064 0.0041 0.0002 0.0058 0.0059 0.0040 0.0017 0.0044

IonosphereEW
AVG 0.0402 0.0497 0.0454 0.0683 0.0312 0.0122 0.0399 0.0951
STD 0.0102 0.0093 0.0093 0.0093 0.0049 0.0095 0.0093 0.0120

KrvskpEW
AVG 0.0208 0.0195 0.0216 0.0146 0.0274 0.0262 0.0304 0.0216
STD 0.0028 0.0022 0.0031 0.0030 0.0046 0.0033 0.0039 0.0031

Tic-tac-toe
AVG 0.1627 0.1792 0.1470 0.1717 0.1729 0.1594 0.1573 0.1767
STD 0.0006 0.0046 0.0000 0.0000 0.0025 0.0063 0.0000 0.0089

Vote
AVG 0.0284 0.0336 0.0210 0.0185 0.0360 0.0126 0.0249 0.0042
STD 0.0083 0.0070 0.0027 0.0066 0.0011 0.0073 0.0069 0.0031

WaveformEW
AVG 0.2496 0.2409 0.2455 0.2308 0.2492 0.2453 0.2500 0.2408
STD 0.0077 0.0069 0.0074 0.0084 0.0075 0.0070 0.0059 0.0077

WineEW
AVG 0.0039 0.0282 0.0026 0.0033 0.0035 0.0027 0.0037 0.0030
STD 0.0002 0.0083 0.0007 0.0004 0.0004 0.0005 0.0005 0.0005

Zoo
AVG 0.0030 0.0017 0.0510 0.0024 0.0021 0.0028 0.0011 0.0020
STD 0.0004 0.0004 0.0002 0.0005 0.0003 0.0003 0.0004 0.0002

Ranking W|T|L 7|2|9 9|2|7 9|1|8 8|1|9 6|1|11 11|1|6 8|1|9 9|1|8
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Table 11: Comparison between the original transfer V-shaped functions and time-dependent V-shaped
variants in terms of best fitness values

Benchmark Measure V1 TVV 1 V2 TVV 2 V3 TVV 3 V4 TVV 4

Breastcancer
AVG 0.0270 0.0388 0.0244 0.0275 0.0480 0.0162 0.0438 0.0286
STD 0.0052 0.0040 0.0031 0.0067 0.0081 0.0072 0.0060 0.0048

BreastEW
AVG 0.0585 0.0475 0.0242 0.0400 0.0529 0.0255 0.0557 0.0312
STD 0.0147 0.0120 0.0071 0.0090 0.0091 0.0063 0.0117 0.0092

Exactly
AVG 0.1212 0.1453 0.0984 0.1115 0.0966 0.0923 0.1216 0.0772
STD 0.0861 0.0966 0.0886 0.0814 0.0868 0.0840 0.1045 0.0553

Exactly2
AVG 0.2810 0.2599 0.2850 0.2424 0.3042 0.2687 0.2623 0.2790
STD 0.0213 0.0208 0.0190 0.0173 0.0202 0.0209 0.0165 0.0195

HeartEW
AVG 0.1580 0.1428 0.1527 0.1521 0.2111 0.1737 0.1894 0.1200
STD 0.0237 0.0247 0.0260 0.0251 0.0227 0.0147 0.0188 0.0315

Lymphography
AVG 0.1178 0.1095 0.1371 0.2086 0.1306 0.0928 0.1436 0.1099
STD 0.0290 0.0303 0.0303 0.0287 0.0238 0.0268 0.0260 0.0314

M-of-n
AVG 0.0575 0.0541 0.0549 0.0615 0.0390 0.0484 0.0597 0.0331
STD 0.0390 0.0479 0.0377 0.0438 0.0302 0.0408 0.0557 0.0280

penglungEW
AVG 0.1301 0.0708 0.0273 0.0490 0.0048 0.0824 0.0707 0.1965
STD 0.0199 0.0002 0.0314 0.0313 0.0002 0.0460 0.0002 0.0435

SonarEW
AVG 0.0578 0.0840 0.0460 0.0466 0.0394 0.0492 0.0330 0.0106
STD 0.0228 0.0248 0.0242 0.0213 0.0157 0.0245 0.0198 0.0096

SpectEW
AVG 0.1463 0.1443 0.1518 0.1936 0.2230 0.1846 0.1079 0.1273
STD 0.0229 0.0233 0.0167 0.0282 0.0171 0.0167 0.0254 0.0162

CongressEW
AVG 0.0528 0.0468 0.0505 0.0340 0.0377 0.0346 0.0368 0.0094
STD 0.0092 0.0113 0.0111 0.0102 0.0089 0.0131 0.0074 0.0078

IonosphereEW
AVG 0.0515 0.0615 0.0474 0.0273 0.1002 0.0351 0.0913 0.0795
STD 0.0183 0.0133 0.0120 0.0097 0.0185 0.0122 0.0130 0.0131

KrvskpEW
AVG 0.0451 0.0407 0.0404 0.0489 0.0421 0.0338 0.0408 0.0362
STD 0.0101 0.0105 0.0082 0.0120 0.0119 0.0078 0.0161 0.0089

Tic-tac-toe
AVG 0.1910 0.1829 0.2116 0.2038 0.1717 0.2034 0.2134 0.1839
STD 0.0316 0.0237 0.0172 0.0273 0.0211 0.0227 0.0212 0.0194

Vote
AVG 0.0567 0.0503 0.0686 0.0328 0.0450 0.0358 0.0310 0.0432
STD 0.0133 0.0177 0.0142 0.0150 0.0130 0.0119 0.0138 0.0086

WaveformEW
AVG 0.2668 0.2596 0.2558 0.2495 0.2642 0.2552 0.2609 0.2563
STD 0.0108 0.0097 0.0107 0.0112 0.0089 0.0100 0.0125 0.0096

WineEW
AVG 0.0292 0.0515 0.0274 0.0278 0.0076 0.0057 0.0064 0.0060
STD 0.0111 0.0229 0.0150 0.0161 0.0067 0.0011 0.0046 0.0052

Zoo
AVG 0.0045 0.0035 0.0488 0.0070 0.0136 0.0229 0.0524 0.0226
STD 0.0008 0.0008 0.0121 0.0087 0.0172 0.0222 0.0346 0.0224

Ranking W|T|L 5|0|13 13|0|5 10|0|8 8|0|10 5|0|13 13|0|5 4|0|14 14|0|4
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Figure 5: Comparison of TVV 4 and TVS3 versus other optimizers based on accuracy metric
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Figure 6: Comparison between TVV4, TVS3 and other meta-heuristics in terms of feature reduction rate

Table 15 reports the results of the best BDA V-shaped and BDA S-shaped time-
dependent variants versus others algorithms for the specificity metric. Results of Table
15 show that the proposed BDA-based techniques can outperform all other methods for
that metric. For 69.23% of the datasets, the TVV 4 variant performs best, while for the
rest of the cases; TVS3 has better results.

Table 16 compares the best BDA V-shaped and BDA S-shaped time-dependent vari-
ants and others optimizers for the sensitivity metric. From Table 16, we see that the
proposed BDA-based techniques can outperform other competitors according to the sen-
sitivity measure. For 61.53% of the datasets, the TVV 4 variant demonstrates satisfac-
tory performance. But TVS3 has better performance for the rest of the cases except for
SpectEW, where the BGSA has the highest sensitivity.

Table 17 compares results of the best BDA V-shaped and BDA S-shaped time-varying
variants with others optimizers for the AUC metric. It is observed that the proposed
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Table 12: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of accuracy

Benchmark Measure
BDA

bGWO BGSA BBA
TVV 4 TVS3

Breastcancer
AVG 0.9771 0.9929 0.9779 0.9481 0.9321
STD 0.0047 0.0000 0.0103 0.0203 0.0513

BreastEW
AVG 0.9740 0.9792 0.9231 0.9284 0.9129
STD 0.0096 0.0049 0.0152 0.0140 0.0349

Exactly
AVG 0.9290 1.0000 0.8345 0.7323 0.6015
STD 0.0551 0.0000 0.0773 0.1244 0.0555

Exactly2
AVG 0.7257 0.7725 0.6740 0.6438 0.6830
STD 0.0200 0.0222 0.0405 0.0407 0.0400

HeartEW
AVG 0.8858 0.8759 0.7883 0.7698 0.7284
STD 0.0327 0.0139 0.0391 0.0664 0.0606

Lymphography
AVG 0.8950 0.9922 0.8422 0.8642 0.6894
STD 0.0321 0.0143 0.0567 0.0805 0.1033

M-of-n
AVG 0.9732 1.0000 0.9130 0.8268 0.7155
STD 0.0275 0.0000 0.0517 0.0608 0.0832

penglungEW
AVG 0.8067 1.0000 0.8689 0.9493 0.8156
STD 0.0441 0.0000 0.0122 0.0543 0.0545

SonarEW
AVG 0.9952 0.9841 0.8865 0.8651 0.8143
STD 0.0097 0.0114 0.0404 0.0465 0.0588

SpectEW
AVG 0.8765 0.8519 0.8179 0.7846 0.7556
STD 0.0164 0.0109 0.0288 0.0342 0.0393

CongressEW
AVG 0.9950 0.9866 0.9502 0.9425 0.8686
STD 0.0072 0.0044 0.0469 0.0260 0.0803

IonosphereEW
AVG 0.9249 0.9911 0.8911 0.8685 0.8662
STD 0.0130 0.0094 0.0251 0.0257 0.0271

KrvskpEW
AVG 0.9705 0.9794 0.9346 0.8978 0.7898
STD 0.0088 0.0031 0.0190 0.0526 0.0896

Tic-tac-toe
AVG 0.8215 0.8469 0.8057 0.7611 0.6578
STD 0.0196 0.0064 0.0287 0.0380 0.0805

Vote
AVG 0.9617 0.9894 0.9394 0.9433 0.8556
STD 0.0089 0.0082 0.0208 0.0246 0.1016

WaveformEW
AVG 0.7488 0.7580 0.7050 0.6971 0.6592
STD 0.0097 0.0066 0.0154 0.0205 0.0460

WineEW
AVG 0.9991 1.0000 0.9380 0.9759 0.8380
STD 0.0051 0.0000 0.0362 0.0348 0.1305

Zoo
AVG 0.9825 1.0000 0.9930 0.9952 0.8667
STD 0.0233 0.0000 0.0229 0.0148 0.1142

Ranking W|T|L 4|0|14 14|0|4 0|0|18 0|0|18 0|0|18
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Table 13: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in terms of minimum number of features

Benchmark Measure
BDA

bGWO BGSA BBA
TVV 4 TVS3

Breastcancer
AVG 5.37 5.00 6.40 4.47 4.10
STD 0.81 0.00 1.75 1.01 1.27

BreastEW
AVG 16.37 11.50 21.57 14.93 11.77
STD 2.47 2.15 4.80 2.00 3.94

Exactly
AVG 8.97 6.00 10.70 7.67 5.23
STD 0.93 0.00 2.02 1.49 2.25

Exactly2
AVG 9.67 7.10 6.97 6.13 5.77
STD 1.37 2.72 2.74 2.08 1.57

HeartEW
AVG 9.07 5.77 9.70 6.63 5.07
STD 1.53 1.50 1.99 1.94 1.70

Lymphography
AVG 10.80 8.23 10.60 9.00 6.87
STD 1.73 2.73 2.63 2.18 1.96

M-of-n
AVG 8.43 6.03 10.43 8.20 5.73
STD 1.14 0.18 1.45 1.16 1.82

penglungEW
AVG 165.40 121.17 152.33 145.10 126.47
STD 15.90 4.71 7.00 4.88 15.62

SonarEW
AVG 35.33 25.57 34.87 27.07 23.53
STD 4.88 3.35 7.81 3.64 5.15

SpectEW
AVG 11.20 6.83 13.77 9.77 8.73
STD 1.67 2.56 2.93 2.30 2.29

CongressEW
AVG 7.10 5.53 10.00 7.00 5.70
STD 1.95 2.29 1.88 1.91 2.18

IonosphereEW
AVG 17.53 11.47 16.17 14.90 12.30
STD 3.18 1.89 2.35 2.89 3.40

KrvskpEW
AVG 25.13 20.67 30.90 19.73 14.97
STD 2.60 2.32 2.93 2.36 2.88

Tic-tac-toe
AVG 6.53 7.00 8.30 5.60 4.30
STD 0.57 0.00 1.24 0.97 1.70

Vote
AVG 8.47 3.37 8.63 7.37 6.10
STD 2.01 1.43 2.63 1.67 2.14

WaveformEW
AVG 30.57 23.00 34.07 21.60 16.23
STD 3.86 3.18 4.48 3.69 4.08

WineEW
AVG 6.67 3.57 7.37 6.57 4.87
STD 1.37 0.63 1.67 1.36 1.87

Zoo
AVG 8.47 4.43 7.37 6.97 6.43
STD 1.36 0.50 1.63 1.25 1.83

Ranking W|T|L 0|0|18 8|0|10 0|0|18 0|0|18 10|0|8
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Table 14: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in terms of fitness results

Benchmark Measure
BDA

bGWO BGSA BBA
TVV 4 TVS3

Breastcancer
AVG 0.0286 0.0126 0.0155 0.0273 0.0361
STD 0.0048 0.0000 0.0023 0.0068 0.0050

BreastEW
AVG 0.0312 0.0244 0.0428 0.0390 0.0358
STD 0.0092 0.0048 0.0066 0.0100 0.0087

Exactly
AVG 0.0772 0.0046 0.1851 0.2532 0.3028
STD 0.0553 0.0000 0.0515 0.0944 0.1080

Exactly2
AVG 0.2790 0.2307 0.2489 0.2876 0.2499
STD 0.0195 0.0202 0.0136 0.0137 0.0151

HeartEW
AVG 0.1200 0.1273 0.1285 0.1369 0.1613
STD 0.0315 0.0143 0.0258 0.0299 0.0230

Lymphography
AVG 0.1099 0.0123 0.0832 0.0813 0.1622
STD 0.0314 0.0133 0.0346 0.0329 0.0526

M-of-n
AVG 0.0331 0.0046 0.0874 0.1652 0.1653
STD 0.0280 0.0001 0.0387 0.0413 0.0438

penglungEW
AVG 0.1965 0.0037 0.1257 0.0045 0.1317
STD 0.0435 0.0001 0.0249 0.0002 0.0384

SonarEW
AVG 0.0106 0.0200 0.1041 0.0816 0.1099
STD 0.0096 0.0111 0.0205 0.0232 0.0300

SpectEW
AVG 0.1273 0.1498 0.1434 0.1532 0.1427
STD 0.0162 0.0100 0.0162 0.0176 0.0208

CongressEW
AVG 0.0094 0.0167 0.0283 0.0324 0.0702
STD 0.0078 0.0040 0.0101 0.0134 0.0149

IonosphereEW
AVG 0.0795 0.0122 0.0988 0.1272 0.1237
STD 0.0131 0.0095 0.0128 0.0108 0.0186

KrvskpEW
AVG 0.0362 0.0262 0.0514 0.0994 0.0933
STD 0.0089 0.0033 0.0089 0.0488 0.0394

Tic-tac-toe
AVG 0.1839 0.1594 0.1767 0.2318 0.2319
STD 0.0194 0.0063 0.0081 0.0243 0.0218

Vote
AVG 0.0432 0.0126 0.0476 0.0385 0.0627
STD 0.0086 0.0073 0.0088 0.0090 0.0175

WaveformEW
AVG 0.2563 0.2453 0.2373 0.2514 0.2508
STD 0.0096 0.0070 0.0080 0.0133 0.0164

WineEW
AVG 0.0060 0.0027 0.0446 0.0091 0.0255
STD 0.0052 0.0005 0.0169 0.0117 0.0171

Zoo
AVG 0.0226 0.0028 0.0066 0.0046 0.0521
STD 0.0224 0.0003 0.0095 0.0008 0.0320

Ranking W|T|L 4|0|14 14|0|4 0|0|18 0|0|18 0|0|18
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other meta-heuristics in term of specificity.

Benchmark Measure
BDA

bGWO BGSA BBA
TVV 4 TVS3

Breastcancer
AVG 0.9540 1.0000 0.9689 0.8935 0.9091
STD 0.0190 0.0000 0.0184 0.0460 0.1239

BreastEW
AVG 0.9595 0.9470 0.9304 0.8959 0.8535
STD 0.0189 0.0065 0.0191 0.0314 0.0868

Exactly
AVG 0.8821 1.0000 0.7478 0.5164 0.3320
STD 0.1081 0.0000 0.1313 0.2363 0.1571

Exactly2
AVG 0.4284 0.3296 0.2950 0.3176 0.2370
STD 0.0868 0.1692 0.1076 0.0907 0.1135

HeartEW
AVG 0.8606 0.8122 0.7460 0.8238 0.7333
STD 0.0506 0.0185 0.0539 0.1017 0.1028

M-of-n
AVG 0.9705 1.0000 0.9213 0.8818 0.7940
STD 0.0299 0.0000 0.0482 0.0524 0.0918

SonarEW
AVG 1.0000 0.9949 0.9517 0.8580 0.8236
STD 0.0000 0.0133 0.0404 0.0653 0.0779

SpectEW
AVG 0.9356 0.9667 0.8894 0.8148 0.9397
STD 0.0229 0.0307 0.0453 0.0651 0.0458

CongressEW
AVG 0.9941 0.9977 0.9441 0.9422 0.8204
STD 0.0120 0.0087 0.1123 0.0503 0.1182

IonosphereEW
AVG 0.8396 0.9769 0.7667 0.7529 0.7027
STD 0.0281 0.0259 0.0571 0.0521 0.0601

KrvskpEW
AVG 0.9649 0.9732 0.9240 0.8904 0.7775
STD 0.0115 0.0053 0.0200 0.0522 0.1083

Tic-tac-toe
AVG 0.6781 0.7738 0.6628 0.6348 0.5068
STD 0.0325 0.0329 0.0469 0.0767 0.1147

Vote
AVG 0.9496 0.9838 0.9260 0.9504 0.8514
STD 0.0163 0.0126 0.0283 0.0164 0.0695

Ranking W|T|L 4|0|9 9|0|4 0|0|13 0|0|13 0|0|13
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other meta-heuristics in term of Sensitivity.

Benchmark Measure
BDA

bGWO BGSA BBA
TVV 4 TVS3

Breastcancer
AVG 0.9900 0.9886 0.9819 0.9707 0.9471
STD 0.0094 0.0000 0.0134 0.0166 0.0185

BreastEW
AVG 0.9824 0.9960 0.9184 0.9528 0.9425
STD 0.0146 0.0071 0.0259 0.0214 0.0288

Exactly
AVG 0.9472 1.0000 0.8782 0.8316 0.7632
STD 0.0389 0.0000 0.0606 0.0820 0.0652

Exactly2
AVG 0.8356 0.9322 0.7904 0.7676 0.8125
STD 0.0240 0.0344 0.0606 0.0732 0.0698

HeartEW
AVG 0.9031 0.9556 0.8373 0.7354 0.7253
STD 0.0388 0.0463 0.0481 0.1034 0.0827

M-of-n
AVG 0.9784 1.0000 0.8991 0.7390 0.5900
STD 0.0283 0.0000 0.0668 0.0856 0.1536

SonarEW
AVG 0.9905 0.9667 0.8273 0.8778 0.8019
STD 0.0194 0.0317 0.0613 0.0744 0.0739

SpectEW
AVG 0.5815 0.2778 0.5033 0.6333 0.1111
STD 0.0997 0.1974 0.1066 0.2920 0.1185

CongressEW
AVG 0.9956 0.9810 0.9541 0.9428 0.9026
STD 0.0081 0.0053 0.0292 0.0315 0.0800

IonosphereEW
AVG 0.9949 0.9993 0.9630 0.9484 0.9551
STD 0.0124 0.0041 0.0229 0.0273 0.0279

KrvskpEW
AVG 0.9762 0.9853 0.9448 0.9058 0.8014
STD 0.0097 0.0048 0.0199 0.0626 0.0868

Tic-tac-toe
AVG 0.8984 0.8843 0.8723 0.8304 0.7425
STD 0.0298 0.0072 0.0290 0.0460 0.1050

Vote
AVG 0.9922 1.0000 0.9684 0.9302 0.8623
STD 0.0255 0.0000 0.0528 0.0748 0.1787

Ranking W|T|L 4|0|9 8|0|5 0|0|13 1|0|12 0|0|13

32



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

BDA-based approaches beat other optimizers for all cases. For 69.23% of test cases, TVV 4

provides the highest AUC rates. It is also observed that TVS3 outperforms other methods
for the other problems.

Table 17: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of AUC.

Benchmark Measure
BDA

bGWO BGSA BBA
TVV 4 TVS3

Breastcancer
AVG 0.9720 0.9943 0.9754 0.9321 0.9281
STD 0.0069 0.0000 0.0108 0.0266 0.0637

BreastEW
AVG 0.9710 0.9715 0.9244 0.9244 0.8980
STD 0.0100 0.0044 0.0136 0.0150 0.0459

Exactly
AVG 0.9147 1.0000 0.8130 0.6740 0.5476
STD 0.0704 0.0000 0.0890 0.1533 0.0710

Exactly2
AVG 0.6320 0.6309 0.5427 0.5426 0.5248
STD 0.0381 0.0685 0.0471 0.0340 0.0400

HeartEW
AVG 0.8819 0.8839 0.7917 0.7796 0.7293
STD 0.0337 0.0168 0.0387 0.0637 0.0620

M-of-n
AVG 0.9744 1.0000 0.9102 0.8104 0.6920
STD 0.0270 0.0000 0.0539 0.0646 0.0908

SonarEW
AVG 0.9952 0.9808 0.8895 0.8679 0.8127
STD 0.0097 0.0144 0.0397 0.0460 0.0580

SpectEW
AVG 0.7585 0.6222 0.6964 0.7241 0.5254
STD 0.0441 0.0840 0.0427 0.1222 0.0586

CongressEW
AVG 0.9949 0.9894 0.9491 0.9425 0.8615
STD 0.0076 0.0049 0.0576 0.0282 0.0837

IonosphereEW
AVG 0.9172 0.9881 0.8648 0.8506 0.8289
STD 0.0141 0.0128 0.0304 0.0285 0.0325

KrvskpEW
AVG 0.9705 0.9792 0.9344 0.8981 0.7894
STD 0.0088 0.0031 0.0190 0.0529 0.0900

Tic-tac-toe
AVG 0.7883 0.8290 0.7676 0.7326 0.6247
STD 0.0188 0.0128 0.0317 0.0425 0.0796

Vote
AVG 0.9709 0.9919 0.9472 0.9403 0.8568
STD 0.0098 0.0063 0.0253 0.0354 0.1150

Ranking W|T|L 4|0|9 9|0|4 0|0|13 0|0|13 0|0|13

The results thus far compared the average performance, STD, best and worst per-
formance of algorithms for 30 runs. To judge whether results are significant or not, the
Wilcoxon statistical test with 5% significance was conducted [68]. The p-values of the
Wilcoxon test based on fitness values are reported in Table 18. Such statistical tests
consider all runs and can verify that the observed differences and improvements are sig-
nificantly meaningful. Table 18 shows that the superiority of TVS3 over bGWO, BGSA,
and BBA is statistically significant for all cases. In addition, the observed differences
between TVS3 and TVV 4 are statistically significant for most cases.

The p-values of the Wilcoxon test according to the number of features are shown in
Table 19. As per results in Table 19, the observed differences between the TVV 4 and TVS3

techniques are statistically meaningful for all problems. Based on Tables 13 and 19, it can
be detected that BBA optimizer has obtained better results for several problems but the
observed differences are not statistically significant. Hence, it is not significantly better
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Table 18: p-values of the Wilcoxon test for the classification accuracy results of TVS3 and other algorithms
(p ≥ 0.05 are underlined).

Datasets TVV 4 bGWO BGSA BBA
Breast Cancer 4.38E-13 3.09E-10 1.03E-12 1.12E-12
BreastEW 1.11E-2 1.03E-11 1.05E-11 1.19E-11
Exactly 5.72E-11 1.15E-12 1.64E-11 1.20E-12
Exactly2 1.46E-9 3.19E-10 2.50E-11 8.65E-10
HeartEW 1.16E-1 2.30E-11 2.99E-9 2.37E-11
Lymphography 6.52E-12 6.65E-12 5.65E-11 7.33E-12
M-of-n 5.75E-9 4.48E-12 1.20E-12 1.20E-12
penglungEW 5.59E-13 2.71E-14 5.25E-6 7.73E-13
SonarEW 3.08E-4 1.04E-11 2.53E-11 1.07E-11
SpectEW 4.57E-8 2.68E-7 1.42E-10 9.02E-12
CongressEW 2.53E-6 2.86E-8 3.98E-11 4.95E-12
IonosphereEW 1.27E-11 1.54E-11 1.54E-11 1.57E-11
KrvskpEW 1.59E-6 2.70E-11 4.60E-10 2.72E-11
Tic-tac-toe 2.35E-10 1.29E-12 3.62E-12 3.07E-12
Vote 3.38E-12 2.47E-11 2.38E-11 1.18E-11
WaveformEW 1.43E-4 2.95E-11 2.97E-11 2.97E-11
WineEW 3.34E-1 1.13E-11 1.17E-5 1.14E-12
Zoo 2.85E-4 8.15E-2 8.15E-2 1.40E-11

than BDA-based versions. On the other hand, referring to Tables 12 and 18, we see that
both variants of BDA can outperform BBA in term of accuracy for all problems and all
differences are statistically significant.

Boxplots of accuracy results for BDA V-shaped and BDA S-shaped time dependent
variants versus other competitors on the compared datasets are shown in Figs. 7 and 7.

6.7. Comparison with other meta-heuristics

This section compares the proposed TV-BDA approaches with popular FS methods
proposed in previous studies in terms of classification accuracy rates. The results of TVS3

and TVV 4 are compared with the results of GA and PSO from [42] and the results of the
bGWO1, bGWO2, GA, and PSO from [53] in Table 20. It is worth mentioning that the
results of the first GA and PSO versions where executed using the source code from the
authors in [42], while the results of bGWO1, bGWO2, GA, and PSO where obtained from
the paper [53], where the same datasets are used.

In table 20, the substantial superiority of the proposed approaches is observed, where
TVS3 is capable of revealing the best results for fourteen datasets, and TVV 4 has discov-
ered the best results for four datasets. These results show again how TV-TFs influences
the effectiveness and results of the BDA by enhancing its exploration and exploitation ca-
pabilities, to find the most informative features that provides the maximum classification
accuracy for different datasets in different dimensions. The key reason for this excellent
performance is that the proposed time-varying transfer mechanisms can provide more va-
riety for exploration and exploitation, which leads to improved classification rates. The
results are also visually compared in Fig. 9. It can be seen that the classification rates of
TVS3 and TVV 4 are relatively higher (shown using darker colors) than those attained by
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(d) Exactly2
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(e) HeartEW
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TVS3 TVV4 BGWO BGSA BBA
0

0.2

0.4

0.6

0.8

1

Algorithms

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

(g) M-of-n

TVS3 TVV4 BGWO BGSA BBA
0

0.2

0.4

0.6

0.8

1

Algorithms

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

(h) penglungEW
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(i) SonarEW

Figure 7: Boxplots of accuracy results for BDA V-shaped and BDA S-shaped time dependent variants
versus other competitors on Breastcancer, BreastEW, Exactly, Exactly2, HeartEW, Lymphography, M-
of-n, penglungEW, and SonarEW datasets
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(a) SpectEW
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(b) CongressEW

TVS3 TVV4 BGWO BGSA BBA
0

0.2

0.4

0.6

0.8

1

Algorithms

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

(c) IonosphereEW
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(d) KrvskpEW
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(e) Tic-tac-toe
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(g) WaveformEW
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(h) WineEW
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Figure 8: Boxplots of accuracy results for BDA V-shaped and BDA S-shaped time dependent vari-
ants versus other competitors on SpectEW, CongressEW, IonosphereEW, KrvskpEW, Tic-tac-toe, Vote,
WaveformEW, WineEW, and Zoo datasets
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Table 19: p-values of the Wilcoxon test for the number of features obtained by TVS3 versus other
algorithms (p ≥ 0.05 are underlined).

Datasets TVV 4 bGWO BGSA BBA
Breast Cancer 1.19E-02 9.76E-06 6.24E-03 2.26E-05
BreastEW 5.48E-09 6.51E-09 3.23E-07 5.61E-01
Exactly 8.53E-13 2.46E-11 1.09E-07 7.61E-03
Exactly2 2.75E-04 8.15E-01 2.74E-01 2.01E-01
HeartEW 9.14E-09 4.29E-09 5.81E-02 1.62E-01
Lymphography 4.84E-05 1.41E-03 4.49E-01 2.91E-03
M-of-n 1.75E-12 1.46E-12 7.38E-12 2.86E-01
penglungEW 2.94E-11 2.90E-11 2.88E-11 1.90E-02
SonarEW 1.00E-08 1.16E-07 9.60E-02 1.75E-01
SpectEW 8.73E-09 6.41E-10 2.87E-05 7.07E-03
CongressEW 8.51E-03 8.44E-09 1.89E-02 6.42E-01
IonosphereEW 8.26E-10 1.84E-09 1.41E-05 3.10E-01
KrvskpEW 9.42E-08 3.37E-11 1.35E-01 3.42E-09
Tic-tac-toe 5.80E-05 4.93E-07 3.18E-09 3.71E-10
Vote 1.05E-10 7.56E-10 9.94E-10 2.31E-06
WaveformEW 1.03E-08 4.30E-10 1.26E-01 7.84E-08
WineEW 9.47E-11 2.50E-11 3.07E-11 2.49E-03
Zoo 1.22E-11 2.31E-09 3.10E-10 5.55E-06

other approaches for several datasets. The golden areas indicates rates in the [60% 80%]
interval. It can be observed that the proposed approaches (TVS3 and TVV 4) have smaller
golden areas, which visually shows the result improvement.

By reconsidering all the presented results, we can summarize observations. Time-
varying TFs can effectively improve the BDA to generally deliver improved results com-
pared to the versions based on traditional TFs. The dynamic nature of TV-based func-
tions can assist the proposed binary optimizer to search the global feature space in a
time-aware manner that focus around more promising neighborhood solutions when it is
necessary. However, the current non-time-varying nature of TFs cannot adapt the explo-
ration behavior at the beginning of the optimization process when it is required to deal
with challenging feature spaces. Thus, it was seen that some promising regions inside the
feature space remained unexplored or are not explored enough. This shows the significant
role of dynamically-varying TFs to enhance the exploration and exploitation trends of
the BDA. The dynamic behavior of proper TFs has mitigated the immature convergence
and stagnation behaviors of the basic BDA with non-dynamic TFs. The reason is that
in the case of stagnation, the proposed BDA can change its transfer function in the next
iterations to avoid LO and it has thus an increased chance of escaping from them by
fine-tuning its exploration and exploitation behaviors for the rest of the steps.

The key reason behind all observations is the benefits provided using TV-based TFs in
efficiently balancing exploration and exploitation. Changing the shape of TF proportion-
ally to the iteration counter (time dimension) allows the algorithm to leverage the impact
of solid TFs on exploration and exploitation by using more varied searching patterns.
Different shapes of TFs have varied the probability values that directly translate to the
way that the BDA provides diversity or intensity around candidate features.
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Table 20: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics from the literature in terms of accuracy

Benchmark
BDA

GA1 [42] PSO1 [42] bGWO1 [53] bGWO2 [53] GA2 [53] PSO2 [53]
TVV 4 TVS3

Breastcancer 0.9771 0.9929 0.957 0.949 0.976 0.975 0.968 0.967
BreastEW 0.9740 0.9792 0.923 0.933 0.924 0.935 0.939 0.933
Exactly 0.9290 1.0000 0.822 0.973 0.708 0.776 0.674 0.688
Exactly2 0.7257 0.7725 0.677 0.666 0.745 0.750 0.746 0.730
HeartEW 0.8858 0.8759 0.732 0.745 0.776 0.776 0.780 0.787
Lymphography 0.8950 0.9922 0.758 0.759 0.744 0.700 0.696 0.744
M-of-n 0.9732 1.0000 0.916 0.996 0.908 0.963 0.861 0.921
penglungEW 0.8067 1.0000 0.672 0.879 0.600 0.584 0.584 0.584
SonarEW 0.9952 0.9841 0.833 0.804 0.731 0.729 0.754 0.737
SpectEW 0.8765 0.8519 0.756 0.738 0.820 0.822 0.793 0.822
CongressEW 0.9950 0.9866 0.898 0.937 0.935 0.938 0.932 0.928
IonosphereEW 0.9249 0.9911 0.863 0.876 0.807 0.834 0.814 0.819
KrvskpEW 0.9705 0.9794 0.940 0.949 0.944 0.956 0.920 0.941
Tic-tac-toe 0.8215 0.8469 0.764 0.750 0.728 0.727 0.719 0.735
Vote 0.9617 0.9894 0.808 0.888 0.912 0.920 0.904 0.904
WaveformEW 0.7488 0.7580 0.712 0.732 0.786 0.789 0.773 0.762
WineEW 0.9991 1.0000 0.947 0.937 0.930 0.920 0.937 0.933
Zoo 0.9825 1.0000 0.946 0.963 0.879 0.879 0.855 0.861

Ranking (W|T|L) 4|0|14 13|0|5 0|0|18 0|0|18 0|0|18 1|0|17 0|0|18 0|0|18

Figure 9: Comparison between TVV4, TVS3 and other techniques from the literature in terms of classi-
fication accuracy. Note that better results are indicated in dark blue.
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Another main observation was that S-shaped functions outperform V-shaped func-
tions. This is due to the mechanism that each family uses to update the position. When
using an S-shaped TFs, the position will be updated using Eq. 11, in which the search
agents are required to change the values of 1 to 0 if the step vector level is high. In
contrast, the updating rules in the V-shaped TFs are different. The search agents will not
be forced to take the values of 0 or 1, but they encourage search agents to stay in their
current positions when their step vector values are low or switch to their complements
when the step vector values are high. This can significantly degrade exploration of a
metaheuristic algorithm.

According to the no free lunch (NFL) theorems [69], we cannot propose a universal
best optimizer or feature selection approach. Hence, the proposed wrapper techniques
follow the NFL rule.

6.8. Results of algorithms on high-dimensional small instances datasets

In some fields such as the medical and biological studies, it is a hard task to get
new instances frequently, since some experiments may take a long time to be reproduced.
However, it is well-known that in such fields the number of features to be assessed are
very huge, e,g., a dataset may contain thousands or even millions of features. In this
case, a dataset may contain a large number of features while the number of instances is
relatively very small.

For FS methods, it is a big challenge to deal with datasets that contain a large number
of features, or a few number of instances due to two main reasons: the low number of
instances (examples) is insufficient to train the learning model, and the large number
of features increases the search space where the heuristic approach cannot explore most
target regions [70].

In the previous sections, the reported results revealed the capabilities of the proposed
approach in dealing with several datasets (with features from 9 to 325) with much suc-
cess. In this subsection, new experiments are conducted using three well-known medical
datasets [71].

The datasets are listed in Table 21. As can be seen in Table 21, three multi-class
datasets with a huge number of features and a few number of samples are adopted.

Table 21: Details of high-dimensional small instances datasets [71]

Dataset No. of Attributes No. of Objects No. of Classes
Brain_Tumor2 10367 50 4
SRBCT 2308 83 4
9_Tumors 5726 60 9

In this section, we are interested to compare the best approaches among the proposed
ones (i.e., TVS3 and TVV 4) against other methods (i.e., bGWO, BGSA and BBA) in terms
of classification accuracy and fitness values, which both AVG and STD values are reported
in Tables 22 and 23. Note that the tabulated results for each algorithm are the average
of 30 independent runs.
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Inspecting the results in Table 22, we can observe that TVV 4 has obtained the best clas-
sification accuracy result among all approaches in one dataset (namely: SRBCT) out of
three, while the TVS3 approach achieved the best results on two datasets (Brain_Tumor2
and 9_Tumor). It is worth mentioning that the difference between the accuracy obtained
by TVS3 and the other approaches varies from 15% to 26% on the Brain_Tumor2. More-
over, on the 9_Tumor, TVS3 is better than bGWO by 17%, and bGSA by 4%, but BBA
has attained a very low classification accuracy. TVV 4 is still better than other approaches
with lower difference in classification accuracy.

From Table 22, the STD values of the proposed approaches are low which indicates
how much the values are close to the mean value. This indicates the satisfactory stability
of the proposed approach and its capabilities in searching the promising regions of the
search space. Boxplots of accuracy results are also shown in Fig. 10.

Table 22: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of accuracy

Benchmark Measure
BDA

bGWO BGSA BBA
TVV4 TVS3

Brain_Tumor2
AVG 0.6000 0.7100 0.5600 0.5133 0.4500

STD 0.0000 0.0305 0.0498 0.0346 0.0572

SRBCT
AVG 0.9020 0.8275 0.8882 0.9000 0.8667

STD 0.0520 0.0435 0.0357 0.0441 0.0265

9_Tumors
AVG 0.5028 0.5611 0.3917 0.5228 0.1033

STD 0.0152 0.0375 0.0543 0.0285 0.0394
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Figure 10: Boxplots of accuracy results for BDA V-shaped and BDA S-shaped time dependent variants
versus other optimizers on Brain_Tumor2, SRBCT, and 9_Tumors datasets

Table 23 compares the fitness values and the associated STD values for TVS3 and
TVV 4 versus other algorithms. From Table 23, it is clear that both approaches (TVS3 and
TVV 4) obtained the best fitness values with very competitive STD values over all datasets.
The number of selected features for all approaches are presented in Table 24. The results
shows that bGWO obtained the smallest number of features but it obtained much lower
classification accuracy than the proposed approaches. This can be seen in the fitness values
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(that merge both classification accuracy and the number of selected features), where
bGWO obtained the worst fitness values compared to proposed approaches. Although
BBA obtained the lowest number of features in one dataset, it has a very low classification
rate.

Table 23: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of fitness results

Benchmark Measure
BDA

bGWO BGSA BBA
TVV4 TVS3

Brain_Tumor2
AVG 0.4010 0.2920 0.4560 0.3018 0.3414

STD 0.0000 0.0302 0.0495 0.0000 0.0493

SRBCT
AVG 0.0224 0.0535 0.1297 0.0608 0.0609

STD 0.0271 0.0220 0.0309 0.0106 0.0106

9_Tumors
AVG 0.4970 0.4393 0.5633 0.4564 0.7948

STD 0.0151 0.0371 0.0416 0.0337 0.0278

Table 24: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in terms of minimum number of features

Benchmark Measure
BDA

bGWO BGSA BBA
TVV4 TVS3

Brain_Tumor2
AVG 5134.23 5121.43 4150.90 4932.43 4992.90

STD 40.78 33.11 509.29 24.48 60.39

SRBCT
AVG 1135.63 1135.57 907.90 1047.23 1068.33

STD 29.31 18.78 78.88 12.20 15.37

9_Tumors
AVG 2715.17 2758.03 2914.27 2859.13 2318.67

STD 17.20 36.38 300.60 40.62 186.95

The p-values of the Wilcoxon test are tabulated in Table 25. These values can verify
that the observed differences and improvements are significantly meaningful for all cases.

Table 25: p-values of the Wilcoxon test for the fitness results of TVV 4 versus other algorithms

TVS3 bGWO BGSA BBA
Brain_Tumor2 1.57E-10 9.96E-08 2.79E-11 2.84E-11
SRBCT 8.48E-06 6.70E-06 1.91E-03 3.46E-09
9_Tumors 4.39E-05 2.91E-11 4.44E-04 2.99E-11

7. Conclusion and future directions

In this paper, the performance of the DA was improved using different TFs to con-
vert the step vector from continuous to a binary space. Eight different transfer functions
that belong to two groups (S-shaped and V-shaped) were employed to investigate their
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effectiveness on the basic BDA. The main contribution was the proposal of time-varying
S-shaped and V-shaped transfer functions to leverage the impact of the step vector on bal-
ancing the exploration and exploitation behavior. A set of well-known FS datasets from
the UCI data repository were used to evaluate the proposed approach, and the results
were compared with the results from other state-of-the-art algorithms. The experimental
results showed the superior performance for the time-varying S-shaped BDA approaches
compared with other investigated approaches. The discussions and the extensive analyses
of the results revealed that time-varying transfer functions can be utilized as an effec-
tive way of improving the exploration and exploitation behavior of the BDA for feature
selection tasks.

This research opens several research directions for future work in the fields of opti-
mization, metaheuristics, feature selection and applications of these disciplines. As future
directions, we think that proposing several new time-dependent TFs is highly beneficial
to develop enhanced binary optimizers, and may change the direction of research in the
binary optimization field. As a next step, developing new versions of DA by proposing
new operators in binary space can also be an interesting research direction. Finally, the
proposed binary BDA approaches can be applied as preprocessing step of many pattern
recognition, machine learning and feature selection tasks.
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