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Abstract

The Dragonfly Algorithm (DA) is"a-réeently proposed heuristic search algorithm that
was shown to have excellent performanceyfor numerous optimization problems. In this
paper, a wrapper-feature selection algorithm is proposed based on the Binary Dragonfly
Algorithm (BDA). The key €ompenent of the BDA is the transfer function that maps
a continuous search space te . a discrete search space. In this study, eight transfer func-
tions, categorized into twe familiés (S-shaped and V-shaped functions) are integrated into
the BDA and evaluated using eighteen benchmark datasets obtained from the UCI data
repository. The main contribution of this paper is the proposal of time-varying S-shaped
and V-shaped transferpfunctions to leverage the impact of the step vector on balanc-
ing exploration and exploitation. During the early stages of the optimization process, the
probabilityfof changing the position of an element is high, which facilitates the exploration
of new solutiens/starting from the initial population. On the other hand, the probability
of changing the position of an element becomes lower towards the end of the optimization
process. “Fhis behavior is obtained by considering the current iteration number as a pa-
rameteryof transfer functions. The performance of the proposed approaches is compared
with\that of other state-of-art approaches including the DA, binary grey wolf optimizer
(bGWO), binary gravitational search algorithm (BGSA), binary bat algorithm (BBA),
particle swarm optimization (PSO), and genetic algorithm in terms of classification ac-
curacy, sensitivity, specificity, area under the curve, and number of selected attributes.
Results show that the time-varying S-shaped BDA approach outperforms compared ap-
proaches.
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1. Introduction

In the past decades, metaheuristic and evolutionary algorithms were shown to be
very successful for solving various optimization problems [1, 2, 3, 4, 5]. The Dragonfly
Algorithm (DA) is a recent metaheuristic, which is inspired by the behavior{of'dragon-
flies [6]. The DA can be regarded as a recently successful algorithm that can eutperform
other well-regarded optimizers. The DA has been applied to several realcworld problems
such as economic emission dispatch in power systems |7, 8|, simulation building [9], wire-
less node localization in computer networks [10] and machine learning/ |11, 12|. The DA
has shown an excellent performance for several continuous, discréte, single-objective and
multi-objective optimization problems compared to several state-of-the-art metaheuristic
and evolutionary algorithms such as Particle Swarm Optimization (PSO) and Differential
Evolution (DE).

Up to 2018, several works have utilized the DA ordmproved its performance to tackle
practical tasks such as photovoltaic systems [13], extension.of RFID network lifetime [14],
0-1 knapsack problems [15], and economic emissign“dispatch problem [16]. In 2017, KS
and Murugan [17]| proposed a memory-based hybrid*DA that integrates concepts of PSO
for dealing with global optimization cases. Song and-Li [18] proposed a modified DA with
elite opposition learning for global optimization:

Recently, a binary version of the DA,called”"BDA was proposed by Mirjalili [6], which
applies a transfer function (TF) to map ‘a_continuous search space to a discrete one. The
potential of BDA was initially evaluated on some feature selection problems and results
have shown that this method has,accgptable performance [19].

In general, a TF must.dnap.a ¢ontinuous search space to a discrete space. In this
regard, selecting a suitable TF,is,an important decision for improving the performance of
binary velocity-based algorithms (e.g. PSO and DA) |20, 21]. Using TFs is recommended
in several works du€ to several reasons [20, 22|. Firstly, TFs are algorithm independent
and do not impact the search behavior of an algorithm. Secondly, the computational
complexity of the algorithm does not change since the TF is calculated for each solution
during each’iteration. Thirdly, exploration and exploitation can be boosted when using
a TF. The'core drawback of a TF comes from the nature of this component. Transfer
functions map velocity to probability. Hence, an algorithm should have a velocity vector.
In other,words, it is not a generic operator that can be used for all optimization algorithms.
The'ether drawback of typically employed TFs within binary optimizers (e.g. the sigmoid,
tangent and log-sigmoid functions |21, 20, 23]) is that they do not adapt exploration and
exploitation in an evolutionary way during the search for solutions. They calculate the
probability of changing the value of parameters in a non-adaptive way.

The operators of population-based algorithms are the only components that guide ex-
ploration and exploitation. Improving the performance of any population-based optimizer
such as the DA requires to select an appropriate balance between exploration (diversifica-
tion) and exploitation (intensification). Generally speaking, exploration is more important
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than intensification during the early stages of the selection process, to explore promising
regions of the feature space. But during the later stages, exploitation becomes more im-
portant because we need to increase the probability of discovering better solutions, close to
those found in the previous phases. To solve challenging and high-dimensional problems,
where a good balance between exploration and exploitation is required, hybrid methods
can be developed. However, such techniques normally increase the computational cost of
the whole optimization process.

Based on the aforementioned observations and since DA utilizes velocity{veetors for
updating solutions, the main contribution of this paper is to propose several time-varying
TFs for the DA for binary tasks. This work demonstrates and argues(that how a TF
can be utilized to fine-tune and control the exploration and exploitation hehavior of an
optimizer is important. In other words, a TF can play a key role in #uning the exploration
and exploitation phases of an optimizer rather than just converting a‘eontinuous search
space to a binary one.

Based on this idea, this study proposes the use of a controlling parameter that has
a gradually decreasing influence over the course of iterations, and that idea is applied
to BDA. To assess the performance of BDA, this paper considers the task of feature
selection, as it is a fundamental binary optimization preblem that is challenging and
high-dimensional, and has many applications.

This work proposes a wrapper feature selection approach that utilizes the recent BDA
as a search strategy and the K-Nearest Neighborhood (KNN) classifier as an evaluator.
The main aim of this study is to propose andiinvestigate the effects of eight time-dependent
TFs on the efficiency of BDA. Moreoves, the results from the eight proposed approaches
are compared with the original DA and ‘some other state-of-the-art algorithms.

The contributions of this research,can ‘be summarized as follows:

e Several binary variants of the,]DJA are proposed.

e This paper investigates the exploration and exploitation behavior of BDA with
existing TFs and idemtifies their possible negative effects on the balance between
exploration and exploitation.

e Various time-deépendent S-shaped and V-shaped TFs are proposed to effectively
overcome the drawbacks of existing TFs, and provide a stable balance between
exploration/and exploitation in BDA.

e The improved searching capabilities of the proposed time-dependent variants of the
BDA is evaluated on several well-regarded feature selection datasets, and excellent
results are obtained.

The rest of the paper is organized as follows. A theoretical background about feature
selection is presented and related work is reviewed in Section 2. Section 3 describes the
DA. Section 4 introduces the BDA. Section 5 presents the proposed approach. Experi-
mental results and discussion are presented in Section 6, and finally, a conclusion is drawn
and opportunities for future work are discussed in Section 7.



2. Background on feature selection

Feature selection (FS) plays an important role in various machine learning and data
mining tasks such as object-based image classification [24], prediction of groundwater ni-
trate pollution [25], intrusion detection 26|, automatic satire and irony detection [27], mu-
sic streaming recommendation [28], spam detection [29], financial distress prediction [30],
and classification [31]. Bolon-Canedo et al. [32] discussed challenges of F'S in the.context
of big data. FS aims at improving classification accuracy by eliminating redundant, irrel-
evant, and noisy data from a dataset. According to Liu and Motoda [33|, ES;algorithms
can be classified based on two main criteria: their subset evaluation procédure and their
searching procedure. In terms of the former, FS methods are categorized asfilters and
wrappers [33]. Wrapper approaches utilizes a learning algorithm (e.g. classifier) to evalu-
ate feature subsets, while filters evaluate a feature subset using the.data itself (e.g. using
a measure such as the information gain) [34].

Finding an optimal subset of features for FS problems is“challenging due to the large
number of possible combinations. A naive approach to solwve a'F'S problem is to apply
a brute-force search and generate all possible subsets of features to find the best one. If
the original dataset contains k features, then there are 2*-1 subsets to be generated and
evaluated.

Due to the exponential complexity of this appreach, it is impractical when N is very
large. A more practical solution to solve F'S problews is to utilize a heuristic search [35].
As the name suggests, the search is guided using heuristic information collected during
the optimization process. Although heuristicisearch techniques do not guarantee finding
the best subset of features, they can generally produce an acceptable solution quickly [36].

Metaheuristics are general purpese algorithms, which have been readily applied to a
wide range of problems [36]. Nature-inspired algorithms are mostly metaheuristics and
mimic the social and biologic¢al behaviors of creatures in nature. Various nature-inspired
algorithms have been utilizedto tackle the F'S problem in the literature such as GA [37],
PSO [38, 39, 40, 41], Ant, Colony Optimization (ACO) [42], DE [43], Bacterial Foraging
Optimization (BFO)-44|, and Artificial Bee Colony (ABC) [45].

Recently, new. nature-inspired algorithms have been proposed and have shown im-
proved results for the FS problems. For instance, an Ant Lion Optimizer (ALO) [46],
which mimies-the, hunting behavior of antlions, has been employed as a wrapper FS
method [47, 48|. ;Grey Wolf Optimizer (GWO) is another recent algorithm [49, 50, 51|
that has beemsuccessfully employed for solving feature selection problems [52, 53]. Moth-
Flame'Optimizer (MFO) [54] is an algorithm that mimics the navigation method of moths
angd, has been applied to the F'S problem by Zawbaa et al. [55]. Multi-Verse Optimizer
(MVO) is another recent example of metaheuristics that was applied in combination with
classifiers to some FS problems Faris et al. [56].

Mafarja and Abdullah [57] proposed a mimetic filter F'S approach that combines the
capability of Simulated Annealing (SA) as a local search algorithm with a GA.

In subsequent work in [58], SA was hybridized with the Whale Optimization Algo-
rithm (WOA) to form a wrapper FS approach. WOA was also recently used as a wrapper
F'S approach in [59]. In that approach, evolutionary operators (i.e., crossover, mutation



and selection) were employed to enhance both the exploration and exploitation capabili-
ties of the WOA. The reported results revealed the benefits of combining those operators
with WOA. In [48], the performance of the Ant Lion Optimizer (ALO) algorithm with
eight different TFs was investigated. Another study Faris et al. [60] proposed a novel
FS approach based on a recent metaheuristic algorithm called Multi-Verse Optimizer
(MVO). In 2018, Mafarja et al. [61] proposed an improved grasshopper optimization al-
gorithm (GOA) with new evolutionary-based operators, which is called GOA-EPD, to
develop an efficient wrapper FS method. Salp Swarm Algorithm (SSA) is anether recent
metaheuristic that has been used in a wrapper F'S method in [62].

3. Overview of the Dragonfly Algorithm

The Dragonfly Algorithm is a recently proposed swarm-based algorithm [6]. The DA
mimics the hunting and migration mechanisms of idealized dragonflies. The hunting
mechanism is called static swarm (feeding), in which the dragonflies fly in small groups
over a small area to search for food sources. The migratiéon mechanism is called dynamic
swarm (migratory). In this phase, the dragonflies fly along one'direction in larger groups
so that the swarm migrates. Static and dynamic swatis are illustrated in Fig 1. Similarly
to other nature-inspired algorithms, the DA consistssef:two phases: exploration, inspired
by the static swarming behavior, and exploitationy inspired by the dynamic swarming
behavior.
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Figure 1: Static and dynamic swarming behaviors of dragonflies when foraging (each geometric figure
represents a class of search agents)

To model the swarming behavior of dragonflies, five individual behaviors are utilized
as follows. In the following equations, X represents the position of the current search
agent, X, represents the j-th neighbor of the X search agent, and N is the neighborhood
size [63]:

e Separation is a mechanism that a search agent applies to stay away from other



neighboring search agents. This behavior is mathematically modeled as Eq. (1):
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Alignment indicates how an individual matches its velocity with the velocity.of other
neighboring individuals. This behavior is mathematically modeled as Eq#y(2):
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where V; represents the velocity of the j-th neighbor.

Cohesion refers to the tendency of individuals to fly towards the neighboring center
of mass. This behavior is mathematically modeled as{Ege(3):
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Attraction refers to the tendency of individuals\to fly towards the food source. The
attraction between the food source and the 7 solution is mathematically modeled
as Eq. (4):

by = Floe — X (4)

where Fj,. represents the position ofithe food source.

Distraction refers to the tendency of individuals to fly away from an enemy. The
distraction between the énemy and the " solution is mathematically modeled as
Eq. (5):

E,=FE,+X (5)

where Ej,. répresents the enemy’s position.

In the DAy the food source fitness and location are supposed to be updated using
the best candidate (search agent) so far. In addition, the fitness and location of the
enemy. should be updated using the worst candidate. This causes convergence to-
wards promising areas and divergence outwards non-promising regions of the search
space.

Based on the framework of the PSO algorithm, the DA uses two vectors to update
the position of a dragonfly: the step vector (AX) that is similar to the velocity
vector in PSO and the position vector. The step vector represents the dragonflies’
movement direction. The step vector is modeled as Eq. (6):

AXt+1 = (Ssl + CLAi + CCrL' + fFl + €El) —+ th (6)

where s, w, a, ¢, f, and e represent the weights of the separation S;, alignment
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A;, cohesion C}, attraction towards the food source Fj, and distraction from the
enemy F; of the ¢-th individual’s respectively. These weights enable the DA to
achieve different exploration and intensification behaviors during optimization. An
extensive analysis of the effect of those parameters on the DA and their values can
be found in [6].

The position of an individual is updated as in Eq. (7):
X1 =Xy +AX (7)
where ¢ is the current iteration.

Algorithm 1 shows the pseudocode of the DA. The algorithmdstarts by creating a
random initial population. The positions and step vectors of dragonflies are randomly
defined. In each iteration, the algorithm repeatedly executes the following steps until a
termination criterion is satisfied. Firstly, each individual in” the pepulation is evaluated
using a fitness function. Secondly, the main coefficients are updated. Thirdly, the separa-
tion (S), alignment (A), and cohesion (C), food sourgeé (F)and enemy (E) are updated
using Eqgs. 1 to 5. Finally, the step vectors and the position.are updated using Eqs 6 and
Eq. 7, respectively.

Finally, the best solution found so far is returned.

Algorithm 1 Pseudocode of the DA

Initialize the population X;(i = 1, 2gu.., 1)

Initialize AX;(i =1,2,...,n)

while (end condition is not satisfied) do
Evaluate each dragonfly,
Update (F) and (FE)
Update the main coefficients (i.,e.,w, s, a,c, f,and e)
Calculate S, A, G Fyand’E (using Egs. (1 to 5))
Update step yéctors (XX, ;) using Eq. (6)
Update Xp¢r using Eq. (7)

Return the, best’'solution

4. Binary Dragonfly Algorithm (BDA)

Insa binary optimization problem, the search space is considered as a hypercube, where
an individual can change its position from one location to another by changing one or
more bits of its position vector x = {xy, s, ...,z4}. Since the original DA was designed
for handling continuous optimization problems, the position of an individual is updated
by adding the current position vector to the step vector. However, this mechanism cannot
be used to handle a binary optimization problem such as feature selection. According to
a previous study Mirjalili and Lewis [20], employing a transfer function is an effective and
convenient way of converting a continuous algorithm into a binary one. Transfer functions
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are categorized in two families according to their shapes: S-shaped and V-shaped. Fig. 2
depicts these two families of transfer functions.
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Figure 2: Transfer functions families (a) S-shaped and (b)yV-shaped [20]

Generally speaking, transfer functions are used to generate the probability of changing
a position’s elements to 0 or 1 based on the value“of the step vector (velocity) of the 7t
search agent in the d* dimension in the cufrent iteration (¢) as an input parameter.
In a previous study [6], the transfer function ‘of Eq. (8 was employed to calculate the
probability of changing the continuous positiens to binary.

T(wa(Bhh= |(vit))/ /1 + (vi(1))?] (8)

The result T'(vi(t)), obtained from Eq. (8) is then used to convert the i-th element of
the position vector to 0 or, according to Eq. 9

xern= {5 TS ©

where 7 is atandomynumber in the [0,1] interval.

The step.wvector indicates the momentum of the current individual and defines the
magnitude of moyement. A lower step vector value indicates that the individual is very
close tothe best/solution and needs to move in smaller steps (exploitation). In contrast,
if the [step vector value is large, the search agent is far from the best solution so far
and requires abrupt changes (exploration) [64]. In a binary algorithm, where one uses the
step veetor to calculate the probability of changing positions, TFs significantly impact the
balance between exploration and exploitation. If the transfer function does not change,
probability will be calculated in the same manner throughout the optimization process.
Changing the TF has the potential to leverage the impact of the step vector on position
updates for exploring and exploiting the search space.
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5. The proposed approach

The first TF Eq. (10) was proposed by Kennedy and Eberhart [38]. This function
belongs to the S-shaped family.

1
T(vf(t) = P

where v} (¢) represents the step vector of the i-th search agent at the ¢-th iteration in the
k-th dimension.

Each element of the vector representing the current individual will be changed accord-
ing to Eq. 11 based on the probability value T'(v(t)) obtained from Eq. 10.

(10)

k 1 rand < T(vE(t + 1))
it +1) = {O rand > T(vE(t + 1)) (11)

An extensive study of the influence of TFs on the efficiency and-final results of binary
PSO was recently presented in [22|. The study evaluated three classes of TFs including
S-shaped, V-shaped and linear normalized TFs.

By observing the sigmoid function in Eq. 10, it“can be seen that the current version
of this function does not provide a good balancesbetween exploration and exploitation,
where the exploration rate should be more than thewexploitation rate at the beginning of
the optimization process. Thus, some promising areas inside the search space may remain
unexplored. As a result, there is a high p@ssibility that the optimizer will get trapped in
local optima (LO). A similar phenomenon'\can- also be observed during the exploitation
stage.

Inspecting the ordinary TFs (seeyFig. 2), it can be seen that with the small absolute
values of inputs, the probabilityef flipping an element in the dth dimension of a solution
is high, while with the large absolute values of inputs the flipping probability is low.
Therefore, to better exploreithe/search space at the early stages of the optimization
process, a small absolutetwalue of step vector (close to zero) is preferable. On the other
hand, to better exploit) the search space in the final stages of the optimization process,
a large absolute value/of step vector is preferable. With the current form of the sigmoid
function, a high flipping probability is produced when a low probability is required.

As a result; theress a high probability that the optimizer will oversight good solutions
in the neighborhgod of the solutions that have been found during the exploration phase.
All these issues are caused by the fact that a TF cannot map step vector values to
appropriate probability values without changing its shape during the optimization process.

Another TF that belongs to the V-shaped family (V) is represented in Eq. 12:

11— —2- 2<0
T(Ax){ 21+e_21 x>0

14e—2

(12)

The position of the current search agent is changed in Eq. (13) according to the
probability value T'(vi(t)) obtained from Eq. 12.
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0 r<T(Azi)andAz,q <0
Xikd+1 =< 1 r<T(Azy)andAxg >0 (13)
leji r > T(A$t+1>

where 7 is a random number in the [0,1] interval.

After examining V7, one can see that the algorithm still suffers from biased stability
between the exploration and exploitation phases due to problems similar to these of the
S-shaped function. Inspired by [22], an effective strategy to mitigate this problem,in the
BDA is to update the S-shaped TF in Eq. 10 and design a new model of{I'Fs as shown
in Eq. 14. In the proposed TFs, a time-varying scheme is employed tofachieve a better
balance between exploration and exploitation.

—uf(t) (14)
1+e
where 7 is a time-varying variable that starts with an initial value,and gradually decreases

over iterations as shown in Eq. 15.

T = (1 — %) Tinad=F %Tmm (15)
where 7,5, and Ty,q, are the min and max valuestof the control parameter 7, 1" represents
the maximum number of iterations and e, represents the current iteration.

The key fact about the newly proposed time-dependent TF is that its value can be
linearly increased as the step vector of searéh agents increases. During early stages (when
T = Timaz), the probability of changing the position’s element is higher, which provides
higher exploration capacities for'the initial population. On the other hand, the probability
of changing the position’s element becomes very low once 7 = 7,,;,,, which provides steadier
exploitation inclinations in latter stages of the run.

In previous work [22]y, onlyone TF was employed and tested on the 0-1 knapsack
problem, which was-the improved sigmoid function. Authors of that study stated that
the V-shaped TE.suffers from the same problem as the S-shaped TF, but they did not
study the possibility. of adaptively updating this function over the iterations. In this work,
the original TF isunodified by adding a time-varying parameter as shown in Eq. 16. The
proposed TF satisfies the design considerations mentioned in [22, 20].

T(Azx,7) = { g 1e (16)

14+e 7

In this work, seven new TFs manipulating the coefficient of x are introduced.
Table 1 contains the mathematical formulations of the TFs proposed in this research.
Figure 3 and Figure 4 show the behaviors of the proposed time-dependent TFs.
Algorithm 2 shows the pseudocode of BDA. The algorithm starts by creating a random
initial population; the position and step vectors of dragonflies are randomly defined. In
each iteration, the algorithm repeatedly executes the following steps until a termination
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Table 1: TVg-shaped and TV -shaped transfer functions

TVs family TV family

Name Transfer function Name Transfer function
]. - 2_21; x S 0

TVs1 T(x,7)=—% TVin T(z,7)= {

TVS2 T(‘r: T) = 1;2 TVV2 T(x’ T) = {

TVsy T(x,7)= L TVis T(m,T):{

TVsy T(x,7)=—"=% TVys T(x,7)=

Probability
Probability

Probability
Probability

(d) TVs4

Figure 3: Demonstration of the time-varying S-shaped TFs when 7,4, =4 and 7y, =0.01 during 100
iterations with time step 2. Note that more vertical curves belong to the lower values of 7.
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criterion is satisfied. Firstly, each individual in the population is evaluated using a fitness
function. Secondly, the main coefficients are updated. Thirdly, the separation (5), align-
ment (A), and cohesion (C'), food source (F') and enemy (F) are calculated using Eqgs. 1
to 5. Finally, the step vectors, transfer and the position are updated using Eqs 6, 10, and
11.

Note that adding the time-varying S-shaped and V-shaped TFs does not change the
computational complexity of the DA since this component is run only once for each
solution and in each iteration. Therefore, the computational complexity of binary DA is
of O(tnd) where t is the number of iterations, n shows the number of solttions, and d
indicates the number of dimensions (variables). This complexity is identical{to those of
other comparative algorithms in this work: PSO, bGWO, GA, BGSA, and\BBA.

Algorithm 2 Pseudocode of the BDA algorithm

Initialize the population X;(i =1,2,...,n)

Initialize AX;(i =1,2,...,n)

Set Trmar and Trmin

Initialize 7 using Eq. 15

while (end condition is not satisfied) do
Evaluate each dragonfly
Update (F) and (F)
Update the main coefficients (i.,e.,w, s, a,¢, fyande)
Calculate S, A,C, F', and E (using Egs. (Lto 5))
Update step vectors using Eq. (6)
Calculate T(AX) using an equation _from Table 1
Update X;,; using Eq. 1L0r Eq. 13

Return the best solution

5.1. BDA for feature_selection

Feature selectionyis/considered as a binary optimization problem, where solutions are
restricted to binary valwes. Therefore, the binary version of the DA could be employed
to solve thissproblem. In this work, a vector of zeros and ones is used to represent a
solution to'a FS problem, where a zero indicates that the corresponding feature is not
selected”andya_one indicates that the corresponding feature is selected. The length of
the solution jvector is equal to the number of features in the original dataset. In this
work, eight” wrapper feature selection approaches using the BDA are proposed. Each
approach utilizes a transfer function to convert a continuous value to a binary value. The
KNN classifier [65] evaluates the selected feature subsets. The fitness function considers
classification accuracy and the number of selected features, which fulfill the consideration
that F'S is a multi-objective problem. The objective function is presented in Eq. 17:

]

| Fitness = ayg(D) + ﬁm (17)
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where yg(D) represents the classification error rate, while |C| is the number of selected
features and |N| is the total number of features in the original dataset, o and [ are two
parameters corresponding to the importance of classification quality and subset length, «
is in the [0,1] interval and § =(1 —«) is adapted from [59].

6. Experimental evaluation and discussion

6.1. Experimental setup

The proposed approaches were tested on eighteen feature selection datasets obtained
from the UCI data repository [66]. Table 2 shows characteristics of these datasets. The
datasets belong to different fields (e.g. biology, politics, games, physies, and chemistry)
and are of different sizes. The diversity of the selected datasets facilitates benchmarking
of the proposed approaches from different perspectives. In the propesed approach, to
validate the optimality of the results, the hold-out strategy was used, where each dataset
is randomly divided into two parts; training and testing, where 80% of each dataset is
used for training and the remaining 20% is for testing purposes [59]. All experiments were
repeated for 30 independent times to obtain statistically meaningful results. Furthermore,
each algorithm was implemented using MATLAB 2013 and’was run on an Intel Core i5
machine, 2.2 GHz CPU and 4 GB of RAM.

Table 2: Details,of datasets

Dataset No. of Attributes,. No. of Objects No. of Classes
Breastcancer 9 699 2
BreastEW 30 569 2
Exactly 13 1000 2
Exactly2 13 1000 2
HeartEW 13 270 2
Lymphography 18 148 4
M-of-n 13 1000 2
PenglungEW 325 73 7
SonarEW 60 208 2
SpectEW 22 267 2
CongressEW 16 435 2
TonosphereEW 34 351 2
KrvskpEW 36 3196 2
Tic-tac-toe 9 958 2
Vote 16 300 2
WaveformEW 40 5000 3
WineEW 13 178 3
Zoo 16 101 7

6.2. Parameter tuning

BDA is a metaheuristic algorithm that is highly dependent on the parameter values
when searching for the optimal solutions. Setting the suitable parameter values requires
an extra effort since it depends on the problem being solved. To determine the most
suitable values of the proposed approaches, the following empirical studies were conducted.
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The parameters that were included in these studies are population size, max number of
iterations, @ and /8 (in the fitness function), the number of nearest neighbors (k) in the
k-NN classifier. In all initial empirical studies, the Leukemia dataset was used because it
revealed more sensitivity compared to other datasets.

6.3. Assessment of the impact of population size and number of iterations

Table 3 compares the performance of the optimizer as it is monitored for slight adjust-
ments in the parameter values. As it can be interpreted from Table 3, for a poptilation size
of 10 and 100 iterations, the optimizer can obtain the best results in terms of classification
accuracy, and is very competitive in terms of selection ratio and time.

Table 3: Average accuracy, selection ration and time results, when using different combinations of popu-
lation sizes and number of iterations for the Leukemia dataset.

Pop Size | Max Iterations | Accuracy | Selection Ration,| Time
10 100 1 0.485 212.11
20 100 0.938 0.481 45518
30 100 1 0.474 698.32
50 100 1 0.473 1262.41
10 150 1 0477 318.44
20 150 0.933 0.477 685.21
30 150 0.933 0.472 697.86
50 150 04916 0.481 1891.88

6.4. Assessment of the impact of a_and Byon the fitness function

F'S problems cover two contradictory objectives (i.e., classification accuracy (maxi-
mization) and selection ration (minimization)) in the optimization process. In the fitness
function (see Eq. 17), thosetwo objectives are presented, and two values (a and ) were
used to represent their/weightsfor the user. That is, a determines the weight of clas-
sification accuracy, while Ficorresponds to the weight of the features reduction rate. In
this section, an initial.empirical study is presented to assess the influence of both « and
[ on the performance of the BDA optimizer. Different values for a and § were used to
measure the-¢lassification accuracy and selection ration. The leukemia dataset was used
in all experiments in this section due to its sensitivity in comparison with other datasets.
Table 4shows,the classification accuracy and selection ration with different combinations
of a and [ values. Inspecting the results in Table 4, it can be seen that accuracy rate
and. the selection ration are changing with the different values of a and . That is to
say, when increasing alpha, the classification accuracy increases and the selection ratio
decreases.

To make fair comparisons with the results obtained in previous works, we set a = 0.99
and = 0.01 which are commonly used values in the literature [55].

In the experiments, the K-NN classifier (with K =5 [59]), with the Euclidean distance
metric, was used to evaluate the feature subsets.

The parameters setting of the algorithms are outlined in Table 5.
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Table 4: Impact of @ and 5 on the accuracy and selection ration results for the Leukemia dataset.

Alpha | Beta | Accuracy | Selection Ration | Time
0.5 0.5 0.956 0.476 212.21
0.7 0.3 0.967 0.474 212.30
0.9 0.1 0.936 0.477 212.15
0.99 0.01 |1 0.471 211.91
Table 5: The parameter settings

Parameter Value

Population size 10

Number of iterations 100

Dimension Number of features

Number of runs for each technique 30

« in fitness function 0.99

[ in fitness function 0.01

a in GWO [2 0]

Qmin Frequency minimum in BA 0

Qmae Frequency maximum in BA 2

A Loudness in BA 0%

r Pulse rate in BA 0.5

Gy in GSA 100

« in GSA 20

6.5. Results and discussion

To study the influence of the newly proposed time-dependent TFs on the performance
of the BDA, this paper provides’a comparison of the results obtained by BDA with eight
static TFs and BDA, and these obtained by BDA with eight time-dependent TFs. The
best reported approaches werethen’compared with state-of-the-art FS methods using two
phases. In the first phage, we fmplemented three recent FS techniques (i.e. BGSA, BBA,
and bGWO) and compared'them with the proposed approaches. Then in the second phase
we used some previously published results of some well-known algorithms (GA, PSO, and

GWO). The comparisons are done using the following criteria:

e The mean classification accuracy was obtained from 30 runs. For each run, the

aceuracy of the best solution is considered.

e The ayerage selection size from 30 runs. In each run, the cardinality of the best

solution is considered.

o The average of the best fitness values obtained from each approach are reported.

e Statistical standard deviation (STD) is reported for all approaches to indicate the

stability and robustness of the optimizer.

e Wilcoxon signed-rank test to assess the significance of the results obtained from the

proposed approach.
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e Specificity, Sensitivity, and Area Under the ROC Curve (AUC) [67] for binary
datasets for each approach are reported.

Note that in the following tables, the best results are highlighted in bold.

The classification accuracy obtained from the approaches that are based on S-shaped
TFs are reported in Table 6, followed by the results of the approaches based on the V-
shaped TFs in Table 7. We named the approaches with the static TFs as S1 to.S4 for
the S-shaped TFs, and V1 to V4 for the V-shaped TFs. Similarly, the time/dependent
TFs are named as T'Vg; to TVg, for the S-shaped functions and TVi; to/ TV, for the
V-shaped TFs.

In general, it is observed that the BDA with time-dependent TFs (I'V —={'F's) perform
better than those with fixed TFs. In Table 6, it is observed that T:Wg, provided the best
results on 50% of the datasets, and on three datasets it provided“the same results as S1.
In the case of T'Vgs, the traditional TFs approach performs better than the TV approach,
however, it can be found that T'Vs3 obtained the best results forseight datasets and is
competitive with S3 for five datasets, while S3 obtained the best results for only five
datasets. S4 and T'Vg, obtained the same results. Thé results in Table 6 show that TV
approaches are robust since they have the smallest standard’deviation.

By observing the results of Table 7, it is obvieussthat TV performs well compared to
traditional TFs based approaches. An exception is the case of V2 and T'Vy5 that obtained
nearly the same results, while TV, , TVy3 and Wy, obtained the best results for 70%,
72% and 77% of the datasets, respectivelys, The time TV-TFs with V-shaped functions
highly improved the performance of the. BDA/This is because a good balance is achieved
between exploration and exploitation. “I'he robustness of TV-BDA approaches is also
observed as they obtained smallervalues in terms of standard deviation.

In Tables 8 and 9, the ratio of kept feature to the total number of features using the
BDA that utilize the traditional TFs and TV-BDA are reported. Once again, the TV-
BDA outperforms TF-BPA “approaches on the majority of the datasets. In particular,
T'Vs1 selected the minimalnumber features for 10 datasets and was competitive with other
approaches on the two other'datasets.

The same obgervation can be made when studying the behaviors of TVss, TVs3, and
T'Vs4, which achievedithe best performance on 12, 13 and 11 datasets, respectively. Since
the main objectiveyof F'S is to minimize the number of selected features without decreas-
ing the classification accuracy as much as possible, we can say that S-shaped TV-BDA
approaches shewed good performance since they obtained comparative classification ac-
curacy using/a smaller number of features. The same observation can be made from Table
9, where TV-BDA approaches obtained comparative performance in terms of number of
seleeted features, while the classification accuracy of those approaches is much better than
TF-BDA approaches.

From Table 10, it is found that the S-shaped TV-BDA optimizers are better than
TF-BDA in terms of fitness measures. T'Vg; obtained the best fitness value on 50% of
the datasets, and on two datasets it obtained the same results as S1. In the case of TVgs
and TVgy, it can be detected that they obtained the best results for 67% and 55% of the
datasets, respectively.
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Table 6: Comparison between the original S-shaped transfer functions and time dependent variants in
terms of accuracy

Benchmark Measure | S1 TVsi | S2 TVsy | S3 TVss | S4 LV,
Breastcanc AVC 0.9643 0.9786 | 0.9714 0.9852 | 0.9929 0.9929 | 0.9786.0.9786
reasteancer | opp 0.0000  0.0000 | 0.0000  0.0018 | 0.0000  0.0000 | 0.0060 00000
BreastEW AVC 0.9839 0.9716 | 0.9889 0.9769 | 0.9822 0.9792 | 0.9564 1.0.9936
ast STD 0.0052  0.0072 | 0.0039  0.0075 | 0.0028  0.00494 0.0059 0.0056
Exactl AVC 1.0000 1.0000 | 1.0000 0.9902 | 1.0000 1.0000 | 09998  1.0000
xactly STD 0.0000  0.0000 | 0.0000  0.0539 | 0.0000 {0000 | 0.0000  0.0000
xactly? AVC 0.7922 0.7892 | 0.7952 0.7630 | 0.7983, 0.7725 | 0.7658 0.7508
Xactly STD 0.0141  0.0099 | 0.0100  0.0060 | 0.0040  0.0222#{°0.0116  0.0057
HoartEW AVCG 09154 0.9377 | 0.8691 0.8679 | 08846 0.8759 | 0.8759 0.9080
cart STD 0.0173  0.0091 | 0.0047  0.0193 } 0.0080. ~0:0139 | 0.0170  0.0191
Lomohosranhy | AVG 0.9440 0.9667 | 0.9510 0.9608 | 0.9844 | 0.9922 | 0.9822 0.9889
YIPROSraphy | gppy 0.0218  0.0000 | 0.0168  0.0215] 0.0069 0.0143 | 0.0169  0.0183
Meofn AVC 1.0000 1.0000 | 1.0000 “1.00007"1.0000 1.0000 | 1.0000 1.0000
ok STD 0.0000  0.0000 | 0.0000  0.0600 | 0.0000  0.0000 | 0.0000  0.0000
el | AVG 1.0000 0.9044 | 1.0000 “1:0000 | 0.9289 1.0000 | 0.9889 0.9600
benglung STD 0.0000  0.0336 | 0.0000%/0.0000 | 0.0169  0.0000 | 0.0253  0.0332
SonaEW AVC 0.9825 0.9992 | 1.0000 ¥1.0000 | 0.9683 0.9841 | 0.9865 0.9651
onar STD 0.0165  0.0043..| 0100007 0.0000 | 0.0144  0.0114 | 0.0135  0.0136
SoectEW AVC 0.8685 0.9352\] 0.9049 0.8617 | 0.9228 0.8519 | 0.8741 0.8438
pect STD 0.0141 _=0.0117 | 000064  0.0094 | 0.0120  0.0109 | 0.0123  0.0093
ConeressEw | AVG 0.9820 0.9977 | 0.9885 0.9502 | 0.9966 0.9866 | 0.9766 0.9751
sre STD 0:0065%. 0.0047 | 0.0000  0.0063 | 0.0061  0.0044 | 0.0021  0.0044
— 0.9634, 0.9535 | 0.9582 0.9347 | 0.9728 0.9911 | 0.9639 0.9075
Sphere STD 0:0102/ 0.0092 | 0.0094  0.0094 | 0.0051  0.0094 | 0.0096  0.0121
R AVC 0.9353 0.9858 | 0.9842 0.9912 | 0.9787 0.9794 | 0.9754 0.9840
TVskp STD 0.0030  0.0020 | 0.0031  0.0029 | 0.0048  0.0031 | 0.0040  0.0032
Tietactoe AVC 0.8431 0.8267 | 0.8594 0.8333 | 0.8323 0.8469 | 0.8490 0.8290
mtac STD 0.0018  0.0049 | 0.0000  0.0000 | 0.0021  0.0064 | 0.0000  0.0099
Vore AVC 0.9739 0.9694 | 0.9828 0.9850 | 0.9667 0.9894 | 0.9783 0.9994
’ STD 0.0084  0.0077 | 0.0030  0.0067 | 0.0000  0.0082 | 0.0078  0.0030
WaseformEW | AVE 0.7544  0.7630 | 0.7581 0.7733 | 0.7542 0.7580 | 0.7534  0.7621
STD 0.0078  0.0064 | 0.0074  0.0086 | 0.0078  0.0066 | 0.0058  0.0077

WineHW AVC 1.0000 0.9750 | 1.0000 1.0000 | 1.0000 1.0000 | 1.0000 1.0000
’ STD 0.0000  0.0085 | 0.0000  0.0000 | 0.0000  0.0000 | 0.0000  0.0000
Zoo AVCG 1.0000 1.0000 | 0.9524 1.0000 | 1.0000 1.0000 | 1.0000 1.0000
STD 0.0000  0.0000 | 0.0000  0.0000 | 0.0000  0.0000 | 0.0000  0.0000

Ranking WITIL | 7318 | 837 [ 8/4l6 | 6l48 | 5l5)8 [ 855 [ 747 [ 7j4/7
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Table 7: Comparison between the original V-shaped transfer functions and time dependent variants in
terms of accuracy results

Benchmark Measure | V1 TVyi | V2 TVys | V3 TVys | V4 LV
Breastcanc AVC 0.9786 0.9671 | 0.9805 0.9781 | 0.9569 0.9895 | 0.961945.0.9771
reasteancer | opp 0.0050  0.0036 | 0.0032  0.0072 | 0.0083  0.0070 | 0.0087 00047
BreastEW AVG 0.9465 0.9582 | 0.9816 0.9658 | 0.9520 0.9801 | 0.9494 1,0.9740
ast STD 0.0146  0.0121 | 0.0070  0.0093 | 0.0091  0.00654 0.0119 0.0096
Eac] AVG 0.8847 0.8605 | 0.9075 0.8947 | 0.9093 0.9137 | 08838  0.9290
xactly STD 0.0860  0.0971 | 0.0891  0.0814 | 0.0873  0/0841 | 0.1051  0.0551
xactly? AVC 0.7230  0.7428 | 0.7190  0.7595 | 0.6985 , 0.7358 | 0.7417 0.7257
Xactly STD 0.0216  0.0214 | 0.0195  0.0166 | 0.0209  0.0216% 0.0167  0.0200
HoartEW AVCG 0.8463 0.8617 | 0.8525 0.8525 | 04926  0.8321 | 0.8148  0.8858
cart STD 0.0234  0.0251 | 0.0260  0.0250 | 0.0235 ~0:0153 | 0.0188  0.0327
Lomohosranhy | AVG 0.8877 0.8967 | 0.8673 0.7956 | 0.8744) 0.9121 | 0.8611 0.8950
YIPROTaphy | gppy 0.0206  0.0308 | 0.0300  0.028% 0.0243° 0.0268 | 0.0264  0.0321
Meofn AVC 0.9493  0.9523 | 0.9518 “0.9450°10.9673 0.9578 | 0.9463 0.9732
ok STD 0.0383  0.0473 | 0.0373  0.0435 | 0.0301  0.0405 | 0.0557  0.0275
enelumeEW | AVG 0.8733  0.9333 | 0.9778 0:9556 | 1.0000 0.9222 | 0.9333 0.8067
benglung STD 0.0203  0.0000 | 0.0320\/0.0320 | 0.0000  0.0466 | 0.0000  0.0441
SonaEW AVC 0.9476 0.9214 | 0.9595 70.9587 | 0.9659 0.9563 | 0.9722  0.9952
STD 0.0229  0.025%. 0002437 0.0216 | 0.0162  0.0251 | 0.0199  0.0097

A AVG 0.8580 0.8599\] 0.8525 0.8099 | 0.7796 0.8198 | 0.8969 0.8765
pect STD 0.0235 =0.0232 [ 000165  0.0279 | 0.0171  0.0168 | 0.0256  0.0164
ConeressEw | AVG 0.9521 0.9586 | 0.9548 0.9713 | 0.9678 0.9705 | 0.9686 0.9950
sre STD 0:0091%. 0.0119 | 0.0113  0.0108 | 0.0093  0.0130 | 0.0074  0.0072
— 0.9535, 0.9437 | 0.9582 0.9779 | 0.9042 0.9700 | 0.9131 0.9249
Sphere STD 0:0182/° 0.0133 | 0.0120  0.0096 | 0.0186  0.0121 | 0.0120  0.0130
R AVC 0.9620 0.9664 | 0.9666 0.9581 | 0.9649 0.9733 | 0.9658 0.9705
TVskp STD 0.0100  0.0105 | 0.0082  0.0120 | 0.0119  0.0079 | 0.0163  0.0088
Tietactoe AVC 0.8153 0.8227 | 0.7939 0.8021 | 0.8347 0.8017 | 0.7915 0.8215
mtac STD 0.0320  0.0238 | 0.0171  0.0269 | 0.0208  0.0225 | 0.0209  0.0196
Vot AVC 0.9489 0.9544 | 0.9361 0.9733 | 0.9594 0.9683 | 0.9733 0.9617
ote STD 0.0131  0.0175 | 0.0146  0.0155 | 0.0129  0.0119 | 0.0136  0.0089
WaseformEW | AVE 0.7382  0.7456 | 0.7493  0.7554 | 0.7404  0.7496 | 0.7433  0.7488
STD 0.0111  0.0098 | 0.0105 0.0113 | 0.0089  0.0100 | 0.0125  0.0097

WineHW AVC 0.9769 0.9537 | 0.9778 0.9778 | 0.9981 1.0000 | 0.9991 0.9991
’ STD 0.0105  0.0234 | 0.0153  0.0170 | 0.0070  0.0000 | 0.0051  0.0051
Zoo AVG 1.0000 1.0000 | 0.9555 0.9984 | 0.9921 0.9825 | 0.9524 0.9825
STD 0.0000  0.0000 | 0.0121  0.0087 | 0.0181  0.0233 | 0.0354  0.0233

Ranking WITIL | 5[112 | 12[15 | 1008 | 8[0[10 | 5[0[13 [ 13J0j5 | 4[1[13 | 13]1]4
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Table 8: Comparison between the original S-shaped transfer functions and time dependent variants in
terms of minimum number of selected features

Benchmark Measure | S1 TVs: | S2 TVsy | S3 TVss | S4 TVisy
Breactcancer | AVG 6.00 7.00 | 5.00 4.93 |5.00 5.00 |4.00 “4.00
casteance STD 0.00 0.00 | 0.00 0.25 | 0.00 0.00 | 0.00 0100
BreastEW AVG 12.83  12.63 | 1343  11.47 | 13.07 11.50 | 13:00 13.33
reas STD 1.97 2.06 | 1.50 205 |2.15 215 (223 211
Exactl AVC 6.00 6.00 |6.03 5.97 | 6.13 6.00~.] 633 6.00
i STD 0.00 0.00 | 0.18 018 | 0.35 0l00 | 0.48 0.00
AVG 8.23 833 |6.33 893 | 2.40 700 | 5/03 8.90
Exactly2 X X
STD 3.07 296 | 2.68 058 | 1.52 2727411 1.42
HoartEW AVG 4.97 7.30 | 6.60 5.93 | 6/63 5.77 | 6.40 6.63
STD 0.18 112 | 0.86 1.34 40.93 50 | 1.10 1.67
Cemohosranne | AVE 7.97 5.90 | 8.20 7.80 | 873 8.23 | 6.53 717
YIMPROSIAPAY | gy 2.14 149 | 1.52 2,07\ 1.05 2.73 | 2.27 1.76
eofn AVG 6.00 6.00 |6.00 ~6.00 |6:13 6.03 | 6.20 6.00
STD 0.00 0.00 | 0.00 0.00 | 0.35 018 | 041 0.00
nelueEw | AVG 125.80 121.40 | 129.87 116.97 | 14513 121.17 | 144.73 136.33
pengiung STD 4.58 8.29 |5.16 376 | 6.97 471 | 8.69 9.35
AVG 3123  27.73 |\2603 1 22.53 | 28.00 25.57 | 27.87  25.40
SonarEW A . . . .
STD 6.06 30| 2,69 2.60 | 3.44 3.35 | 4.00 3.64
SoectEW AVG 8.07  847%]9.17 957 | 8.80 6.83 | 9.53 7.40
P STD 2.26 157 118 2928 | 1.86 256 | 1.72 2.65
Consressily | AVG 643 450 | 2.17 687 | 5.43 5.53 | 6.53 5.70
Bres: STD 1.48 114 038 114|097 229 |1.11 1.21
TonosohereEw | AVG 1353, ) 12.43 | 13.77  12.60 | 1437  11.47 | 13.93 12.17
OnoSphere STD 2.70 243 | 2.54 297 | 2.82 1.89 | 241 2.91
O~ AVG 9250  19.67 | 21.37  21.17 | 2257  20.67 | 21.53  20.67
7SKP STD 2.76 259 | 2.71 197 | 273 232 | 247 1.86
. AVG 6.60 6.87 | 7.00 6.00 | 6.20 700 | 7.00 6.67
Tic-tac-toe . .
STD 1.04 0.35 | 0.00 0.00 | 0.41 0.00 | 0.00 0.76
Vot AVG 4.13 5.30 | 6.30 5.83 | 4.73 3.37 |5.57  5.83
‘ STD 0.82 170 |1.15 178 | 1.82 143 | 2.73 1.78
Waveformpw | AVG 26.07  25.03 | 23.97 2553 | 2353  23.00 | 23.37  21.33
i STD 3.49 458 | 3.74 2.96 | 3.14 318 | 297 2.88
N AVG 5.07 450 | 3.40 433 | 457 3.57 | 4.87 3.93
WineEW
STD 0.25 0.82 | 0.86 0.48 | 0.50 0.63 | 0.63 0.64
oo AVG 137 2.70 | 6.17 377 | 343 443 |1.73 317
STD 0.63 0.60 | 0.38 0.73 | 0.50 0.50 | 0.58 0.38
Ranking WITIL | 61210 [ 10126 | 5[1[12 | 12J1f5 | 4f113 [ 13[1}4 | 6[1[11 | 11]1]6
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Table 9: Comparison between the original V-shaped transfer functions and time dependent variants in
terms of minimum number of selected features

Benchmark Measure | V1 TV | V2 TV | V3 TVyvs | V4 TV,
Breactcancer | AVG 5.23 563 | 4.60 523 | 4.77 527 | 547 5.37
casteance STD 1.30 130 | 0.93 077 | 097 0.74 | 143 081
BreastEW AVG 16.50 18.17 | 17.87 1843 | 16.17  17.50 | 1677 116.37
reas STD 2.89 3.03 | 2.64 357 | 2.64 2.56 4(2.19 247
Exactl AVC 9.10 933 | 890 943 | 890 8.87.| 8.60 8.97
i STD 1.32 1.30 | 2.09 145 |1.30 114 | 1.16 0.93
Exactlvd AVG 8.87 6.90 | 8.87 5.53 | 7.37 927 |8l57 9.67
xactly STD 1.43 3.01 | 2.70 257 | 2.59 229" 1.70 1.37
HoartEV AVG 7.53 773 | 8.70 7.87 | 747 973 | 7.87 9.07
STD 2.10 1.68 | 1.84 1.68 41.83 148 | 1.50 1.53

Cemohosranne | AVE 11.77  13.00 | 10.30 1120 | 1133 ) 10.47 | 11.03  10.80
YIMPROSIAPAY | gy 2.56 213 | 2.72 220N\ 1.75 172 | 224 1.73
ot AVG 9.57 8.93 | 9.37 9.20" | 8:60 8.63 | 8.50 8.43
orn STD 1.65 146 | 1.16 110 | 0.77 110 | 1.41 1.14
nelueEw | AVG 151.90 155.50 | 171.83 161.57 | 156.03 174.20 | 152.17 165.40
pengiung STD 9.90 8.01 2462\ 1575 | 7.81 19.05 | 6.12 15.90
SonarEW AVG 35.53  37.07 |\3547 ) 34.37 | 33.63 3597 | 33.07 35.33
onar STD 4.59 4062 A15 518 | 397 419 | 2.89 4.88
ShectEW AVG 1253 12.33. 12.63 11.73 | 10.63  13.60 | 12.77  11.20
P STD 2.52 245 .30 2.33 | 2.98 299 | 2.13 1.67
Consressily | AVG 863 940 | 9.17 8.87 | 9.30 8.60 | 9.07 7.10
Bress STD 1.40 262 | 1.72 161 | 1.62 211 | 1.78 1.95
TonosohereEw | AVG 1873 ) 1940 | 20.67 18.57 | 18.23  18.37 | 18.13  17.53
P STD 3.90 2.65 | 3.0 354 | 3.07 293 | 2.27 3.18
O~ AVG 2710  26.93 | 26.53  26.63 | 2640  26.30 | 25.20  25.13
7SKP STD 2.25 2.05 | 2.49 3.36 | 2.16 2.81 | 3.07 2.60
T tacton AVG 7.33 6.70 | 6.87  7.10 | 7.30 6.40 | 6.30 6.53
1etact STD 1.30 1.24 | 0.90 116 | 0.92 107 | 0.70 0.57
Vot AVG 9.80 8.37 | 8.63 1023 | 7.83 7.10 | 7.40 8.47
o STD 2.04 1.63 | 1.88 297 | 1.46 204 |1.81 2.01
Waveformpw | AVG 30.43 3090 | 30.57 29.37 | 28.80  20.07 | 27.03  30.57
: STD 3.88 4.00 | 3.11 3.05 | 3.94 3.32 | 4.42 3.86
WidEW AVG 8.20 7.37 | 7.00 757 | 7.50 7.40 | 7.10 6.67
STD 1.69 152 | 0.87 163 | 1.17 145 | 177 1.37

oo AVG 717 5.60 | 7.57 867 |9.20 9.03 | 8.43 847
STD 1.32 1.30 | 1.33 152 |1.99 1.90 | 1.57 1.36

Ranking WITIL | 1008 | 8[o[10 | 9fojo | 9jojo | 9jojo | 9lojo | soji0 | 10[0]8
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Given that TV-BDA approaches have the lowest standard deviation as presented in
Table 11, T'V-based approaches can be considered as more robust than approaches based
on traditional TFs. According to results of Table 11, V-shaped TV-BDA approaches
outperform traditional V-shaped approaches for most datasets, where T'V3,1 outperformed
V1 on 72% of the datasets, and TVi, and TVj, are better for 72% and 77% of the
datasets, respectively.

These results indicate how important is the role of the TF in BDA, since by selecting a
suitable function, the performance of the BDA can be remarkably increased. Moreover, it
is clear that adapting the behavior of the TF through the optimization process has a major
influence on improving the performance of the BDA. Furthermore, the géod ‘performance
of the BDA highlights its ability at searching the feature space for the most informative
features and avoid premature convergence that may be caused by falling in local optima.

In addition, the improved potential to balance between exploration,and exploitation
throughout iterations is another reason for the BDA’s superiority. Since the only mod-
ification is the replacement of the traditional TFs with thé¢ TV-TFs, these results show
that the adaptive control of the TFs can significantly improve the search ability of the
BDA. Overall, we can say that T'Vss is the best approach when compared with S-shaped
approaches, while T'Vy,) is the best among the V-shaped approaches. In the next subsec-
tion, we assess the performance of those two appréaches'by comparing their performances
with other well-known state-of-the-art F'S algorithnis,

6.6. Comparison with other metaheuristié based. approaches

After analyzing the results of theproposed approaches, this section presents a com-
parison between the best two approaches\proposed in this work (7'Vss and T'Vi/4) and the
most popular metaheuristics-based feature selection algorithms (BGWO, BGSA, BPSO,
BBA, and GA).

The performance of T'Vgs and TV, is compared in terms of average accuracy and
standard deviation. As/per tesults in Table 12, T'Vs3 performs better than TVi,. It
obtained the best results™for 78% of the datasets. Moreover, we can observe that the
performance of the/proposed T'Vg3 approach is better than all the other algorithms for
all datasets in terms of classification accuracy. Figure 5 compares TVs3, T'Vi4 and other
approaches in terms of classification accuracy. Based on reduction rates presented in Table
13, it is obsérved that T'Vs3 outperforms other algorithms for 10 out of 18 datasets, while
the BBA, and the BGSA obtained the best results for seven datasets and one dataset,
respectively. The obtained reduction rates are represented in Fig. 6. Table 14 shows the
superiotity of T'Vs3, where the reported fitness combines both classification accuracy and
reduetion rate, and showed that T'Vss had the best values for 14 out of 18 datasets.
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Table 10: Comparison between the original transfer S-shaped functions and time dependent S-shaped
variants in terms of best fitness values

Benchmark Measure | S1 TVsi | S2 TVsy | S3 TVss | S4 LV,
Breastcanc AVC 0.0420  0.0290 | 0.0338 0.0201 | 0.0126 0.0126 | 0.0257.0.0257
reasteancer | opp 0.0000  0.0000 | 0.0000  0.0015 | 0.0000  0.0000 | 0.0060 00000
BreastEW AVC 0.0202 0.0323 | 0.0155 0.0267 | 0.0220 0.0244 | 0,0475 .0.0108
ast STD 0.0049  0.0070 | 0.0038  0.0074 | 0.0028  0.00484 0.0056 0.0053
Eac] AVC 0.0046 0.0046 | 0.0046 0.0143 | 0.0047 0.0046 | 00050 0.0046
xactly STD 0.0000  0.0000 | 0.0001  0.0532 | 0.0003  0{0000 | 0.0071  0.0000
xactly? AVG 0.2121 02151 | 0.2077 0.2415 | 0.2015, 02307 | 0.2357 0.2535
Xactly STD 0.0141  0.0099 | 0.0081  0.0058 | 0.0030  0.02027 0.0084  0.0048
HoartEW AVCG 0.0875 0.0673 | 0.1346 0.1353 | 04194 0.1273 | 0.1278  0.0962
cart STD 0.0171  0.0083 | 0.0052  0.0187 | 0.0078 Q0143 | 0.0166  0.0177
Lomohosranhy | AVG 0.0598 0.0363 | 0.0530 0.0431 | 0.0203) 0.0123 | 0.0212 0.0150
YIPROSraphy | gppy 0.0214  0.0008 | 0.0162  0.0210] 0.0065 0.0133 | 0.0165  0.0180
Meofn AVC 0.0046 0.0046 | 0.0046 ~0.0046°10.0047 0.0046 | 0.0048 0.0046
ok STD 0.0000  0.0000 | 0.0000  0.0600 | 0.0003  0.0001 | 0.0003  0.0000
enelumeEW | AVG 0.0039 0.0983 | 0.0040 “0:0036 | 0.0749 0.0037 | 0.0155 0.0438
pehgiung STD 0.0001  0.0331 | 0.0002\/0.0001 | 0.0166  0.0001 | 0.0248  0.0327
SonaEW AVC 0.0225 0.0054 | 0.0045 0.0038 | 0.0361 0.0200 | 0.0180 0.0388
onar STD 0.0157  0.0042.| 000047 0.0004 | 0.0141  0.0111 | 0.0131  0.0133
SoectEW AVC 0.1338 0.0680\ 0.0983 0.1412 | 0.0804 0.1498 | 0.1290 0.1580
pect STD 0.0134 0.0118 | 070065 0.0086 | 0.0116  0.0100 | 0.0118  0.0085
ConeressEw | AVG 0.0207 0.0051 | 0.0127 0.0536 | 0.0068 0.0167 | 0.0272 0.0282
sre STD 0:0064%. 0.0041 | 0.0002  0.0058 | 0.0059  0.0040 | 0.0017  0.0044
— 0.0402, 0.0497 | 0.0454 0.0683 | 0.0312 0.0122 | 0.0399 0.0951
Sphere STD 0:0102/° 0.0093 | 0.0093  0.0093 | 0.0049  0.0095 | 0.0093  0.0120
R AVC 0.0208 0.0195 | 0.0216 0.0146 | 0.0274 0.0262 | 0.0304 0.0216
TVskp STD 0.0028  0.0022 | 0.0031  0.0030 | 0.0046  0.0033 | 0.0039  0.0031
Tietactoe AVC 0.1627 0.1792 | 0.1470 0.1717 | 0.1729 0.1594 | 0.1573 0.1767
mtac STD 0.0006  0.0046 | 0.0000  0.0000 | 0.0025  0.0063 | 0.0000  0.0089
Vote AVC 0.0284 0.0336 | 0.0210 0.0185 | 0.0360 0.0126 | 0.0249  0.0042
' $TD 0.0083  0.0070 | 0.0027  0.0066 | 0.0011  0.0073 | 0.0069  0.0031
WaseformEW | AVE 0.2496  0.2409 | 0.2455 0.2308 | 0.2492  0.2453 | 0.2500  0.2408
4 & STD 0.0077  0.0069 | 0.0074  0.0084 | 0.0075  0.0070 | 0.0059  0.0077
WineHW AVC 0.0039 0.0282 | 0.0026 0.0033 | 0.0035 0.0027 | 0.0037 0.0030
’ STD 0.0002  0.0083 | 0.0007  0.0004 | 0.0004  0.0005 | 0.0005  0.0005
Zoo AVG 0.0030 0.0017 | 0.0510 0.0024 | 0.0021 0.0028 | 0.0011 0.0020
STD 0.0004  0.0004 | 0.0002  0.0005 | 0.0003  0.0003 | 0.0004  0.0002

Ranking WITIL | 71219 | 9]2|7 | 918 | 8[1j9 | 6111 [11[1]6 | 819 [ 9[1[8
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Table 11: Comparison between the original transfer V-shaped functions and time-dependent V-shaped
variants in terms of best fitness values

Benchmark Measure | V1 TVyi | V2 TVys | V3 TVys | V4 LV
Breastcanc AVC 0.0270 0.0388 | 0.0244 0.0275 | 0.0480 0.0162 | 0.04384..0.0286
reasteancer | opp 0.0052  0.0040 | 0.0031  0.0067 | 0.0081  0.0072 | 0.0060 00048
BreastEW AVG 0.0585 0.0475 | 0.0242 0.0400 | 0.0529  0.0255 | 0.0557 .0.0312
ast STD 0.0147  0.0120 | 0.0071  0.0090 | 0.0091  0.00634 0.0117 0.0092
Eac] AVG 0.1212 0.1453 | 0.0984 0.1115 | 0.0966 0.0923 | 01216 0.0772
xactly STD 0.0861  0.0966 | 0.0886  0.0814 | 0.0868  0{0840 | 0.1045  0.0553
xactly? AVC 0.2810 0.2599 | 0.2850 0.2424 | 0.3042 , 0.2687 | 0.2623 0.2790
Xactly STD 0.0213  0.0208 | 0.0190  0.0173 | 0.0202  0.02097 0.0165  0.0195
HoartEW AVCG 0.1580 0.1428 | 0.1527 0.1521 | 02111 0.1737 | 0.1894 0.1200
cart STD 0.0237  0.0247 | 0.0260  0.0251 } 0.0227 ~0:0147 | 0.0188  0.0315
Lomohosranhy | AVG 0.1178 0.1095 | 0.1371 0.2086 | 0.1306 ) 0.0928 | 0.1436 0.1099
YIPROTaphy | gppy 0.0200  0.0303 | 0.0303  0.028% 0.0238"  0.0268 | 0.0260  0.0314
Meofn AVC 0.0575 0.0541 | 0.0549 “0.0615°10.0390 0.0484 | 0.0597 0.0331
ok STD 0.0300  0.0479 | 0.0377  0.0438 | 0.0302  0.0408 | 0.0557  0.0280
enelumeEW | AVG 0.1301  0.0708 | 0.0273 0:0490 | 0.0048 0.0824 | 0.0707 0.1965
pehgiung STD 0.0199  0.0002 | 0.0314\/°0.0313 | 0.0002  0.0460 | 0.0002  0.0435
SonaEW AVC 0.0578 0.0840 | 0.0460 70.0466 | 0.0394 0.0492 | 0.0330 0.0106
onar STD 0.0228  0.0248. 0102427 0.0213 | 0.0157  0.0245 | 0.0198  0.0096
SoectEW AVC 0.1463 0.1443\ 0.1518 0.1936 | 0.2230 0.1846 | 0.1079 0.1273
pect STD 0.0229 0.0233 | 000167  0.0282 | 0.0171  0.0167 | 0.0254  0.0162
ConeressEw | AVG 0.0528 0.0468 | 0.0505 0.0340 | 0.0377 0.0346 | 0.0368 0.0094
sre STD 0:0092%. 0.0113 | 0.0111  0.0102 | 0.0089  0.0131 | 0.0074  0.0078
— 0.0515, 0.0615 | 0.0474 0.0273 | 0.1002 0.0351 | 0.0913 0.0795
Sphere STD 0:0183 /" 0.0133 | 0.0120  0.0097 | 0.0185  0.0122 | 0.0130  0.0131
R AVCQ 0.0451 0.0407 | 0.0404 0.0489 | 0.0421 0.0338 | 0.0408 0.0362
TVskp STD 0.0101  0.0105 | 0.0082  0.0120 | 0.0119  0.0078 | 0.0161  0.0089
Tietactoe AVC 0.1910 0.1829 | 0.2116 0.2038 | 0.1717 0.2034 | 0.2134 0.1839
il STD 0.0316  0.0237 | 0.0172  0.0273 | 0.0211  0.0227 | 0.0212  0.0194
Vot AVC 0.0567 0.0503 | 0.0686 0.0328 | 0.0450 0.0358 | 0.0310 0.0432
ote STD 0.0133  0.0177 | 0.0142  0.0150 | 0.0130  0.0119 | 0.0138  0.0086
WaseformEW | AVE 0.2668 0.2596 | 0.2558 0.2495 | 0.2642 0.2552 | 0.2609  0.2563
STD 0.0108  0.0097 | 0.0107  0.0112 | 0.0089  0.0100 | 0.0125  0.0096

WineHW AVC 0.0292 0.0515 | 0.0274 0.0278 | 0.0076 0.0057 | 0.0064 0.0060
’ STD 0.0111  0.0229 | 0.0150  0.0161 | 0.0067  0.0011 | 0.0046  0.0052
Zoo AVG 0.0045 0.0035 | 0.0488 0.0070 | 0.0136 0.0229 | 0.0524 0.0226
STD 0.0008  0.0008 | 0.0121  0.0087 | 0.0172  0.0222 | 0.0346  0.0224

Ranking WITIL | 5J0/13 | 13]0|5 | 10[0[8 | 8[0[10 | 5[0[13 | 13[0[5 | 4/0[14 [ 14]o]4
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Breastcancer

SpectEW
==TVV4 ~@-TVS3 =A=bGWO BGSA BBA

Figure 5: Comparison of TVy 4 and TVgs versus other optimizers based on accuracy metric

SpectEW
=4=TVV4 =@—=TVS3 —a=bGWO BGSA BBA

Figure 6: Comparison between TVV4, TVS3 and other meta-heuristics in terms of feature reduction rate

Table 15 reports the results of the best BDA V-shaped and BDA S-shaped time-
dependent variants versus others algorithms for the specificity metric. Results of Table
15 show that the proposed BDA-based techniques can outperform all other methods for
that metric.,For 69.23% of the datasets, the TVi4 variant performs best, while for the
rest of the cases; T'Vs3 has better results.

Tablesl6 compares the best BDA V-shaped and BDA S-shaped time-dependent vari-
ants and others optimizers for the sensitivity metric. From Table 16, we see that the
proposed BDA-based techniques can outperform other competitors according to the sen-
sitivity measure. For 61.53% of the datasets, the TV, variant demonstrates satisfac-
tory performance. But T'Vg3 has better performance for the rest of the cases except for
SpectEW, where the BGSA has the highest sensitivity.

Table 17 compares results of the best BDA V-shaped and BDA S-shaped time-varying
variants with others optimizers for the AUC metric. It is observed that the proposed
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Table 12: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of accuracy

BDA
Benchmark Measure bGWO | BGSA | BBA
TVyy TVs3

Breasicancer | AVG 0.9771 | 0.9929 | 0.9779 | 0.9481 | 0.9321
casteance STD 0.0047 | 0.0000 | 0.0103 | 0.0203 | 0.0513
BreastEW AVG 0.9740 | 0.9792 | 0.9231 | 0.9284 | 0.9129
reas STD 0.0096 | 0.0049 | 0.0152 | 0.0140 | 0/0349
Exactly AVC 0.9290 | 1.0000 | 0.8345 | 0.7323/] 0.6015
Y STD 0.0551 | 0.0000 | 0.0773 | 0.1244 | 0.0553
Exactlv? AVG 0.7257 | 0.7725 | 0.6740 | 076438 20.6830
W STD 0.0200 | 0.0222 | 0.0405 | 0:04073 0.0400
HoartEW AVG 0.8858 | 0.8759 | 0.7883.0.7698/ 0.7284
STD 0.0327 | 0.0139 | 00391 | 00664 | 0.0606
Lemohostaniy | AV 0.8950 | 0.9922440.8492. | 078642 | 0.6894
YmPpROsraphy | gy 0.0321 | 0.0143_| 0:0567 | 0.0805 | 0.1033
Meof. AVG 0.9732 | 1.0000.] 0.9130 | 0.8268 | 0.7155
n STD 0.0275 [40.0000 [N0:0517 | 0.0608 | 0.0832
eEw | AVG 0.8067 | 1.00007] 0.8689 | 0.9493 | 0.8156
pengiung STD 0.0441 | 0:0000 | 0.0122 | 0.0543 | 0.0545
AVC 0.9952 109841 | 0.8865 | 0.8651 | 0.8143

SonarEW
STD 010097 |70.0114 | 0.0404 | 0.0465 | 0.0588
- AVG 0.8765 | 0.8519 | 0.8179 | 0.7846 | 0.7556
pect STD 0.0164 | 0.0109 | 0.0288 | 0.0342 | 0.0393
ConressEW 4| WG 0.9950 | 0.9866 | 0.9502 | 0.9425 | 0.8686
Ongress STD 0.0072 | 0.0044 | 0.0469 | 0.0260 | 0.0803
TonosohefbE e | AYE 0.9249 | 0.9911 | 0.8911 | 0.8685 | 0.8662
onosp ¢ STD 0.0130 | 0.0094 | 0.0251 | 0.0257 | 0.0271
- AVC 0.9705 | 0.9794 | 0.9346 | 0.8978 | 0.7898
SEp STD 0.0088 | 0.0031 | 0.0190 | 0.0526 | 0.0896
h el AVC 0.8215 | 0.8469 | 0.8057 | 0.7611 | 0.6578
! : STD 0.0196 | 0.0064 | 0.0287 | 0.0380 | 0.0805
ol AVG 0.9617 | 0.9894 | 0.9394 | 0.9433 | 0.8556
‘ STD 0.0089 | 0.0082 | 0.0208 | 0.0246 | 0.1016
WaveformEw | AVG 0.7488 | 0.7580 | 0.7050 | 0.6971 | 0.6592
ave STD 0.0097 | 0.0066 | 0.0154 | 0.0205 | 0.0460
WineEW AVG 0.9991 | 1.0000 | 0.9380 | 0.9759 | 0.8380
STD 0.0051 | 0.0000 | 0.0362 | 0.0348 | 0.1305
oo AVC 0.9825 | 1.0000 | 0.9930 | 0.9952 | 0.8667
STD 0.0233 | 0.0000 | 0.0229 | 0.0148 | 0.1142
Ranking WITIL | 4joj14 | 14/0/4 | 00|18 | 0[o[18 | 00|18
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Table 13: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in terms of minimum number of features

BDA
Benchmark Measure ™ v bGWO | BGSA | BBA
Va4 S3

Breasteancer | AVG 537 | 500 | 640 | 447 | 4.10
ast STD 081 | 0.00 175 | 1.01 | 1.27
AVG 16.37 | 11.50 | 21.57 | 14.93 | 11,77
BreastEW STD 247 | 215 | 480 | 200 | 394
Exactl AVG 897 | 600 | 1070 | 7.67 / 5.23
xacty STD 0.93 | 0.00 202 | 1490 | 225
Exactlv? AVG 967 | 710 | 697 | 613 b2
vy STD 137 | 272 2.74 | \2:08m) 1.57
AVG 907 | 577 | 9.70 |\ 663 1 5.07

artEW
HeartEW STD 153 | 150 | 499 | .94 | 1.70
Lvmhosranhe | AV 10.80 | 823 4510.600] 9.00 | 6.87
YmPpRography | gy 173 | 273 263 | 218 | 1.96
Meofn AVG 843 | 603N 1043 | 820 | 5.73
oF STD 1.14 0.18 1.45 1.16 1.82
T 165,40 | 121171 152.33 | 145.10 | 126.47
pengiung STD 1590, | 471 700 | 488 | 15.62
SonarEW AVG 35.33 |925.57 | 34.87 | 27.07 | 23.53
STD 288 |/ 3.35 781 | 364 | 5.15
] AVC 1120 | 6.83 | 1377 | 977 | 8.73
SpectEW $TD 167 | 256 | 293 | 230 | 229
Congressiw A | AVG 710 | 5.53 | 10.00 | 7.00 | 5.70
ongress STD 1.95 | 229 188 | 1.91 | 218
AVC 1753 | 11.47 | 1617 | 14.90 | 12.30
TonospheteEWS L gy 318 | 1.80 | 235 | 289 | 340
AVG 25.13 | 20.67 | 30.90 | 19.73 | 14.97
B EW STD 260 | 2.32 293 | 236 | 2.88
0 o AVG 653 | 7.00 | 830 | 560 | 4.30
§ ¢ STD 057 | 0.00 124 | 097 | 1.70
Wl AVG 847 | 3.37 | 863 | 7.37 | 6.10
STD 201 | 143 | 263 | 167 | 2.14
] AVG 30.57 | 23.00 | 34.07 | 21.60 | 16.23
WaveformEW | ¢ 3.86 | 3.18 448 | 369 | 4.08
AVG 6.67 | 3.57 | 7.37 | 657 | 487

1 7
WineEW STD 137 | 063 167 | 136 | 1.87
Zoo AVG 847 | 4.43 | 737 | 697 | 643
STD 136 | 0.50 163 | 125 | 1.83
Ranking W|TL | 0/0[18 | 8[0[10 | 0[0[18 | 0[0[18 | 10[0[8

29



Table 14: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in terms of fitness results

BDA
Benchmark Measure bGWO | BGSA | BBA
TVy, TVss3

Breastcancer | AVG 0.0286 | 0.0126 | 0.0155 | 0.0273 | 0.0361
STD 0.0048 | 0.0000 | 0.0023 | 0.0068 | 0.0050

BreastEW AVC 0.0312 | 0.0244 | 0.0428 | 0.0390 | 0.0358
cas STD 0.0092 | 0.0048 | 0.0066 | 0.0100 | 0:0087
Exactl AVG 0.0772 | 0.0046 | 0.1851 | 0.2532/70.3028
xactly STD 0.0553 | 0.0000 | 0.0515 | 0.0944 | 0.1080
Exactly? AVC 0.2790 | 0.2307 | 0.2480 | 02876 0.2490
Y STD 0.0195 | 0.0202 | 0.0136, | 0:01872).0.0151
HeartEW AVC 0.1200 | 0.1273 | 0.1285 N0.1369.1 0.1613
o STD 0.0315 | 0.0143 | 040258 | 00299 | 0.0230
Comohosranhe | AV 0.1099 | 0.0123 190.0832,] 00813 | 0.1622
YIPROEraphy | grppy 0.0314 | 0.0133_] 0.0346 | 0.0329 | 0.0526
Meofn AVC 0.0331 | 0.0046v] 0.0874 | 0.1652 | 0.1653
ok STD 0.0280 |%0.0001 | 0:0387 | 0.0413 | 0.0438
elueEw | AVG 0.1965 | 00037, 0.1257 | 0.0045 | 0.1317
pengiung STD 0.0435. | 0.0001 | 0.0249 | 0.0002 | 0.0384
SonatEW AVC 0.0106 20,0200 | 0.1041 | 0.0816 | 0.1099
STD 0.0096\ | 0.0111 | 0.0205 | 0.0232 | 0.0300

SoectEW AVC 0.1273 | 0.1498 | 0.1434 | 0.1532 | 0.1427
pect SrD 0.0162 | 0.0100 | 0.0162 | 0.0176 | 0.0208
Congrossiw 4| NG 0.0094 | 0.0167 | 0.0283 | 0.0324 | 0.0702
& STD 0.0078 | 0.0040 | 0.0101 | 0.0134 | 0.0149
TonosohorfE WA AVE 0.0795 | 0.0122 | 0.0988 | 0.1272 | 0.1237
onosphere STD 0.0131 | 0.0095 | 0.0128 | 0.0108 | 0.0186
Ko E AVG 0.0362 | 0.0262 | 0.0514 | 0.0994 | 0.0933
7 STD 0.0089 | 0.0033 | 0.0089 | 0.0488 | 0.0394
b an AVC 0.1839 | 0.1594 | 0.1767 | 0.2318 | 0.2319
g Ve STD 0.0194 | 0.0063 | 0.0081 | 0.0243 | 0.0218
", AVC 0.0432 | 0.0126 | 0.0476 | 0.0385 | 0.0627
STD 0.0086 | 0.0073 | 0.0088 | 0.0090 | 0.0175

WaveformEw | AVG 0.2563 | 0.2453 | 0.2373 | 0.2514 | 0.2508
STD 0.0096 | 0.0070 | 0.0080 | 0.0133 | 0.0164

WincEW AVC 0.0060 | 0.0027 | 0.0446 | 0.0091 | 0.0255
¢ STD 0.0052 | 0.0005 | 0.0169 | 0.0117 | 0.0171
Zoo AVG 0.0226 | 0.0028 | 0.0066 | 0.0046 | 0.0521
STD 0.0224 | 0.0003 | 0.0095 | 0.0008 | 0.0320

Ranking WITL | 4joj14 | 14]0/4 | 00|18 | 0[o[18 | 0j0j18
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Table 15: Comparison between the best BDA V-shaped and BDA S-shaped time-dependent/ variants and
other meta-heuristics in term of specificity.

BDA
Benchmark Measure bGWO | BGSA | 2BBA
TVys | TV

Breastcancer | AVG 0.9540 | 1.0000 | 0.9689 | 0.8935 | 0.9091
castcance STD 0.0190 | 0.0000 | 0.0184 | 00460 0.1239
BreastEW AVG 0.9595 | 0.9470 | 0.9304 | 0:89507), 0.8535
A STD 0.0189 | 0.0065 | 0.0191% 0.0314/ 0.0868
Exactl AVG 0.8821 | 1.0000 | 07478 | 0%164 | 0.3320
Y STD 0.1081 | 0.0000 440.1313. | 02363 | 0.1571
Exactlvd AVG 0.4284 | 0.3296-/.0.2950 | 0.3176 | 0.2370
Hy STD 0.0868 | 0.1692.| 0.1076 | 0.0907 | 0.1135
HeartEW AVG 0.8606 |10:8122 | 07460 | 0.8238 | 0.7333
‘ STD 0.0506 | 0.01859F 0.0539 | 0.1017 | 0.1028
N AVG 0.9705. | 1.0000 | 0.9213 | 0.8818 | 0.7940
ok STD 0.0299 10,0000 | 0.0482 | 0.0524 | 0.0918
SonarEW AVG 1.0000. | '0.9949 | 0.9517 | 0.8580 | 0.8236
nar STD 0.0000 | 0.0133 | 0.0404 | 0.0653 | 0.0779
A AVG 0.9356 | 0.9667 | 0.8894 | 0.8148 | 0.9397
pect STD 0.0229 | 0.0307 | 0.0453 | 0.0651 | 0.0458
ConmrossEW DAVE 0.9941 | 0.9977 | 0.9441 | 0.9422 | 0.8204
gress STD 0.0120 | 0.0087 | 0.1123 | 0.0503 | 0.1182
T —— 0.8396 | 0.9769 | 0.7667 | 0.7529 | 0.7027
P STD 0.0281 | 0.0259 | 0.0571 | 0.0521 | 0.0601
S . AVG 0.9649 | 0.9732 | 0.9240 | 0.8904 | 0.7775
LYSED STD 0.0115 | 0.0053 | 0.0200 | 0.0522 | 0.1083
o oo AVG 0.6781 | 0.7738 | 0.6628 | 0.6348 | 0.5068
STD 0.0325 | 0.0329 | 0.0469 | 0.0767 | 0.1147

Y . AVG 0.9496 | 0.9838 | 0.9260 | 0.9504 | 0.8514
© STD 0.0163 | 0.0126 | 0.0283 | 0.0164 | 0.0695
Ranking WITIL | 4019 | 9loj4 | oJoj13 | oJo13 | 0jo|13
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Table 16: Comparison between the best BDA V-shaped and BDA S-shaped time-dependent/ variants and
other meta-heuristics in term of Sensitivity.

BDA

Benchmark Measure bGWO | BGSA |»BBA

TVyy TVs3
Breastcancer | AVG 0.9900 | 0.9886 | 0.9819 | 0.9707 | 0.9471
casteance STD 0.0094 | 0.0000 | 0.0134 | 00166 h0.0185
Breast EW AVG 0.9824 | 0.9960 | 0.9184,| 0:9528%] 0.9425
reas STD 0.0146 | 0.0071 | 0.0259 %, 0.0214/| 0.0288
Exactl AVC 0.9472 | 1.0000 | 048782 | 0)8316 | 0.7632
Yy STD 0.0389 | 0.0000 J€0.0606.| 0/0820 | 0.0652
Exactlv AVG 0.8356 | 0.9322.].0.7904 | 0.7676 | 0.8125
actly STD 0.0240 | 0.0344%] 0.0606 | 0.0732 | 0.0698
HeartEW AVC 0.9031 |'0:9556 | 0:8373 | 0.7354 | 0.7253
car STD 0.0388 | 0,04639/70.0481 | 0.1034 | 0.0827
Meofn AVC 0.9784. [ 1.0000 | 0.8991 | 0.7390 | 0.5900
ook STD 0.0283 %0.0000 | 0.0668 | 0.0856 | 0.1536
SonarEW AVC 0.9905. | 0.9667 | 0.8273 | 0.8778 | 0.8019
STD 0.0194 | 0.0317 | 0.0613 | 0.0744 | 0.0739
Soect EW AVC 0.5815 | 0.2778 | 0.5033 | 0.6333 | 0.1111
pect SED 0.0997 | 0.1974 | 0.1066 | 0.2920 | 0.1185
Congressiw? AVE 0.9956 | 0.9810 | 0.9541 | 0.9428 | 0.9026
gre STD 0.0081 | 0.0053 | 0.0202 | 0.0315 | 0.0800
T — 0.9949 | 0.9993 | 0.9630 | 0.9484 | 0.9551
phe STD 0.0124 | 0.0041 | 0.0229 | 0.0273 | 0.0279
< Yew AVC 0.9762 | 0.9853 | 0.9448 | 0.9058 | 0.8014
LYSEp STD 0.0097 | 0.0048 | 0.0199 | 0.0626 | 0.0868
Mo Yoo AVC 0.8984 | 0.8843 | 0.8723 | 0.8304 | 0.7425
STD 0.0298 | 0.0072 | 0.0290 | 0.0460 | 0.1050
Y . AVC 0.9922 | 1.0000 | 0.9684 | 0.9302 | 0.8623
© STD 0.0255 | 0.0000 | 0.0528 | 0.0748 | 0.1787
Rarnking WITIL | 4l0j9 | 8oj5 | ojoj13 | 1fo[12 | ofo[13
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BDA-based approaches beat other optimizers for all cases. For 69.23% of test cases, TVy 4
provides the highest AUC rates. It is also observed that T'Vs3 outperforms other methods
for the other problems.

Table 17: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of AUC.

BDA
Benchmark Measure bGWO | BGSA | BBA
TVyy TVs3

Breastcanc AVG 0.9720 | 0.9943 | 0.9754 | 0.9321 | 0.9281
reasteancer | gp 0.0069 | 0.0000 | 0.0108 | 0.0266 | 0.0637
BreastEW AVG 0.9710 | 0.9715 | 0.9244 | 0.9244 | 0.8980
i STD 0.0100 | 0.0044 | 0.0136 | 0.0150 | 0.0459
Exactl AVG 0.9147 | 1.0000 | 0.8130 | 0.6740 | 05476
Yy STD 0.0704 | 0.0000 | 0.0890 | 0.15334°0:0710
Exactlvd AVCG 0.6320 | 0.6309 | 0.5427 | 0.5426 | 0.5248
Xactly STD 0.0381 | 0.0685 | 0.0471 | 0.0340.0.0400
HoartEW AVG 0.8819 | 0.8839 | 0.7917, |'0.7796%] 0.7293
o STD 0.0337 | 0.0168 | 0.0387] 0.0637 J 0.0620
Meof. AVG 0.9744 | 1.0000 | 00102 | 0:8104 | 0.6920
n STD 0.0270 | 0.0000 J£0.0539 | 0,0646 | 0.0908
SonatEW AVG 0.9952 | 0.9808 | 0.8895 | 0.8679 | 0.8127
onar STD 0.0007 | 0.0144 | 0.0307 | 0.0460 | 0.0580
SoectEW AVG 0.7585 [%0.6222 |N0:6964 | 0.7241 | 0.5254
pect STD 0.0441 | '0.0840m0.0427 | 0.1222 | 0.0586
c Ew | AVG 0.9949 | 010894 | 0.9491 | 0.9425 | 0.8615
ongress STD 0.0076 1.0.0049 | 0.0576 | 0.0282 | 0.0837
— 0.9172. | 0.9881 | 0.8648 | 0.8506 | 0.8289
onosphere STD 00141 | 0.0128 | 0.0304 | 0.0285 | 0.0325
KivekoEW AVC 0.9705 | 0.9792 | 0.9344 | 0.8981 | 0.7894
TVSkp STD 0.0088 | 0.0031 | 0.0190 | 0.0529 | 0.0900
Tietactoe AVG 0.7883 | 0.8290 | 0.7676 | 0.7326 | 0.6247
iy’ STD 0.0188 | 0.0128 | 0.0317 | 0.0425 | 0.0796
Vore AVG 0.9709 | 0.9919 | 0.9472 | 0.9403 | 0.8568
STD 0.0098 | 0.0063 | 0.0253 | 0.0354 | 0.1150

Ranking WITIL | 409 | 904 | ooj13 | oo[13 | 0j0|13

The results“thus far compared the average performance, STD, best and worst per-
formance of’algorithms for 30 runs. To judge whether results are significant or not, the
Wilcoxon statistical test with 5% significance was conducted [68]. The p-values of the
Wilcoxon test™based on fitness values are reported in Table 18. Such statistical tests
consider, all runs and can verify that the observed differences and improvements are sig-
nificantly meaningful. Table 18 shows that the superiority of TVss over bGWO, BGSA,
andBBA is statistically significant for all cases. In addition, the observed differences
between T'Vs3 and T'Vy 4 are statistically significant for most cases.

The p-values of the Wilcoxon test according to the number of features are shown in
Table 19. As per results in Table 19, the observed differences between the TVy 4 and TVgs
techniques are statistically meaningful for all problems. Based on Tables 13 and 19, it can
be detected that BBA optimizer has obtained better results for several problems but the
observed differences are not statistically significant. Hence, it is not significantly better
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Table 18: p-values of the Wilcoxon test for the classification accuracy results of TVg3 and other algorithms
(p > 0.05 are underlined).

Datasets TVia bGWO BGSA BBA

Breast Cancer | 4.38E-13 | 3.09E-10 | 1.03E-12 | 1.12E-12
BreastEW 1.11E-2 | 1.03E-11 | 1.05E-11 | 1.19E-11
Exactly 5.72E-11 | 1.15E-12 | 1.64E-11 | 1.20E-12
Exactly2 1.46E-9 | 3.19E-10 | 2.50E-11 | 8.65E-10
HeartEW 1.16E-1 | 2.30E-11 | 2.99E-9 | 2.37E-11
Lymphography | 6.52E-12 | 6.65E-12 | 5.65E-11 | 7.33E-12
M-of-n 5.75E-9 | 4.48E-12 | 1.20E-12 | 1.20E-12
penglungEW 5.59E-13 | 2.71E-14 | 5.25E-6 | 7.73E-13
SonarEW 3.08E-4 | 1.04E-11 | 2.53E-11 | 1.07E-11
SpectEW 4.57E-8 | 2.68E-7 | 1.42E-10 | 9.02E-12

CongressEW 2.53E-6 | 2.86E-8 | 3.98E-11 | 4.95E-12
IonosphereEW | 1.27E-11 | 1.54E-11 | 1.54E-11 | 1.57E-11

KrvskpEW 1.59E-6 | 2.70E-11 | 4.60E-10 | 2.72E-11
Tic-tac-toe 2.35E-10 | 1.29E-12 | 3.62E-124"3:07E-12
Vote 3.38E-12 | 2.47E-11 | 2.38E-114s1¥18E-11
WaveformEW | 1.43E-4 | 2.95E-11 | 2.97E-14_| 2.97E-11
WineEW 3.34E-1 | 1.13E-11 | 1AZE-5 [\1.14E-12
Zoo 2.85E-4 | 8.15E-2 [8.15E-2 . 1.40E-11

than BDA-based versions. On the other handypzeferring to Tables 12 and 18, we see that
both variants of BDA can outperform BBA in\term of accuracy for all problems and all
differences are statistically significant.

Boxplots of accuracy results for BDAwV-shaped and BDA S-shaped time dependent
variants versus other competitors on the sompared datasets are shown in Figs. 7 and 7.

6.7. Comparison with other metasheuristics

This section comparesthe proposed TV-BDA approaches with popular FS methods
proposed in previous studies inwt€rms of classification accuracy rates. The results of TVg3
and T'Vy4 are compared with the results of GA and PSO from [42] and the results of the
bGWO1, bGWO2/GA, and PSO from [53] in Table 20. It is worth mentioning that the
results of the first GA%and PSO versions where executed using the source code from the
authors in [42], while the results of bGWO1, bGWO2, GA, and PSO where obtained from
the paper [63], where the same datasets are used.

In table 20, the substantial superiority of the proposed approaches is observed, where
T'Vss is capable of revealing the best results for fourteen datasets, and T'Vy4 has discov-
ered thewbest results for four datasets. These results show again how TV-TFs influences
the\effeetiveness and results of the BDA by enhancing its exploration and exploitation ca-
pabilities, to find the most informative features that provides the maximum classification
accuracy for different datasets in different dimensions. The key reason for this excellent
performance is that the proposed time-varying transfer mechanisms can provide more va-
riety for exploration and exploitation, which leads to improved classification rates. The
results are also visually compared in Fig. 9. It can be seen that the classification rates of
TVss and TVy, are relatively higher (shown using darker colors) than those attained by
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Figure 7: Boxplots of accuracy results for BDA V-shaped and BDA S-shaped time dependent variants
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Table 19: p-values of the Wilcoxon test for the number of features obtained by TVss versus other
algorithms (p > 0.05 are underlined).

Datasets TVia bGWO BGSA BBA

Breast Cancer | 1.19E-02 | 9.76E-06 | 6.24E-03 | 2.26E-05
BreastEW 5.48E-09 | 6.51E-09 | 3.23E-07 | 5.61E-01
Exactly 8.53E-13 | 2.46E-11 | 1.09E-07 | 7.61E-03
Exactly2 2.75E-04 | 8.15E-01 | 2.74E-01 | 2.01E-01
HeartEW 9.14E-09 | 4.29E-09 | 5.81E-02 | 1.62E-01
Lymphography | 4.84E-05 | 1.41E-03 | 4.49E-01 | 2.91E-03
M-of-n 1.75E-12 | 1.46E-12 | 7.38E-12 | 2.86E-01
penglungEW 2.94E-11 | 2.90E-11 | 2.88E-11 | 1.90E-02
SonarEW 1.00E-08 | 1.16E-07 | 9.60E-02 | 1.75E-01
SpectEW 8.73E-09 | 6.41E-10 | 2.87E-05 | 7.07E-03

CongressEW 8.51E-03 | 8.44FE-09 | 1.89E-02 | 6.42E-01
IonosphereEW | 8.26E-10 | 1.84E-09 | 1.41E-05 | 3.10E-01
KrvskpEW 9.42E-08 | 3.37E-11 | 1.35E-01 | 3.42E-09

Tic-tac-toe 5.80E-05 | 4.93E-07 | 3.18E-094"3:71E-10
Vote 1.05E-10 | 7.56E-10 | 9.94E-104»2:31E-06
WaveformEW | 1.03E-08 | 4.30E-10 | 1.26E-01, | 7.84E-08
WineEW 9.47E-11 | 2.50E-11 | 3.07E-11 [|2.49E-03
Zoo 1.22E-11 | 2.31E-09 ["3.10E=10.4 5.55E-06

other approaches for several datasets. The golden areas indicates rates in the [60% 80%)|
interval. It can be observed that the propgsed approaches (T'Vss and T'Vy4) have smaller
golden areas, which visually shows the resultyimprovement.

By reconsidering all the presented results, we can summarize observations. Time-
varying TFs can effectively improve the BDA to generally deliver improved results com-
pared to the versions based ontraditional TFs. The dynamic nature of TV-based func-
tions can assist the proposed-binary/ optimizer to search the global feature space in a
time-aware manner that foGus/around more promising neighborhood solutions when it is
necessary. However, thedcurrent.fion-time-varying nature of TFs cannot adapt the explo-
ration behavior at the beginning of the optimization process when it is required to deal
with challenging feature spaces. Thus, it was seen that some promising regions inside the
feature space remainedwunexplored or are not explored enough. This shows the significant
role of dynamically-varying TFs to enhance the exploration and exploitation trends of
the BDA. The dynamic behavior of proper TFs has mitigated the immature convergence
and stagnation behaviors of the basic BDA with non-dynamic TFs. The reason is that
in the case of stagnation, the proposed BDA can change its transfer function in the next
iterations.t6 avoid LO and it has thus an increased chance of escaping from them by
fine-tuming its exploration and exploitation behaviors for the rest of the steps.

The key reason behind all observations is the benefits provided using TV-based TFs in
efficiently balancing exploration and exploitation. Changing the shape of TF proportion-
ally to the iteration counter (time dimension) allows the algorithm to leverage the impact
of solid TFs on exploration and exploitation by using more varied searching patterns.
Different shapes of TFs have varied the probability values that directly translate to the
way that the BDA provides diversity or intensity around candidate features.
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Table 20: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics from the literature in terms of accuracy

Benchmark BDA GA1 [42] PSO1 [42] bGWOL1 [53] bGWO2 [53] GA2 [53] PSO2 [53]
TVyy TVss

Breastcancer 0.9771  0.9929 0.957 0.949 0.976 0.975 0.968

BreastEW 0.9740 0.9792 0.923 0.933 0.924 0.935 0.939

Exactly 0.9290 1.0000 0.822 0.973 0.708 0.776 0.674

Exactly2 0.7257  0.7725 0.677 0.666 0.745 0.750 0.746

HeartEW 0.8858 0.8759  0.732 0.745 0.776 0.776

Lymphography 0.8950  0.9922 0.758 0.759 0.744 0.700

M-of-n 0.9732 1.0000 0.916 0.996 0.908 0.963

penglungEW 0.8067 1.0000 0.672 0.879 0.600 0.584

SonarEW 0.9952 0.9841 0.833 0.804 0.731 0.729

SpectEW 0.8765 0.8519  0.756 0.738 0.820 0.82

CongressEW 0.9950 0.9866 0.898 0.937 0.935

TonosphereEW 0.9249 0.9911 0.863 0.876 0.807

KrvskpEW 0.9705 0.9794 0.940 0.949 0.944

Tic-tac-toe 0.8215 0.8469 0.764 0.750 0.728

Vote 0.9617 0.9894 0.808 0.888

WaveformEW 0.7488 0.7580  0.712 0.732

WineEW 0.9991 1.0000 0.947 0.937

700 0.9825 1.0000 0.946 0.963 .

Ranking (W|T|L) 4/|0|14 13|0|5 0/0|18 0]0]18 M, 1/0]17 0]0]18 0]0[18

Figure 9: Comparison between TVV4, TVS3 and other techniques from the literature in terms of classi-

fication accuracy. Note that better results are indicated in dark blue.
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Another main observation was that S-shaped functions outperform V-shaped func-
tions. This is due to the mechanism that each family uses to update the position. When
using an S-shaped TFs, the position will be updated using Eq. 11, in which the search
agents are required to change the values of 1 to 0 if the step vector level is high. In
contrast, the updating rules in the V-shaped TFs are different. The search agents will not
be forced to take the values of 0 or 1, but they encourage search agents to stay in their
current positions when their step vector values are low or switch to their complements
when the step vector values are high. This can significantly degrade explofation of a
metaheuristic algorithm.

According to the no free lunch (NFL) theorems [69], we cannot propose‘a universal

best optimizer or feature selection approach. Hence, the proposed wrapper techniques
follow the NFL rule.

6.8. Results of algorithms on high-dimensional small instances datasets

In some fields such as the medical and biological studies, 1t"i§ a hard task to get
new instances frequently, since some experiments may take a long time to be reproduced.
However, it is well-known that in such fields the number of, features to be assessed are
very huge, e,g., a dataset may contain thousands ‘Or_even-millions of features. In this
case, a dataset may contain a large number of features'while the number of instances is
relatively very small.

For F'S methods, it is a big challenge to deal with datasets that contain a large number
of features, or a few number of instances\due to two main reasons: the low number of
instances (examples) is insufficient tentrain the learning model, and the large number
of features increases the search space where the heuristic approach cannot explore most
target regions [70].

In the previous sections, the reported results revealed the capabilities of the proposed
approach in dealing with several datasets (with features from 9 to 325) with much suc-
cess. In this subsection, new expériments are conducted using three well-known medical
datasets [71].

The datasets aré listed in Table 21. As can be seen in Table 21, three multi-class
datasets with a htige aumber of features and a few number of samples are adopted.

Table21: Details of high-dimensional small instances datasets [71]

Dataset No. of Attributes No. of Objects No. of Classes
Brain Tumor2 10367 50 4
SRBCT 2308 83 4
9 Tumors 5726 60 9

Im ' this section, we are interested to compare the best approaches among the proposed
ones (i.e., TVss and T'Vy,) against other methods (i.e., bGWO, BGSA and BBA) in terms
of classification accuracy and fitness values, which both AVG and STD values are reported
in Tables 22 and 23. Note that the tabulated results for each algorithm are the average
of 30 independent runs.
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Inspecting the results in Table 22, we can observe that T'Vj,4 has obtained the best clas-
sification accuracy result among all approaches in one dataset (namely: SRBCT) out of
three, while the T'Vg3 approach achieved the best results on two datasets (Brain  Tumor2
and 9 Tumor). It is worth mentioning that the difference between the accuracy obtained
by T'Vss and the other approaches varies from 15% to 26% on the Brain _Tumor2. More-
over, on the 9 Tumor, TVs3 is better than bGWO by 17%, and bGSA by 4%, but BBA
has attained a very low classification accuracy. T'Vy 4 is still better than other approaches
with lower difference in classification accuracy.

From Table 22, the STD values of the proposed approaches are low which indicates
how much the values are close to the mean value. This indicates the satigfactery stability
of the proposed approach and its capabilities in searching the promising regions of the
search space. Boxplots of accuracy results are also shown in Fig. 10.

Table 22: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of accuracy

BDA
Benchmark Measure bGWOY, BGSA | BBA
TVV4 | TVS3
) AVG 0.6000 | 0.7100 | 0.5600”| 0.5133 | 0.4500
Brain Tumor2
- STD 0.0000 | 0.0305 | 0.0498 | 0.0346 | 0.0572
AVG 0.9020 |10:8275 [$0.8882 | 0.9000 | 0.8667
SRBCT
STD 0.0520 | 0.0435 | 0.0357 | 0.0441 | 0.0265
AVG 0.5028 )0.5611 | 0.3917 | 0.5228 | 0.1033
9 Tumors
- STD 0.0152" | “0.0375 | 0.0543 | 0.0285 | 0.0394
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Figure 10: Boxplots of accuracy results for BDA V-shaped and BDA S-shaped time dependent variants
versus other optimizers on Brain Tumor2, SRBCT, and 9 Tumors datasets

Table 23 compares the fitness values and the associated STD values for TVs3 and
TVi4 versus other algorithms. From Table 23, it is clear that both approaches (7'Vs3 and
TVy,) obtained the best fitness values with very competitive STD values over all datasets.
The number of selected features for all approaches are presented in Table 24. The results
shows that bGWO obtained the smallest number of features but it obtained much lower
classification accuracy than the proposed approaches. This can be seen in the fitness values
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(that merge both classification accuracy and the number of selected features), where
bGWO obtained the worst fitness values compared to proposed approaches. Although
BBA obtained the lowest number of features in one dataset, it has a very low classification
rate.

Table 23: Comparison between the best BDA V-shaped and BDA S-shaped time dependent variants and
other meta-heuristics in term of fitness results

BDA
Benchmark Measure bGWO | BGSA | BBA
TVV4 | TVS3
) AVG 0.4010 | 0.2920 | 0.4560 | 0.3018 | 0.3414
Brain Tumor2
- STD 0.0000 | 0.0302 | 0.0495 | 0.0000 | 0.0493
AVG 0.0224 | 0.0535 | 0.1297 | 0.060810.0609
SRBCT
STD 0.0271 | 0.0220 | 0.0309 | 0.0106 | 0.0106
AVG 0.4970 | 0.4393 | 0.5633 |,0.4564 | 07948
9 Tumors
- STD 0.0151 | 0.0371 | 0.04160| 00337 | 0.0278

Table 24: Comparison between the best BDA V-shaped and BDA S=shaped time dependent variants and
other meta-heuristics in terms of minimum number of features

BDA
Benchmark Measure bGWO | BGSA BBA
TVV4 TVS3
) AVG 5134.23 |, 5121.43 | 4150.90 | 4932.43 | 4992.90
Brain Tumor2
- STD 40.78 33.11 509.29 24.48 60.39
AVG 1135.63] 1135.57 | 907.90 | 1047.23 | 1068.33
SRBCT
STD 29.31 18.78 78.88 12.20 15.37
AVG, 2715.17 | 2758.03 | 2914.27 | 2859.13 | 2318.67
9 Tumors
- STD 17.20 36.38 300.60 40.62 186.95

The p-values ofdhe Wilcoxon test are tabulated in Table 25. These values can verify
that the observed differences and improvements are significantly meaningful for all cases.

Table 25 p-values of the Wilcoxon test for the fitness results of T'Vy 4 versus other algorithms

TVss bGWO | BGSA BBA

Brain_Tumor2 | 1.57E-10 | 9.96E-08 | 2.79E-11 | 2.84E-11
SRBCT 8.48E-06 | 6.70E-06 | 1.91E-03 | 3.46E-09
9 Tumors 4.39E-05 | 2.91E-11 | 4.44E-04 | 2.99E-11

7. Conclusion and future directions

In this paper, the performance of the DA was improved using different TFs to con-
vert the step vector from continuous to a binary space. Eight different transfer functions
that belong to two groups (S-shaped and V-shaped) were employed to investigate their
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effectiveness on the basic BDA. The main contribution was the proposal of time-varying
S-shaped and V-shaped transfer functions to leverage the impact of the step vector on bal-
ancing the exploration and exploitation behavior. A set of well-known FS datasets from
the UCI data repository were used to evaluate the proposed approach, and the results
were compared with the results from other state-of-the-art algorithms. The experimental
results showed the superior performance for the time-varying S-shaped BDA approaches
compared with other investigated approaches. The discussions and the extensive/analyses
of the results revealed that time-varying transfer functions can be utilized d&s an effec-
tive way of improving the exploration and exploitation behavior of the BDA for feature
selection tasks.

This research opens several research directions for future work in.theufields of opti-
mization, metaheuristics, feature selection and applications of theseddisciplines. As future
directions, we think that proposing several new time-dependent”TFs is highly beneficial
to develop enhanced binary optimizers, and may change the direction of research in the
binary optimization field. As a next step, developing new(versions of DA by proposing
new operators in binary space can also be an interesting“tesearch direction. Finally, the
proposed binary BDA approaches can be applied as preprocessing step of many pattern
recognition, machine learning and feature selection tasks:.
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