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PHYSICAL REVIEW A VOLUME 50, NUMBER 5 NOVEMBER 1994 

Binary-encounter-dipole model for electron-impact ionization 

Yong-Ki Kim 
National Institute of Standards and Technology, Gaithersburg, Maryland 20899 

M. Eugene Rudd 
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-01 11 

(Received 6 May 1994) 

A theoretical model, which is free of adjustable or fitted parameters, for calculating electron- 
impact ionization cross sections for atoms and molecules is presented. This model combines the 
binary-encounter theory with the dipole interaction of the Bethe theory for fast incident electrons. 
The ratios of the contributions from distant and close collisions and interference between the direct 
and exchange terms are determined by using the asymptotic behaviors predicted by the Bethe theory 
for ionization and for stopping cross sections. Our model prescribes procedures to calculate the singly 
differential cross section (energy distribution) for each subshell using the binding energy, average 
kinetic energy, and the differential dipole oscillator strengths for that subshell. Then the singly 
differential cross section is integrated over the ejected electron energy to obtain the total ionization 
cross section. The resulting total ionization cross section near the threshold is proportional to the 
excess energy of the projectile electron. We found that this model yields total ionization cross 
sections for a variety of atoms and molecules from threshold to several keV which are in good 
agreement (- 10% or better on average) with known experimental results. The energy distributions 
also exhibit the expected shapes and magnitudes. We offer a simpler version of the model that can 
be used when differential oscillator strengths are not known. For the ionization of ions with an open- 
shell configuration, we found that a minor modification of our theory greatly improves agreement 
with experiment. 

PACS number(s): 34.80.Dp, 34.80.Gs, 34.80.K~ 

I. INTRODUCTION 

Electron-impact ionization cross sections are widely 
used in applications such as the modeling of fusion plas- 
mas in tokamaks, modeling of radiation effects for both 
materials and medical research, and aeronomy, as well 
as in basic research in astrophysics, atomic, molecular, 
and plasma physics. Although the method we present in 
this article-to be referred to as the binary-encounter- 
dipole (BED) model-is equally applicable to ionization 
of atoms and molecules, we shall hereafter refer to the 
targets as "atoms" for brevity. 

Ionization cross sections a t  all energies of incident par- 
ticles and ejected electrons are needed to follow the his- 
tory of an incident particle and its products for all ranges 
of energy transferred in individual collisions. Proper un- 
derstanding of the role of ejected electrons is crucial be- 
cause a large number of them, mostly slow electrons, are 
generated in the course of an energetic incident parti- 
cle penetrating through matter. These electrons in turn 
interact with other targets until the electrons are ther- 
malized. 

Electron-atom collisions can be divided into two broad 
types: soft or distant collisions with large impact pa- 
rameters and hard or close collisions with small impact 
parameters. The Mott theory [I], which describes the 
collision of two free electrons, accounts for hard collisions 
well but not soft collisions [2]. Bethe [3] has shown that 
soft collisions take place essentially through the dipole 

interaction between the incident particle and the target 
electron. 

The symmetric form of the binary-encounter theory de- 
scribed by Vriens [4], which is meant for electron-impact 
ionization, augments the Mott formula by assigning a 
velocity or momentum distribution to a target electron 
instead of a wave function: but still lacks the dipole con- 
tribution and hence leads to an incorrect cross section 
when the dipole interaction dominates a t  high incident 
energies. In contrast, contributions fiom hard collisions 
dominate a t  lower incident energies. 

There have been many attempts to combine the dipole 
contribution with either the Rutherford or Mott cross 
section to derive the "correct" ionization cross sections 
[5,6], but these attempts have all had only limited suc- 
cess because they failed to find the correct mixing ratio 
between the expressions for the soft and hard collisions. 
In addition, since the scattered and ejected electrons are 
indistinguishable after an ionizing collision, electron ex- 
change effect must be included, as is the case for the Mott, 
and Vriens formulas. 

Other approaches to represent ionization cross sections 
in compact, analytic forms [2,7-101 require parameters 
that must be fitted to some theoretical or experimental 
ionization cross sections. 

The BED model uses the relation between the asymp- 
totic (i.e., high incident energy) cross sections for ion- 
ization and for stopping (defined later) to deduce the 
mixing ratios not only between the soft and hard colli- 
sions but also for the electron exchange term. The BED 
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model, however, does not depend on any empirical or fit- 
ted parameters, though accurate experimental or theoret- 
ical data on binding energies and photoionization cross 
sections are needed. 

An important ingredient of the BED model is the dif- 
ferential dipole oscillator strength for ionization, which 
can be derived from either theoretical or experimental 
photoionization cross sections. The BED model con- 
structs ionization cross sections subshell by subshell, and 
in principle can be used to construct ionization cross sec- 
tions for any target atom or molecule as long as cor-, 
responding differential oscillator strengths for ionization 
are known. When high accuracy (10% or better) is not 
required, differential oscillator strengths calculated from 
Hartree-Fock or similar wave functions are sufficient. 

We also have included a simpler version of the BED 
model, to be referred to as the binary-encounter-Bethe 
(BEB) model, which may be used when the required dif- 
ferential oscillator strengths are not available. 

We present a brief outline of the underlying theory in 
Sec. 11, our BED model in Sec. 111, the BEB model in 
Sec. IV, discussions of the total ionization cross section 
in Sec. V, modification of the theory for ion targets in 
Sec. VI, and comparisons of our results with experiments 
in Sec. VII. Our conclusions are presented in Sec. VIII. 
Often applications of ionization cross sections require to- 
tal ionization cross sections only. In such cases, the total 
ionization cross sections calculated from the present the- 
ory can be recast into a simpler function of the incident 
electron energy. This simpler form is discussed in the 
Appendix. 

11. RUTHERFORD, MOTT, AND 
BINARY-ENCOUNTER CROSS SECTIONS 

A. Rutherford cross section 

The collision of a particle with charge Z l e  with a free 
electron at rest is described by the Rutherford cross sec- 
tion [ l l ] :  

where W is the kinetic energy of the ejected electron, a,-, 
is the Bohr radius (= 5.29 x lo-'' m), R is the Rydberg 
energy (= 13.6 eV), and T is the reduced kinetic energy 
defined by 

with the relative speed v and the electron mass m re- 
gardless of the actual mass of the projectile. For incident 
electrons, T is the nonrelativistic kinetic energy. 

In this nonrelativistic formula, T is the kinetic energy 
of the incident electron, and T - W is the kinetic en- 
ergy of the scattered electron. The Mott cross section 
above is given in the form of a singly differential cross 
section (SDCS), or the energy distribution of the ejected 
electron. 

Because the scattered and ejected electrons are indis- 
tinguishable, it is customary to call the faster one of the 
two (after a collision) the primary electron and the slower 
one the secondary electron. The first term in the square 
brackets of Eq. (3) is the direct collision term, the second 
term represents the interference between the direct and 
exchange collision terms, and the third term is the ex- 
change collision term. Note that the Mott cross section 
is symmetric in the kinetic energies of the secondary elec- 
tron, W, and the primary electron, T - W, as it should 
be. Both the Rutherford and the Mott cross sections, 
however, diverge when W + 0 or when W + T in the 
case of electron-electron collision. 

Of course, for a real atom, the cross section for ejecting 
an electron with W = 0 is finite, and W cannot be equal 
to T because the binding energy must be overcome for a 
bound electron to be ejected. With these restrictions in 
mind, one can slightly modify the Rutherford and Mott 
cross sections by replacing W by the energy transfer 

where B is the binding energy of the ejected electron. 
With this substitution, the modified Rutherford cross 
section for a subshell becomes 

where we have included the number of bound electrons, 
N ,  in the subshell. Similarly, the modified Mott cross 
section for a subshell is, after replacing W by E and T 
by T + B in the square brackets of Eq. (3), given by 

Note that, while the original Mott cross section, Eq. (3), 
is an exact solution for the collision of two free electrons, 
the modified Mott cross section, Eq. (6), is an approx- 
imation for a bound target electron. In fact, Eq. (6) 
becomes a good approximation for ejecting a fast elec- 
tron only when W >> B. 

B. Mott cross section 
C. Binary-encounter cross section 

Mott generalized the Rutherford cross section for the 
collision of two electrons [1,11] to take account of ex- 
change: 

An extension of the Mott cross section to describe the 
ionization of a bound electron is to assign a velocity or 
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momentum distribution to the target electron to repre- 
sent the orbital motion of the bound electron. Although 
one can regard the Mott cross section itself as a formula 
that describes a binary collision, i.e., a billiard-ball-like 
collision between two free electrons, it is more common in 
a binary-encounter theory to associate some kind of mo- 
mentum or velocity distribution with the target particle. 
Such a momentum distribution is often derived from the 
wave function for the target electron. 

The symmetric form (i.e., for the primary and sec- 
ondary electrons) of the binary-encounter theory [4] dif- 
fers from the Mott cross section in that it has an extra 
term and introduces the average kinetic energy U: 

In Eq. (7),  

where $is the momentum operator of the electrons in a 
subshell. 

At this point, it is convenient to express cross sections 
in terms of energy variables in units of the binding energy 
B of the electrons in a subshell: 

With these reduced variables, the modified Mott cross 
section becomes 

du(W,T) _ - du(w, t )  
dW Bdw 

Similarly, the binary-encounter cross section, Eq. (7), 
can be rewritten as 

111. BINARY-ENCOUNTER-DIPOLE (BED) 
MODEL 

Both the Mott and the binary-encounter cross sections 
for electron-impact ionization can be recast as a series: 

The term containing w + 1 represents the secondary 
electrons ejected from the target during the collision 
while the term containing t - w describes the scattered 
primary electrons which have lost energy. Both types of 
electrons are detected in experiment, and they are indis- 
tinguishable. As was mentioned earlier, the n = 1 term in 
Eq. (15) represents interference between the primary and 
secondary electrons, and the n = 2 term arises from close 
collisions. The n = 3 term accounts for the broadening 
of the energy distribution due to the intrinsic momentum 
distribution of a bound electron being ionized. 

The Mott cross section corresponds to the following 
choice of F, ( t )  : 

and the binary-encounter cross section is reproduced by 
choosing 

The total ionization cross section cr,, which is obtained 
by integrating the SDCS [Eq. (15)] from w = 0 tjo 
(t  - 1)/2, reduces to a simple expression 

= SIFl l n t  + F 2 ( 1  - t - l )  + iF3(1 - t 2 ) ] .  (19) 

One can see that Eq. (19) with Eq. (16) or (17) leads 
to the asymptotic (t  >> 1) behavior u, -+ t- l ,  which 
does not agree with the predictions of the Bethe theory 
nor with experiment. An example of this failure is shown 
in Sec. VIID. A more realistic asymptotic t dependence 
is predicted by the Bethe theory [3], viz., t- 'lnt, which 
arises fiom the dipole interaction. 

To correct this deficiency, we consider the asymptotic 
case first. In the asymptotic region t >> w, and hence the 
(t  - w ) - ~  terms may be ignored, i.e.. 

with 

1 
fn(w) = (w + 1). for n = 1,2. 

while F,(t) and f3(w) are to be determined. 
We now introduce the stopping cross section for ion- 
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ization asti, which is defined by There is no function Fl(t)  that will yield a t-l l n t  de- 
pendence in both Eqs. (30) and (31). Hence, we choose 
Fl to make the first term in both equations fall off faster 
than t-l l n t  so as to become asymptotically negligible in 
both equations. The simplest way to accomplish this is 
to choose Fl cc tP2.  This is consistent with the t de- 
pendence of Fl in the Mott and the binary-encounter 
cross sections provided that we make Fl negative, i.e., 
make the interference term negative. If we now choose 
Fz cc t-' as in the Mott and the binary-encounter cross 
sections, the second term in Eq. (30) becomes negligi- 
ble but the second term in Eq. (31) matches the t-l ln t  
dependence in the remainder of that equation. 

With these choices for Fl and F2, the third term dom- 
inates in the asymptotic equation for a;, Eq. (30), while 
the second and the third terms dominate in the asymp 
totic equation for asti, Eq. (31). 

The asymptotic expression for the SDCS in the Bethe 
theory [14] is 

The asymptotic limits of a; and asti are obtained by 
substituting Eq. (20) into Eqs. (18) and (22): 

where 
m 

(24) 

and 

where 

d a  S l n t  1 df (w) 
dw N t  w + 1 dw ' 

The upper limits of the integration for G and H have 
been extended to cc in the anticipation that f3(w) di- 
minishes rapidly enough as w + cc such that the asymp- 
totic part of f3(w) does not contribute to the asymptotic 
t dependence in Eqs. (23) and (25). This requires that 
f3(w) + w - ~  with m > 2 for w >> 1. 

The corresponding asymptotic cross sections derived 
by Bethe using the first Born approximation are [3,12] 

where df (w)/dw is the differential oscillator strength. On 
the other hand, the asymptotic limit of Eq. (20) is 

From Eqs. (32) and (33), we get 

l n t  1 df 
F 3 ( t ) f 3 ( ~ )  = --- N t w + l d w '  SQ l n t  a* = --, 

2 t An obvious choice is to set 
where 111 t 

F3(t) = - and 
1 df(w) 

f3(w) = N ( w  + 1) dw ' t 

From this choice of f3(w), the definition of M,? [Eq. (28)], 
and Eq. (24), we get and 

On the right-hand side (RHS) of Eq. (29), we have 
used the asymptotic form of the Bethe cross section for 
ost, which (unlike asti) includes excitations to both dis- 
crete and continuum states. We made this approxima- 
tion for two reasons. The first is that the coefficient of the 
t-l In t term for ionization not only is difficult to calculate 
but will also be different from one atom to another. The 
second reason is that a t  high incident energy, ionizing 
collisions account for 80% or more of ast [13], and hence 
using the asymptotic dependence of a s k  on the RHS of 
Eq. (29) is a simple yet effective approximation. 

Matching Eqs. (23) and (25) with Eqs. (27) and (29) 
leads to 

and from Eq. (26) 

where 

Earlier, we mentioned that f3(w) for w >> 1 should di- 
minish as w - ~  with m > 2 so that the upper limits in 
Eqs. (24) and (26) can be extended to cc. This require- 
ment is satisfied by our choice of f3(w) since df ldw di- 
minishes in the asymptotic region as w - ~  where m 2 3.5 
~ 5 1 .  

Q ln t  
F l l n t + F 2 + F 3 G =  --, 

2 t 
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To find F2(t ) ,  let F2 = a/ t .  Then, from the second and 
third terms of Eq. (31), 

a l n t  Ni1nt - 21nt 
- 

t 
---- + - - 

N t  t ) 
(40) 

which leads to 

What we have done so far is basically to let the F3 f 3  
term in Eq. (15) represent the dipole interaction. The 
Bethe theory normally is not used in a symmetric form, 
i.e., it does not have the exchange and interference terms 

d s  in the Mott cross section. At present, it is not clear 
what the appropriate symmetric form of the dipole in- 
teraction should be. We simply omit the exchange term 
( t  - U I ) - ~  in Eq. (15) until this question is resolved ill 
the future. Besides, the exchange interaction becomes 
negligible a t  high incident energies where the dipole in- 
teraction is important. 

Finally, w~ combine our choice for F, and f s  with the 
symmetric binary-encounter cross section, Eq (I:), and 
srt 

With Eqs. (15) and f3(w) defined in Eq. (35); the 
SDCS of a subshell based on the BED model is given by 

dff(W, T )  - - (N,/N) - 2  1 
dW B ( t  + u + 1) t + l  (X +') t - w  

According to the binary-encounter theory, the extra 
terms in the denominators of Eqs. (43)-u and I-- 
represent the acceleration of the incident electron due 
to the nuclear attraction. These extra terms are essen- 
tial in producing reliable ionization cross sections for low 
incident energies. 

Now we look a t  the threshold behavior of tmhe SDCS, 
i.e., the dependence as t -+ 1. Let t = 1 + At with 
At << 1. Then, our choice of Fn and fn(w) leads to 
[from Eq. (44)] 

a , ( l  + a t )  = const x At. (45) 

Although the Wannier theory [16] predicts ai cc ( A t ) l . l Z 7  

when At is extremely small, Eq. (45) represents a more 
macroscopic threshold behavior [17]. 

To use the BED model, values of B, U, N ,  and the dif- 
ferential oscillator strengths, df ldw, are needed for each 

subshell of a target. Of these, B and N are readily avail- 
able from the literature. The values of Ni and M: can 
be calculated from df ldw. The average kinetic energy U 
needed in the BED model is strictly a theoretical quan- 
tity, but can easily be obtained from wave function codes 
such as those developed by Froese-Fischer [18]. For one- 
electron atoms, the virial theorem can be used to deduce 
IT from the known binding energy, i.e., U = B. However, 
one should not assume the virial theorem to hold for each 
subshell in atoms and molecules with complicated elec- 
tronic structures. The virial theorem holds only between 
the total potential energy and the total kinetic energy. 
Binding and kinetic energies for subshells of many atoms 
and molecules are listed in Ref. [19]. Values of U for H, 
He, H Z ,  and Ne are included in Table I. 

Differential oscillator strengths are harder to get, al- 
though total and partial values of df/dw for many atoms 
and molecules may be found in the literature. Good 

TABLE I. Power-series fit to  differential oscillator strengths of H, He, Hz; and Ne. [d f jd (E/B)  = a y  + by2 + cy3 

+dy4 + e y 5  + f Y 6  + gy7, where y = B I E ,  E  = photon energy.] Numbers in square brackets are powers of ten! R (in eV) 
is the binding energy, and U (in eV) is the average kinetic energy. 

- - 
H H e  Hz N e  

Coeff. 1  s Is  --.--lo, 2 ~ ~ 1 "  2p.11" .. . . 2  n l a  
a 4 .8791  
6 -2 .2473[ -23  -2 .8820  -5 .8514  1.7769 
c 1.1775 1 .2178[1]  1.1262 - - 7 . 4 7 1 1 [ - 1 ;  3 .2930[2]  2.8135 5.2475 
d - 4 . 6 2 6 4 [ -  11 -2 .9585[1]  6 .3982  - 1 .6788[3]  - 3 . 1 5 1 0 [ 1 ]  -2 .8121  
e 8.9064[-21 3 .1251[1]  -7 .8055  3 .2985[3)  6 .3469[1]  
f - 1 .2175[1]  2.1440 - 2 . 3 2 5 0 [ 3 ]  -5.2528111 
9 1 .5982[1]  
B 1 .36057[1]  2 .459[1]  1.543[1] 2 . 1 6 0 [ l j  2 .160[1]  4 .847[1]  8 .669[2]  
U 1 .36057[1]  3 . 9 5 1 [ 1 ]  2 .568[1]  1 .1602[2]  1 .1602[2]  1 .4188[2]  1.2591[3] 

M: 0 .2834  0 .489  0 .680  1 . 5 5 2 ~  4.800[-21 1.642[-21 

N ,  0 .4343  1.605 1.173 6 . 9 6 3 b  7.0561- 11 1.686 

aNe(2p,I) covers photon energies from the 2p ionization threshold (21 .60  eV) to the 2s ionization threshold (48.47 eV), and 
Ne(Sp,II) covers photon energies from 48.47 eV and above. 
b ~ h i s  number is the sum of 2p,I and 2p,II contributions. 
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sources are the book by Berkowitz 1201 and the review 
article by Gallagher et a1. [21], from which one can find 
original references. For convenience, we have listed values 
of N; and M! for H, He, Ne, and Hz in Table I and also 
presented values of df /d(E/B), where E is the photon en- 
ergy, in the form of simple polynomials of BIE.  The dif- 
ferential oscillator strength for H is a fit to the exact the- 
oretical values, and the others are fits to the experimental 
values compiled and recommended by Berkowitz [20]. We 
emphasize that we have used experimental df ldw when 
they are more reliable than calculated ones, particularly 
near the threshold. Although any form of theoretical 
dfldw can be used, analytic fits are certainly more con- 
venient to use than numerical tables or graphs. 

IV. BINARY-ENCOUNTER-BETHE (BEB) 
MODEL 

Although the BED model is substantially simpler to 
use than most ab initio theories for electron-impact ion- 
ization, it is often difficult to get the differential oscilla- 
tor strengths, particularly subshell by subshell. For such 
cases, we offer a simplified version, to be referred to as the 
binary-encounter-Bethe (BEB) model, in which a simple 
function is used for the f3(w) in Eq. (20). 

Sometimes, the values of N; and/or M,? for an atom are 
known but not the details of the corresponding df ldw, 
because N; and M,? can be determined from appropriate 
sum rules without df ldw if accurate oscillator strengths 
for discrete excitations are known [22]. In general, there 
is no simple relationship between N; and M,? and hence 
knowing N; does not automatically lead to the value of 
M,? unless the details of dfldw are also known. 

In the BEB model, we assume a simple form of df ldw, 
which can be integrated to obtain N; and M,?. How- 
ever, these quantities can be replaced by better values if 
they are known. The BEB model even offers help when 
nothing is known about N;, M,?, and df ldw, though the 
reliability of resulting cross sections may suffer in this 
case. 

As will be shown in Sec. VII, differential oscillator 
strengths for H, He, and Hz have simple shapes (except 
for resonances which are not important for our purpose) 
which can be represented by inverse powers of w + 1, 
starting from (w + I)-', that is, 

where b is a constant. If we retain only the first term, 
then 

Mf = RNiI2B and Q = N,/N. (49) 

Note that the specific relationship between N; and M,? 
(and Q) above is a result of choosing df ldw to have the 
special form in Eq. (46). Equations (49) are not expected 
to hold for all subshells in targets with complicated shell 
structures. 

After substituting Eqs. (46) (first term only) and (47) 
into Eq. (35), we have 

which puts us back to the form of the binary-encounter 
cross section, Eq. (14), except that 4u/3 is now replaced 
by Q. This similarity between Eq. (50) and the binary- 
encounter theory is probably the reason for the appar- 
ent success in the early days of the binary-encounter and 
other related classical theories (e.g., by Gryzinski [23]) 
on these targets with simple shell structures. 

Since f3 will always be used with F3 as a product [see 
Eq. (34)], one can transfer Q in Eq. (50) to F3 to simplify 
our notation for f3: 

Qlnt  
F3(t) = - and f3(w) = 1/(w + I ) ~ .  (51) 

t '  

With Eqs. (15), (43), (49), and (51), the SDCS in the 
BEB model is given by 

where 

and 

Fz Fl =-- 2 - Q Qln t  F2 = F -  
t + l l  t + u + 1 7  3 -  t + ~ + l '  

Equations (54) are most useful to estimate the total 
ionization cross section (TICS) when only the value of 
M? (and thus Q = 2BM,?/NR) is known. As a further 
approximation if M,? is not available, we can set Q = 
1. This is a useful approximation that will still lead to 
ionization cross sections of correct orders of magnitude 
when nothing is known about differential or total dipole 
oscillator strengths. 

V. TOTAL CROSS SECTION FOR IONIZATION 
BY ELECTRON IMPACT 

Using Eqs. (15) and (43) with the Fn and fn from the 
BED model, Eq. (18) reduces to a simple expression for 
ai(t) for all t: 

and 
ui(t) = D(t) lnt  

Rb t + u + l  = -  
(w + 2B' 

(48) ( ) (  (55) + 2 - -  
By combining Eqs. (28), (47), and (48), we get t + l  
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where 

and Ni is defined by Eq. (39). 
Note that the above cross section is for a given sub- 

shell, and these cross sections must be summed over all 
subshells that contribute to ionization. In practice, only 
the valence shell and a few subshells below it will make 
significant contributions to u;. 

Equation (55) has the same asymptotic form as the 
Bethe theory [Eq. (27)] since from Eqs. (28) and (56) 
D(m) = (B/RN)M,?. The advantages of the BED for- 
mula for u; over the Bethe theory-or other variations of 
the Bethe theory-are that the BED formula (a) is de- 
signed to approach the low t region with an appropriate 
threshold behavior, (b) includes the interference term be- 
tween the direct and exchange interactions, which man- 
ifests itself as the ln t / ( t  + 1) term, and (c) leads to a 
reduction in the dipole contribution D( t )  as t decreases. 
In Fig. 1, we compare the ui for H deduced from the BED 
model with other theories as well as the experimental a; 
measured by Shah et al. [24]. Note that the BED model 
does not contain any empirical or adjustable parameters. 
The TICS'S based on the BED model for some simple 
atoms also agree well (f 10% or better in most cases) 
with available accurate measurements [see Sec. VII]. 

The TICS based on the BEB model is given by 

VI. MODIFICATION FOR ELECTRON-ION 
COLLISIONS 

We chose our F, ( t )  to have t + u + 1 in the denominator 
while the Mott and Bethe cross sections have only t. Our 
choice originated from the symmetric form of the binary- 
encounter theory [25] in which the incident electron was 
assumed to gain a kinetic energy of U + B before the col- 
lision to make it equivalent to the target electron, which 
has a potential energy of - 1  U + BI. This denominator, 
t+u+l ,  reduces the cross section, which is the desired ef- 
fect since most collision theories overestimate ionization 
cross sections near the peak. As is shown later, much 
of the success of our model for neutral targets can be ., 
attributed to this denominator. 

The symmetric binary-encounter theory and the BED 
model do not distinguish between collisions with neutral 
atoms and those with ions, as far as the incident electron 
is concerned, although the target electron description dif- 
fers through U, B, and df ldw. The correct theory should, 
however, also alter the description of the incident electron 
since the long-range Coulomb force between the incident 
electron and a target ion should distort the wave func- 
tion of the incident electron for its entire path, while such 
distortion should occur only in the vicinity of a neutral 
target. The Coulomb-Born and the distorted-wave Born 
approximations are examples in which such distortions 
are included. Qualitatively, the charge density of the in- 
cident electron is attracted toward the target ion, thus 

where Q is defined by Eq. (28). 

F z  2 - N,/N lnt  Fl = -;z. F2 = F3 = - 
t + 1  % t + l  

for the BED model, and 

F z  Fl =-- 2 - Q Q l n t  
t + l >  F 2 = -  t + l '  F 3 = -  t + l  (59) 

FIG. 1. Total cross section for ionization of H by electron 
impact. The abscissa is the incident electron energy T in 
eV. Filled circles, experimental data by Shah et al. [24]; solid 
line, BED cross section; short-dashed line, BEB cross sec- 
tion; medium-dashed line, Gryzinski's classical cross section 
[23]; long-dashed line, distorted-wave Born cross section with 
electron exchange correction by Younger [34]. 

increasing the overlap between the charge densities of the 
incident and target electrons. This results in increased 
cross sections. 

Indeed, we found the BED cross sections with t + u + I 
in the denominator for the ionization of He+ and Liz+ 
are too low compared to reliable experiments [26-291 as 
is shown later. Instead, we found that replacing t + u + 1 
in Eqs. (43) and (54) with t + 1 resulted in better agree- 
ments with experiment. At this point, we cannot prove 
that t + 1 is the correct denominator for ions. Further- 
more, a preliminary application of the BED model to Lit 
slightly favors the use of t + u + 1 in the denominator. 
Hence we tentatively propose to use, for target ions with 
open-shell valence electrons, 

for the BEB model. We recommend to use t  +u+ 1 in the 
denominator for ions with closed-shell configurations. 

Actually, the differential dipole oscillator strength in 
units of appropriate binding energies, df /d(E/B),  for 
one-electron ions is independent of the nuclear charge 2. 
The coefficients for the hydrogen atom in Table I may 
also be used for this universal df/d(E/B) in powers of 
B / E .  This is a fit to the exact theoretical expression for 
the photoionization of a I s  electron in a hydrogenic ion. 
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The data in Table I can be used to calculate ionization 
cross sections using Eqs. (58). 

For all one-electron ions [22], M? = 0.2834/Z2 and 
hence Q = 0.5668. With these results, we have a simple, 
universal formula for the ionization of one-electron ions 
based on the BEB model: 

with t = T/Z'R. (60) 

Equations (60) should be used with f, defined by Eqs. 
(53), and the matching BEB total ionization cross section 
for a one-electron atom is given by 

h a g  
a; = -[Fl(t) l n t  + F z ( t ) ( l -  t-l) + i F 3 ( t ) ( l  - t-2)], 

2 4  

with t = T / Z ~ R .  (61) 

VII. COMPARISONS WITH EXPERIMENTS 

Before we compare the BED and BEB cross sections 
with available experimental data, we discuss a simple and 
powerful way to graphically compare theoretical and ex- 
perimental results &st proposed by Platzman to graph- 
ically represent SDCS's [2,30]. In his method, which 
we shall refer to  as the Platzman plot, the ratio Y of 
da(W, T)/dW to the Rutherford cross section, Eq. (5) 
with N and Z1 equal to 1, is plotted as a function of the 
inverse energy transfer R/E:  

Y =  
du(W,T) T E2 -- 

dW h a :  R2 ' 

where du/dW can either be experimental or theoreti- 
cal. If the target is a multishell atom, the lowest bind- 
ing energy is used to define E in Eq. (62). Since 
da(W,T)/dW = do(E,  T) /dE,  

In other words, the area under the Platzman plot is pro- 
portional to the TICS. This fact can be used to normalize 
du/dW because u; is often known with a better accuracy 
than du/dW from independent measurements. 

Similarly to the physical interpretation of the dipole 
oscillator strength, Y can be interpreted as the effective 
number of target electrons participating in an ionizing 
collision. In this way, we expect that the value of Y will 
approach the number of valence electrons as W >> B pro- 
vided that the valence shell contributions dominate the 
TICS as is the case in most atoms and molecules. For 
slow secondary electrons, the shape of the Platzman plot 
is expected to follow the shape of the differential oscilla- 
tor strengths (multiplied by the energy transfer) "scaled" 
by some function of t and superposed on the contribu- 
tions &om close collisions, i.e., the Rutherford cross sec- 

tion. However, this scaling of the dipole contribution 
will be different from one atom to another. Because of 
the complexity of this scaling, one cannot simply add the 
dipole contribution to  the Rutherford (or the Mott) cross 
section to 'Lsynthesize" SDCS. Nevertheless, the Platz- 
man plot provides many useful clues to the reliability of 
experimental as well as theoretical du/dW, particularly 
when reliable values of differential oscillator strengths are 
known [31]. 

The success of the BED model is achieved by fixing this 
"scaling" between different components of the ionization 
cross section through Eqs. (43). 

We present an example of the Platzman plot for the 
ionization of the hydrogen atom by 60-eV electrons in 
Fig. 2. Experimental electron-impact data by Shyn [32] 
are presented in Fig. 2(a) and the corresponding (ex- 
act) differential oscillator strength of hydrogen in Fig. 
2(b). We can see immediately that the shapes of the two 
curves are very similar, indicating that dipole contribu- 

(a) e- on H ,  T=60 eV T i 

FIG. 2.  Energy distribution of secondary electrons from H 
by electron impact. The abscissa is the inverse of the energy 
transferred to the target, E, in rydbergs. (a) Platzman plot 
of the SDCS at T = 60 eV. Filled circles, experimental data 
by Shyn [32]; solid line, BED cross section; short-dashed line, 
BEB cross section; medium-dashed line marked "Ruth," the 
Rutherford cross section; long-dashed line marked "Mott," 
Mott cross section. Shyn's data were renormalized so that 
the integrated cross section-which is proportional to the area 
under the data points between R/E  = 1 and 0.370-matches 
the total ionization cross section at T = 60 eV in Fig. 1 .  (b) 
Differential oscillator strength df /dE for ionization of H(1s).  
The ordinate is the dipole function E(df /dE) that matches 
the dipole contribution in a Platzman plot. The energy trans- 
ferred, E ,  is the actual photon energy. 
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tions are prominent a t  the incident energy of T = 60 eV. 
The Mott cross section [Eq. (6)] is marked "Mott," while 
the Rutherford cross section [Eq. (5)] is marked "Ruth." 

To match the accurate TICS measured by Shah et al. 
[24], however, the data by Shyn have been renormalized 
to the height shown in Fig. 2(a). The area under Shyn's 
data between the threshold ( R I E  = 1) and the upper 
limit of the secondary electron energy ( R I E  = 0.370) 
reproduces the electron-impact ui measured by Shah et 
al. [24], u;(expt.) = 6.16 x lo-" m2. The BED model 
leads to ui(BED) = 6.47 x10-21 m2, while the BEB re- 
sult is a;(BEB) = 6.12 x10-'l m2 for Q = 0.5668 and 
6.60 m2 for Q = 1. 

Note that it is very simple to extrapolate the electron- 
impact data for slow secondary electrons, W < 5 eV, 
using the shape of the dipole contribution in Fig. 2(b). 
This possibility is important because most experimen- 
tal data on secondary electrons are either unavailable or 
unreliable at  W < 5 eV. 

Figure 2 clearly demonstrates the power of the Platz- 
man plot in (a) checking the reliability of experimen- 
tal cross sections, (b) normalizing the overall magnitude, 
and (c) extrapolating du ldW to values of W inaccessi- 
ble to experiments, as long as the dipole contribution is 
discernible. 

A. Hydrogen atom 

In Fig. 1, the BEB cross section (short-dashed line) 
nearly coincides with the experimental ui [24] while the 
BED cross section (solid line) is slightly higher than the 
experiment, though still within the experimental error 
limits. It is well known that the plane-wave Born cross 
section overestimates the peak cross section by about 
65% [33]. The long-dashed line is the distorted-wave 
Born cross section that includes electron exchange cor- 
rection by Younger [34]. The medium-dashed line is the 
cross section based on Gryzinski's classical theory [23]. 

Although the BEB cross section for the total ionization 
appears to agree better with the experiment than the 
BED cross section, Fig. 2(a) indicates that the shape of 
the experimental SDCS's by Shyn [32] is in better agree- 
ment with the shape of the BED model (solid line) than 
that of the BEB model (short-dashed line). The impor- 
tance of using the correct dfldw will become more ap- 
parent when we compare the SDCS from the BED model 
with other experimental data (see Sec. VII E) . 

At high incident energies, the dipole contribution to 
the SDCS-the difference between the solid line and the 
Mott cross section in Fig. 2(a)-increases while the Mott 
cross section remains almost constant, making the overall 
shape of the Platzman plot strongly resemble the shape 
of the dipole function in Fig. 2(b). 

B. One-electron ions 

In the nonrelativistic form, the differential oscillator 
strengths of hydrogenic ions scale as a function of Z2 ,  
and hence it is simple to extend the BED cross section 

for the hydrogen atom to one-electron ions as outlined in 
Sec. VI. 

Experimental TICS'S for Het and Liz+ are available 
[26-291. In Fig. 3, we compare our BED cross sections 
for total ionization using the t + 1 denominator (solid 
line) and those using the t + u + 1 denominator (medium- 
dashed line) with the experiment [26] as well as with 
Younger's distorted-wave Born cros; section (dot-dashed 
line) [34] and Gryzinski's classical cross section (long- 
dashed line) 1231. While both BED and BEB cross sec- 
tions with the t + u + 1 denominator are lower than the 
experimental data near the peak, the BED cross section 
with the t + 1 denominator is in good agreement, as we 
have discussed in Sec. VI. Gryzinski's cross section is 
remarkably close to our BED cross section. but this is an 
accidental agreement, in view of the disagreement seen 
in the case of H and Hz, for instance. The cross sections 
for the ionization of He+ measured by Defrance et al. [27] 
and those by Achenbach et al. [28] are in good agreement, 
with those by Peart et al. [26] and hence with our BED 
model with the t + 1 denominator. 

As is shown in Fig. 4, the BED cross section with the - 
t -t 1 denominator (solid line) is in good agreement with 
the experimental data by Tinschert et al. [29]. The BED 
cross section with the t + u + 1 denominator (long-dashed 
line) is t,oo small, while Gryzinski's classical cross section 
(medium-dashed line) [23] merges with experiment only 
beyond the peak. 

C. Helium atom 

In Fig. 5, we compare our BED cross section (with 
the t + u + 1 denominator for a neutral target) for the 
ionization of He with experimental data by Shah et al. 
(filled circles) [35] and those by Montague et al. (filled 
triangles) [36]. 

Again, we see excellent agreement between the BED 
cross section and the experimental data. The distorted- 

T (eV) 

FIG. 3. Total cross section for ionization of He' by elec- 
tron impact. Filled circles, experimental data  by Peart et al. 
[26]; solid line, BED cross section with the t +  1 denominator; 
medium-dashed line, the same with the t + u + 1 denomina- 
tor (see Sec. VI); long-dashed line, Gryzinski's classical cross 
section [23]; dot-dashed line, Younger's distorted-wave Born 
cross section [34]. 
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FIG. 4. Total cross section for ionization of Liz+ by elec- FIG. 6. Energy distribution of secondary electrons from 
tron impact. Filled circles, experimental data by Tinschert et He at T = 500 eV. This is a Platzman plot of SDCS of He. 
al. [29]; solid line, BED cross section with the t + 1 denomina- Solid line, BED cross section; filled circles, experimental data 
tor; long-dashed line, the same with the t +u+ 1 denominator by Opal et al. 1371; filled triangles, data by Goruganthu and 
(see Sec. VI); medium-dashed line, Gryzinski's classical cross Bonham [38]. The small peak at R / E  - 0.23 arises from the 
section [23]. autoionization of the doubly excited state 2s2p. 

wave Born cross section (medium-dashed line) by 
Younger [34] overestimates the peak cross section. 

A Platzman plot of the SDCS of He by 500-eV elec- 
trons is presented in Fig. 6. The solid line is our BED 
cross section, the filled circles are experimental data by 
Opal et al. [37], and the filled triangles are those by Goru- 
ganthu and Bonham [38]. One can see from the areas in 
the Platzman plot that the data by Opal et al. lead to 
too large a total cross section, while the normalization of 
the Goruganthu-Bonham data seems to be correct. The 
advantage of a Platzman plot is amply demonstrated by 
the small peak a t  R / E  0.23, which represents the au- 
toionization of the doubly excited 2s2p state. The overall 
shape of the Platzman plot comes from that of the dipole 
function E(df/dE) for He, which is similar in shape to 
that shown for H in Fig. 2(b), though the magnitude and 
abscissa are very different from those for H. 

The BED model is too simple to account for sharp 
autoionization peaks and resonances, although we could 

have indicated their presence by including such details 
seen in photoionization experiments in the dipole func- 
tion E(df/dE) we have used. The shape and height of 
such resonances in SDCS's, however, would have been in- 
correct because the BED model does not account for the 
intricate interference between the doubly excited states 
and the background continuum. 

D. Hydrogen molecule 

In Fig. 7, we compare our BED cross section (solid 
line) for the ionization of Hz with electron-impact exper- 
imental data by Rapp and Englander-Golden [39]. Al- 
though the BED cross section is somewhat smaller than 
the experimental data before reaching the peak, agree- 
ment between our theory and experiment is still far better 
than any theoretical efforts made in the past. Gryzin- 
ski's classical cross section (long-dashed line) overesti- 

FIG. 5. Total cross section for ionization of He by electron FIG. 7. Total cross section for ionization of Hz by elec- 
impact. Filled circles, experimental data by Shah et al. [35]; tron impact. Filled circles, experimental data by Rapp and 
filled triangles, data by Montague et al. [36]; solid line, BED Englander-Golden [39]; open squares, calculations by Schultz 
cross section (with the t + u + 1 denominator for a neutral et al. [40] based on the classical trajectory Monte Carlo 
target); medium-dashed line, Younger's distorted-wave Born (CTMC) method; solid line, BED cross section; long-dashed 
cross section [34]. line, Gryzinski's classical cross section [23]. 



3964 YONG-KI KIM AND M. EUGENE RUDD 50 - 

mates the peak cross section. The squares represent the 
classical trajectory Monte Carlo (CTMC) cross section 
calculated by Schultz et al. 1401, which agrees well with 
experiment from threshold to the peak. The CTMC cross 
section begins to fall below the experimental data beyond 
the peak because CTMC cross sections lack the dipole 
contribution that increases at  high incident energies. 

A Platzman plot of SDCS a t  T = 100 eV is presented 
in Fig. 8. Two sets of experimental data are available at  
this incident energy, those by Shyn et al. [41] (filled cir- 
cles) and those by DuBois and Rudd [42] (filled triangles). 
Both sets of experimental data indicate a departure from 
the expected shape for slow secondary electrons, W <: 10 
eV. Since the lowest secondary electron energy measured 
by DuBois and Rudd is W = 4 eV, their data must be 
extrapolated to the threshold, W = 0 eV, before the 
corresponding integrated cross sections, at  T = 100 
eV, can be determined. Judging from the area under the 
Platzman plot, the data by DuBois and Rudd would lead 
to ai a t  T = 100 eV, significantly lower than that shown 
in Fig. 7 .  As shown in this example, the Platzman plot 
provides an effective guide to extrapolate SDCS's to the 
threshold, where experimental difficulties are the great- 
est. 

E. Neon atom 

The TICS is compared in Fig. 9, where the BED cross 
section (solid line) overestimates CT, at low incident en- 
ergies, but agrees better with the measurement by Rapp 
and Englander-Golden [39] (filled circles) than the exper- 
iment by Wetzel et al. [43] (filled triangles). 

In Fig. 10, the SDCS's at  T = 500 eV are compared. 
The solid line is the BED cross section, while the filled 
circles are the experimental data by Opal et al. [37], and 
the filled triangles are those by DuBois and Rudd [42]. 
The magnitudes of both sets of experimental data are 
too small to match the TICS'S in Fig. 9. The data by 
Opal et al. resemble the expected shape-which comes 

FIG. 9. Total cross section for ionization of Ne by elec- 
tron impact. Solid line, BED cross section; filled circles, ex- 
perimental data by Rapp and Englander-Golden 1391; filled 
triangles, data by Wetzel et al. [43]. 

from the shape of the dipole function E(df/dE)--while 
the data by DuBois and Rudd for slow secondaries are 
too low, as they themselves indicated [42]. 

The overall shape of the Platzman plot-with a peak 
at  R / E  N 0.2-reflects the shape of E(df /dE).  Had we 
used the BEB model, the shape of the Platzman plot 
would have resembled that shown in Fig. 2. 

F. Water molecule 

In Figs. 11 and 12, it is seen that the BEB model 
may also be applied quite successfully to molecules with 
several molecular orbitals. Using Q = 1 and values of 
B and U from Rudd et al. [19], the contributions to the 
SDCS's and TICS'S from the five molecular orbitals were 
calculated and then summed. The total cross section is 
shown in Fig. 11 as a solid line. Considering the spread 
among the various experimental values, the agreement is 
satisfactory. 

In Fig. 12, the SDCS's for T = 1500 eV are com- 

FIG. 8. Energy distribution of secondary electrons from Hz 
at T = 100 eV. This is a Platzman plot of SDCS of Hz. Solid 
line, BED cross section; filled circles, experimental data by 
Shyn et aE. [41]; filled triangles, data by DuBois and Rudd 

e - o n  Ne 1 
r=500 eV 1 

FIG. 10. Energy distribution of secondary electrons from 
Ne at T = 500 eV. This is a Platzman plot of SDCS of Ne. 
Solid line, BED cross section; filled circles, experimental data 
by Opal et al. [37]; filled triangles, data by DuBois and Rudd 
1421. 
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FIG. 11. Total cross section for ionization of water vapor by 
electron impact. Filled triangles, experimental data by DuriC 
et al. [48]; filled squares, data by Bolorizadeh and Rudd [49]; 
filled circles, data by Schutten et al. [50]; solid line, BEB cross 
section. 

pared with experimental data of Hollman et al. [44] and 
with calculations using the Miller model [5,44]. The peak 
near 500 eV is from K Auger transitions in oxygen and 
the sharp drop near 1000 eV results from the fact that 
1500-eV incident electrons which have ionized K elec- 
trons cannot have energies above that value. There are 
similar drops in the 1470-1490-eV region due to the other 
molecular orbitals, but they are not resolved. Note that 
the ordinate in Fig. 12 is the ratio of du/dW to the 
Mott cross section, unlike the Platzman plot. Also, the 
abscissa is the secondary electron energy itself, W ,  to 

FIG. 12. Energy distribution of secondary electrons from 
water vapor at T = 1500 eV. The ordinate is the SDCS [o(W)] 
divided by the corresponding Mott cross section [uM(W),  Eq. 
(6)]. Filled circles, experimental data by Hollman et al. [44]; 
dashed line, calculations using the Miller model [5,44]; solid 
line, calculations using the BEB model, Eqs. (52)-(54). Us- 
ing the method described by Hollman et al. [44], the five 
highest-energy experimental points have been corrected for 
small-angle scattered primaries which were not detected. The 
bumps at about 650, 1100, and 1300 eV in the experimental 
data are artifacts due to the coarseness of the angular mesh. 

present the details of the SDCS beyond the "operational" 
definition of the upper limit, W,, = (T - B)/2, of the 
secondary electron energy. 

VIII. CONCLUSIONS 

We have successfully combined the binary-encounter 
theory and the dipole interaction-referred to as the 
binary-encounter-dipole (BED) model-to provide a re- 
markably reliable method to predict singly differential 
and total ionization cross sections. Both types of cross 
sections have three basic components: the electron ex- 
change term, the hard collision term, and the dipole in- 
teraction term. The ratios between these components 
were determined by requiring the asymptotic total ion- 
ization cross section and the stopping cross section to 
agree with the asymptotic form given by the Bethe the- 
ory. 

The BED model derives the differential and total ion- 
ization cross sections for each subshell of the target atom 
or molecule using the binding energy, average kinetic en- 
ergy, and the differential oscillator strength of the sub- 
shell. One can deduce the required differential oscilla- 
tor strengths either from reliable photoionization exper- 
iments or from accurate theoretical calculations. For 
atomic ions with an  open-shell configuration, we found 
that a minor modification brought the BED and experi- 
mental cross sections into good agreement. For the cases 
we have tested, the BED cross sections agree very well 
with experiment from threshold to high incident ener- 
gies. The BED theory does not contain any fitted or 
adjustable parameters and is not a perturbation theory. 
It works well at  low incident energies because it is closely 
linked to the Mott theory, which includes the Coulomb 
interaction to all orders, although it was derived for a 
free-electron target. 

When details of differential oscillator strengths are 
not available, we offer the simple binary-encounter-Bethe 
(BEB) model. This model provides ionization cross sec- 
tions for targets which are theoretically difficult to han- 
dle, e.g., polyatomic molecules. The shape of the differ- 
ential ionization cross section based on the BEB model 
may not be realistic, but we found that the corresponding 
total ionization cross sections are reasonable. 

A systematic application of the BED model to more 
complex targets than those presented here is needed to 
understand the validity of this simple but remarkably ef- 
fective model. To do so, not only reliable total photoion- 
ization cross sections but also cross sections for each of 
the outer subshells of atoms and molecules, e.g., those 
measured using a synchrotron light source, are needed. 

Further comparisons of the BED theory with experi- 
mental v, of He-like and Li-like ions available in the liter- 
ature [26,45-471 should reveal whether the use of the t + 1 
denominator is necessary or sufficient to represent the 
distortion of the incident-electron wave function. Work 
is in progress to determine reliable differential oscilla- 
tor strengths for these ions so that the BED model can 
be applied. Experimental data on the ionization of other 
one-electron ions would be welcome. Currently, there are 
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no experimental SDCS's of one-electron ions to compare 
with our theory. 

With the BED and BEB models, both singly differen- 
tial and total ionization cross sections can easily be cal- 
culated for most atoms, atomic ions, and molecules. The 
accuracy of electron-impact ionization cross sections pro- 
vided by the BED and BEB models over the entire range 
of energies should be adequate for most applications, in- 
cluding modeling of radiation and plasma effects. 

which only total ionization cross sections are needed, the 
TICS can be fitted to an even simpler function o f t  than 
that used in Eq. (55), by avoiding the summation over 
subshells, using a single t defined by the lowest binding 
energy B, and by omitting u. 

When a reliable TICS is known--usually through ar- 
curate measurements-then a simple form to fit a, is 
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